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ABSTRACT The dynamic structures of microbial communities emerge from the com-
plex network of interactions between their constituent microorganisms. Quantitative
measurements of these interactions are important for understanding and engineering
ecosystem structure. Here, we present the development and application of the BioMe
plate, a redesigned microplate device in which pairs of wells are separated by porous
membranes. BioMe facilitates the measurement of dynamic microbial interactions and
integrates easily with standard laboratory equipment. We first applied BioMe to recapitu-
late recently characterized, natural symbiotic interactions between bacteria isolated from
the Drosophila melanogaster gut microbiome. Specifically, the BioMe plate allowed us to
observe the benefit provided by two Lactobacillus strains to an Acetobacter strain. We
next explored the use of BioMe to gain quantitative insight into the engineered obligate
syntrophic interaction between a pair of Escherichia coli amino acid auxotrophs. We inte-
grated experimental observations with a mechanistic computational model to quantify
key parameters associated with this syntrophic interaction, including metabolite secretion
and diffusion rates. This model also allowed us to explain the slow growth observed for
auxotrophs growing in adjacent wells by demonstrating that, under the relevant range
of parameters, local exchange between auxotrophs is essential for efficient growth. The
BioMe plate provides a scalable and flexible approach for the study of dynamic microbial
interactions.

IMPORTANCE Microbial communities participate in many essential processes from bio-
geochemical cycles to the maintenance of human health. The structure and functions of
these communities are dynamic properties that depend on poorly understood interac-
tions among different species. Unraveling these interactions is therefore a crucial step
toward understanding natural microbiota and engineering artificial ones. Microbial inter-
actions have been difficult to measure directly, largely due to limitations of existing
methods to disentangle the contribution of different organisms in mixed cocultures. To
overcome these limitations, we developed the BioMe plate, a custom microplate-based
device that enables direct measurement of microbial interactions, by detecting the abun-
dance of segregated populations of microbes that can exchange small molecules through
a membrane. We demonstrated the possible application of the BioMe plate for studying
both natural and artificial consortia. BioMe is a scalable and accessible platform that can
be used to broadly characterize microbial interactions mediated by diffusible molecules.
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porous membrane, synthetic ecology
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The structures of microbial communities—their composition, diversity, and stability
—are emergent properties shaped by the interactions between their constituents

(1–5). There are many possible modes of interaction between microorganisms. Direct
interactions, which require cell-cell contact, include mechanisms like bacterial conjuga-
tion, contact-dependent growth inhibition systems and intercellular nanotubes (6–9).
Microorganisms may also interact via diffusion-mediated mechanisms, such as compe-
tition for shared nutrients, the production of toxins or communal resources, modula-
tion of environmental conditions, quorum sensing, plasmid exchange, and metabolic
cross-feeding (10–14). These multifaceted interactions within a microbial community
have a profound impact on its composition, diversity, and stability (2, 4, 15–17). An
appreciation for and improved understanding of microbial interactions can elucidate
the metabolic and ecological principles of microbial community assembly, as well as
facilitate the rational design of novel microbial consortia.

While several approaches have been developed to measure different kinds of inter-
microbial interactions, the task of determining the dynamic effect of one microbe’s
growth on another remains a challenging task (2, 3, 18–20). Mixed cocultures, where
distinct microbes are cultured in the same vessel, are commonplace. However, meas-
uring the abundance of individual members in a coculture is generally difficult and la-
borious and requires sampling for CFU counting (5) or imaging, which is usually re-
stricted to fluorescently labeled strains (21). Plating assays are also prevalent, where a
microbe is cocultured on or in proximity to a colony of another microbial species (22–24).
Conditioned media assays can also be used to determine how the metabolic by-products
and environmental modifications of one microbe affect the growth of another (4, 25).
However, plating assays are limited by their necessity for phenotypic differentiation
between microbes and a lack of convenient quantitative readouts such as optical density,
whereas conditioned medium assays are restricted to the study of unidirectional, noncon-
current interactions and would not capture the exchange of any unstable compounds.
Metagenomic and 16S amplicon sequencing are increasingly used to measure relative
changes in species abundance, but these approaches are ultimately limited by cost and
technical challenges, including manual sampling, sample library preparation, and the
introduction of additional biases (26–28).

To address these methodological limitations, systems and devices have been devel-
oped to measure cocultured microbial growth (29). High-throughput microfluidics and
microdroplet based approaches have been designed to screen large numbers of multi-
species microbial interactions (30–34). Although these approaches offer exciting poten-
tial, they can be difficult to apply using standard laboratory equipment, require extensive
training and expertise (limiting their accessibility), and often do not allow for the simulta-
neous observation of the growth of each coculture member. Alternatively, coculture sys-
tems that utilize a porous membrane to physically isolate individual cultures and to
allow for the exchange of diffusible molecules have been designed to enable concurrent
growth and measurements of distinct microbial cultures (35–38). While these systems
restrict microbial interactions to those mediated by diffusible molecules, they have
shown promise for culturing previously uncultivated organisms and simultaneously
measuring individual growth dynamics in microbial cocultures. One example is the iChip
device, which can be used to culture previously uncultured microbes by embedding
them in a natural environment while separated by a porous membrane that allows
for the exchange of metabolites (36, 39). However, this device does not enable the
measurement of microbial growth curves that can provide insight into the underly-
ing interactions. Another example, the coculture plate of Moutinho et al. (35), can
simultaneously measure growth curves for interacting microbes separated by a mem-
brane in up to 8 pairs. Despite the promise of existing membrane-based systems,
improvements in their throughput, ease of manufacturing, and ability to seamlessly inte-
grate with common laboratory equipment, alongside continued application of these devi-
ces to study novel experimental systems, will enhance their use for the measurement of
microbial interactions.
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Here, we present the BioMe plate, a 96-well microplate-based coculture laboratory
device developed to facilitate the observation of dynamic microbial interactions. BioMe
separates interacting microbial cultures with a porous membrane, physically isolating
individual cultures while allowing for the exchange of diffusible molecules. The growth
dynamics of interacting microbial cultures can be measured independently using spec-
troscopic methods of standard laboratory plate readers. The BioMe plate provides a 96-
well format and a three-dimensional (3D) printed design that facilitates manufacturing
and modifications. The BioMe plate can be used to measure up to 30 interacting micro-
bial pairs and is applied to two novel experimental systems.

We first used BioMe to observe a known symbiotic interaction potentially relevant
to the microbiome of a host organism. We chose to study a recently reported symbio-
sis between organisms of the genera Acetobacter and Lactobacillus isolated from the
gut of a Drosophila melanogaster laboratory stock (40). The D. melanogaster gut micro-
biome is relatively simple, hosting low bacterial diversity (1 to 30 species). Acetobacter
and Lactobacillus are the most commonly found bacterial genera in both lab-reared
and wild D. melanogaster flies, affecting development, metabolism, and behavior (41–43).
The presence of these two genera has been suggested to contribute to deterministic proc-
esses related to the assembly of the D. melanogaster microbiome (44), as they interact
through the exchange of metabolic waste products from Lactobacillus to Acetobacter (40).
Here, we use BioMe to implement pairwise cocultures between A. oryzifermentans and two
distinct Lactobacillus strains (Lactobacillus plantarum and L. brevis) isolated from lab-reared
D. melanogaster stocks (45), providing additional insight into their symbiotic interactions.

We next sought to demonstrate the use of the BioMe plate to facilitate the quanti-
tative investigation of a reduced, well-controlled microbial interaction. Specifically, we
used the BioMe plate to study the syntrophic interaction between two Escherichia coli
amino acid auxotrophs. Engineered auxotrophic bacteria have been used as compel-
ling model systems for the study of microbial interactions due to their well character-
ized metabolic requirements (46–48). In the work of Mee et al. (46), E. coli strains were
genetically recombineered for a unique single amino acid auxotrophy and then grown
together in mixed cocultures to identify syntrophic pairs, where distinct amino acid
auxotrophs could sustain each other’s growth. While this study demonstrated syntrophic
interactions by measuring the combined optical densities (OD) of mixed cocultures, it
lacked the capacity to provide additional quantitative insight into the interactions by
measuring each interacting partner’s growth dynamics separately. Two E. coli auxotrophs
from this study, the lysine and isoleucine auxotrophs (referred to as DLys and DIle in the
text), were cocultured in the BioMe plate to further characterize and quantify their syn-
trophic interaction.

In parallel to the device itself, we developed a computational model of the growth
and nutrient dynamics of two strains grown in connected BioMe wells. We applied this
model to the syntrophic E. coli interaction to determine the factors that underlie their
codependent cross-feeding relationship. In particular, we used this model, alongside
an approximate Bayesian computation-based approach, to infer plausible ranges for
interaction parameters related to the amino acid’s diffusion across the membrane and
leakage out of E. coli cells. Together, these efforts demonstrate the scope of novel
questions and experiments that are enabled by the BioMe plate, ultimately improving
our understanding of the metabolic interactions and ecological relationships that
shape microbial community structure.

RESULTS
BioMe development.We developed a microplate-based coculture device, the BioMe

plate, which enables the quantitative measurement of microbial interactions (Fig. 1). A se-
ries of vertical porous membranes physically isolate constituent members of pairwise mi-
crobial interactions while allowing for the exchange of diffusible molecules. The physical
segregation of interacting microbial cultures enables real-time growth dynamics measure-
ments of each microbial population. A range of microscale pore sizes can be selected,
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depending on the user’s desired application, molecule size selectivity, and degree of dif-
fusion across the membrane.

The BioMe plate is comprised of several components, which are further detailed in
Table S1 in the supplemental material. The standard 96-well microplate design is frag-
mented into six discrete body segments, which form the wells of the device. Each well
has an opening on the side of the body segment that connects it to its respective co-
culture well in a separate body segment, via O-ring and porous polycarbonate mem-
brane. The body segments are laterally fastened and sealed using rods and nuts, yield-
ing a total capacity of 30 pairwise coculture assays. Of note, the body segments can be
machined from polypropylene or stereolithography 3D printed using a biocompatible
and autoclavable dental resin, circumventing the need for labor-intensive machining.
A transparent base forms the bottom of the plate, allowing for real-time spectroscopic
readings (OD or fluorescence) of each well. The base is machined from polycarbonate
sheet and is vertically fastened and sealed to the assembled body chassis via a laser-
cut gasket and screws. This forms the core of the BioMe plate, which is housed in
between two clear 96-well plate lids sealed with Parafilm to prevent evaporation and

FIG 1 BioMe plate. (A) Exploded view of the computer-aided design (CAD) of the BioMe plate. The
different components are assembled to form a microplate-based coculture device. (B) Photograph of
the fully assembled BioMe plate (top view). Adjacent wells are separated by a porous membrane that
allows the diffusion of metabolites and small molecules but not microbes. (C) The BioMe plate enables a
variety of microbiological experiments. This includes metabolite growth assays (left) to observe microbial
population growth when seeded across from a metabolite and coculture assays (right) to characterize
and quantify the effects of cocultured growth between a pair of interacting microbial cultures.
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equipment damage if leakage were to ever occur. No significant evaporation was
observed under this set up for experiments run for up to 96 h.

BioMe is sterilizable and leakproof and enables small molecule diffusion. A
sterilized BioMe plate can be reused to ensure cost-effective, contamination-free
repeated use. A single plate was sterilized and reused for all the experiments in this
work, with no detectable deterioration in performance. The porous membranes are dis-
posable and replaced per use. Leakage tests demonstrated a water-tight seal through-
out (see “Leakage test” in Materials and Methods) and sterilization validation tests
demonstrated successful decontamination of the BioMe plate (see “Sterilization proto-
col and validation” in Materials and Methods). The ability of various membrane pore
sizes to restrict crossover of microbial cells was tested; crossover was observed in sev-
eral experiments, especially for larger pore sizes (0.4 mm) and rarely for smaller pore
sizes (0.03, 0.1, and 0.2 mm [see “Syntrophic E. coli amino acid auxotroph interaction”
in Results; see also Discussion]).

Small molecule diffusion across the porous membranes was tested using colorimet-
ric assay dyes. Specifically, the BioMe plate was loaded with two different dyes, phenol
red (354.38 g/mol) and bromocresol purple (540.24 g/mol), and their diffusion across
membranes with various pore sizes was monitored (Fig. 2A; see also Fig. S1). The mem-
branes are hydrophilic polycarbonate disks with variously sized pores created using
track etching. Phenol red and bromocresol purple are typically used as pH indicators,
but when measured at their isosbestic points (478 and 490 nm, respectively) (49, 50),
their concentrations can be inferred from optical density (absorbance measurements).
We developed calibration curves for each dye to ensure accurate extrapolation of con-
centration from optical density (see Fig. S2). Both dyes were observed to diffuse across
the porous membranes with a diffusion rate that increased monotonically for increas-
ing pore size and were not observed to diffuse across membranes with no pores (the
same material as the membranes, polycarbonate discs, with no etched pores). The raw
OD data for the diffusion and calibration experiments, laid out as they were on the BioMe
plate, are shown in Fig. S9 and S10 (https://github.com/segrelab/co_culture_device). In
addition, we experimentally measured the diffusion of the amino acids lysine and isoleu-
cine across the 0.1-mm-pore-size membrane in the BioMe device (see Fig. S3; see also
“Amino acid diffusion measurement” in Materials and Methods). This measurement con-
firmed the diffusion of these amino acids in our device and provided quantitative infor-
mation for our computational modeling work.

Diffusion rates of all tested membrane pore sizes for each chemical dye, and amino
acids, were inferred using a gradient-driven diffusion model (further described in the
“Computational modeling” sections below). This model gives rise to an exponential
function describing the time-dependent concentration of the molecules in either well
of the system, as the metabolites diffuse across the membrane (see Text S1). An expo-
nential function was fit to the diffusion data (see Materials and Methods; see also Fig.
S11 [https://github.com/segrelab/co_culture_device]) to infer a range of estimates for
our model’s diffusion rate. As shown in Fig. 2B, the mean diffusion rate increases
monotonically and nonlinearly with increasing pore size. Interestingly, the estimated
diffusion rate was consistently higher when calculated using the curves from the well
where the dye was initially placed as opposed to when using the curves from the op-
posite well into which the dye diffused. This effect was more pronounced for the larger
pore sizes and for phenol red (see Discussion for additional details). The amino acid dif-
fusion rates for the 0.1-mm-pore-size membrane are slightly higher than the dye diffu-
sion rates, which may be due to the smaller molecular weight of the amino acids rela-
tive to the dyes.

Symbiotic interaction between Drosophila melanogaster gut microbiome spe-
cies. As a first biological application of the BioMe plate, we confirmed a recently char-
acterized interaction among specific genera of bacteria from the D. melanogaster gut
microbiome. In particular, we focused on three distinct bacterial strains previously iso-
lated from laboratory-bred flies: one species of Acetobacter (A. oryzifermentans) and
two species of Lactobacillus (L. plantarum and L. brevis) (45). The BioMe plate was used
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to test and observe every pairwise coculture combination between these three strains.
In addition, relevant controls were included in the experiments, i.e., organisms paired
with themselves (self-control) and organisms paired with wells containing growth me-
dium but no other organism (medium-control) (Fig. 3; see also Fig. S4 and Fig. S12
[https://github.com/segrelab/co_culture_device]). A 0.03-mm-pore-size membrane was
chosen to allow exchange of metabolites but ensure no microbial crossover, as done
for the iChip device (39).

The coculture experiments revealed an increased growth of A. oryzifermentans
when cocultured with either Lactobacillus strain, demonstrating a clear benefit relative
to its growth when cocultured with itself or no microbe in the opposing well.
Interestingly, for both L. brevis and L. plantarum, their growth in coculture with the
Acetobacter strain was similar to their growth in respective medium-controls but still
demonstrated improved growth relative to both their self-controls and coculture with
the other Lactobacillus strain. Our results, uniquely enabled by the BioMe plate, sug-
gest that the Acetobacter population disproportionately benefits from this metabolite-
mediated interaction. BioMe could serve as the starting point for further exploration of
this cross-species interaction, complementing existing approaches (40, 51, 52).

FIG 2 Chemical dye and amino acid diffusion across membranes with variable pore size in the BioMe plate. A small-molecule dye (400 mM concentration
of phenol red or bromocresol purple) was loaded into columns of wells to the left of the membrane in the BioMe plate, for varying membrane pore sizes:
no pores and 0.03-, 0.1-, 0.2-, and 0.4-mm pores. The OD at the isosbestic point (478 nm for phenol red, 490 nm for bromocresol purple) was measured for
72 h at 15-min intervals. The dye concentration was inferred by linear calibration to optical density. The amino acid diffusion was similarly measured for 400 mM
concentrations of lysine and isoleucine (see “Amino acid diffusion measurement” in Materials and Methods) (A) Time course of calibrated dye concentration for
phenol red with membranes of different pore sizes. Replicates (n = 3; all overlapping curves are shown on the plot) were conducted for each pore size. (B)
Diffusion rates for phenol red and bromocresol purple for various membrane pore sizes and for lysine and isoleucine for the 0.1-mm pore size. Diffusion rates
were calculated by fitting the measured concentration time course to the diffusion model using data from both the left and right well measurements.
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Syntrophic interaction between Escherichia coli amino acid auxotrophs. Next,
we used BioMe to enable a more in-depth and quantitative study of a model microbial
interaction in which two strains have been engineered to exchange essential metabo-
lites in order to grow. Specifically, we studied the syntrophic interaction between a
pair of E. coli amino acid auxotrophs: DLys and DIle. These strains were engineered to
be unable to biosynthesize lysine or isoleucine, respectively, requiring supplementa-
tion of the missing amino acid to grow in monoculture. Despite their inability to grow
in monoculture without supplementation, both strains are able to grow when placed
together in a mixed coculture (46).

The first test of this system in the BioMe device was a validation that amino acids
could diffuse across membranes of various pore sizes and support the growth of an
auxotrophic E. coli strain in the adjacent well. Figure 4 shows an example of this valida-
tion for lysine diffusion across the 0.1-mm-pore-size membrane to support the growth
of the DLys strain. Lysine was shown to diffuse across the membrane, with comparable
growth to the positive control where lysine was added into the same well as the microbial
culture (Fig. 4A and B). A negative-control experiment, lacking the supplemental amino
acid, displayed no growth and thus confirmed the amino acid auxotrophy (Fig. 4C). A sec-
ond negative-control experiment, displaying lack of growth for membranes with no pores,
confirmed the integrity of the device seal (Fig. 4D). These results were repeated with DIle
and isoleucine, and for various pore sizes: no pores and 0.03-, 0.1-, 0.2-, and 0.4 mm pores.
We found similar results in all cases, with comparable growth between diffusion and posi-
tive-control conditions and no growth in either of the negative controls (see Fig. S5, as
well as Fig. S13 and S14 [https://github.com/segrelab/co_culture_device]).

We next cocultured DLys and DIle in the BioMe plate to measure the dynamics of
their metabolic interaction (Fig. 5). As expected, each strain can complement, to some
extent, the amino acid missing in the other, confirming the existence of cross-feeding.

FIG 3 Commensal relationship between D. melanogaster gut-associated microbes. (A to C) Pairwise cocultures between all combinations of A.
oryzifermentans (A), L. plantarum (B), and L. brevis (C). A membrane pore size of 0.03 mm was used throughout all of these experiments. Lines indicate
mean growth curves, and shaded regions indicate standard errors (n = 4 for cross-species cocultures, n = 3 for medium-control “none,” n = 6 for self-
control “self” for L. plantarum and L. brevis, and n = 4 for “self” for A. oryzifermentans cultures, as two contaminated outliers were left out, see Fig. S4; see
also Fig. S12 [https://github.com/segrelab/co_culture_device] for additional details).
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However, the auxotrophs grew significantly slower when inoculated in paired wells
separated by a porous membrane than when grown in the same well (Fig. 5A and B).
The membrane significantly impeded the growth of both members in the syntrophic
interaction. As shown in Fig. 5A, this effect is asymmetric, in that DIle seems to be able to
help DLys more than DLys helps DIle, though the growth of DIle is still greater than that
of the negative control. Negative controls further confirmed that neither auxotrophs
could grow without the partner strain (Fig. 5C and D) or when separated by a membrane
with no pores (Fig. 5E). Qualitatively similar results were observed for membrane pore
sizes of 0.03, 0.1, and 0.2 mm (see Fig. S6; see also Fig. S16 [https://github.com/segrelab/
co_culture_device]). For membranes with a 0.4-mm pore size, microbial crossover through
and/or around the membrane/O-ring junction occurred in all replicates (measured by
selective plating at the end of the experiment; see Fig. S7), preventing any measurement
of interaction dynamics. The slowdown of cross-feeding across the membrane (Fig. 5)
pointed to a concentration-dependent effect, and we wondered whether the quantitative
nature of the BioMe experiments could help us gain a deeper understanding of the dy-
namics underpinning this phenomenon.

FIG 4 Lysine diffusion bioassay with E. coli DLys in the BioMe plate. Various amino acid diffusion conditions were tested in the BioMe plate. (A) DLys E. coli
auxotrophs grown in minimal media with supplemental lysine across the 0.1 mm membrane (n = 4). (B) Positive control with lysine supplemented in the
same well as the microbial culture (n = 1). (C) Negative control with no supplemental lysine provided (n = 1). (D) Negative control with supplemental lysine
provided across a membrane with no pores (n = 4). For all minimal media supplemented with amino acids, the amino acid concentration was chosen to
theoretically yield 109 cells (see Materials and Methods; lysine, 0.731 mmol/L).
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Computational modeling of BioMe cocultures provides insight into interaction
parameters. To further investigate the interaction dynamics observed experimentally
with the BioMe plate, we developed a computational model describing the syntrophic
E. coli auxotroph coculture experiments. This model captures the dynamics within two
interacting wells of the BioMe plate, by simulating the processes of metabolite diffu-
sion across the membrane, glucose and amino acid uptake by the E. coli auxotrophs,
and a stoichiometric leakage of the respective partner’s auxotrophy amino acids (Fig. 6);
the full list of equations and parameters is available (see Text S1; see also https://github
.com/segrelab/co_culture_device). Using this computational model, all performed experi-
ments involving the E. coli amino acid auxotrophs can be simulated by changing the ini-
tial conditions of the model to match those of the experiment (see Fig. S17 [https://
github.com/segrelab/co_culture_device]).

We integrated this computational model with our syntrophic coculture experiment
to explore the parameter space that gives rise to our primary qualitative observation, i.e.,
that both members of the mutualistically cross-feeding pair grew significantly faster
when in the same well than when interacting across the membrane. For this modeling
work, we used the data from the 0.1-mm-pore-size experiment since there was no micro-
bial crossover in any of the three replicates for this set of cocultures, although the results
are qualitatively similar in the 0.03- and 0.2-mm-pore-size cocultures. The parameters for
uptake kinetics and biomass stoichiometry were estimated from the literature (see Text
S1). The parameter space was then explored for two important parameters of the inter-
action, which were difficult to estimate from the literature: the diffusion rate of the
metabolites across the membrane and the leakage stoichiometry of the amino acids.
The diffusion rate was informed by experimental measurements of lysine and isoleucine

FIG 5 Syntrophic E. coli lysine and isoleucine auxotroph coculture. Mutualistic cross-feeding between DLys and DIle amino acid auxotrophs. (A) DLys (blue)
and DIle (green) grown across a 0.1-mm porous membrane (n = 3). (B) Positive control with DLys and DIle grown in the same wells (n = 1). (C and D)
Negative controls with DLys and DIle without a syntrophic partner, respectively (n = 1). (E) Negative control with DLys and DIle separated by a membrane
with no pores (n = 3).
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diffusion across a 0.1-mm-pore-size membrane (see Fig. S3), while the leakage stoichiom-
etry was sampled from a large range of possible values. Upon varying these parameters,
we compared the 48-h predicted growth yield of an auxotroph grown in the same well
with its partner relative to the yield in membrane-separated coculture (Fig. 7A). Distinct
regions were clearly visible in this parameter space, which gave rise to different qualita-
tive simulated results (Fig. 7A and C). One can see that if the cellular leakage of the
amino acid is too small (Fig. 7A, region 3), the same-well and separate-well simulations
behave similarly, i.e., neither supports any growth. If both leakage and diffusion are high
enough (Fig. 7A, region 1), the two in silico experiments again behave similarly, but this
time they both lead to an increased yield. Notably, there is an intermediate region of the
parameter space (Fig. 7A, region 2) in which leakage is not a limiting step to guarantee
cross-feeding, but diffusion between separate wells is. In this region, the two auxotrophs
can secrete enough amino acids to support each other, but diffusion through the BioMe
membrane slows down the growth process enough to lead to a detectable difference.

The identification of the intermediate region (Fig. 7A, region 2) prompted us explore
the possibility of using this modeling framework to provide more insight into the experi-
mentally unknown key parameters. We used an approximate Bayesian computation
approach (see Materials and Methods) to infer—and model the uncertainty of—the leak-
age parameter values that were consistent with the observed differential growth yields
in the same-well positive control versus the membrane-separated coculture (Fig. 7B).
The posterior distribution of the leakage parameter, conditioned on this experimental
observation, was estimated using a statistic of the logarithm of the ratio of the biomass
yields at 48 h (see Text S1), and an acceptance cut off centered around the experimen-
tally measured mean value (see Materials and Methods for further details). To further
investigate the asymmetric nature of our observations, a similar analysis was conducted
where the lysine and isoleucine leakage parameters were sampled from independent
prior distributions, and could thus be inferred separately (see Fig. S8). This gave rise to a
lysine leakage parameter that was higher than that of isoleucine, consistent with our ob-
servation of increased DLys growth. Furthermore, noise was added to the prior distribu-
tions of the literature inferred parameters, by sampling them from a log uniform distribu-
tion spanning 1 order of magnitude (10�) around their literature inferred values (see

FIG 6 Computational model of syntrophic E. coli auxotroph growth dynamics in BioMe. The fluxes of
metabolites simulated by the model are illustrated in this figure, including the diffusion of glucose
and amino acids across the porous membrane (black arrows), the uptake of glucose and auxotrophy
amino acids supporting growth (red arrows), and the leakage of the respective partner’s auxotrophy
amino acids (gray arrows). The growth of each auxotroph’s biomass is also represented (circular
arrow). Text S1 describes all parameters and the full dynamics of the system.
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Fig. S18 and S19 [https://github.com/segrelab/co_culture_device]). Even in the presence
of this amount of noise in these values, the leakage stoichiometry parameter was effec-
tively constrained by the data. Through this analysis, we integrated novel observations
obtained with the BioMe plate with a computational model to infer plausible ranges of
the leakage parameter governing the interaction between these auxotrophic E. coli

FIG 7 Computational modeling of E. coli auxotroph coculture interaction parameters. (A) The sampled space of diffusion and leakage parameters is shown.
The diffusion rate was sampled from an order of magnitude (10�) log uniform prior range centered around 3.88 � 1025 L/h (the experimentally measured
mean diffusion rate of lysine and isoleucine in our experiments; see Fig. 2). The leakage rate was sampled from a 3-orders-of-magnitude (1,000�) log
uniform prior range. Each point represents a different simulation of the model. The color indicates the log base 10 of the ratio between the yield at 48 h
of E. coli auxotrophs grown in the same well (positive control) divided by the yield in opposite wells (membrane-separated). Sampled points within 2� the
standard deviation (0.235) of the mean (1.14) of this statistic were used to sample the posterior distribution in approximate Bayesian computation. (B) The
prior (gray) and posterior (gold) distributions of the leakage stoichiometry parameter are plotted as histograms. The prior distribution was sampled from a
log uniform distribution. (C) Example growth curves for different regions of the parameter space in panel A are shown. Simulated growth curves of DLys
(blue line) and DIle (green line) grown across from each other (membrane-separated) and grown together (gray dotted line, positive control) are shown for
three different regions of parameter space.
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mutants. This leakage parameter would be otherwise very difficult to measure experimen-
tally. The posterior distributions obtained from this approximate Bayesian computation
approach represent these inferences and their uncertainties, given the assumptions of our
model and the data on which our estimates are based.

DISCUSSION

We utilized the newly developed BioMe plate to observe a natural symbiotic inter-
action between organisms found in the D. melanogaster gut microbiome and to quan-
titatively study the interaction between two syntrophic engineered E. coli mutants. Our
D. melanogaster results demonstrate the utility of BioMe to study a natural microbial
interaction between two nonmodel organisms. This result largely corroborates recently
published results (40, 51), although we identified commensal rather than mutualistic
interactions between the studied Lactobacillus and Acetobacter species. This discrep-
ancy is likely due to the use of a rich medium in our experiments which supplemented
the amino acid auxotrophies in Lactobacillus and highlights the importance of context
dependence in the characterization of interactions. The E. coli auxotroph interaction
allowed us to integrate the data obtained with BioMe into a computational model pro-
viding quantitative insight into the parameters of this interaction. Moving forward, as
computational modeling of microbial physiology advances, it may be possible to apply
such modeling frameworks more ubiquitously. For example, genome-scale metabolic
models could be incorporated into a spatial model of the BioMe device to represent
the metabolic processes occurring in each interacting population and model emergent
interactions (11). Such a model could be used, alongside BioMe observations, to gain
quantitative, genome-scale insight into the interactions between microbial organisms,
where the mechanism of interaction is not known a priori.

Our investigation of the E. coli lysine and isoleucine auxotrophs revealed that their
syntrophic interaction was altered by the presence of a porous membrane separating
the interacting auxotrophs. These results suggest that certain “high-stakes” interac-
tions could be localized, such that highly proximal ecological neighbors reap the ma-
jority of the benefits from “leaked” communal resources. Leveraging a mechanistic, dy-
namical model for the syntrophic E. coli auxotroph coculture experiment, we inferred
plausible leakage parameters that govern this localized interaction. This result corrobo-
rates and complements the recent imaging-based finding that pairs of E. coli proline
and tryptophan auxotrophs can best help each other within a small local radius around
each cell (53). While these local interactions may be dominated by diffusion-mediated
processes, we cannot rule out, based on our experiment, that cross-feeding is also
facilitated by contact-based mechanisms. Similar phenomena were reported, for exam-
ple, in bacterium-fungus interactions, which were shown to require physical associa-
tion for the activation of a cryptic biosynthetic pathway of secondary metabolism in
the fungus (54). The local nature of these interactions may have important evolution-
ary and ecological consequences (55, 56), and the BioMe device is a promising plat-
form for the continued study of such phenomena. For example, future work could
focus on measuring the interactions between the remaining syntrophic auxotrophs
from Mee et al. (46), beyond the lysine-isoleucine interaction investigated here.

There are some key limitations to the use of the BioMe plate. First, as is clear from
our results, the porous membranes can have a significant impact on mutualistic cross-
feeding interactions. In addition to altering the dynamics of metabolite exchange, the
membrane limits interactions to only those mediated by diffusible molecules. Despite
placing a constraint on the type of interactions that can be investigated, this limitation
can be beneficial for the quantitative study and design of microbial consortia. For
example, limiting interactions to those mediated by diffusible molecules makes it eas-
ier to robustly integrate and compare experimental measurements with metabolic
models. Another limitation of the BioMe device is the fact that microbial crossover can
occur across the membranes. In our syntrophic auxotrophs coculture experiment we
observed microbial crossover in 2/9 pairwise assays with 0.03-, 0.1-, or 0.2-mm pore
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sizes, and 3/3 for the 0.4-mm pore size (see Fig. S7). These studies were exquisitely sen-
sitive for detecting microbial crossover since the mutualistic interaction between the
two strains would effectively amplify any crossed-over organisms. The observed cross-
overs may have arisen from E. coli crossing through the membrane pores, crossing
around the membrane in an incompletely sealed device, or from standard cross-well
contamination introduced by pipetting or other errors. The crossover observed in the
0.03- to 0.2-mm-pore-size membranes were more likely to have arisen from a faulty
seal or contamination, rather than crossover through the pores, since these pore sizes
are below the standard size used to filter sterilize bacterial growth medium and have
been used successfully for other applications (35, 39). However, the consistent cross-
over in the 0.4-mm-pore-size membranes suggests that the bacteria were able to cross
through the membrane. Although 0.4 mm is less than the typical diameter of an E. coli
cell, E. coli is known to be able to pass through channels smaller than its own cell size
through a growth/division driven processes (57). We opted to use the most conserva-
tive 0.03-mm-pore-size membranes for our D. melanogaster gut-associated bacteria
experiments, and we suggest this pore size for other researchers using the device to
observe interactions across a single membrane pore size. In addition, our modeling
analysis of the E. coli auxotroph cocultures focused on the 0.1 mm pores size results,
for which we did not measure any crossover. Future studies could focus on more thor-
oughly characterizing the crossover process for a variety of different organisms and
conditions, and optimizing the design of the plate to limit contamination and cross-
over around the membrane. It should also be noted that the distribution of organisms
in the device may not be homogeneous, leading to a potential bias in the optical den-
sity measurements. For example, in a mutualistic cross-feeding interaction the organ-
isms may preferentially locate near the membrane or even attach to the membrane.

Regarding the manufacturing of the BioMe device, while the body segments can be
fabricated using either milling or 3D printing methods, there is a significant trade-off
between precision and flexibility in these two methods. We found that devices fabri-
cated using milling had finer tolerances and were thus less prone to leakage than
those that were 3D printed. However, the 3D printing approach facilitates rapid and
easy prototyping of alternative plate layouts. Ultimately, users should choose the fabri-
cation technique that best suits their goals.

Regarding the pore size dependence of small-molecule diffusion in the device,
there was an interesting observation in the chemical dye diffusion experiments: the
estimated diffusion rate was consistently higher when calculated using data from the
input well where the dye was initially placed, as opposed to that of the opposite well.
This effect was more pronounced for the larger pore sizes and for phenol red. A possi-
ble explanation for this effect is that the dye is settling or being sequestered in the
membrane/device and thus appears to diffuse faster from the initial well and more
slowly into the opposite well. This effect was not included in subsequent modeling
efforts, since it produced only minor differences in the inferred diffusion rate relative
to the range of uncertainty in the diffusion rate considered in our model. Furthermore,
we note that the monotonic increase in diffusion rate may be related to the increase in
open area percentage of the membranes (,1, 3, 10, and 19%, respectively, for the 0.03-,
0.1-, 0.2-, and 0.4-mm pore sizes, as reported on the Sterlitech “Performance by Pore Size”
data sheet [https://www.sterlitech.com/hydrophilic-polycarbonate-membrane-filters.html]).

Although we demonstrate here the use of the BioMe plate to measure pairwise
interactions, the device is a flexible technology that could be redesigned to incorpo-
rate multimember assays and higher-order interactions. 3D printing accessibility ena-
bles rapid fabrication and validation of potential plate layouts. Going beyond pairwise
interactions, selected consortia of microbial organisms could be grown in each well of
the BioMe plate to facilitate the investigation of higher-order interactions, which are
thought to have an important impact on microbial community structure (58–60).
Entire microbial communities could similarly be grown across from individual isolates
to observe their growth supporting capabilities, as done with the iChip device (39), but
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with the added capability of observing growth dynamics. Furthermore, the 3D-printed
design of the BioMe body segments could be modified to design novel interaction
chambers, such as multiple wells connected to a central mixing chamber or sequential
wells connected by porous membranes. Overall, the BioMe plate is relatively easy to
manufacture and implement, and the use of this device to study the interaction of mi-
crobial organisms from a multitude of different contexts will help improve our under-
standing of and ability to engineer microbial communities.

MATERIALS ANDMETHODS
BioMe fabrication. All materials required for BioMe fabrication are detailed in Table S1. O-rings, 6-

32 flange nuts, 4-40 screws, and membranes were bought ready to use. Rods (60 6-32) were cut to
125 mm with a grind wheel. Stock food-grade silicone rubber sheets were laser-cut to gasket specifica-
tions using an Epilog Laser Mini 60W laser cutter; wrapping in dampened shop towels helped mitigate
charring. The transparent base was CNC milled from clear polycarbonate sheets.

The body segments could either be machined or 3D printed. Two separate CNC milling operations
were required to machine the vertical and horizontal features of the body segment from polypropylene
sheet. A drill press was used to complete the spot holes, with each screw hole manually tapped with a
4-40 tap bit, and each body segment deburred and washed. Alternatively, stereolithography resin 3D-
printing can be used to fabricate the body segments. FormLabs’ Form2 stereolithography printers were
used with the Dental SG Resin, a biocompatible, autoclavable resin. Screw holes were manually tapped
and body segments were sanded to size.

Files for the reproducible manufacturing of the BioMe device are available on GitHub (https://github
.com/segrelab/co_culture_device in the “BioMe – Distribution Files” folder).

Leakage test. A simple visualization test was used to test water-tight seal throughout the assembled
BioMe plate. All wells were loaded with 250 mL of 100 mM phenol red. The core BioMe device was then
placed atop a paper towel and fit into the bottom tray and covered with the top lid. The BioMe plate
was left in the shaking incubator overnight, and no leakage was verified.

Sterilization protocol and validation. To sterilize the BioMe plate after use, the device is disas-
sembled, the membranes disposed of, and the components dishwashed and then autoclaved (gravity,
30-min exposure/15 min dry). For sterile assembly, a biosafety cabinet is recommended. Membranes are
bathed in 70% ethanol for 30 min. Presterilized components are then sequentially assembled with the
membranes under sterile conditions. For additional caution, presterilized device components may be
ethanol bathed prior to assembly.

Sterilization protocol was validated to ensure no postcontamination. A sterilized reassembled BioMe
plate was loaded with 250 mL of LB Miller media (10 g/L tryptone, 10 g/L NaCl, 5 g/L yeast extract) per
well and placed into a 30°C static incubator for 72 h. A 10-mL aliquot from each well was then plated
onto LB agar plates. The plates were incubated at 30°C for 72 h. No microbial growth was confirmed.

Colorimetric dye diffusion measurement. Calibration curves for phenol red (PR) and bromocresol
purple (BP) were determined to relate the OD at the isosbestic point (478 nm for PR and 490 nm for BP)
to concentration. A BioMe plate was assembled with membranes with no pores. Columns were loaded
with 250 mL of various concentrations of dye: 450, 400, 350, 300, 250, 200, 150, 100, 50, and 0 mM; the
top three rows were used for PR, and the bottom three rows for BP. The linear fit of the ODisosbestic value
versus the concentration data points was used for the calibration curve.

Diffusion experiments were used to estimate the diffusion rates for various membrane pore sizes for
PR and BP. A BioMe plate was assembled with various membrane pore sizes at each body junction: no
pores and 0.03-, 0.1-, 0.2-, and 0.4-mm pore sizes. Next, 250 mL of 400 mM dye was loaded into the left
column, and 250 mL of distilled water was loaded into the right column for each pore size. The
ODisosbestic value was measured for 72 h at 15-min intervals.

Diffusion rates were estimated using a gradient-driven diffusion model (provided in Text S1). The
time-dependent value on the left-hand side of the equation (see Text S1) was calculated from the data
and fit to an exponential function (using MATLAB function fit with fittype: exp1) to infer our model’s dif-
fusion rate for both dyes and pore sizes of 0.03, 0.1, 0.2, and 0.4 mm. The units for the diffusion rate, d, in
our equations are L/h such that the flux has units of mmol/h. Our model is similar to Fick’s first law, in
that there is a gradient driven diffusion; however, in our system the diffusion area and distance are fixed
and thus lumped into the diffusion parameter giving rise to units that are different from a traditional
“diffusion constant.”

Amino acid diffusion measurement. Diffusion rates of lysine and isoleucine through the porous
membranes of the BioMe system were measured using colorimetric assay kits, a lysine assay kit (Cell
BioLabs, Inc., MET-5130), and a branched-chain amino acid assay kit (Cell BioLabs, Inc., MET-5056). A
BioMe device was assembled with 0.1-mm-pore-size membranes, and stock solutions of 400 mM lysine
and isoleucine in phosphate-buffered saline (PBS) were prepared. The left wells of the BioMe were
loaded with 250 mL of the respective amino acid samples, and the right wells were loaded with 250 mL
of PBS. At 1.5, 3, 6, 12, and 24 h, the entire volumes of both left and right wells (n = 3) were sampled and
stored at 280°C; aliquots from the original amino acid stock solutions and PBS were also stored. Once
all samples were collected, a linear-fit standard curve was measured and calculated for lysine (100, 50,
25, 12.5, 6.25, and 0 mM in duplicates) and isoleucine (1,000, 500, 250, 125, 62.5, 31.25, 15.63, and 0 mM
in triplicates) at 550 nm and 450 nm OD, respectively (see Fig. S3A). The amino acid concentrations in
the experimental samples were measured using their respective colorimetric assay, according to the
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manufacturer’s protocol. Due to the recommended linear range of the lysine assay kit (0 to 100 mM), all
experimental samples for lysine were diluted 4� in PBS. The DOD values between experimental and
negative controls were compared to the standard curve to extrapolate the amino acid concentration.
The time course of amino acids diffusing from the left to right well were then calculated and plotted
(see Fig. S3B). The diffusion rate was estimated, as was done for the dye diffusion rates, by fitting an ex-
ponential function (see Text S1) to all of the points from either the left or right wells.

Drosophila gut microbiome interaction. Strains of Acetobacter oryzifermentans, Lactobacillus brevis,
and Lactobacillus plantarum were isolated as previously described (61) and streaked onto YPD agar
plates (10 g/L peptone, 10 g/L yeast extract, 8 g/L dextrose, 15 g/L agar). The identity and lack of cross-
contamination were confirmed by colony PCR using species-specific primers and gel electrophoresis
(45). For each strain, four clonal replicates were picked from colonies, and grown in 5 mL of YPD broth
(10 g/L peptone, 10 g/L yeast extract, 8 g/L dextrose) at 30°C in a static incubator for 20 h. Cells were
centrifuged, and pellets were washed three times in PBS. The OD600 values for 250 mL of each culture (C)
and PBS blanks (PBS) were read. Cultures were diluted with YPD media to an OD600 of 0.1 using the fol-
lowing formula:

% culture in dilution ¼ set OD600 2PBSOD600

cultureOD600 2PBSOD600
¼ 0:12PBS

C2PBS

Dilutions were redone for those not within 10% deviation. Cultures were further diluted 1:100 in YPD
media. Assembled BioMe plate, with 0.03-mm-pore-size membranes, was loaded with diluted cultures in
appropriate wells and sealed with Parafilm. The plate was then run on a plate reader for 96 h at 30°C,
with OD600 measurements obtained at 15-min intervals with no shaking.

Syntrophic coculture interaction. Diffusion of amino acids through membranes with various pore
sizes was validated using Lambda Red-recombineered EcNR1 E. coli for knockout of LysA (DLys) and IlvA
(DIle) (46). Strains were streaked and selected on LB1Cam (25 mg/mL chloramphenicol) agar plates.
Strains were grown in 5 mL of LB1Cam broth (n = 4 for both DLys and DIle) in a 12-well plate for 24 h
inside the plate reader, with OD600 measurements obtained every 15 min. These growth curves were
used to determine the dilution time (tdil = 6 h) for proceeding experiments (see Fig. S15 [https://github
.com/segrelab/co_culture_device]).

For amino acid diffusion experiment, a BioMe plate was assembled with various membrane pore
sizes at each body junction: no pores and 0.03-, 0.1-, 0.2-, and 0.4-mm pores. For either strain, six clonal
replicates were grown in 5 mL of LB1Cam broth at 30°C in a static incubator for 6 h and then washed in
minimal medium (M9 1 glucose [0.4%] 1 thiamine [1 mg/mL] 1 biotin [1 mg/mL] 1 chloramphenicol
[25 mg/mL]). Cultures were diluted with minimal media to an OD600 of 0.1 using the formula provided
for the Drosophila gut microbiome interaction methods. Cultures were further diluted 1:100 in both min-
imal media and minimal media supplemented with lysine (0.0134%) or isoleucine (0.0065%) for DLys or
DIle, respectively. For all experiments using minimal media supplemented with amino acids (aa), the
amino acid concentration was calculated such that a theoretical yield of 109 cells would be reached: for
lysine, (1.1 � 108 aa/cell) � (109 cells)/[(6.022 � 1023 aa/mol) � (250 � 1026 L)] = 7.3065 � 1024 mol/L;
and for isoleucine, (7.5 � 107 aa/cell) � (109 cells)/[(6.022 � 1023 aa/mol) � (250 � 1026 L)] =
4.98 � 1024 mol/L. The values for amino acids per cell (aa/cell) were obtained from Mee et al. (46). A ster-
ile assembled BioMe plate was loaded with diluted cultures in appropriate wells; for each pore size,
n = 4 for the amino acid diffusion assay, n = 1 for the negative control with no supplemental amino acid,
and n = 1 for the positive control with an auxotroph loaded with supplemental amino acid in same well.
The BioMe plate was run on the plate reader for 96 h at 30°C, with OD600 measurements obtained at 15-
min intervals with no shaking.

Similar growth, wash, and dilution procedures were followed for the syntrophic coculture experi-
ment. For each pore size, n = 3 for the coculture assay across the membrane, n = 1 for both negative
controls without a coculture partner, and n = 1 for the positive control with coculture partners in the
same well. The plate reader was run with a BioMe plate for 96 h at 30°C, with OD600 measurements at
15-min intervals. At the end of the kinetic read, a 5-mL aliquot from each well was cultured on minimal
medium agar plates supplemented with either lysine or isoleucine to determine instances of crossover.
Plates were cultured for 72 h at 30°C in a static incubator.

Computational modeling overview. We implemented a mathematical model that uses ordinary
differential equations (ODE) to describe the dynamic changes in the abundance of the two interacting
organisms and the key metabolites necessary for their growth (see Text S1). Each compartment in the
BioMe can harbor different amounts of organisms and metabolites, encoded by distinct variables in our
differential equations model. Changes in the population of each organism in each compartment can
only occur due to growth. This is described by a Monod model in which the rate is determined by the
limiting nutrient, which can be either glucose or an essential amino acid leaked by the other organism.
Metabolite concentrations in each compartment, on the other hand, can change due to consumption or
secretion by a given organism or due to diffusion across the porous membrane. The equations describ-
ing the system are based on standard mass action kinetics. For diffusion of metabolites across the mem-
brane, we assume (based on Fick’s first law) that the flux is proportional to the concentration gradient
across the two compartments, with a diffusion rate that we inferred experimentally. The parameters for
the uptake of metabolites and stoichiometry (biomass produced per g of glucose and g of amino acid)
were inferred from the literature. The systems of differential equations can be solved numerically for any
given set of kinetic parameters and initial conditions. One important parameter that could not be easily
measured or inferred from the literature is the rate of amino acid leakage from each bacterium. In order
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to infer these parameters, we implemented a probabilistic computational approach (approximate
Bayesian computation) on top of the ODE model, which identifies the leakage parameter range that is
consistent with our experimental data.

Computational modeling details. We developed a computational model to simulate the interac-
tion between E. coli amino acid auxotrophs in the BioMe device. The model consists of two wells, each
with a given volume. Each well can start with any defined amount of cells (isoleucine and lysine auxo-
trophs), initial amino acids (isoleucine and lysine), and glucose. The glucose and growth-supporting
amino acids are taken up by the cells as they grow, the non-growth-supporting amino acids are
secreted, and all metabolites can diffuse between the two wells. Metabolite diffusion is modeled by a
gradient driven flux across the porous membrane. Metabolite uptake flux is bounded by Michaelis-
Menten kinetic uptake equations, and growth rate is determined by the minimum biomass flux that can
be produced based on metabolite uptake rates and biomass stoichiometry. Amino acid leakage is deter-
mined by a stoichiometric parameter specifying the amount of amino acid leaked into the environment
for each gram of E. coli biomass produced. The uptake, growth constraints, and leakage components of
this model are analogous to previously developed dynamic flux balance analysis models (11). Thus, our
model is essentially a simplified dynamic flux balance analysis model with a growth rate proportional
leakage term and gradient driven diffusion between compartments. The full model dynamics are pre-
sented in Text S1, and the code is available online (https://github.com/segrelab/co_culture_device).
Simulation of the model was implemented in MATLAB. Testing of runtime and accuracy was conducted
to benchmark three MATLAB ODE solvers (ode23tb, ode45, and ode15s). The function ode23tb was found
to have the best performance, with consistent accuracy when using maximum step sizes of 0.0025 h. Thus,
this solver function and maximum step size setting was used to simulate model dynamics.

We implemented an approximate Bayesian computation approach to integrate experimental data
with computational modeling. Approximate Bayesian computation is used to infer the posterior distribu-
tion of the parameters of a computational model by using simulations of experimental results to approx-
imate the likelihood of the data (62, 63). We implemented a rejection-based algorithm where sample pa-
rameters are initially drawn from a given prior distribution and are included in the posterior distribution
if the difference between the simulated and experimental value of a given statistic is less than some
specified threshold. The statistic that we utilized was the log base 10 of the ratio between growth at
48 h of the E. coli auxotrophs in the same well (positive control) divided by the growth in opposite wells
(membrane separated) (see Text S1). Using this ratio allowed us to compare experimental results to
simulated results without calibrating between biomass units, since our OD growth measurements were
made ratio scale by subtracting a blank control. The threshold that we used was 2� the standard devia-
tion from the experimentally measured mean ratio for the equal leakage model, and 10� the standard
deviation for the unequal leakage model.

We began by sampling diffusion and leakage parameters while assuming that the leakage of isoleu-
cine and lysine were equal (Fig. 7). The uptake kinetics and biomass parameters were estimated from
the literature and were fixed at their estimated values (prior distribution was a Dirac delta function) (see
Text S1). The leakage and diffusion parameters were randomly sampled from a log uniform prior distri-
bution: the diffusion rate ranging 1 order of magnitude around the mean experimentally measured
value for lysine and isoleucine (1024.911 to 1023.911 L/hr), and the leakage stoichiometry ranging from
1022 to 10 mmol/g. Next, we used our model to investigate the unequal growth of the DLys and DIle
auxotrophs (see Fig. S8). We fixed the diffusion rate to the mean measured value for lysine and isoleu-
cine (3.88*1025 L/h). Then, we sampled the leakage for DLys and DIle independently from log uniform
prior distributions with the same ranges as used previously. Finally, we added noise to all the literature-
estimated parameters (with the exception of volume) to represent an increased level of uncertainty (see
Fig. S18 and S19 [https://github.com/segrelab/co_culture_device]). We sampled all literature-estimated
parameters from a log uniform prior distribution that varied by 1 order of magnitude around the origi-
nally fixed literature estimated value. This more uncertain prior distribution was used to repeat the infer-
ence of leakage stoichiometry for both equal (see Fig. S18 [https://github.com/segrelab/co_culture
_device]) and unequal (see Fig. S19 [https://github.com/segrelab/co_culture_device]) cases.

Data availability. All data and codes are available on GitHub at https://github.com/segrelab/co
_culture_device. The data includes raw kinetic OD measurements for the small molecule dye diffusion
measurement, amino acid diffusion measurement, Drosophila gut microbe coculture, amino acid diffu-
sion, and syntrophic E. coli auxotroph coculture experiments, as well as the MATLAB scripts for the gen-
eration of all figures from raw data are provided in the “raw_data_and_plots” subdirectory. MATLAB
scripts for solving the differential equations of the computational model and for the Bayesian analyses
are located in the “modeling” subdirectory. Files for the reproducible manufacturing of the BioMe device
are available on GitHub in the “BioMe – Distribution Files” folder.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, JPG file, 1 MB.
FIG S2, JPG file, 0.8 MB.
FIG S3, JPG file, 1.7 MB.
FIG S4, JPG file, 2.6 MB.
FIG S5, JPG file, 2.7 MB.
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