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SUMMARY

Our knowledge of transcriptional heterogeneities in epithelial stem and progenitor cell 

compartments is limited. Epidermal basal cells sustain cutaneous tissue maintenance and drive 

wound healing. Previous studies have probed basal cell heterogeneity in stem and progenitor 

potential, but a comprehensive dissection of basal cell dynamics during differentiation is lacking. 

Using single-cell RNA sequencing coupled with RNAScope and fluorescence lifetime imaging, 

we identify three non-proliferative and one proliferative basal cell state in homeostatic skin that 

differ in metabolic preference and become spatially partitioned during wound re-epithelialization. 

Pseudotemporal trajectory and RNA velocity analyses predict a quasi-linear differentiation 

hierarchy where basal cells progress from Col17a1Hi/Trp63Hi state to early-response state, 
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proliferate at the juncture of these two states, or become growth arrested before differentiating into 

spinous cells. Wound healing induces plasticity manifested by dynamic basal-spinous 

interconversions at multiple basal transcriptional states. Our study provides a systematic view of 

epidermal cellular dynamics, supporting a revised “hierarchical-lineage” model of homeostasis.

Graphical Abstract

In Brief

Haensel et al. performed a comprehensive dissection of the cellular makeup of skin during 

homeostasis and wound healing and the molecular heterogeneity and cellular dynamics within its 

stem-cell-containing epidermal basal layer. Their work provides insights and stimulates further 

investigation into the mechanism of skin maintenance and repair.

INTRODUCTION

Epithelial tissue maintenance is driven by resident stem cells, the proliferation and 

differentiation dynamics of which need to be tailored to the tissue’s homeostatic and 

regenerative needs. However, our understanding of tissue-specific cellular dynamics in vivo 
at single-cell and tissue scales is often very limited. The self-renewing skin epidermis 

represents an outstanding model to study the precise sequence of events that underlie the 

commitment and differentiation of epithelial stem cells toward highly specialized terminal 

states with important biological functions.
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Within the adult mouse interfollicular epidermis, stem and progenitor cells residing in the 

basal layer undergo self-renewing or differentiative cell divisions to maintain a proper pool 

of basal cells and to generate post-mitotic differentiating (spinous and granular) cells in the 

suprabasal layers that ultimately form the stratum corneum—an outer permeability barrier 

that protects an organism from dehydration, infection, and a myriad of other harmful insults 

(Gonzales and Fuchs, 2017). Cumulative evidence supports multiple possible mechanisms of 

epidermal homeostasis: (1) a single, equipotent population of progenitor cells stochastically 

choosing between self-renewal and differentiation; (2) a hierarchical lineage of relatively 

quiescent stem cells giving rise to faster cycling, and committed progenitor cells that then 

exit the cell cycle and terminally differentiate; and (3) two spatially segregated populations 

of stem cells that divide at different rates and adopt distinct lineage trajectories (Gonzales 

and Fuchs, 2017; Mascré et al., 2012; Rompolas et al., 2016; Sada et al., 2016). The 

different criteria used for stem and progenitor fate assignment, such as molecular 

differentiation markers, basal layer residence status, and assumptions about stem cell 

division or clonal-growth kinetics, may account for the differences in data interpretation 

leading to these seemingly diverse models (Gonzales and Fuchs, 2017). Moreover, the 

observed epidermal stem cell heterogeneity in mouse back skin may reflect different cellular 

states of a single differentiation program (Rognoni and Watt, 2018). Clearly, single-cell 

resolution data are needed to provide a comprehensive picture of basal cell heterogeneity 

and cellular states during epidermal lineage differentiation.

Upon cutaneous wounding, the skin must alter its cellular dynamics to facilitate efficient 

healing for timely restoration of the protective barrier. Wound healing represents a highly 

regulated process composed of several distinct but overlapping stages (inflammation, re-

epithelialization, and resolution) that involve the coordinated activities of epidermal, dermal, 

immune, and endothelial cells (Gurtner et al., 2008). Re-epithelialization is driven by 

spatially patterned migration and proliferation of epidermal cells at the wound periphery, as 

well as migration and dedifferentiation and reprogramming of hair follicle (HF) and 

sebaceous gland epithelial cells (Haensel and Dai, 2018; Park et al., 2017; Rognoni and 

Watt, 2018). What and how epidermal cells migrate during wound re-epithelialization has 

been a subject of debate, with two different models proposed: (1) basal cells first migrate 

into the wound bed and unidirectionally convert into suprabasal cells, and (2) wound 

peripheral epidermal cells crawl or “leapfrog” over one another such that suprabasal cells 

migrate in and become basal cells (Rittié, 2016; Rognoni and Watt, 2018). Recent live-cell 

imaging and lineage tracing studies have defined distinct zones of epidermal cellular 

activities in the wound area: a migratory zone next to the wound margin where both basal 

and suprabasal cells move toward the wound center; an intermediate, mixed zone of 

coordinated migration and proliferation; and a hyperproliferative zone furthest away from 

the wound margin (Aragona et al., 2017; Park et al., 2017). Precisely how many distinct 

transcriptional states exist for wound epidermal cells and whether these states correlate with 

or differ from their homeostatic counterparts, particularly within the basal layer, remain to 

be elucidated.

In this work, we performed single-cell RNA sequencing (scRNA-seq) of cells from normal 

or wounded (WO) mouse skin, and identified four distinct basal cell states in normal skin 

that alter gene expression during wound healing. Using multiplexed RNA in situ detection 
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(RNAScope) and fluorescence lifetime imaging microscopy (FLIM), we spatially mapped 

the scRNA-seq-revealed molecular and metabolic heterogeneities onto the intact normal and 

WO skin tissue. Pseudotemporal trajectory and RNA velocity analyses placed the different 

basal cell states temporally onto a differentiation hierarchy and revealed enhanced cell fate 

and state fluidity during wound healing. Overall, our study provides a comprehensive single-

cell perspective of epidermal cellular dynamics and transitional states during normal 

homeostasis and repair.

RESULTS

scRNA-Seq Reveals Global Changes in Skin Cellular Makeup during Wound Healing

To systematically examine major cell type and cell state differences between homeostasis 

and repair, we performed scRNA-seq on samples isolated from unwounded (UW) and WO 

mouse back skin (Figure 1A). The wound samples were taken at 4 days after the 

introduction of 6-mm wounds, corresponding to a stage of active re-epithelialization 

(Figures 1B and S1A). After quality control (Figure S1B; STAR Methods), we obtained 

10,615 (from two UW biological replicates) and 16,164 (from three WO biological 

replicates) cells for downstream analyses. By combining all five samples using Seurat 

(Butler et al., 2018), we identified three major cell types: epithelial (high Krt14 or Krt1 
expression), fibroblast (high Col1a2 expression), and immune (high Ptprc expression) 

(Figures 1C, 1D, S1C, and S1D). The average percentages of immune cells and, to a lesser 

extent, fibroblasts were increased, and the average percentage of epithelial cells decreased, 

in the WO replicates compared to UW replicates (Figures 1E and S1E).

We also analyzed the UW and WO sample types separately (STAR Methods). Known cell 

type markers (Han et al., 2018; Joost et al., 2016, 2018; Jaitin et al., 2014) were used to 

determine cluster identity (Figures 1F, 1G, and S2A-S2C; Tables S1A and S1B). For UW 

and WO samples, we observed 15 and 14 cell clusters, respectively (Figures 1F and 1G). 

Feature plots of key cell type markers revealed population-level changes in epidermal basal 

(Krt14+) and spinous (Krt1+) cells, HF-associated cells (Krt17+), immune cells (Ptprc+), and 

fibroblasts (Col1a2+) (Figures 1H and 1I). Several new cell types, including macrophages, 

dendritic cells (DCs; which also includes the Cd207+ Langerhans cells), myofibroblasts, and 

endothelial cells, were either expanded or only detectable in the WO skin (Figure S2D). The 

dramatically increased presence of macrophages and myofibroblasts in WO skin was 

confirmed using immunofluorescence with antibodies for F4/80 and smooth muscle actin 

(SMA), respectively (Figure S3). Greater presence and contributions of distinct immune cell 

types from the WO sample was also evident when individual cell types were identified in 

our UW-WO combined dataset from above (Figures S2E and S2F; Table S2). Moreover, the 

percentage of each cell type in the combined analysis is quantitively similar to that in the 

separate analysis (Figures S2D and S2F), indicating the robustness of the findings.

Epithelial cells of the interfollicular epidermis, HF, and sebaceous gland drive wound re-

epithelialization. Subclustering analysis of these cells revealed comparable numbers of 

clusters in UW and WO samples, namely, four basal cell subclusters, two spinous cell 

subclusters, and four HF subclusters with distinct markers (Figures 2A, 2B, and 2D-2G; 

Tables S3A and S3B), which are generally consistent with the reported scRNA-seq data 
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using Fludigm C1 platform (Joost et al., 2016). Compared to the Joost et al. (2016) dataset, 

our dataset does not contain a minor loricrin+ granular cell population, likely due to 

difference in cell harvest procedure, but it features a distinct proliferative basal cell 

subcluster in both UW and WO skin (Figures 2A, 2B, 2D, and 2E). Overall, the relative 

proportions of the various epithelial cell types did not dramatically change between UW and 

WO skin (Figure 2C).

Collectively, these data provide a general overview of the major changes in cellular 

heterogeneity from homeostasis to a wound healing state, supporting current knowledge 

obtained using traditional methods (Gurtner et al., 2008; Shaw and Martin, 2009).

Wound Epidermal Basal Cells Upregulate Inflammation- and Migration-Related Gene 
Expression

Next, we compared UW and WO epidermal basal cells by subseting out the Krt14+ but 

Krt17−CD34− epithelial subsets (Figures 2D and 2E). We also excluded the proliferative 

Krt14+ basal cell subcluster from this analysis to avoid cell cycle gene expression 

overshadowing other molecular differences (Figure S4A). A total of 53 and 99 genes were 

particularly enriched in UW and WO basal cells, respectively (Table S4). Interestingly, the 

expression levels of such enriched genes were not uniform across all single cells of each 

condition, with some UW basal cells displaying a WO-like signature but not vice versa 

(Figure 3A).

Genes upregulated in WO basal cells included inflammatory genes Cxcl2, Ccl2, and Ccl7; 

epithelial-to-mesenchymal transition (EMT)-related genes Snai2 and Vim; and positive-

control Krt16 (Wawersik et al., 2001; Figure 3B). Gene Ontology (GO) analysis of all 

differentially expressed genes revealed enrichment of inflammation (e.g., transforming 

growth factor α [TNF-α] signaling and interferon gamma response) and EMT signatures in 

WO basal cells (Figure 3C). Genes associated with wound healing, EMT, or upregulated in 

the leading edge of wound neo-epidermis (i.e., α5 integrin-expressing cells) (Aragona et al., 

2017) showed upregulation in WO basal cells compared to UW counterparts (Figure 3D). 

Moreover, UW basal cells encompassed two distinct subsets scoring low and high for TNF-

α signaling and hypoxia, whereas WO basal cells scored uniformly higher for the same gene 

sets (Figure 3D). Together, these data demonstrate that epidermal basal cells may exist in 

distinct inflammation-low and inflammation-high states during homeostasis and that they 

dramatically upregulate inflammatory and migratory gene expression during wound healing.

Three Distinct Non-proliferative (NP) Basal Cell States Exist in UW Skin

We next zoomed in on the NP UW basal cells to dissect their heterogeneity. Three distinct 

subclusters were observed (Figures 4A and 4B; Table S5): (1) a Col17a1Hi subcluster with 

top markers such as Col17a1, a gene enriched in epidermal stem cells, and Trp63, a gene 

enriched in quiescent bulge HF stem cells (Bu-HFSCs) compared with activated stem and 

progenitor cells (Lien et al., 2011); (2) an early-response (ER) subcluster enriched for 

immediate early genes and genes associated with activated Bu-HFSCs relative to quiescent 

Bu-HFSCs or with known function in regulating proliferation, such as Fos, Jun, and Id1 
(Andrianne et al., 2017; Briso et al., 2013; Florin et al., 2006; Herschman, 1991; Lien et al., 
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2011; Rotzer et al., 2006; Zenz and Wagner, 2006; Zhu et al., 2008); and (3) a growth-

arrested (GA) subcluster enriched for genes with known functions in promoting cell cycle 

arrest, such as Cdkn1a, Irf6, Ovol1, and Sfn (Hammond et al., 2012; Ingraham et al., 2006; 

Nair et al., 2006; Topley et al., 1999; Figures 4C, S4B, and S4C; Table S5). Binarizing the 

expression of select marker genes for Col17a1Hi, ER, and GA subclusters revealed little 

overlap in cells that most abundantly express Col17a1 (or Trp63) or Cdkn1a, whereas 

stronger overlap was seen for Id1. For example, at least 42% of basal cells uniquely express 

appreciable levels (i.e., >0.75 quantile) of Col17a1 (Col17a1Hi subcluster) and 10% of basal 

cells uniquely express appreciable levels of Cdkn1a (GA subcluster) (Figure S4D). 

Furthermore, GA- and Col17a1Hi-enriched genes presented a trend of inverse correlation 

among the three subclusters (Figure 4C). Together, our data support the existence of three 

major, distinct transcriptional states in NP UW basal cells.

The three NP basal cell states also showed distinct molecular signatures. The GA state 

showed the highest expression of TNF-α signaling, hypoxia, and EMT genes and 

enrichment for a gene signature derived from a label-retaining basal cell population (Sada et 

al., 2016; Figures 4D, S4E, and S4F). In contrast, the Col17a1Hi state scored the lowest for 

inflammation and EMT genes but highest for a “quiescence and sternness” signature derived 

from tissue quiescent stem cells (Cheung and Rando, 2013; Figure 4D). There was also a 

stepwise increase in epidermal differentiation gene expression from Col17a1Hi to ER and to 

GA states (Figure 4D). These data suggest that these three basal cell states are defined by 

their differences in inflammation, migration, quiescence and stemness, cell cycle exit, and 

differentiation status.

We then used RNAScope to validate the existence of three NP basal cell states in the intact 

skin tissue. Co-analysis of GA marker Cdkn1a with Krt14 transcripts and K14 protein 

revealed several interesting points: (1) the levels of Krt14 transcript and, to a lesser extent, 

K14 protein fluctuated along the basal layer of the epidermis, and the location of such 

variation did not always coincide; and (2) Cdkn1a transcripts were present in some but not 

all K14-positive basal cells, and the highest expression was detected in a subset of 

suprabasal cells (Figures 4E and 4G). Co-analysis of Col17a1Hi markers Col17a1 and Trp63 
detected basal cells that express both Col17a1 and Trp63, only Col17a1, or neither (Figure 

S5A). Quantitative analysis revealed that most basal cells expressing high levels of Trp63 
also expressed high levels of Col17a1, but some cells only expressed high levels of Col17a1 
(Figure S5B). We also validated and detected the heterogeneous expression of Col17a1 and 

p63 proteins in the epidermal basal layer (Figures S5C and S5D). Co-analysis of Cdkn1a 
with Trp63 and ER state marker Id1 revealed the presence of cells in the basal layer that 

uniquely expressed each of the markers (Figures 4F and 4H-4J). Few cells expressed two 

markers simultaneously, Trp63 and Cdkn1a expression was mutually exclusive, and none 

expressed all three markers (Figures 4I and 4J). Thus, epidermal basal cells exist in multiple 

NP transcriptional states in vivo.

Three Distinct NP Basal Cell States Exist in WO Skin and Are Spatially Partitioned

We next turned to the WO samples to assess basal cell heterogeneity during wound healing. 

We observed three distinct NP subclusters, which we also termed Col17a1Hi, ER, and GA 
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subclusters (Figures 5A-5C). The corresponding UW and WO subclusters shared the highest 

levels of gene expression with each other compared with other subclusters (Figures S5E and 

S5F; Tables S5 and S6). Moreover, random forest classification provided further support for 

assigning the WO subclusters with similar identities as those in the UW basal cells (Figure 

S5G).

The WO GA cells were enriched for genes associated with α5-integrin-positive leading 

edge, inflammation, and hypoxia and have the lowest quiescence and stemness score but the 

highest epidermal differentiation score (Figures 5D and S6A; Table S6). Moreover, 

individual genes that are known to be enriched (Snai2, Krt16, and Hbegf) or downregulated 

(Cd9) in the wound migratory front (Haensel and Dai, 2018; Jiang et al., 2013; Shirakata et 

al., 2005) were observed in the WO GA subcluster (Figures S6B and S6C), suggesting that 

cells at the migrating front are predominantly in a GA state (see below). Interestingly, WO 

Col17a1Hi cells showed a significant enrichment for oxidative phosphorylation genes 

(Figure S6A), a point we will return to later.

We next examined the spatial distribution of basal cell states in WO skin. Co-analysis of 

Col17a1 and Trp63 transcripts revealed dramatic upregulation of single- and double-positive 

cells from the wound periphery to the hyperproliferative zone but a decrease of such cells in 

the migrating front (Figures 5G and 5H). Similarly, Col17a1 and p63 proteins were found to 

be downregulated in the migrating front relative to the hyperproliferative zone or distal to 

the wound (Figure S6D and S6E). Although Col17a1 expression was largely restricted to the 

basal layer, Trp63 expression was also detected in suprabasal cells. In the wound 

hyperproliferative zone, GA marker Cdkn1a was predominantly expressed in suprabasal 

cells; however, in the migrating front, its strong expression was detected in both basal and 

suprabasal cells (Figures 5I-5K). Quantification of Cdkn1a signals along the entire basal 

layer of the WO area revealed a clear increase toward the migrating front (Figure 5K). WO 

GA marker Snai2 (Slug) protein was enriched in basal cells at the migrating front relative to 

those in the hyperproliferative zone or distal to the wound (Figures 5E and S6F). ER marker 

Fos protein was enriched in the proliferative zone, but its expression dissipated in the 

migratory zone or UW area (Figures 5F and S6G). The overall trend is enrichment of 

Col17a1Hi and ER markers in the proliferative zone and wound periphery and enrichment of 

GA marker in the migrating front.

Collectively, our data show that basal cells in WO skin also exist in three major distinct 

states, with the Col17a1Hi/ER states dominating the proliferative zone and the GA state 

similar to the previously described leading-edge population (Aragona et al., 2017) 

dominating the migrating front.

Metabolic Heterogeneity in Basal Cells of the Normal and WO Skin

To compare the metabolic status of the different basal cell states identified above, we scored 

all UW and WO basal cells for their expression of oxidative phosphorylation (OxPhos) and 

glycolysis genes. In UW skin, the proliferative basal cell states showed the highest, whereas 

the GA state showed the lowest, oxidative phosphorylation score (Figure 6A). In WO skin, 

oxidative phosphorylation of the Col17a1Hi state was elevated to a level similar to that of 

proliferative WO basal cells (Figure 6B). The WO GA state still scored the lowest for 
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oxidative phosphorylation, which is in keeping with its highest mRNA expression of the 

hypoxia response factor Hif1a (Figures 6B and S6H). An apparently opposite trend was seen 

for glycolysis genes, as GA cells displayed higher glycolysis score than the other NP subsets 

in both UW and WO skin (Figure S6J and S6I).

Two-photon excitation (TPE) and NADH FLIM have been used for in vivo metabolic 

measurements during skin wound healing (Deka et al., 2016; Jones et al., 2018). Applying 

this method to WO skin exercised from K14-Cre;ROSAmTmG mice, where epidermal cells 

were visualized by GFP expression, we measured NADH autofluorescence in individual 

cells within the GFP+ basal layer in three different areas: outside of the wound, portions of 

the proliferative zone, and regions of the migratory front deep within the wound (Figures 6C 

and 6D). TPE NADH intensities and lifetimes were captured and displayed in phasor plots 

(Figures 6E and 6F). Free-to-bound NADH ratios, indicative of the relative level of oxidative 

phosphorylation (Stringari et al., 2012, 2015), were calculated from each basal cell. A 

gourd-shaped distribution of the ratios was observed for cells in the region far from and 

outside of the wound (Figure 6G), suggesting that basal cells in UW skin can be classified 

into OxPhosHigh (less abundant) and OxPhosLow states. The ratios were elevated in basal 

cells immediately adjacent to and within the wound, with the highest values detected in a 

significant fraction of basal cells in the neo-epidermis (Figures 6G and 6H). Together, these 

data provide in vivo validation for scRNA-seq-revealed metabolic heterogeneity within the 

basal compartment and show basal cells in the wound neo-epidermis to be enriched for an 

OxPhosLow and glycolysisHigh state compared with their UW counterparts.

Pseudotemporal Trajectory and RNA Velocity Analyses Reveal Basal Cell State Transition 
Dynamics and Wound-Induced Cellular Plasticity

To pseudotemporally order the distinct basal cell states in the context of epidermal 

differentiation, we first applied Monocle 2 (Qiu et al., 2017b; Trapnell et al., 2014) to all 

interfollicular epidermal cells, which include proliferating and NP basal cells as well as 

spinous cells. In both UW and WO skin, we observed three paths that extend from the 

Col17a1Hi state: proliferating basal cells, GA state (transitioning through ER state), and 

spinous cells. Col17a1Hi cells contributed in part to each of the observed paths (Figures S7A 

and S7B).

Because Monocle 2 is unable to determine the origin of trajectory without prior knowledge, 

we next used our previously developed method scEpath (Jin et al., 2018) by performing 

uniform manifold approximation and projection (UMAP) of cells (McInnes et al., 2018), 

based on batch effect-corrected data (Figures 7A-7D; STAR Methods). This method, when 

applied to a 536-interfollicular epidermal cell dataset (Joost et al., 2016), revealed what 

appears to be a single-path trajectory just as reported (Figure S7C). However, in our UW 

dataset, we observed three distinct and largely separated clusters composed of basal, 

proliferative basal, and spinous cells (Figures 7A and 7B). In the WO dataset, we identified 

the same three distinct epidermal clusters, but noted bridges between the basal and spinous 

clusters with overall less dramatic basal-spinous separation (Figures 7C and 7D).

Next, we used scEpath to infer and quantify cell lineages with single-cell energies 

(scEnergy). We found that lower energies, although typically associated with committed and 
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differentiated cell states (Jin et al., 2018; Teschendorff and Enver, 2017), were also 

associated with a quiescent cell state because the quiescent Bu-HFSC (Cd34+) population 

showed the lowest scEnergy of all the skin epithelial cell types (Figure S7D). Independent of 

the numbers of UW epidermal cells from each cell state that were used to infer lineage 

progression, scEpath predicted a near-linear path that originates from the Col17a1Hi basal 

cell state, which displayed the lowest energy of all interfollicular epidermal cells (Figures 7E 

and S7E). The Col17a1Hi state transitions to the ER state, to the GA state, and then to the 

spinous cell populations (SP2 to SP1), whereas the proliferative basal cells follow a side 

path that originates from the ER state (Figure 7E). This prediction was further confirmed 

using Monocle 3 (Cao et al., 2019; Figure 7F).

To further analyze the epidermal differentiation dynamics in UW skin, we performed RNA 

velocity analysis, in which the direction of state transitions and the extent of change in RNA 

dynamics are indicated by the vectors (arrows) and their lengths, respectively (La Manno et 

al., 2018; Svensson and Pachter, 2018). The Col17a1Hi and SP1 states showed small RNA 

velocities (short or no arrows), known to associate with both quiescent and terminally 

differentiated cells (Svensson and Pachter, 2018; Zywitza et al., 2018), whereas the ER, GA, 

and SP2 states exhibited large RNA velocities (Figure 7F). Transition from the Col17a1Hi 

state to the ER state was associated with increasing arrow lengths, which may reflect a rapid 

activation in RNA dynamics (e.g., increased RNA splicing efficiency; see below). 

Remarkably, the proliferative basal cells followed a cyclical trajectory, which originates 

from the border between Col17a1Hi and ER states, and then returns to the Col17a1Hi state. 

This analysis suggests that epidermal basal cells normally transition through three distinct 

states before embarking on spinous differentiation, and this differentiation trajectory is 

fueled by the active proliferation of basal cells at the junction between Col17a1Hi and ER 

states.

The cyclical dynamics of the proliferative UW basal cells was faithfully recapitulated in the 

WO sample (Figure 7G). An appreciable fraction of the WO Col17a1Hi basal cells and SP1 

cells exhibited apparently more rapid RNA dynamics than their UW counterparts. RNA 

velocity also provided evidence for enhanced cell-fate fluidity in the WO sample, with 

bidirectional transitions at multiple cellular states between the basal and spinous cells that 

were not seen in the UW sample. Overall, these data suggest that WO skin epidermal cells 

not only are generally more active but also exhibit increased plasticity and relaxed cell 

differentiation constraints compared with their UW counterparts.

HFSCs downregulate the expression of outer bulge markers, such as Cd34, as they 

contribute to forming a new epidermis during wound healing (Joost et al., 2018). Compared 

with a single HFSC cluster marked by Cd34, Lhx2, and Postn expression (Joost et al., 2016; 

Rhee et al., 2006) in the UW sample, two distinct HFSC clusters—both expressing Lhx2 but 

with different levels of Cd34 and Postn—were called in the WO sample (Figures 2A, 2B, 

2D, and 2E). Inclusion of these two HFSC clusters in RNA velocity analysis of WO 

epidermal basal cells revealed velocity arrows pointing from Cd34Low HFSCs to ER/GA 

epidermal basal cells (Figure S7G), raising the possibility that the Cd34Low subpopulation 

might represent those HFSCs that are in the process of becoming wound epidermal cells.
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We next sought to identify key molecular changes that may be important for basal cell state 

transitions. scEpath identified 3,699 and 3,129 pseudotime-dependent genes (including 

Trp63, Fos, and Cdkn1a) from the UW and WO dataset, respectively, that changed 

significantly as the basal cells transitioned through the different states (Figures 7H and 7I). 

Interestingly, genes related to specific biochemical and cellular processes defined the 

Col17a1Hi to ER transition (group I and II; e.g., protein translation, rRNA processing, and 

cell cycle), the Col17a1Hi/ER to GA transition (group III; e.g., RNA splicing, mRNA 

processing, and cell cycle), and the GA state (group IV; e.g., mRNA processing, cell 

adhesion, and translation). Although gene expression changes were sequential and gradual 

during basal state transitions in the UW sample, they appeared significantly earlier, were 

more abrupt, and were sometimes sporadic in the WO sample (Figures 7H, 7I, S7H, S7I, and 

S7J). This said, transcription factors (TFs), which represent less than 1% of the total 3,699 

pseudotime-dependent genes, showed little difference (Figure S7K). Thus, post-

transcriptional and cell cycle events underlie the wound-induced remodeling of basal cell 

state transitions.

The overall emerging picture is that Col17a1Hi basal cells in homeostatic skin first become 

activated (an early response-like state), at which point they can either enter active cell cycle 

and expand as progenitor cells or undergo growth arrest and subsequently differentiate into 

spinous cells. Although this multi-step basal-spinous differentiation trajectory is largely 

maintained during wound healing, cell fate plasticity and differentiation fluidity are 

enhanced such that bidirectional conversions between basal and spinous cells are enabled.

DISCUSSION

To date, several studies have used scRNA-seq to make general molecular and cellular 

categorization of the various epithelial components of the mouse (Joost et al., 2016, 2018) 

and human (Cheng et al., 2018) skin to provide key insights into normal regeneration and 

wound healing (Joost et al., 2018; Yang et al., 2017) and to unearth p63-regulated molecular 

and cellular events in the developing mouse epidermis (Fan et al., 2018). Our work adds to 

this growing list with a comprehensive study of the transcriptional and metabolic 

heterogeneities of interfollicular epidermal basal cells in both normal and WO skin.

Our discovery of a Col17a1Hi basal cell state is thought-provoking. This transcriptional state 

is associated with high quiescence and stemness and high oxidative phosphorylation but low 

EMT, low differentiation, low hypoxia and inflammation, low scEnergy, and low RNA 

dynamics. These molecular characteristics are suggestive of a relatively quiescent, primitive 

stem and progenitor cell state, a notion supported by its high expression of Col17a1, which 

encodes a marker of long-term epidermal stem cells that can outcompete other cells and a 

negative regulator of epidermal proliferation (Liu et al., 2019; Watanabe et al., 2017). The 

Col17a1Hi state also shows heightened expression of Trp63, a master regulator of various 

aspects of epidermal development, including the initial specification from simple epithelia, 

promotion of stratification, proliferation, as well as terminal differentiation (Li et al., 2019; 

Mills et al., 1999; Pattison et al., 2018; Koster et al., 2007; Truong et al., 2006; Yang et al., 

1999). The dynamic change in Col17a1 and Trp63 expression during wound re-
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epithelization implicates the mobilization of Col17a1Hi-state basal cells when there is an 

increased demand for cellular outputs (see below).

ER genes, such as Fos and Jun, are known as stress response genes that can be upregulated 

by flow cytometry (van den Brink et al., 2017). A transient upregulation of such immediate 

early genes during embryonic and adult wound healing has been previously suggested to 

represent a “kick-start” mechanism to initiate the repair process (Grose et al., 2002). We 

were able to detect epidermal basal cells in situ that express ER-associated Fos protein or 

Id1 mRNA, indicating that an ERbasal cell transcriptional state likely exists even in the 

intact, UW tissue. In all gene expression and lineage prediction analyses, these cells occupy 

an intermediate position between Col17a1Hi and GA states, raising the possibility that ER is 

an obligatory transition state when dormant cells become activated to proliferate or migrate.

Basal cells that have committed to differentiation (expressing early differentiation marker 

Involucrin [Inv]) have been identified by lineage tracing (Mascré et al., 2012). Although Inv 
expression was not detectable in our scRNA-seq-identified GA basal cells, it is likely that 

the GA state in the normal epidermis is post-mitotic, most ready to commit to 

differentiation, and most prone to migrate upward compared with the other basal cell states. 

The high expression of EMT, glycolysis, hypoxia, and inflammation genes associated with 

the GA state implicates it as being the most ready to respond to extracellular signals from 

the everchanging tissue microenvironment. Indeed, our data show that during wound healing 

GA-state basal cells preferentially localize to the migrating front that is closest to the 

hypoxic wound bed and the infiltrating immune cells. As such, our results are in keeping 

with the intravital imaging-revealed finding that migration and proliferation are spatially 

separated in the healing wound, with migrating cells at the tips of the growing neo-epidermis 

being generally devoid of proliferative activity (Park et al., 2017). More importantly, our 

data suggest that the wound repair process capitalizes on the existing transcriptional 

heterogeneity of normal epidermal basal cells but redirects it toward a spatially coordinated 

program of proliferation, migration, and metabolism.

We used four computational tools to investigate basal cell dynamics, showing a sequential 

progression of basal cells through the Col17a1Hi, ER, and then GA states in homeostatic 

skin. Interestingly, scEpath and Monocle 3 predict GA as a transitional state between basal 

and spinous fates, a finding consistent with ample experimental data supporting the notion 

that basal cells undergo cell cycle exit when terminally differentiating (Fuchs, 2008). This 

said, we note that in RNA velocity analysis there is an apparent scarcity of velocity arrows 

pointing directly from GA to SP2 cells (Figure 7F). It is possible that in adult homeostatic 

skin, active basal-to-spinous transition is a rare event that is not readily captured by RNA 

velocity analysis performed on data from a single time point. Instead, most GA basal cells in 

adult skin may be in a stable GA state but with rapid intrinsic RNA dynamics and readiness 

to differentiate. Alternatively, direct GA-SP2 transition may not associate with prominent 

RNA splicing events. In addition, the RNA dynamics of SP2 pointing to the GA cells in UW 

skin (Figure 7F) raises the possibility of uncommitted nature (Guo et al., 2018) of spinous 

cells before fully committing to terminal differentiation.

Haensel et al. Page 11

Cell Rep. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Significantly enhanced cell fate fluidity occurs in the WO skin, which is evident by the 

overall less distinct gene expression differences between basal and suprabasal fates as well 

as multiple RNA velocity vector paths that bridge the different states of the basal and 

spinous cell clusters. Cellular plasticity during wound healing is well-documented, as cells 

of the HF and sebaceous gland lineages can be reprogramed to gain an interfollicular 

epidermal fate (Park et al., 2017; Rognoni and Watt, 2018). Our findings highlight yet 

another layer of cell fate plasticity, namely bidirectional fluidity between basal and spinous 

fates at multiple transcriptional states within the interfollicular epidermal compartment. 

Although the predicted conversion of spinous cells back into a basal cell fate during wound 

repair is consistent with earlier studies (Fu et al., 2001; Mannik et al., 2010), recent lineage 

tracing (using Inv-CreER and tail skin wounds) and live-cell imaging (using ear skin 

wounds) experiments suggest that the conversion of suprabasal cells into basal cells does not 

occur in wound healing (Aragona et al., 2017; Park et al., 2017). It is possible that the 

spinous-basal cell fate fluidity that we observe here occurs only at the transcriptional level, 

but the actual conversion of spinous cells into bona fide basal cells does not occur or occurs 

as a rare event that requires a very large sample size or more extended wound healing time 

course (e.g., larger wounds) to experimentally detect. It is also possible that spinous cells 

with the ability to revert back to a basal fate are not efficiently targeted by Inv-CreER. 

Finally, differential cellular dynamics during the healing of wounds that incur in different 

body locations (e.g., tail and ear versus back skin) may contribute to the apparent 

discrepancy.

Also of interest is our identification of a distinct pool of proliferating basal cells as a 

separate path that forms a loop with, and thus fueling, the rest of the basal cells. The unique 

location of these cells in the lineage trajectories, namely at the border between Col17a1Hi 

and ER basal cell states, suggests that (1) passage through this border might be critical for 

the active proliferation of the otherwise dormant adult epidermal basal cells; and (2) 

Col17a1Hi and ER cells are responsible for generating more basal cells, whereas GA cells as 

a bulk population have likely reached a point of no return such that they can no longer re-

enter the cell cycle to serve as a major source of basal cell self-renewal.

It is important to note that alternative models of epidermal lineage differentiation cannot be 

fully excluded. For example, the proximity between Col17a1Hi and SP1 states as well as 

between GA and SP2 states may lead to speculation that Col17a1Hi and GA basal cells 

independently give rise to SP1 and SP2 cells, respectively, in homeostatic and WO skin. 

Direct conversion of Col17a1Hi basal cells into spinous cells (i.e., without having to pass 

through ER and GA states) is indeed suggested by Monocle 2 analysis (Figures S7A and 

S7B). Wound-mobilized Col17a1Hi cells in the wound hyperproliferative zone may adopt 

multiple possible fates: (1) differentiating directly (skipping ER/GA states) and indirectly 

into suprabasal cells (SP1 and SP2, respectively) at the wound periphery; (2) converting, at 

higher rates than during homeostasis, into GA population, which subsequently migrate into 

the wound; or (3) migrating into the wound and then converting into GA cells. The scarcity 

of Col17a1Hi cells in the migrating front is more consistent with the second rather than last 

possibility. Alternatively or additionally, pre-existing GA basal cells may be preferentially 

recruited at the WO site to form the migrating front, where they directly differentiate into 
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suprabasal cells within the wound bed. Clearly, future experimentation is needed to test the 

lineage differentiation predictions and the multiple possibilities indicated in this study.

Overall, the sequential progression of basal cells through three NP states, two of which are 

capable of active proliferation, suggests a revised “hierarchical-lineage” model of epidermal 

homeostasis that encompasses more than one possible stem and progenitor cell states. Our 

study lays a foundation for future investigation of the significance of a multi-step, and even 

multi-route, basal-spinous differentiation trajectory in the performance objectives of adult 

epidermis, namely maintaining a functional, homeostatic epithelium that can robustly 

regenerate itself upon injury—a goal that is difficult to attain under pathological conditions.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Xing Dai (xdai@uci.edu).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

K14-Cre transgenic mice (C57BL/6J background) have been previously described (Andl et 

al., 2004). ROSAmTmG (C57BL/6J background) and wild-type C57BL/6J mice are from the 

Jackson Laboratory (Stock #s 007576 and 000664, respectively). Seven-week old female 

mice were used for the studies. All maintenance, care, and experiments have been approved 

and abide by regulatory guidelines of the International Animal Care and Use Committee 

(IACUC) of the University of California, Irvine.

METHOD DETAILS

Wounding—For single cell experiments, 7-week-old (p49, telogen) female C57BL/6J mice 

were anesthetized using isoflurane (Primal Healthcare; NDC-66794-017-25), backs shaved, 

and then a 6-mm punch (Integra; 33-36) was used to generate a full-thickness wound on 

each side of the mouse. Wounds were collected 4 days later for analysis.

For FLIM-related wounding experiments, 7 week-old female K14-Cre; ROSAmTmG mice 

(C57BL/6J background) were anesthetized using isoflurane, backs shaved, and Nair was 

applied to the backs of the shaved mice for complete hair removal. A 6-mm punch was used 

to generate a full-thickness wound on each side of the mouse. Four days after wounding, the 

wound and surrounding un-wounded skin regions were excised (approximately 1.5 cm in 

diameter with surgical scissors) for analysis.

Single cell isolation for scRNA-Seq—For UW back skin, 7-week-old (p49, telogen) 

female C57BL/6J mice were shaved, back skin removed, fat scrapped off, and then skin was 

minced into pieces less than 1 mm in diameter. For WO back skin, skin was removed, large 

pieces of fat attached to underside of the wound were carefully removed, a 10-mm punch 

(Acuderm; 0413) was then used to capture the wound and a portion of unwounded skin 

adjacent to the wound. The wounds were then minced into pieces less than 1 mm in 
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diameter. The minced samples were placed in 15-mL conical tubes and digested with 10 mL 

of collagenase mix [0.25% collagenase (Sigma; C9891), 0.01M HEPES (Fisher; BP310), 

0.001M sodium pyruvate (Fisher; BP356), and 0.1 mg/mL DNase (Sigma; DN25)]. Samples 

were incubated at 37°C for 2 hours with rotation, and then filtered through 70-μm and 40-

μm filters, spun down, and resuspended in 2% FBS. Cells were stained with SytoxBlue 

(Thermo Fisher; S34857) as per manufacturer’s instructions and live cells (SytoxBlue-

negative) were sorted using BD FACSAria Fusion Sorter.

Single cell library generation—FACS-sorted cells were washed in PBS containing 

0.04% BSA and resuspended at a concentration of approximately 1,000 cell/μL. Library 

generation was performed following the Chromium Single Cell 3′ Reagents Kits v2 

(following the CG00052 Rev B. user guide) where we target 10,000 cells per sample for 

capture. Additional reagents included: nuclease-free water (Thermo Fisher Scientific; 

AM9937), low TE buffer (Thermo Fisher Scientific; 12090-015), ethanol (Millipore Sigma; 

E7023-500ML), SPRIselect Reagent Kit (Beckman Coulter; B23318), 10% Tween 20 (Bio-

Rad; 1662404), glycerin (Ricca Chemical Company; 3290-32), QIAGEN Buffer EB 

(QIAGEN; 19086). Each library was sequenced on the Illumina HiSeq 4000 platform to 

achieve an average of approximately 50,000 reads per cell.

Processing and quality control of scRNA-seq data—FASTQ files were aligned 

utilizing 10x Genomics Cell Ranger 2.1.0. Each library was aligned to an indexed mm10 

genome using Cell Ranger Count. Cell Ranger Aggr function was used to normalize the 

number of mapped reads per cells across the libraries. Quality control parameters were used 

to filter cells with 200-5000 genes with a mitochondrial percentage under 10% for 

subsequent analysis.

Doublet analysis of the scRNA-seq data was performed using the DoubletDetection Python 

(Gayoso and Shor, 2018) package. For each individual sample, we ran DoubletDetection 

with default parameters using the raw count data from CellRanger output. We then 

visualized the predicted singlets and doublets on the tSNE space. One small group of cells 

was predicted as potential doublets (Figure S1B); however, since they exhibited the medium 

number of genes and UMI per cell, and were identified by markers of fibroblasts (Figures 

1C, S1C, and S2E), we did not attempt to remove them from subsequent analysis that 

primarily focused on skin epithelial cells.

Clustering analysis of scRNA-seq data—Clustering of cells was performed using the 

Seurat R package (Satija et al., 2015). Briefly, single cell data matrices were column-

normalized and log-transformed. Replicates for UW and WO samples were merged and then 

corrected using the MultiCCA function. To identify cell clusters, principle component 

analysis (PCA) was first performed and the top 10 PCs with a resolution = 0.6 were used to 

obtaining 15 and 14 clusters for the UW and WO samples, respectively. For the “combined” 

analysis of all five samples, the top 15 PCs with a resolution = 0.8 were used to obtain 25 

clusters. These clusters were also merged based on the marker genes of major cell types. For 

subclustering of epithelial cells, we first identified epithelial clusters from UW or WO 

replicate using the top 10 PCs with resolution = 0.6 and then subset out the appropriate 
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epithelial clusters. Replicates of these epithelial clusters were then merged using MultiCCA 

function again using 10 PCs with resolution = 0.6.

For subclustering of epidermal basal cells, we performed batch correction using the 

Bayesian-based method ComBat from the sva R package (Johnson et al., 2007). The 

corrected data were used for further clustering analysis. Briefly, for the UW sample, the top 

23 PCs were used for clustering and 3 subclusters were obtained with a resolution = 0.8. For 

the WO sample, the top 26 PCs were used and 3 subclusters were obtained with a resolution 

= 0.3. Marker genes were determined with p value < 0.01 and log(fold-change) > 0.25 as 

cutoff by performing differential gene expression analysis between the clusters using 

Wilcoxon rank sum test. To present high dimensional data in two-dimensional space, we 

performed t-SNE analysis using the results of PCA with significant PCs as input.

Random forest classifier—Using the Seurat R Package 2.2.0, we employed the 

ClassifyCells function with default parameters, which relies on the Ranger package to build 

a random forest suited for high dimensional data. Training class was based on identities of 

the basal cells from the UW sample, which was subsequently applied to the basal cells from 

the WO sample.

Pseudotime and trajectory analysis—We performed pseudotemporal ordering of all 

interfollicular epidermal cells, including proliferative and non-proliferative basal cells and 

spinous cells, using Monocle 2 (Qiu et al., 2017b) and scEpath (Jin et al., 2018). For 

Monocle 2, batch effect information was passed into the residualModelFormulaStr option in 

the “reduceDimension” function. The scEpath method can quantify the energy landscape 

using scEnergy, which quantitatively measures the developmental potency of single cells 

(Jin et al., 2018) and was used in our analysis to predict the initial state in pseudotime. 

Pseudotemporal ordering was performed on Combat-batch corrected data. The corrected 

data was scaled using the ScaleData function with default parameters, and then used as an 

input for dimension reduction using PCA and UMAP, which were performed using Seurat 

package. The number of significant PCs was determined by the PCEl-bowPlot function. The 

top six PCs were used in UMAP with the parameter min_dist being 0.35. Based on this 

reduced UMAP space, scEpath infers lineage relationships between cell states via predicted 

transition probabilities and reconstructs pseudotime by separately ordering individual cells 

along each lineage branch via a principal curve-based approach. The calculated pseudotime 

is rescaled such that it is bounded in [0, 1]. scEpath also identifies pseudotime-dependent 

genes that are significantly changed over the pseudotime by creating a smoothed version of 

gene expression using a cubic regression spline (Jin et al., 2018). To determine the 

pseudotime dependent genes, we compared the standard deviation of the observed smoothed 

expressions with a set of similarly permuted expressions by randomly permuting the cell 

order (1000 permutations). We considered all genes with a standard deviation greater than 

0.05 and a Bonferroni-corrected p value below a significance level α = 0.01 to be 

pseudotime dependent. To analyze pseudotime-dependent TFs, we used TFs that are 

annotated in the Animal TF Database (AnimalTFDB 2.0) (Zhang et al., 2015).

We also performed pseudotemporal trajectory analysis using Monocle 3 v0.1.3 (Cao et al., 

2019). As a successor of Monocle 2, the major updates in Monocle 3 include use of UMAP 
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space to initialize trajectory inference and a better structured workflow to learn 

developmental trajectories. The raw count data of the highly variable genes were used in 

pseudotemporal trajectory analysis, which were identified using FindVariableGenes function 

from Seurat package (parameter y.cutoff = 0.5). The UMAP space from Seurat package was 

used as an input of the reduced dimensional space in Monocle 3.

RNA velocity analysis—RNA velocity was calculated based on the spliced and unspliced 

counts as previously reported (La Manno et al., 2018), and cells that were present in the 

pseudotemporal ordering were used for the analysis. We used the R implementation 

“velocyto” with a modified dynamical model to perform RNA velocity analysis. La Manno 

et al. (2018) used a linear model to relate abundance of pre-mRNA U(t) with abundance of 

mature mRNA S(t):

dU
dt = α − β ⋅ U t

dS
dt = β ⋅ U t − γS t

In this model, mRNA abundance over time (represented as dS/dt) is the velocity of gene 

expression. Given that the molecular regulatory mechanisms between pre-mRNA and mature 

mRNA are complicated, and in many molecular networks more commonly we observe non-

linear (e.g., switch-like) responses, we also proposed a nonlinear model of RNA velocity for 

the effects of pre-mRNA on the abundance of mature mRNA based on Michaelis-Menten 

kinetics. The nonlinear RNA velocity model is formulated as:

dU
dt = α − β ⋅ U t

dS
dt = β ⋅ Un

Kn + Un − γS t

where n is the Hill coefficient (describing cooperativity) and K is a constant. We set n and K 

to be 1 and 0.5 in all the analyses below. The R package implementing this non-linear 

dynamical model, termed as nlvelo, is available at https://github.com/sqjin/nlvelo.

RNA velocity was estimated using gene-relative model with k-nearest neighbor cell pooling 

(k = 30). Velocity fields were then projected onto a low dimensional space (e.g. UMAP). 

Parameter n-sight, which defines the size of the neighborhood used for projecting the 

velocity, was set to 500.

For RNA velocity analysis of basal cells and HFSCs in WO samples, the UMAP space was 

generated using Seurat with the top 10 PCs as inputs. Velocity fields were then projected 

onto this UMAP space.

FLIM and data analysis—Freshly excised skin was placed in a glass bottom microwell 

dish (MatTek Corporation; PG-35 g-1.5-14-C) and imaging was performed using a 63X Oil 

1.4NA lens (Zeiss) on a Zeiss LSM 880 microscope coupled to a Ti:Sapphire laser system 

(Spectra Physics, Santa Clara CA, USA, Mai Tai HP). External hybrid photomultiplier tubes 
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(Becker&Hickl; HPM-100-40) and ISS A320 FastFLIM system (ISS, Urbana-Champaign, 

Illinois) were used for Phasor Fluorescence Lifetime Imaging Microscopy (Colyer et al., 

2008; Digman et al., 2008; Stringari et al., 2015). A 690 nm internal dichroic filter (Zeiss) 

was used to separate the fluorescence emission from the laser excitation. The fluorescence 

emission was reflected onto a 495LP dichroicmirror and subsequently a 460/80 nm bandpass 

filter (Semrock; FF02-460/80-25) before the external detector to filter the NADH 

fluorescence emission. Images were acquired using unidirectional scan, 16.38 us pixel dwell 

time, 256 × 256 pixels per frame, and 58.67um field of view. All images were acquired 

within 1.5 hours of animal death.

The phasor plot method provides a fit-free, unbiased way of analyzing FLIM data 

quantitatively. FlimBox, developed by the Laboratory for Fluorescence Dynamics at UC 

Irvine, records the photon counts per pixel in a number of cross-correlation phase bins called 

the phase histogram used for the Digital Frequency Domain FLIM method. The phase 

histogram is processed by the fast Fourier transform to produce the phase delay ϕ and 

modulation ratio m of the emission relative to the excitation from which the G and S 

coordinates calculated at each pixel of the image are represented in the phasor plot.

G ω = m ω ⋅ cos ϕ , S ω = m ω ⋅ sin ϕ

Data analysis was performed with Globals for Images (SIMFCS 4.0) software developed at 

the Laboratory for Fluorescence Dynamics. We used coumarin 6 (Sigma-Aldrich; 546283), 

with known lifetime of 2.5ns, for calibration of the instrument response function.

Quantification of the average NADH phasor per region of interest was calculated using the 

built-in masking feature in SimFCS 4.0. This masking feature averages the lifetime (τ) of all 

pixels included within a designated region of interest (ROI). SimFCS converts G and S 

coordinates of the phasor plot into the fraction of bound by calculating the distance of the 

ROI average τ to the theoretical lifetime τ of bound NADH (τ = 3.4 ns), divided by the total 

distance between free NADH (τ = 0.4 ns) and bound NADH. An ROI within the boundary 

of each cell demarked by GFP expression (but excluding the cell membrane-associated GFP 

signal) was drawn to estimate the free/bound NADH ratio for each cell within a field of view 

for all images. The fraction bound values obtained from SimFCS 4.0 were then converted to 

free/bound ratio NADH for each ROI as a measure of metabolism based on previous work 

(Cinco et al., 2016; Kim et al., 2016; Mah et al., 2018; Stringari et al., 2012, 2015).

Morphology and immunostaining—For histological analysis, mouse back skin was 

shaved, removed, fixed in 4% paraformaldehyde (MP; 150146) in 1X PBS, embedded in 

paraffin, sectioned, and stained with hematoxylin and eosin (H/E). For indirect 

immunofluorescence, mouse back skin was freshly frozen in OCT (Fisher; 4585), sectioned 

at 5 μm, and staining was performed using DAPI (Thermo Fisher; D1306: 1:1000) and the 

following primary antibodies: Ki67 (Cell Signaling, D3B5, 1:1000), K14 (chicken, 1:1000; 

rabbit, 1:1000; gift of Julie Segre, National Institutes of Health, Bethesda), Slug/Snai2 (Cell 

Signaling, C19G7, 1:1000), Fos (Santa Cruz Biotechnology, sc271243, 1:100), F4/80 
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(eBioscience, 14-4801-82, 1:200), anti-SMA (Abcam, ab5694, 1:500), Col17a1 (Abcam, 

ab184996, 1:200), or p63 (Santa Cruz Biotechnology, sc-8343, 1:50).

RNAScope, data analysis and presentation—RNAScope was performed using the 

Multiplex Fluorescent v2 system (ACD; 323100). Briefly, mouse back skin or wounds were 

freshly frozen in OCT (Fisher; 4585) and sectioned at 10 μm. Sections were fixed at room 

temperature for 1 hour with 4% paraformaldehyde (Electron Microscopy Sciences; 15715-

S), which was diluted from stock with 1x DPBS (Corning Cellgro; 21-031-CM). After 

fixation, standard RNAScope protocols were used according to manufacturer’s instructions. 

The following probes were used: Krt14 (ACD; 422521-C3), Trp63 (ACD; 464591-C2), 

Cdkn1a (ACD; 408551-C1), and Id1 (ACD; 312221-C3). Fluorescence intensity in the basal 

cells (stained positive for anti-K14 antibody and adjacent to the basement membrane or 

wound bed) in both UW and WO (from the wound margin to the tip of the migrating front) 

samples was quantified in a manner that preserves spatial information.

We used Gaussian Process Regression (GPR), a non-parametric method to fit observations 

and to visualize the major trends of data by controlling the smoothness of the model. GPR 

uses kernels to measure similarity between inputs based on their distances, and inputs with 

high similarity should have similar output from the fitted model. We used the 

implementation of GPR in scikit-learn package (Pedregosa et al., 2011; Rasmussen and 

Williams, 1996). The Matérn kernel is used for similarity measurement and a white noise 

kernel is included to accommodate noise in the data.

Given a collection of values, BASC method (Hopfensitz et al., 2012) first sorts the values to 

obtain an initial step function representation. This step function is then iteratively refined 

until there are only two steps. It can be roughly understood as finding the strongest 

discontinuity point in data. The R implementation of this package “Binarize” is used with 

algorithm option B to determine thresholds for binarization of the markers.

Calculation of signature score of a gene set—For gene scoring analysis, gene sets 

were acquired from the MSigDB database, the MGI Gene Ontology Browser (including 

keratinocyte differentiation scoring) and published literatures (including α5 integrin-

expressing cell and quiescence/stemness scoring) (Aragona et al., 2017; Cheung and Rando, 

2013). Specific genes in each gene set are listed in Table S7. The AddModuleScore function 

in Seurat R package was then used to calculate the signature score of each gene set in each 

cell. The two-sided Wilcoxon rank sum test was used to evaluate whether there are 

significant differences in the computed signature scores between two groups of cells.

Analysis of gene expression overlap—To computationally analyze the potential 

overlap in basal cell expression of Col17a1, Trp63, Id1, and Cdkn1a in our scRNA-seq data, 

we binarized the expression of each gene by choosing thresholds based on the quantile of all 

expressed cells. We quantified the percentage of cells expressing one gene, two genes, or 

three genes using three different quantile (0.25, 0.5, and 0.75) thresholds.
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QUANTIFICAITON AND STATISTICAL ANALYSIS

Data are presented as the mean ± standard error of mean (SEM), or the median ± 

interquartile range (IQR), as indicated. The sample sizes in each plot have been listed in the 

Results section and Figure Legends where appropriate. For data represented as violin plots, 

two-tailed Wilcoxon rank sum test was performed using R (https://www.r-project.org/). For 

comparison of percentage changes, Chi-square test was performed using MATLAB (https://

www.mathworks.com/). For differential gene expression analysis between cell clusters, 

Wilcoxon rank sum test was performed using R. A significance threshold of p < 0.01 was 

used for defining marker genes of each cell cluster. For data presented in bar plot, unpaired 

two-tailed Student’s t test was used.

DATA AND CODE AVAILABILITY

The scRNA-seq data reported in this paper have been deposited in the GEO database under 

accession code GEO: GSE142471. The software of nlvelo R package is available at https://

github.com/sqjin/nlvelo. The codes and walkthroughs for pseudotemporal trajectory analysis 

are available at https://github.com/sqjin/codes_CellReports2019.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• scRNA-seq identifies four epidermal basal cell states in homeostatic adult 

skin

• Computational analysis supports a “hierarchical” model of epidermal 

homeostasis

• Basal cell states are metabolically distinct and spatially partitioned in 

wounded skin

• Epidermal basal cells show enhanced cell fate and state plasticity during 

wound healing
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Figure 1. scRNA-Seq Analysis of All Cells in the UW and WO Skin
(A) Schematic diagram detailing the single-cell isolation and live-cell selection strategy.

(B) H&E analysis of WO skin showing a region equivalent to those used for scRNA-Seq. 

The blue dashed line at the top indicates a representative 10-mm region used for single-cell 

suspension. Enlarged image of the boxed area in top panel is shown at the bottom to 

highlight the wound migrating front and proliferative zone. Red dashed line points to the 

wound margin.

(C) t-Distributed Stochastic Neighbor Embedding (tSNE) plot for all five samples with the 

major cell type populations highlighted, and their relevant percentage per total number 

(26,779) of all cells indicated in parenthesis. The two small clusters in gray (labeled as 

“other”) are endothelial cells and skeletal muscle cells (see Figure S1C).

(D) Cells are colored by replicate identity in the tSNE plot.

(E) Bar graph representing major cell type populations. Chi-square test was used to 

determine the statistical significance of differences in the relative proportion of each cell 

type between UW and WO samples. ***p < 0.0005.

(F) tSNE plot for the two aggregated UW replicate datasets. The percentage of cells present 

in each cluster per total number (10,615) of cells under analysis is indicated. Markers 

associated with the indicated cell types are listed in Figure S2B and Table S1A.
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(G) tSNE plot for the three aggregated WO replicate datasets (total 16,164 cells). Markers 

associated with the indicated cell types are listed in Figure S2C and Table S1B.

(H) Feature plots showing expression of the indicated genes in the UW replicates in (F). 

Normalized expression levels for each cell are color-coded and overlaid onto the t-SNE plot.

(I) Feature plots in the WO replicates in (G).
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Figure 2. scRNA-Seq Analysis Reveals Mild Changes in Epithelial Cellular Makeup during 
Wound Healing
(A) tSNE plot for all epithelial cells from UW skin with cell each type indicated. The 

percentage of cells in each cluster per total number (7,099) of cells under analysis is 

indicated in parenthesis.

(B) tSNE plot for all epithelial cells (4,021) from WO skin.

(C) Bar graph representing the major epithelial cell type populations in the UW and WO 

samples. Chi-square test was performed (*p < 0.05; ***p < 0.0005).

(D) Feature plots highlighting the expression of key genes in UW epithelial cells.

(E) Feature plots highlighting the expression of key genes in WO epithelial cells.

(F) Heatmap for the top 10 genes enriched in each cluster from the UW skin. Top two 

marker genes for each cluster are colored to match cluster identity, and additional genes used 

in the final annotations are colored in black. All marker genes are listed in Table S3A.

(G) Heatmap for the top 10 genes enriched in each cluster from the WO skin. All marker 

genes are listed in Table S3B.
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Figure 3. Gene Expression Differences between Epidermal Basal Cells of the UW and WO Skin
(A) Heatmap showing the top 10 markers for basal cells from the UW and WO samples. All 

the identified markers are listed in Table S4.

(B) Expression of select genes in UW and WO basal cells. p values are from two-sided 

Wilcoxon rank-sum tests.

(C) GO analysis of the identified markers (listed in Table S4) of UW and WO basal cells 

using GO (left) and Hallmark (right; defined by fewer genes) gene sets.

(D) Gene scoring analysis using the indicated molecular signatures. p values are from two-

sided Wilcoxon rank-sum tests.

Haensel et al. Page 28

Cell Rep. Author manuscript; available in PMC 2020 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. scRNA-Seq and RNAScope Data Revealing Heterogeneity within UW Epidermal Basal 
Cells
(A) tSNE plot for NP basal cells from two UW replicates. The percentage of each 

subpopulation per total number (2,838) of basal cells was indicated.

(B) Heatmap of top 10 markers for each subcluster in (A). Genes used to annotate cell 

identity are indicated by the corresponding colors. A complete list of marker genes is 

provided in Table S5.

(C) Violin plots showing expression of key marker genes. p values are from two-sided 

Wilcoxon rank-sum tests.

(D) Gene scoring analysis using the indicated molecular signatures. HFSCs and spinous 

cells from the UW sample were used as positive controls. p values are from two-sided 

Wilcoxon rank-sum tests.

(E) RNAScope data showing spatial distribution of Cdkn1a and Krt14 transcripts and K14 

protein in UW skin. Shown are both low (left)- and high (middle, right)-magnification 

images. Red and white arrows indicate Cdkn1a+ and Cdkn1a− basal cells, respectively. DAPI 

stains the nuclei. Scale bars: 50 μm in low-magnification image; 10 μm in high-

magnification images.
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(F) Spatial distribution of Cdkn1a, Trp63, and Id1 transcripts and K14 protein in UW skin. 

Red, white, and yellow arrows indicate Id1+, Trp63+, and Cdkn1a+ basal cells, respectively. 

Scale bars represent the same as in (E).

(G) Quantification of fluorescence intensity (represented by a color-coded dot) for Cdkn1a 
and Krt14 transcripts and K14 protein in each individual cell from a representative section. 

The curve represents a Gaussian process regression (GPR), and a 95% confidence interval is 

shown as shaded area.

(H) Quantification of fluorescence intensity for Cdkn1a, Trp63, and Id1 transcripts and K14 

protein in each individual cell from a representative section.

(I) OncoPrint representation of Cdkn1a, Trp63, and Id1 expression in individual cells where 

a rectangle represents an individual cell. A color-coded rectangle indicates high expression 

of the corresponding marker gene. The cells are sorted based on the onor off state of the 

markers to show mutually exclusive expression pattern.

(J) Bar graph showing percentage of cells that exclusively express Cdkn1a, Trp63, or Id1 per 

total number of cells that express the particular gene (n = 3 replicates). Error bars represent 

mean ± SEM.
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Figure 5. Basal Cell Heterogeneity in WO Skin
(A) tSNE plot for NP basal cells from two WO replicates. WO-2 was not included in this 

analysis given its low basal cell number. The percentage of each subpopulation per total 

number (1,555) of basal cells was indicated.

(B) Heatmap of top 10 markers for each subcluster. A complete list of marker genes is 

provided in Table S6.

(C) Violin plots showing expression of key marker genes. p values are from two-sided 

Wilcoxon rank-sum tests.

(D) Gene scoring analysis using the indicated molecular signatures. p values are from two-

sided Wilcoxon rank-sum tests.

(E) Quantitative analysis of immunofluorescence data for Snai2 protein. Percent Snai2+ cells 

in the basal layer of different regions in WO skin is shown here, and representative images 

are shown in Figure S6F.

(F) Quantitative analysis of immunofluorescence data for Fos protein. Percent Fos+ cells in 

the basal layer of different regions in WO skin is shown here and representative images are 

shown in Figure S6G.

(G) RNAScope data showing spatial distribution of Col17a1 and Trp63 transcripts and K14 

protein in WO skin. DAPI stains the nuclei. Scale bar: 50 μm.
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(H) Enlarged images of the boxed areas in (G). Zones 1–3 correspond to regions that are 

distal from the wound (zone 1), hyperproliferative (zone 2), and in migrating front (zone 3). 

Scale bar: 50 μm.

(I) RNAScope data showing spatial distribution of Cdkn1a and Krt14 transcripts and K14 

protein in WO skin. DAPI stains the nuclei. Scale bar: 50 μm.

(J) Enlarged images of the boxed areas in (I). See legends for (H) for zone definition. Scale 

bar: 50 μm.

(K) Quantification of fluorescence intensity for Cdkn1a and Krt14 transcripts and K14 

protein in each individual cell from a representative WO skin section. The curve represents a 

GPR, and a 95% confidence interval is shown as shaded area.
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Figure 6. FLIM Data Validating scRNA-Seq-Predicted Metabolic Heterogeneity in WO Skin
(A) Gene scoring analysis of all four UW basal subclusters using an oxidative 

phosphorylation signature. p values are from two-sided Wilcoxon rank-sum tests.

(B) Gene scoring analysis of all four WO basal subclusters. p values are from two-sided 

Wilcoxon rank-sum tests.

(C) Sketch diagram of wound epithelium showing the areas probed with FLIM.

(D) A representative image of wound epidermal cells indicated by GFP expression.

(E) Representative images of NADH signal and NADH lifetime signals.

(F) A representative phasor plot with cell phasor fingerprint, which is a representation of the 

fluorescence lifetime decay of all cells in the region of interest (ROI) after fast Fourier 

transformation.

(G) Violin plot incorporating all cells and their corresponding free/bound NADH ratios from 

four biological replicates (156 cells from the outside region, 127 cells from the adjacent 

region, and 231 cells from the neo-epidermis).

(H) Quantification of average free/bound NADH ratios from multiple cells from the four 

biological replicates of various regions of the wound. For statistical analysis we used an 

unpaired two-tailed Student’s t test. Error bars represent mean ± SEM.
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Figure 7. Pseudotemporal Dynamics Analysis of Interfollicular Epidermal Cells in UW and WO 
Skin
(A) UMAP dimensional reduction of all UW epidermal cells. Cells are colored by the 

annotated identity.

(B) Feature plots of (A) for the indicated genes. Cells are colored by the normalized 

expression, with dark red indicating the highest expression.

(C) UMAP of all WO epidermal cells.

(D) Feature plots of (C) for the indicated genes.

(E) scEpath-predicted lineage differentiation diagram.

(F) Projection of non-linear RNA velocity fields onto the UMAP space in (A).

(G) Projection of non-linear RNA velocity fields onto the UMAP space in (C).

(H) Pseudotemporal dynamics of the 3,699 UW pseudotime-dependent genes along the 

Col17a1Hi-to-GA path in UW and WO samples. Each row (i.e., gene) is normalized to its 

peak value along the pseudotime. Distinct stages during pseudotime are represented by 

colored bars on the side. Cell identity is indicated on the top of each heatmap generated by 

the smoothed, normalized gene expression.

(I) Average expression patterns (left) and enriched biological processes (right) of the four 

gene clusters along pseudotime in (H). Solid and dashed lines indicate the average 

expression of a particular gene cluster in UW and WO samples, respectively. The number of 
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genes in each gene cluster is indicated in parenthesis, and the enriched GO terms in each 

gene cluster are listed.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Ki67 Cell Signaling Cat #: D3B5; RPID: AB_2687446

Purified Rabbit Anti-Mouse K14 Gift: Juile Segre, NIH N/A

Purified Chicken Anti-Mouse K14 Gift: Juile Segre, NIH N/A

Purified Mouse Anti-Mouse Fos Santa Cruz Biotechnology Cat #: sc271243; RPID: AB_10610067

Slug (Snai2) Cell Signaling Cat #: C19G7; RRID:AB_2239535

F4/80 eBioscience Cat #: 14-4801-82, RRID:AB_467558

aSMA Abcam Cat #: ab5694

Col17a1 Abcam Cat #: ab184996

P63 Santa Cruz Biotechnology Cat #: sc-8343 RRID:AB_653763

Chemicals, Peptides, and Recombinant Proteins

Collagenase Sigma Cat #: C9091

HEPES Fisher Cat #: BP310

Sodium Pyruvate Fisher Cat #: BP356

DNase Sigma Cat #: DN25

SytoxBlue Thermo Fisher Cat #: S34857

Nuclease-free Water Thermo Fisher Cat #: AM9937

Low TE Buffer Thermo Fisher Cat #: 12090-015

Ethanol Millipore Sigma Cat #: E7023-500ML

10% Tween 20 Bio-Rad Cat #: 1662404

Glycerin Ricca Chemical Company Cat #: 3290-32

QIAGEN Buffer EB QIAGEN Cat #: 19086

Coumarin 6 Sigma Cat #: 546283

DAPI Thermo Fisher Cat #: D1306

DPBS Corning Cellgro Cat #: 21-031-CM

Krt14-Probe ACD Cat #: 422521-C3

Trp63-Probe ACD Cat #: 464591-C2

Cdkn1a-Probe ACD Cat #: 408551-C1

Id1-Probe ACD Cat #: 312221-C3

Col17a1-Probe ACD Cat #: 552141-C1

Critical Commercial Assays

Chromium Single Cell 3′ Library & Gel Bead Kit 
v2 10x Genomics Cat #: PN-120237

Chromium Single Cell A Chip Kits 10x Genomics Cat #: PN-120236

Chromium i7 Multiplex Kit 10x Genomics Cat #: PN-120262

SPRIselect Reagent Kit Beckman Coulter Cat #: B23318

Multiplex Fluorescent v2 system ACD Cat #: 323100

Deposited Data

Raw scRNA-seq data This paper GEO: GSE142471
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: K14-Cre Andl et al., 2004 N/A

Mouse: ROSAmTmG, Gt(ROSA)26 
Sortm4(ACTB-tdTomato,-EGFP)Luo The Jackson Laboratory Cat #: JAX 007576

Mouse: C57BL/6J The Jackson Laboratory Cat #: JAX 000664

Software and Algorithms

Cell Ranger 2.1.0 10x Genomics
https://support.10xgenomics.com/single-cell-gene-
expression/software/downloads/latest

Seruat v2 Satija et al., 2015 https://satijalab.org/seurat

Monocle 2 Qiu et al., 2017b http://cole-trapnell-lab.github.io/monocle-release/

Monocle 3 Cao et al., 2019 https://cole-trapnell-lab.github.io/monocle3/

scEpath Jin et al., 2018 https://github.com/sqjin/scEpath

nlvelo This paper https://github.com/sqjin/nlvelo

Combat Johnson et al., 2007
https://www.bioconductor.org/packages/release/bioc/html/
sva.html

UMAP McInnes et al., 2018 https://github.com/lmcinnes/umap

AnimalTFDB 2.0 Zhang et al., 2015 http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/

Velocyto La Manno et al., 2018 https://github.com/velocyto-team/velocyto.R

DoubletDetection Gayoso and Shor, 2018 https://github.com/JonathanShor/DoubletDetection

SimFCS 4.0 omicX https://omictools.com/simfcs-tool

scikit-learn A free Python library https://scikit-learn.org/stable/

BASC Hopfensitz et al., 2012
https://cran.r-project.org/web/packages/Binarize/
index.html
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