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Errors in Speech Production: Explaining Mismatch and Accommodation 

Andrea Gormley (agormley@carleton.ca)
Institute of Cognitive Science, Carleton University

Ottawa, ON  K1S 5B6  Canada

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo 

Waterloo, ON  N2L 3G1  Canada

Abstract
The  study  of  errors  allows  researchers  insight  into  the 
production  of  speech.  Speech  errors  have  been  shown  to 
accommodate  in  form  to  their  erroneous  environment, 
demonstrating that errors occur before the processing of the 
phonological  rule  component.  That  this  configuration  is  a 
complete  picture  of  the  processing  involved,  however,  has 
been  called  into  question  by  the  prevalence  of  non-
accommodated errors that have been detected via instrumental 
analysis  (Gormley  2008).  This  paper  presents  a  model  of 
speech production developed using Python ACT-R (Stewart 
& West, 2007a) that uses a noisy recall system and explicit 
encoding of phonological  rules.  This system produces both 
accommodated and mismatch speech errors at the same rates 
as observed in the empirical study.
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Introduction
Transcription  studies  of  speech  errors  demonstrate  a 
phenomenon  wherein  a  speech  error  tends  to  become 
phonologically accommodated in its erroneous context.  For 
example, if a speaker makes the error of saying  an apple 
instead  of  a  pear, the  determiner  an is  used  before  the 
vowel-initial  apple even though consonant-initial  pear was 
intended.  This  is  in  contrast  to  a  non-accommodated,  or 
mismatch  error,  where  the  speaker  would  say  a  apple. 
Accommodation  is  generally  thought  to  be  the  highly 
prevalent  across a variety of different types of speech errors 
(Boomer & Laver, 1968). 

However, the rate of occurrence of mismatch errors may 
be significantly underestimated by transcription studies.  By 
analyzing the wave forms of produced speech, instrumental 
analysis of speech errors shows that  mismatch errors occur 
more often that accommodated ones (Gormley, 2008).  This 
calls  into question standard  models  of  speech production, 
since they do not exhibit this effect.  This paper presents a 
model of speech production developed using Python ACT-R 
(Stewart & West, 2007a) that uses a noisy recall system and 
explicit  encoding  of  phonological  rules.   This  system 
produces both accommodated and  mismatch speech errors 
at the same rates as observed in the empirical study.

Speech Errors
An instrumental analysis of speech errors was conducted to 
re-address  the  question  of  phonological  accommodation. 
Based  on  the  methodology  of  Goldrick  and  Blumstein 

(2006), thirty-two non-word tongue twisters were designed 
that would induce voicing errors on the final consonant of a 
syllable (i.e. the coda).  Sample tongue twisters are shown 
in  Table  1,  each  of  which  follows  an  A B B A pattern, 
where A and B are identical other than one having a voiced 
final  consonant  and  the  other having  a  voiceless final 
consonant.   Participants  were  recorded  repeating  each 
tongue twister three times.

Table 1: Sample non-word tongue twisters
tiff tivv tivv tiff

kess kezz kezz kess
tuzz tuss tuss tuzz

kavv kaff kaff kavv

In  English,  vowels  are  lengthened  before  voiced  codas. 
This  means  that  vowel  length  can  be  measured  to  see  if 
phonological  accommodation  has  occurred.  To  determine 
the  expected  length  for  voiced  and  voiceless codas,  each 
participant also provided a control condition where the same 
word was repeated over and over.

Transcription studies on phonological accommodation are 
at a disadvantage given the difficulties in perceiving errors 
at  a  phonetic  level.  Acoustic  analysis  removes  this 
perceptual issue, yielding a more objective result. Given that 
errors  may  occur  at  all  levels  of  speech  production; 
semantic, morphological and phonological, it would not be 
surprising to find that errors can occur after phonological 
processing, before the formation of an articulatory plan. 

Unlike other speech error studies, all data were analyzed, 
not just those tokens that were perceived by the researcher 
as errors. This method has been used by Frisch and Wright 
(2002)  and  eliminates  the  perceptual  bias  inherent  in  the 
perception  of  speech.  For  each  participant,  measurements 
were  made  for  all  fricatives  and  vowels  in  the  control 
condition. Measures of percent voicing were taken for all 
coda fricatives and durations were measured for all vowels 
for each participant. The initial consonant did not make a 
significant difference in vowel duration or voicing of codas 
and were not analyzed separately. 

An error was defined as a situation where the participant 
produced a token with a vowel duration or fricative voicing 
more than two standard deviations away from the mean for 
the  control  condition.   Each  participant's  statistics  were 
evaluated  separately.   All  tokens  in  the  experimental 
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condition were categorized as normal or erroneous based on 
this range, as illustrated in Figure 1. 

Figure 1: Example data where mean duration for vowels 
before voiceless codas is 91 ms (s.d. 18 ms). The mean 

vowel length before voiced codas is 163 ms (s.d. 25 ms).

Tokens  with  values  that  were  more  than  two  standard 
deviations from the mean were considered errors. Mismatch 
errors  were  defined  as  when  the  vowel  length  did  not 
correspond to the voicing value of the coda fricative, such 
as when the token tiff was determined to have a long vowel 
and the coda fricative was determined to be voiceless. There 
was  a  considerable  grey  area  in  the determination  of  the 
range of normal values for each participant. Because values 
for  the  categories  voiced  and  voiceless  as  well  as  vowel 
duration  are on a continuum, a vowel’s duration could fall 
within a normal range for either long or short, as is shown in 
Figure 2. These indeterminate cases were not classified. 

Figure 2: Example where mean duration for short vowels is 
116 ms (s.d. 30 ms). Long vowel duration is 146 ms (s.d. 24 

ms). There is considerable overlap.

As shown in Table 2, of the 4790 tokens analyzed, 355 are 
mismatch  errors,  66  are  accommodated  and  451  are 
unclassified, yielding 872 total errors.  Also reported are the 
95%  confidence  intervals  for  these  measures,  which  are 
used to evaluate our computational models.

Table 2: Error types

N %

95% 
Confidence 

Interval
  Correct 3918 81.8 80.7 82.9
  Mismatch 355 7.4 6.7 8.2

Accommodated 66 1.4 1.1 1.7
Unclassified 451 9.4 8.6 10.3
Total Errors 872 18.2 17.1 19.3

The  results  of  this  experiment  show  that  not  all  errors 
accommodate to the erroneous environment. By analyzing 
all tokens and determining the normal range of production 
for each participant,  an unbiased view of speech errors is 
obtained. That errors can be phonologically inappropriate to 
their  environment  shows  that  phonological  rules  are  not 
consistently processed after the error is made. This suggests 
that the common assumption made by psycholinguists that 
speech errors must occur before the phonological processing 
component is not the complete story. 

To  investigate  possible  mechanisms  to  explain  these 
mismatch errors, we constructed two separate computational 
models.  The first considers the possibility that errors can 
result  from  the  retrieval  of  information  after  the 
phonological  rules  have  been  applied,  and  the  second 
considers errors in applying the rules themselves.

Errors Before and After Rules
In the standard conception of speech production, the speech 
planning system produces an ordered sequence of phonemes 
to be uttered.   A set  of  phonological  rules are applied to 
these phonemes to produce the output.  Any errors are due 
to problems with the  speech planning system, such as the 
misordering  of  phonemes  in  a  string.   The  phonological 
rules, however, are assumed to be applied perfectly.

Such a model only accounts for accommodation errors, 
not mismatch errors.  Given the empirical data in Table 1, 
there  must  be  a  mechanism  for  introducing  these  errors. 
One possibility is that, after the rules are applied, errors are 
introduced  while  taking  the  results  of  the  rules  and 
producing an output.

For our model, the non-words are input into the system as 
a  string of  phonemes.   Each phoneme's  features  are  then 
retrieved from a feature store.  These features are combined 
with  the  syllabic  and  order  information  in  the  input  and 
placed in  what  we call  the  first  speech  planning module. 
This is an extremely short-term memory that merely stores 
the information and makes it available to the phonological 
rule  module,  which  makes  the  relevant  transformations. 
Any errors in retrieving information from the feature store 
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or in  passing the information to  the phonological  module 
will  result  in  accommodation  errors,  as  the  incorrect 
information will  go through the phonological  rule  section 
yielding a form with the appropriate phonology. 

To apply the rules, the phonology module retrieves each 
segment  from  the  first  speech  planning  module  and 
performs the rule  of vowel  lengthening where applicable. 
The results of applying these rules are passed to the second 
speech  planning  module.  Once  it  is  stored  here,  it  is 
outputted in sequence based on the stored order information. 
This retrieval  from the second speech planning module is 
where mismatch errors occur. Since the phonological  rule 
has already applied, the retrieval of an s instead of a z will 
yield the form  tiis with a long vowel that is inappropriate 
before the voiceless s.

Incorrect  retrievals  from  the  feature  store  and  speech 
planning  are  not  random.  Given  that  speech  errors  often 
confuse elements that are similar in form and structure such 
as two onsets or two alveolar stops, the model is constructed 
to favour this type of confusion.  Two onsets are more likely 
to be confused than an onset and a nucleus.

Table 3: Example of correct processing

Step Stored Value
1 Input phonemes tiztis
2 Retrieve features tiztis
3 Phonological rule tiiztis
4 Output tiiztis

Table 4: Example of processing an accommodation error

Step Stored Value
1 Input phonemes tiztis
2 Retrieve features (error: got 

features for z instead of s) 
tiztiz

3 Phonological rule tiiztiiz
4 Output tiiztiiz

Table 5: Example of processing a mismatch error

Step Stored Value
1 Input phonemes tiztis
2 Retrieve features tiztis
3 Phonological rule tiiztis
4 Output (error: got i instead of ii) tiztis

Cognitive Architectures
There are a vast selection of possibilities for developing a 
computational model for this task.  While it would certainly 
be possible to develop a special-purpose model from scratch 
to exhibit the desired behaviour, we instead chose to base 
our model on existing cognitive theory.   In particular,  the 

general cognitive architecture ACT-R (Anderson & Lebiere, 
1998) has been applied to a wide variety of psychological 
tasks.  However, few of these applications have been in the 
domain of linguistics, and it has not been previously applied 
to speech production.

To  apply  this  architecture  to  this  novel  domain,  we 
followed the approach of Stewart and West (2007a).  Here, 
the particular components of ACT-R are treated as general 
modules that can be re-purposed for different tasks.  Instead 
of assuming there is just one central production system for 
ordering  event,  we  consider  that  the  ACT-R  production 
system may be a suitable model for many different separate 
aspects of cognition, all happening in parallel.  This is also 
consistent  with  the  Massive  Redeployment  Hypothesis 
(Anderson,  2007),  which  argues  that  once  a  cognitive 
component  has  been  developed,  evolution  is  likely  to 
redeploy that same component for multiple purposes, if it is 
a  suitable  system.   This  is  much  more  efficient  than 
evolving a new system for every new capability.

The  first  generic  component  from ACT-R is  a  storage 
system for symbolic  information.   Information (known as 
chunks)  consisting  of  an  ordered  list  of  symbols  can  be 
placed into the memory and retrieved at a later time.  This 
memory is not perfect; it will sometimes fail to retrieve a 
chunk  and  sometimes  a  different  chunk  than  the  one 
intended will be returned.  This has been used for a broad 
range of explicit and implicit memory tasks, and is based on 
the  general  principle  that  the  odds  of  a  memory  being 
needed decay as a power law over time.  This principle is a 
close  match  for  realistic  human  cognitive  environments 
(Anderson & Schooler, 1991).

To implement  this,  each item  i in memory is  given an 
activation level  Ai, calculated using Equation 1, where tk is 
the amount of time since the kth appearance of this item, d is 
the decay rate, and  ε(s) is a random value chosen from a 
logistic distribution.

(1)

When  attempting  to  recall  an  item  that  matches  a  given 
pattern,  the  activity  level  of  each  potential  answer  if 
calculated and the one with the highest Ai is selected.

The second generic component is a production system: a 
set of rules that identify what action should take place in a 
given  condition.   These  actions  are  not  overt  physical 
actions.  Instead, they are internal actions which may create 
new chunks, request the retrieval of chunks, change chunk 
values, and so on.

The  ACT-R  cognitive  theory  also  specifies  how  long 
these components take to perform various tasks.  Production 
rules  in  their  normal  context  of  the  central  executive  for 
cognition  are  though  to  require  50  milliseconds  to  fire, 
while  memory  recall  time  is  proportional  to  e-A.   For  a 
phonological  model  we  must  assume  much  faster 
processing, but these details are not considered here.
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Model Construction
To  construct  our  model,  we  used  the  two  basic 

components from ACT-R: the memory module for storing 
symbolic  information  and  the  production  system  for 
defining the sequence of events that should occur within the 
model.   In  contrast  with  standard  ACT-R,  four  separate 
special-purpose memories were defined, each of which can 
act  in  parallel.   The  feature  store  is  a  long-term  static 
memory holding the particular  features  of  each phoneme. 
The first and second speech planning module are short-term 
memories holding the phonemes currently being processed. 
Finally, the rule memory stores the rules to be applied.

It  should  be  noted  that  we  are  not  assuming  these 
components are identical to the standard ACT-R production 
system and declarative memory system.  In particular, they 
must be much faster in order to produce speech effectively. 
We  hypothesize  that,  while  they  maybe  optimized  to 
perform phonological tasks, they can still be thought of as 
special cases of these generic cognitive components.

For this model, there are two sources of randomness that 
can affect behaviour: the first and second speech planning 
modules.  Each of these is hypothesized to store phonemes 
and  their  feature  information.   ACT-R  provides  two 
methods  for  configuring  the  recall  error  from  such  a 
memory.  First, there is random fluctuation of the activity 
levels of a chunk (s in Equation 1).  Second, a similarity 
score  can  be  set  between  values  to  indicate  that,  for 
example,  a retrieval  attempt for  red would only receive a 
small activation penalty for retrieving pink instead.  We use 
this method here to indicate the level of similarity between 
phoneme pairs such as z and s.

This results in a complex model, but with only two free 
parameters.  All other parameters are fixed due to the choice 
of  using  the  ACT-R  components  as  a  general-purpose 
cognitive architecture.  Importantly, the accommodation and 
mismatch error rates are not independently adjustable in our 
model.  Instead, they arise from an interplay between these 
parameters and the overall system.

Modelling Results
To determine the accuracy of our model, we compared it to 
the results shown in Table  2.  The first requirement is that 
the model's overall rate of error is comparable to that of the 
participants.   From Table  2 we  note  that  the  proportion 
correct rate is between 80.7% and 82.9% (95% confidence 
intervals).   However,  there  were  also  a  large  number  of 
unclassified  responses,  due  to  the  inability  to  distinguish 
phonemes  via  acoustic  analysis.   The  most  conservative 
possible assumption is that the actual proportion correct is 
between 80.7% and 93.2%.

The model's proportion correct is shown in Figure 3.  This 
proportion changes as the two parameters for the model are 
adjusted.  As can be seen, the model makes no errors when 
there are low amounts of noise, and more errors are seen 
with more noise and a higher similarity  between matched 
pairs of phonemes (such as s and z).

Figure 3: Proportion of responses for the first model that 
have no speech errors.  Each point shows the behaviour of 

the model for different noise and similarity values.

The second  requirement  is  that  more  mismatch  errors  be 
produced than accommodation errors.  From Table  2, this 
value should  be between 0.05% to 0.071%, although this 
does not take into account the unclassified errors. 

Figure 4: The proportion of mismatch errors minus the 
proportion of accommodation errors for the first model.

It  is  common practise in modelling research to identify a 
parameter setting that has the minimum mean squared error 
with  respect  to  the  human  data.   However,  this  merely 
measures prediction error rather than determining whether 
the  model's  behaviour  is  statistically  distinguishable  from 
the  empirical  data.   Instead,  we  applied  the  Relativized 
Equivalence  measure  (Stewart  &  West,  2007b).   This 
produces  a  value  below  1  if  the  difference  between  the 
model's  behaviour  and  the  participant's  behaviour  is  less 
than the size of the empirical confidence interval for every 
measure.  In other words, if the relativized equivalence is 
below  1,  then  the  model's  results  are  statistically 
indistinguishable  from  the  empirical  data.   This  is  an 
extremely conservative metric for evaluating a model.
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The relativized equivalence for our first model is shown 
in Figure 5.  All parameter settings inside the contour line 
labelled 1.0 are models whose behaviour matches that of the 
participants.   To  further  distinguish  these  models,  more 
accurate empirical results are needed.

Figure 5: Relativized equivalence for the first model as 
noise and similarity are adjusted.  All parameter settings 

inside the 1.0 contour are models that statistically match the 
participant's behaviour.

Errors During Phonological Processing
The second possible explanation for mismatch errors is that 
they can arise during the processing of phonological rules. 
Phonologists do not tend to study errors, and as a result the 
idea  that  errors  can  arise  from  within  the  phonological 
component itself has not been widely explored.  What if the 
notion  that  errors  can  arise  during  the  processing  of 
phonological rules was considered?  What would an error of 
this  type  look  like?  The  answer  is  that  an  error  of 
phonological  rule  processing,  that  is  the  failure  of  a 
phonological  rule  to  apply,  would  look  like  a  mismatch 
error.  The  second  model  presented  here  represents  this 
option.

This model introduces error into the application of rules 
itself.  It is identical to the first model, except that random 
noise has been added when retrieving the rule to be applied. 
If this retrieval fails, the phonological rule will fail to apply, 
leading to a mismatch error.

Rather  than  introducing  a  new parameter  to  adjust  the 
probability of a rule failing, we used the same value as the 
random  noise  in  the  rest  of  the  model.   This  keeps  our 
model  as  simple  as  possible,  rather  than  adding  new 
independently adjustable parameters.

Table 6: Example of processing an accommodation error
Step Stored Value

1 Input phonemes tiztis
2 Retrieve features (error: got 

features for z instead of s) 
tiztiz

3 Phonological rule tiiztiiz
4 Output tiiztiiz

Table 7: Example of processing a mismatch error

Step Stored Value
1 Input phonemes tiztis
2 Retrieve features tiztis
3 Phonological rule 

(error: the rule fails to apply)
tiztis

4 Output tiztis

It should be noted that this model introduces an asymmetry, 
since  the  errors  generated  by  this  model  will  appear  as 
under-applying rules rather than over-applying rules.  That 
is, there will not be situations where the rule applies when it 
should  not  (as  in  lengthening  the  vowel  in  tis to  tiis). 
Interestingly, when the mismatch errors from the empirical 
study were examined, a strong tendency was found for  tiiz 
to be pronounced tiz more often than tis was pronounced tiis 
(see Table 8).

Table 8: Asymmetry of vowel length mismatch errors 
among classified tokens.

N %

95% 
Confidence 

Interval
  tiiz as tiz 102 2.13 1.76 2.58
  tis as tiis 38 0.79 0.58 1.09

Modelling Results
The same analysis was performed on the second model as 
on the first.  Figure 6 shows the proportion correct, which is 
slightly  lower  that  the  first  model  at  the  same parameter 
settings, as there are three sources of noise.

Figure 6: Proportion of responses for the second model that 
have no speech errors.

To examine the effect of the asymmetry where rules fail to 
apply, Figure 7 indicates the difference in occurrence rates 
between mismatch errors where  tiiz is pronounced  tiz and 
where  tis is  pronounced  tiis.   The  first  situation  can  be 
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caused by either a rule failure or a error after the rule, while 
the second situation is only caused by errors afterwards.

Figure 7: The rate of tiiz being pronounced tiz minus the 
rate of tis being pronounced tiis for the second model.

To evaluate the overall performance of the second model, 
we repeated the equivalence measure, with the inclusion of 
the rates of the two types of mismatches given in Table 8. 
The result is shown in Figure 8, indicating that the second 
model  also  has  parameter  settings  which  make  it 
indistinguishable from the empirical data.  This is the set of 
parameter values inside the 1.0 contour line.  Interestingly, 
this is a wider range of parameter values than was seen in 
our first model.

Figure 8: Relativized equivalence for the second model as 
noise and similarity are adjusted.  All parameter settings 

inside the 1.0 contour are models that statistically match the 
participant's behaviour.

Conclusion
The  tongue  twister  study  presented  here  shows  that  the 
surface phonology does not always conform to its erroneous 
environment.  This  result  can be  interpreted  in  two ways. 
First, this could show that phonological rules can, contrary 
to previous assumptions, be processed before speech errors 

occur.  Second, and more controversially, that the errors can 
be  due  to  the  phonological  rule  component  itself  as  the 
result of a rule failing to apply.

Two models were created to evaluate these possibilities. 
While they both could match the overall pattern of human 
responses,  only the second one (where rules could fail  to 
apply and speech errors could occur after the rules) captured 
the asymmetry in the empirical results.

This  result  suggests  a  fruitful  new  area  for  speech 
production research.   The failure of  phonological  rules to 
apply is needed to fully capture human performance in these 
domains.
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