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Method

Estimating inbreeding coefficients from NGS data:
Impact on genotype calling and allele frequency
estimation
Filipe G. Vieira,1,3 Matteo Fumagalli,1 Anders Albrechtsen,2 and Rasmus Nielsen1,2

1Department of Integrative Biology, University of California, Berkeley, Berkeley, California 94720, USA; 2Department of Biology,

University of Copenhagen, DK-2200 Copenhagen, Denmark

Most methods for next-generation sequencing (NGS) data analyses incorporate information regarding allele frequencies
using the assumption of Hardy–Weinberg equilibrium (HWE) as a prior. However, many organisms including those that
are domesticated, partially selfing, or with asexual life cycles show strong deviations from HWE. For such species, and
specially for low-coverage data, it is necessary to obtain estimates of inbreeding coefficients (F ) for each individual before
calling genotypes. Here, we present two methods for estimating inbreeding coefficients from NGS data based on an
expectation-maximization (EM) algorithm. We assess the impact of taking inbreeding into account when calling genotypes
or estimating the site frequency spectrum (SFS), and demonstrate a marked increase in accuracy on low-coverage highly
inbred samples. We demonstrate the applicability and efficacy of these methods in both simulated and real data sets.

[Supplemental material is available for this article.]

Next-generation sequencing (NGS) methods provide fast, cheap,

and reliable large-scale DNA sequencing data. They are used in de

novo sequencing, disease mapping, gene expression, and in pop-

ulation genetic studies, providing rapid and complete sequencing

of candidate genes, exomes, transcriptomes, or even whole genomes

(Nagalakshmi et al. 2008; Liti et al. 2009; The 1000 Genomes

Project Consortium 2010; Li et al. 2010; Ng et al. 2010). Current

NGS technologies produce short read sequences that are de novo

assembled or mapped (aligned) to a reference genome and used for

SNP or genotype calling. However, these data typically have high

error rates due to multiple factors, from random sampling of ho-

mologous base pairs in heterozygotes, to sequencing or alignment

errors. Furthermore, many NGS studies rely on low-coverage se-

quence data (<53 per site per individual), causing SNP and genotype

calling to be associated with considerable statistical uncertainty.

Recent methods rely on probabilistic frameworks to account

for these errors and accurately call SNPs and genotypes, even at low

coverage (Martin et al. 2010; Li 2011; Nielsen et al. 2012). These

methods integrate the base quality score together with other error

sources (e.g., mapping or sequencing errors) to calculate an overall

‘‘genotype likelihood.’’ More specifically, the likelihood at each

locus l and individual i is defined as

LGil
¼ p XiljGilð Þ; Gil 2 0;1;2f g ð1Þ

where Xil is the observed sequencing data and Gil the number of

minor alleles in individual i at site l. Here and throughout the rest

of this paper, we assume that a minor allele can be defined. There

is no loss of generality in this because any arbitrary definition of

major and minor allele can be used and switching the labeling

of alleles does not affect the inference framework discussed in

this paper.

The genotype likelihood can be calculated in several different

ways (Li et al. 2009a,b; DePristo et al. 2011), usually by taking se-

quencing quality of the reads into account. Genotypes can then

be called based on their likelihoods by selecting the one with the

highest likelihood. Some studies use more stringent criteria and

only call a genotype if the highest likelihood genotype is sub-

stantially more likely than the second one (common threshold is

10 times more likely); otherwise, the genotype is considered missing

data (Kim et al. 2011).

To further improve genotype calling, the likelihood function

can be combined with a prior, p(Gil), to calculate the genotype

posterior probability, p(Gil|Xil). In this case, the genotype with the

highest posterior probability is generally chosen, and this proba-

bility (or the ratio between the highest and the second highest

probabilities) is used as a measure of confidence. This way it is

possible to improve genotype calling, develop associated measures

of statistical uncertainty, and provide a natural framework for in-

corporating prior information (Li et al. 2008; The 1000 Genomes

Project Consortium 2010). Various types of information can be

used as priors, including information from SNP databases, a refer-

ence genome, patterns of linkage disequilibrium (LD) and, most

importantly, information regarding allele frequencies from a larger

sample or from a reference panel (for review, see Nielsen et al.

2011). Incorporation of allele frequencies is usually based on the

assumption of Hardy–Weinberg equilibrium (HWE). However,

HWE assumes random mating, and, while this assumption might

approximately hold for most species (e.g., humans), it is clearly

violated in others like self-pollinating plants and domesticated

species (due to inbreeding and clonal propagation), as well as

species with asexual life cycles. This violation can result in the

undercalling of homozygous genotypes and biases in downstream

analyses, as we show below, but there are extensions to the HWE
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that account for these deviations, namely, the inclusion of an in-

breeding coefficient (F) defined, for a di-allelic locus with alleles

A and a, as

f AA ¼ 1� fð Þ2þ 1� fð Þf F

f Aa ¼ 2 1� fð Þf 1� Fð Þ
f aa ¼ f 2 þ 1� fð Þf F ð2Þ

where fpq is the frequency of genotype pq and f its minor allele (a)

frequency (MAF). If the genotypes are known, the log-likelihood

function (for a single locus and n individuals) for the parameters

F and f is given by

log p Gjf;Fð Þ½ � ¼ nAA log 1� fð Þ2 þ 1� fð Þf F
h i

þ nAa log 2 1� fð Þf 1� Fð Þ½ �

þ naa log f 2 þ 1� fð Þf F
h i

ð3Þ

where nAA, nAa, and naa are the observed counts of genotypes AA, Aa,

and aa, respectively (n = nAA + nAa + naa), and G is a vector of ob-

served genotypes from which nAA, nAa, and naa can be calculated. A

joint maximum likelihood (ML) estimate of F and f is obtained as

f̂ ¼ nAa þ 2naa

2n
ð4Þ

F̂ ¼ 1� HE

E HE½ � ð5Þ

where HE and E[HE] are the observed and expected number of

heterozygotes genotypes, respectively, and

E HE½ � ¼ n2f̂ ð1� f̂ Þ: ð6Þ

Consider now a model in which the value of F may differ

among individuals with individual i having inbreeding coefficient

Fi, F = (F1, F2, . . . , Fn), and assume that allele frequencies fl are

available for k loci, f = (f1, f2, . . . , fk). Assuming independence

among sites, the joint likelihood function for F and f is then given

by

log p Gjf;Fð Þ½ � ¼ +
n

i¼1

+
k

l¼1

IAA;il log 1� f l

� �2 þ 1� f l

� �
f lFi

h ih
þ IAa;il log 2 1� f l

� �
f l 1� Fið Þ

� �
þ Iaa;il log½ f 2

l þ ð1� f lÞf lFi�
i
: ð7Þ

Here Ipq,il is an indicator function, which is equal to one if

the genotype of individual i in locus l is equal to pq. This likeli-

hood function has no simple solution and must be optimized

numerically.

For this likelihood function, even in the simple case of a single

site and a shared value of F, estimation requires the availability of

known genotypes for each individual. This is a challenge in the

analysis of NGS data, because the value of F in itself is important for

genotype calling. To address this issue, we developed two algo-

rithms for estimating inbreeding coefficients, both per individual

(Find) and per site (Fsite), from NGS data under a probabilistic

framework based directly on genotype likelihoods. These estimates

can then be incorporated into the genotype-calling algorithm to

provide improved calculations of genotype posterior probabilities.

We demonstrate the accuracy of our method using simulation and

show that the new method leads to increased accuracy in genotype

calling and estimation of the site frequency spectrum (SFS). Finally,

we apply our method to a previously published rice data set (Xu et al.

2011) and show marked improvements over previous methods.

Results

Estimating per-site inbreeding coefficients from simulated data

During standard NGS data analyses, one of the most crucial steps is

quality control. Several different filters are usually applied to ex-

clude anomalous sites, using base quality bias, strand quality bias,

extremely high/low sequencing coverage, or deviations from HWE

(Xia et al. 2009; The 1000 Genomes Project Consortium 2010; Xu

et al. 2011). To test for deviations from HWE, the expected geno-

type frequencies under HWE (calculated using the observed allele

frequencies) are compared with the observed frequencies through

a x2 or Fisher’s exact test. However, somewhat inconveniently,

these tests can only be done after genotypes have been called.

Here, we suggest a new method to jointly estimate, per site, both

MAF and inbreeding coefficients (Fsite), using an expectation-

maximization (EM) algorithm (Ceppellini et al. 1955; Smith and

Thomson 1988). This method forms the basis for a likelihood ratio

test of HWE (H0: F = 0) that can be applied to filter sites before

genotypes have been called.

To assess the accuracy of our method, we applied it to a sim-

ulated data set of 10,000 variable sites under several different pa-

rameter combinations. For each of the 495 combinations of pa-

rameters, we estimated the inbreeding coefficients per site (Fsite)

and plotted them together with their associated root mean square

deviation (RMSD). Our results show that this method has reason-

ably good accuracy in estimating inbreeding coefficients per site

with sequencing coverage >33, sample sizes of 30 individuals, and

an error rate of 0.5% (Fig. 1, right column). However, not surpris-

ingly, high error rates, low coverage, and small sample sizes will

result in reduced accuracy compared with estimates based on full

knowledge of the genotypes (Supplemental Fig. 1). As typical for

a bounded parameter, for small sample sizes the estimator becomes

heavily biased when the true value is close to the boundary of the

parameter space.

Estimating individual inbreeding coefficients from simulated
data

Although inbreeding coefficients per site can be useful for quality

control (filtering sites that depart from HWE), a more interesting

and biologically meaningful parameter is the inbreeding co-

efficient per individual. Estimates of this parameter can shed light

into the species’ mating system and past history (domestication),

as well as be used as a prior to improve genotype-calling algo-

rithms. To this end, we extended a recently published algorithm by

Hall et al. (2012) to estimate per-individual inbreeding coefficients

directly from genotype likelihoods.

To assess the accuracy of this method, we applied it to the

same simulated data set as in the previous section. For each of

the 495 combination of parameters, we estimated inbreeding co-

efficients per individual (Find) and plotted them together with their

associated RMSD. In all surveyed scenarios, the method presented

here largely outperformed the original one, with lower RMSD and

estimates closer to the true value (Fig. 1, left and center columns). This

trend is even clearer in cases of extremely low coverage (13), small

sample sizes (10 individuals), and high error rates (Supplemental

Genome Research 1853
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Figs. 2, 3). As an example, in a 13 data set with an average error rate

of 0.5% and a sample size of 10 individuals, we obtain very accu-

rate estimates, with the RMSD always smaller than 0.085, while the

original method, applied to called genotypes, resulted in RMSDs as

high as 0.41.

In these simulations, we assumed all sites to be independent.

However, in real data, loci are linked, resulting in a lower number

of available independent loci. In a partially selfing population,

where S is the proportion of selfing, the effective population size is

reduced by a factor of 1 � S/2 and the effective recombination rate

is reduced by a factor of 1�S
1�S=2 (Golding and Strobeck 1980). As an

example, with a selfing rate of S = 2/3, the effective recombination

rate is reduced by a factor of 2, effectively reducing the number of

independent loci. To assess the impact of a reduced number of

effective sites on our estimates, we repeated the same simulations

using half the effective number of independent variable sites (5000)

and obtained similar results (Supplemental Fig. 4). Furthermore,

and to fully address the impact of non-independence of sites, we

simulated a more realistic 5-Mb genomic sequence, using as pa-

rameters previous estimates for rice populations and two realistic

self-pollinating rates (S 2 {0.7, 0.95}) (for details, see Methods). If all

inbreeding is due to selfing, these rates correspond to theoretical

inbreeding coefficient values of 0.54 and 0.90 (F = S
2�S) (Haldane

1924). Using our method, we obtained relatively accurate estimates

of 0.64 and 0.84, respectively, demonstrating the robustness of the

presented method even in the presence of linked sites. We notice

that when sites are not independent the ML estimator is not truly

a ML estimator and, therefore, should be considered a composite

likelihood estimator. To form a proper ML inference procedure, data

can be filtered to remove linked sites, but such filtering will lead to

a loss of information.

This method turned out to be quite slow (on average 3.5 min

and 147 iterations) and led us to develop a faster approximate

algorithm that can be used for the initial iterations of the algo-

rithm, greatly speeding up the analysis when analyzing large data

sets (see Methods).

Effect of inbreeding on genotype calling

Several factors can bias genotype calling, including high error

rates, inbreeding, sequencing coverage, and small sample sizes. To

assess the impact of inbreeding on genotype call performance, we

used the previously mentioned simulated data to call genotypes

using a Bayesian approach under two different priors for the ge-

notype frequencies: random mating (HWE; F = 0) and inferred

inbreeding coefficient.

Assuming random mating in the prior yields constant

genotype-calling error rates, independently of the sample in-

breeding levels. When all sites are considered, proportions of

miscalled genotypes are between 0.1 and 0.25, being unequally

distributed between heterozygotes and homozygotes: 0.3–0.55 and

0.1–0.25, respectively (Fig. 2). However, in highly inbred samples,

being able to incorporate inbreeding in the prior can greatly reduce

genotype-calling errors, often to less than half of when assuming

HWE (Fig. 2, left column). Considering homozygous and hetero-

zygous genotypes separately provides additional insight into the

effect of the priors. When assuming inbreeding, heterozygous ge-

notype calling performs slightly worse (;30%) since the prior as-

signs a lower probability on heterozygote genotypes (Fig. 2, center

column). However, this increase in the heterozygous genotype-

calling error rate is offset by the improvement in homozygous

genotype calling, here assuming that inbreeding greatly reduces

this error by as much as 60% (Fig. 2, right column). This level of

improvement can be very important if we consider that highly

inbred samples are almost exclusively homozygous (see also Sup-

plemental Figs. 6–8).

Figure 1. Estimation of inbreeding coefficients. Performance of the EM method to infer Find from called genotypes (left column), Find from genotype
likelihoods (center column), and Fsite (right column), for a sample size of 10 (first row) and 30 (second row) individuals and 10,000 variable sites simulated
with a 0.5% error rate. Line styles and symbols represent different simulated sequencing coverages. Filled lines represent the inferred value for each
simulated scenario (Infer. F), while dotted lines represent its RMSD.
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Effect of inbreeding on SFS

Allele frequencies and their distribution are important summaries

of population genetic data analyses (Li 2011). Many widely used

statistics such as Tajima’s D, Fu and Li’s D, Fay and Wu’s H, or FST

(Nielsen 2005; Holsinger and Weir 2009) are direct functions of the

SFS. These statistics can be used to infer demographic histories and

to quantify the effect of natural selection. Given their importance

in population genetic studies, it is of great interest to be able to

estimate them reliably.

To assess the magnitude of inbreeding-related errors associ-

ated with SFS estimation, we inferred the SFS on the same simu-

lated data set and under the same priors for the genotype fre-

quencies as before: random mating (HWE; F = 0) and inferred

inbreeding coefficient. We used both the standard approach based

on called genotypes (see Methods) and a recent probabilistic

method by Nielsen et al. (2012). High inbreeding coefficients have

a marked effect on SFS estimation, and can increase the RMSD in

the estimate of the SFS many fold (Fig. 3; Supplemental Figs. 9, 10).

The inclusion of a correct prior will eliminate this problem, pro-

viding estimates of the SFS that are as good, or better, than the

estimates obtained in the presence of no inbreeding. Not surpris-

ingly, the probabilistic method performs overall better than using

called genotypes. However, the difference between using called

genotypes and the probabilistic approach is much smaller here

than observed in other studies (Kim et al. 2011; Nielsen et al. 2012),

because only true SNPs are included in these simulations, allevi-

ating the problem of an excess of false singletons (and to a lesser

degree doubletons) in methods based on genotype calling.

Application to real data

To illustrate the relevance of our method, we applied it to a publicly

available data set of both wild and domesticated (cultivated) rice

accessions (Xu et al. 2011). Cultivated rice (Oryza sativa) is classi-

fied into two major subspecies (O. s. japonica and O. s. indica) and

further subdivided into genetically differentiated groups. There are

Figure 2. Effect of the inbreeding coefficient on genotype calling. Performance of genotype calling globally (left column), on just heterozygous
genotypes (center column) and just homozygous genotypes (right column), on a sample size of 10 (first row) and 30 (second row) individuals and 10,000
variable sites simulated with a 0.5% error rate. Line styles and symbols represent different simulated sequencing coverages. Line types represent the level of
inbreeding assumed in the priors: F = 0 (HWE; filled) and inferred value of F (Infer. F; large dashes). Missing F = 1 values reflect the absence of heterozygous
genotypes on a totally inbred sample.

Figure 3. Effect of the inbreeding coefficient on SFS estimation. Per-
formance of SFS estimation from called genotypes (left column) and the
Nielsen et al. (2012) method from GL and assuming inbreeding (right
column), on a sample size of 10 (first row) and 30 (second row) individuals
and 10,000 variable sites simulated with a 0.5% error rate. Line styles and
symbols represent different simulated sequencing coverages. Line types
depict the level of inbreeding assumed in the priors: F = 0 (HWE; filled) or
inferred value of F (Infer. F; large dashes).
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also several species of wild rice, with the Oryza rufipogon species

complex thought to be the closest to domesticated rice (e.g., Grillo

et al. 2009; Wei et al. 2012). This species complex includes two forms:

one perennial, photoperiod sensitive, and partially cross-fertilized

(O. rufipogon); and another annual, photoperiod insensitive, and

predominantly self-fertilized (Oryza nivara). The phenotypic dif-

ferences between them have spurred a longstanding debate over

the origins of cultivated rice, with some works assuming them to

be different species (Sang and Ge 2007; Grillo et al. 2009), while

others consider them as just ecotypes of a single species (Oka 1988;

Zhu et al. 2007; Huang et al. 2012a; Wei et al. 2012).

The diversity of mating systems, as well as the presence of

both domesticated and wild forms, makes rice an interesting sys-

tem for which to validate our newly developed methods. Among

wild accessions the self-crossing rate is quite variable, although

O. rufipogon tends to have lower rates than O. nivara: 50%–80% and

75%–95%, respectively (Morishima et al. 1984; Oka 1988; Gao et al.

2002; Phan et al. 2012). As for the cultivated accessions, they are

thought to be almost totally inbred with self-crossing rates close to

95%, although O. s. indica has been described as having slightly

lower rates (Oka 1988). Using our method, we aimed to estimate

per-individual inbreeding coefficients of all studied 65 rice acces-

sions. Since the level of population structure is not clear for these

species, we analyzed each one of them separately. Our estimates

show O. rufipogon with an intermediate level of inbreeding (Find ;

0.35), while Oryza nivara, O. s. indica, and O. s. japonica present

significantly higher values around 0.6, 0.52, and 0.6, respectively

(Fig. 4; Supplemental Table 1).

To assess the impact of explicitly assuming inbreeding on SFS

estimation, we estimated it for each of the four rice species/

subspecies. We used two different priors (random mating and esti-

mated inbreeding coefficients) over two different methods (the

probabilistic method by Nielsen et al. 2012 and using calling ge-

notypes). Figure 5 shows that even for high coverage data (;103)

(O. s. indica and O. s. japonica in Fig. 5), methods assuming HWE

have an excess of singletons compared with methods that take

inbreeding into account. This is a result of the greater weight the

HWE prior gives to heterozygous genotypes, and the effect is

stronger for genotype-calling methods than for the probabilistic

method providing direct estimates of the SFS. In the data sets

that also include low coverage samples (<53) (Fig. 5, top row), the

probabilistic method gives similar results irrespective of the prior

used. However, the genotype-calling method, particularly assuming

HWE, estimates many more singletons than other methods. How-

ever, both data sets contain high (103) and low (23–33) coverage

samples. To make sure the observed SFS differences were not caused

by the presence of high-coverage accessions in the sample, we re-

peated the analysis on just the 10 low-coverage O. rufipogon acces-

sions and found a similar trend (Supplemental Fig. 11). All in all,

these results illustrate the importance of taking inbreeding into

account when estimating allele frequencies, particularly in methods

based on genotype calling.

Discussion
While sequencing is becoming cheaper, there is an increasing de-

mand for larger data sets, suggesting that low-coverage data will be

common for years to come. When analyzing such data there can

be considerable uncertainty, and inbreeding may, as illustrated by

our results, have a marked effect on downstream analyses. Current

NGS data analyses methods are mostly tuned for human pop-

ulations and usually assume that the populations are in HWE.

Although this is true for many species (e.g., human and mouse),

there are self-pollinating plants (e.g., Arabidopsis) and domesti-

cated species (e.g., rice, maize, dog), as well as species with asexual

life cycles (e.g., daphnia, aphids, wasps) that are expected to have

extremely high levels of inbreeding. Furthermore, many NGS data

sets are being produced for domesticated species, due to their eco-

nomic importance, and many of these species have significant

amounts of inbreeding. It is therefore of great importance to include

techniques for incorporating inbreeding when analyzing NGS data.

In this study, we developed algorithms to deal with inbred

NGS data, either by estimating inbreeding coefficient per site or per

individual. The per-site algorithm is mainly aimed at NGS quality

control by removing sites that deviate from HWE. Usually, these

deviations are done by comparing the expected genotype fre-

quencies under HWE with the observed ones through a x2 or

Fisher’s exact test. However, in such analyses, genotypes need to be

Figure 4. Boxplot analysis of inferred per-individual inbreeding esti-
mates. Each population was analyzed independently and the inferred
inbreeding coefficients plotted.

Figure 5. Estimated SFS on the analyzed rice population. SFS was es-
timated on the four populations using called genotypes (CG) and the
Nielsen et al. (2012) method (SFS). In both cases, two priors were used:
random mating (HWE) and inferred per-individual inbreeding estimates (F ).
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called first, possibly introducing biases in the downstream analy-

ses. Our approach forms the basis for a likelihood ratio test for

deviations from HWE (H0: F = 0) that can directly test the sites

before calling genotypes.

Nevertheless, a more interesting and biologically meaningful

parameter is the inbreeding coefficient per individual. This can

shed light into the species’ mating system and past history (do-

mestication), as well as be used as a prior in genotype calling, SFS,

or other algorithms. Several methods have been published to infer

per-individual inbreeding coefficients (Vogl et al. 2002; Leutenegger

et al. 2003; Wang et al. 2006; Moltke et al. 2011), but all were

designed for genotype (marker) data. Although all present slight

improvements, Hall et al. (2012) recently incorporated most fea-

tures into a single EM algorithm and showed that it outperformed

previous methods. Here, we have modified this algorithm to ac-

commodate for NGS data, as well as an approximate EM algorithm

that can help speed up convergence. We notice that the rate of

convergence can be further increased by using an accelerated EM

approximation (Jamshidian and Jennrich 1993), although such an

approach was not pursued here since we considered the running

times to be acceptable (Supplemental Table 2).

In all scenarios examined, the new method presented here

largely outperformed the original Hall et al. (2012) method based

on called genotypes, especially in cases of extremely low coverage,

small sample sizes, and high error rates. Because the original

method has been previously shown to outperform other methods

based directly on genotypes (Hall et al. 2012), the advantage of our

method, in the presence of genotype uncertainty, should extend to

these methods as well. Our analyses of simulated data further show

that failing to use a correct prior can greatly affect downstream

analyses. Genotype-calling errors can be more than twofold reduced

by incorporating inbreeding into the genotype-calling algorithm,

and there is an even more marked effect on the estimation of the

SFS. Here, genotype-calling methods combined with erroneous

assumptions of HWE when analyzing data from highly inbred

species can lead to severe biases. Our real data analysis further

supported these results.

We note that this manuscript distinguishes between inbreeding

per site and per individual, with the main algorithm focusing on

individual inbreeding coefficients and their application in geno-

type calling. The estimated inbreeding coefficient is a probability

of identity by descent and is a property of an individual, implicitly

assumed to be caused by cycles in the pedigree. As such, we do not

attempt to assign particular individual segments as identical by

descent (IBD) for genotype calling. Nevertheless, we note that the

inference of individual IBD tracts, using hidden Markov model

(HMM) style approaches, might improve both inferences regarding

IBD and genotype calling. However, the implementations of such

methods are computationally challenging, particularly because LD

may strongly affect inferences regarding local IBD tracts (e.g.,

Moltke et al. 2011).

As a final remark, although our lower tested coverage was 13,

we expect our algorithm to perform equally well at ultra low cov-

erages (e.g., 0.13 or 0.53), given that enough variable sites with at

least two sampled reads from the same individual are available (as

a rule of thumb, at least around 1000).

Methods
Throughout this work we use the following notation:

• n = number of individuals
• k = number of loci

• Xil = read data for individual i at locus l
• Gil = genotype of individual i at locus l (member of Z)
• Z = {AA, Aa, aa} or {0, 1, 2}
• fl = allele frequency at locus l
• fpq = frequency of genotype pq
• Fi = inbreeding coefficient for individual i

Furthermore, vectors and matrices are depicted in bold (e.g.,
F or X), while scalars are not. Parameter estimates are depicted with
a hat (e.g., F̂), while intermediate iteration EM estimates are de-
picted with a tilde (e.g., ~F). When discussing methods for a single
site, we drop the indicator for the identity of the site in the notation.

EM algorithm for per-site inbreeding estimation

For per-site inbreeding coefficients, the likelihood function, based
on genotype likelihoods, is defined as

p Xjf ; Fð Þ;
Yn
i¼1

p Xijf ; Fð Þ ¼
Yn
i¼1

+
G2Z

p XijGð Þp Gjf ; Fð Þ ð8Þ

where p(Xi|G) is the genotype likelihood and p(G|f, F) its prior
(Eq. 2). An ML algorithm for maximizing this function is obtained
by replacing the observed genotype counts in Equation 3 with the
posterior expectation for genotype counts. To maximize the like-
lihood function, we use an EM algorithm to, iteratively, improve
estimates of f and F. Using p(Gi = g|Xi) as a shorthand notation
for pðGi = gjXi; ~f

j
; ~F

jÞ, the posterior probability of genotype g in
individual i:

~f
jþ1 ¼

+
n

i¼1

p Gi ¼ 1jXið Þ þ 2p Gi ¼ 2jXið Þ½ �

2n
ð9Þ

~F
jþ1 ¼ 1�

+
n

i¼1

p Gi ¼ 1jXið Þ

E HE½ � ð10Þ

where E[HE] is calculated as in Equation 6 replacing f̂ with ~f
j
. The

posterior at the jth step of the iteration can be calculated as

p Gi ¼ gjXið Þ ¼ p XijGi ¼ gð ÞpðGi ¼ gj~f j
; ~F

jÞ
+

G2Z

p XijGð ÞpðGj~f j
; ~F

jÞ
: ð11Þ

A likelihood ratio can then be constructed by comparison of
the likelihood function evaluated at the ML estimate of F and f
to the likelihood assuming F = 0 to form a likelihood ratio test of
the HWE.

EM algorithm for per-individual inbreeding estimation

There is little reason to assume that all individuals are equally in-
bred. On the contrary, when averaged over many individuals, we
would expect the same inbreeding coefficient in each site if there
has been no natural selection for or against inbreeding. In ad-
dition, inbreeding estimates based on individuals sites are likely
to have large associated variances. For these reasons, priors for
genotype calling are more conveniently based on inbreeding
estimates that are allowed to vary among individuals, but not
among sites. The following sections are devoted to describing such
methods.

Assuming independence among sites, the expectation of the
log likelihood under this model is obtained by replacing the
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indicator functions in Equation 7 with the posterior probability
of the genotype. Using p(Gil = g|Xil) as a shorthand notation for
p(Gil = g|Xil, fl, Fi):

E log p Xjf;Fð Þð Þ½ � ¼ +
n

i¼1

+
k

l¼1

p Gil ¼ 0jXilð Þlog ð1� f lÞ
2 þ ð1� f lÞf lFi

h ih
þ p Gil ¼ 1jXilð Þlog 2ð1� f lÞf l 1� Fið Þ

� �
þ pðGil ¼ 2jXilÞlog½ f 2

l þ ð1� f lÞf lFi�
i

ð12Þ

Hall et al. (2012) have recently proposed an EM algorithm
to estimate per-individual inbreeding coefficients from genotype
data. To maximize Equation 12, we extend their method for the use
of genotype likelihoods (instead of known genotypes). Adapting
Equation 11 from their paper to account for genotype uncertainty,
for an individual i:

~F
jþ1

i ¼ 1

k
+
k

l¼1

pðIBD
j
iljXilÞ ¼

1

k
+
k

l¼1

+
G2Z

pðIBD
j
iljGÞp GjXilð Þ

ih
ð13Þ

where pðIBD
j
iljXilÞ is the posterior probability that the two alleles at

locus l are identical by descent (IBD) at iteration j. This can be
calculated using p(G|Xil), the genotype posterior probability, and
pðIBD

j
iljGÞ as

pðIBD
j
iljGÞ ¼

pðGjIBD
j
ilÞpðIBD

j
ilÞ

p GjIBD
j
il

� �
p IBD

j
il

� �
þ p Gð jIBD

j
ilÞp IBD

j
il

� �
2
4

3
5

ð14Þ

where pðIBD
j
ilÞ is the probability that two alleles at locus l are not

IBD at iteration j. In the end, Equation 13 results in

~F
jþ1

i ¼ 1

k
+
k

l¼1

ð1� ~f
j

l Þ~F
j

i p Gil ¼ 0jXilð Þ
ð1� ~f

j

l Þ~F
j

i þ ð1� ~f
j

l Þ
2ð1� ~F

j

i Þ

þ
~f

j

l
~F

j

i p Gil ¼ 2jXilð Þ
~f

j

l
~F

j

i þ ~f
j2

l ð1� ~F
j

i Þ

2
666664

3
777775: ð15Þ

A similar extension to their update for allele frequencies ~f
j + 1

l

� �
leads to

~f
jþ1

l ¼
+
n

i¼1

p Gil ¼ 1jXilð Þ þ p Gil ¼ 2jXilð Þ 2� ~F
j

i

� �h i

+
n

i¼1

p Gil ¼ 1jXilð Þ þ p Gil ¼ 0jXilð Þ 2� ~F
j

i

� �
þ p Gil ¼ 1jXilð Þ þ p Gil ¼ 2jXilð Þ 2� ~F

j

i

� �
2
4

3
5
: ð16Þ

As pointed out by Hall et al. (2012), the EM algorithm can
converge to a local rather than a global maximum (Wu 1983),
and, for this reason, several different starting values should
be used. Additionally, rather than using random values as initial
values, Equation 5 can be used to obtain initial estimates of Fi, ~F

0

i

� �
replacing observed genotype counts with their expected value.

Approximated EM for per-individual inbreeding estimation

The EM algorithm in Hall et al. (2012) is derived by treating the
inbreeding status (inbred or not) in a single site as latent data.
However, a faster algorithm can be derived by approximating an
analytical solution to the maximization step for Fi in Equation 12.
This method is not guaranteed to converge to the global maxi-
mum, but, since it initially converges considerably faster, it can be
used in the initial iterations of the algorithm, greatly speeding up
the previous method.

For a particular individual, to maximize values of Fi, we find the
partial derivative of Equation 12 in order with Fi and set it equal to zero:

@iE log p XjF; fð Þð Þ½ �
@Fi

¼ +
k

l¼1

pðGil ¼ 0jXilÞð1� f lÞf l

1� f l

� �2þ 1� f l

� �
f lFi

"

�
p Gil ¼ 1jXilð Þ2 1� f l

� �
f l

2 1� f l

� �
f l 1� Fið Þ

þ
p Gil ¼ 2jXilð Þ 1� f l

� �
f l

f 2
l þ 1� f l

� �
f lFi

#
¼ 0 : ð17Þ

Since this expression cannot be solved numerically, we ap-
proximate it using an expansion around ~Fi (current value of Fi in an
iterative algorithm) to obtain an approximate expression that can
be optimized analytically. Equation 17 is composed of functions of
F of the form [a/(b + Fc)], which can be expanded to

a

bþ Fc
¼ a

bþ ~Fc
�

ac F � ~F
� �

bþ ~Fc
� �2

þO F � ~F
� �2
h i

: ð18Þ

Ignoring terms of order F � ~F
� �2

and higher, Equation 17 can
then be rewritten as

@iE log p XjF; fð Þð Þ½ �
@Fi

¼ +
k

l¼1

a0

b0 þ ~Fic0

�
a0c0 Fi � ~Fi

� �
b0 þ ~Fic0

� �2

2
4

3
5

� a1

b1 þ ~Fic1

�
a1c1 Fi � ~Fi

� �
b1 þ ~Fic1

� �2
2
4

3
5

þ a2

b2 þ ~Fic2

�
a2c2 Fi � ~Fi

� �
b2 þ ~Fic2

� �2

2
4

3
5 ¼ 0 ð19Þ

where

a0 ¼ p Gil ¼ 0jXilð Þ 1� f l

� �
f l

a1 ¼ p Gil ¼ 1jXilð Þ2 1� f l

� �
f l

a2 ¼ p Gil ¼ 2jXilð Þ 1� f l

� �
f l

b0 ¼ 1� f l

� �2
c0¼ 1� f l

� �
f l

b1¼2 1� f l

� �
f l c1¼ �2 1� f l

� �
f l

b2¼ f 2
l c2¼ 1� f l

� �
f l

:

Solving for Fi (for ~Fi 6¼ 1, fl 6¼ 0):

Fi ¼

+
k

l¼1

a0

b0 þ ~Fic0

þ a0c0
~Fi

b0 þ ~Fic0

� �2
0
@

1
A�

a1

b1 þ ~Fic1

þ a1c1
~Fi

b1 þ ~Fic1

� �2
0
@

1
Aþ

a2

b2 þ ~Fic2

þ a2c2
~Fi

b2 þ ~Fic2

� �2
0
@

1
A

2
6666666666664

3
7777777777775

+
k

l¼1

a0c0

b0 þ ~Fic0

� �2
� a1c1

b1 þ ~Fic1

� �2
þ a2c2

b2 þ ~Fic2

� �2

2
4

3
5
: ð20Þ

The algorithm then proceeds iteratively using Equation 19
with ~Fi = ~F

j

i and Fi = ~F
j + 1

i . As the algorithm proceeds, the differ-
ence between ~Fi and Fi decreases, providing a progressively more
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accurate approximation. However, as the joint update of F and f is
not a joint maximization of the same expected log likelihood, it
may lead the algorithm to be stuck in saddle point. To ensure
eventual convergence, we then revert to our extension of the Hall
et al. (2012) method for the last iterations of the algorithm.

Genotype calling

To call genotypes, we use a Bayesian approach to integrate over
several error sources including base quality score and mapping
quality score. We use the genotype likelihood at each site l and for
each individual i (Eq. 1), together with a prior, to calculate the
posterior probability of the genotypes and call the genotype with
the highest probability (Li 2011; Nielsen et al. 2011, 2012). As
a prior we use either the expected genotype frequencies under (1)
HWE or (2) HWE assuming the estimated inbreeding coefficients,
using the MAF calculated according to Kim et al. (2011).

Site frequency spectrum estimation

Estimation of the SFS can be achieved in several ways. Standard
SFS estimation methods rely on first calling genotypes and then
calculating allele frequencies at each position, but this approach
is prone to bias and can greatly influence the results, especially
at low coverage (Johnson and Slatkin 2008). Here, we consider
an extended version of the SFS (since we also consider sites in
the alignment that are fixed) that avoids the genotype-calling
step. Instead, this method bases its inferences on the posterior
probability (calculated with a prior accounting for HWE de-
viations) of the allele frequency for each site (Nielsen et al.
2012). Correcting a typo in the Nielsen et al. (2012) section
‘‘Incorporating Deviations from Hardy–Weinberg Equilibrium’’
and suppressing the site index in the notation, their algorithm
should be

INITIALIZATION:

Set h0 ¼ p G1 ¼ 0jX1; f ; F1ð Þ;
h1 ¼ p G1 ¼ 1jX1; f ; F1ð Þ;
h2 ¼ p G1 ¼ 2jX1; f ; F1ð Þ
For j in 3;4; . . . ;2n :

hj ¼ 0

RECURSION:

For i in 2;3; . . . ;n :

For j in 2i;2i� 1; . . . ;2 :

Set hj ¼ p Gi ¼ 2jXi; f ; Fið Þhj�2

þp Gi ¼ 1jXi; f ; Fið Þhj�1

þp Gi ¼ 0jXi; f ; Fið Þhj

Set h1 ¼ p Gi ¼ 0jXi; f ; Fið Þh1 þ p Gi ¼ 1jXi; f ; Fið Þh0

Set h0 ¼ p Gi ¼ 0jXi; f ; Fið Þh0

where p(Gi = g | Xi, f, Fi) is the posterior probability for individual
i and genotype g, using the ML estimates of f and Fi. For a global
estimate of the SFS, we sum each category (hj) across all sites and
condition the SFS to only include variable sites:

SFSj ¼
hj

+
x2j

hx
; j 2 1;2;3; . . . ;2n� 1f g:

NGS data simulation

We performed extensive simulation studies to assess the perfor-
mance of our methods and the effect of inbreeding on downstream
analyses. Specifically, we assessed (1) the accuracy of the inbreeding
coefficient estimates (both per site and per individual), (2) the im-
pact of inbreeding on genotype calling, and (3) the influence of
inbreeding in the estimation of the SFS. Due to computational
constraints, we simulated mapped sequencing data rather than raw
sequencing reads, similarly to previous studies (Kim et al. 2010,
2011). Each individual genotype was simulated assuming di-allelic
loci with a given MAF for each locus and inbreeding coefficient F. In
each locus, the number of reads was drawn from a Poisson distri-
bution with the mean equal to the specified individual sequencing
coverage. To simulate errors, each read base was changed to any of
the other nucleotides at an equal rate e/3, where e is the error rate.

We simulated 10,000 variable sites on 10, 30, and 50 individuals,
over average sequencing coverages of 1, 2, 3, 5, and 103, with error
rates of 0.5%, 1%, and 2%, and varied inbreeding coefficients from
0.0 to 1.0 in steps of 0.1, for a total of 495 combinations. With these
parameter choices, we tried to focus on relatively extreme data sets
(small sample sizes and low coverage), with realistic error rates (Glenn
2011) and covering biologically relevant scenarios of inbreeding from
<0.07 in humans (Carothers et al. 2006) and ;0.3 in dogs (Kirkness
et al. 2003; Gray et al. 2009) to 0.4–0.98 in rice (Kovach et al. 2007)
and 0.757 in wasps (Chapman and Stewart 1996).

We also simulated an extra data set, for validation purposes, of
1 million sites where only 1% are truly variable (true SNPs). We
kept the same error rates, number of individuals, coverage, and
inbreeding coefficients as before, for a total of 165 combinations of
parameter values. Simulated data with only true SNPs, and with
both true SNPs and invariable sites, yielded similar results (Sup-
plemental Figs. 1–3, 5). For computational reasons, we therefore
proceeded to use only the first data set in the rest of the analyses.

To test our method under linked loci, we performed a couple
more simulation analyses. First, we simulated half the previous
number of variable sites (5000), under the same 495 parameter
combinations as before. Second, we simulated a 5-Mb genomic
region across 30 accessions from one rice population, using the
software SFS_CODE (Hernandez 2008). We assumed an effective
population size of 125,000 (Caicedo et al. 2007; Asano et al. 2011),
a mutation rate of 10�8 (Caicedo et al. 2007), a recombination rate
of 4 cM/Mb (Tian et al. 2009; Asano et al. 2011), and two realistic
self-pollinating rates of 0.7 and 0.95 (Oka 1988) (‘–theta 0.005 –rho
0.02 –self [0.7,0.95] –sampSize 30’). We then used the program ART
(Huang et al. 2012b) to simulate 23 coverage 100-bp mapped
reads with no indels directly in SAM format (‘–len 100 –fcov 2 -ir
0 -dr 0 -ir2 0 -dr2 0 -qs 10 -qs2 10 -sam’).

For the estimation of inbreeding coefficients (both from
simulated and real data), we only use called SNPs with a log like-
lihood ratio (LRT) >15.1366 (x2; P < 1 3 10�4; 1 d.f.), against the
null hypothesis of f=0, as implemented in the software ANGSD.

Error estimates

We calculated errors associated with the inbreeding coefficient es-
timates (F), genotype calling, and SFS estimation. For inbreeding
estimates and SFS estimation, we used the RMSD. More specifically:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S
+S

i¼0 Xtrue � Xestð Þ2
r

ð21Þ

where Xtrue and Xest are the true and estimated values of the pa-
rameters, and S the total number of estimates. For estimates of Find,
S is the total number of individuals, for Fsite the effective number of
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sites, and for the SFS the number of categories (S = 2n + 1). For
genotype calling, the associated error was calculated as the pro-
portion of miscalled genotypes. All plots were made using the
R package ggplot2 (Wickham 2009).

Analysis of real data

In addition to simulated data, we also analyzed previously pub-
lished Illumina GA II technology data from Rice, O. sativa (Xu et al.
2011). These data consist of 40 domesticated rice accessions, rep-
resentative of all major Asian rice groups (27 O. s. japonica and 13
O. s. indica), together with five O. nivara and five O. rufipogon wild
accessions at an effective (after mapping) sequencing coverage of
103. The data set also includes an additional 15 wild rice acces-
sions (10 O. rufipogon and five O. nivara) at an effective sequencing
coverage of between 23 and 33.

We used the originally mapped reads but performed de novo
quality controls using only sites with minimum root mean square
(RMS) mapping quality >10, maximum P-value for (strand bias,
base quality bias, map quality bias, end distance bias, and HWE
excess of heterozygous exact test) >10�4, and total coverage be-
tween 573 and 26453 for 65 individuals, but where at least half
the individuals had at least 23 coverage (Minoche et al. 2011).
After filtering, we calculated the genotype likelihoods with the
SAMtools program (Li et al. 2009b) and used them in all sub-
sequent analyses. Again, we only used variable sites for the esti-
mation of inbreeding coefficients.

Software availability

The methods presented in this work were implemented in C/C++
and are freely available for non-commercial use. The per-site in-
breeding coefficient’s (Fsite) estimation was incorporated into the
software ANGSD, while the per-individual (Find) method was
implemented in the stand-alone program ngsF. Both are available
at http://cteg.berkeley.edu/;nielsen/resources/software/ or, in the
case of ngsF, also at https://github.com/fgvieira/ngsF.
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