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Abstract

Background—Previous studies have linked environmental exposures with anti-Müllerian 

hormone (AMH), a marker of ovarian reserve. However, associations with multiple environment 

factors has to our knowledge not been addressed.

Methods—We included a total of 2,447 premenopausal women in the Nurses’ Health Study II 

(NHSII) who provided blood samples during 1996–1999. We selected environmental exposures 

linked previously with reproductive outcomes that had measurement data available in NHSII, 

including greenness, particulate matter, noise, outdoor light at night, ultraviolet radiation, and 

six hazardous air pollutants (1,3-butadiene, benzene, diesel particulate matter, formaldehyde, 

methylene chloride, and tetrachloroethylene). For these we calculated cumulative averages from 

enrollment (1989) to blood draw and estimated associations with AMH in adjusted single 

exposure models, principal component analysis (PCA), and hierarchical Bayesian kernel machine 

regression (BKMR).
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Results—Single exposure models showed negative associations of AMH with benzene 

(percentage reduction in AMH per interquartile range (IQR) increase = 5.5%, 95%CI=1.0, 9.8) 

and formaldehyde (6.1%, 95%CI=1.6, 10). PCA identified four major exposure patterns but only 

one with high exposure to air pollutants and light at night was associated with lower AMH. 

Hierarchical BKMR pointed to benzene, formaldehyde, and greenness, and suggested an inverse 

joint association with AMH (percentage reduction comparing all exposures at the 75th percentile 

to median= 8.2%, 95%CI=0.7, 15.1. Observed associations were mainly among women above age 

40.

Conclusions—We found exposure to benzene and formaldehyde to be consistently associated 

with lower AMH levels. The associations among older women are consistent with the hypothesis 

that environmental exposures accelerate reproductive aging.

Keywords

mixture; hazardous air pollutants; benzene; formaldehyde; anti-Müllerian hormone; reproductive 
aging

Introduction

Ovarian aging is characterized by the decline of oocyte quantity and fluctuations of 

hormones and is associated with cardiovascular, musculoskeletal, and cognitive health 1–3. 

This process can be accelerated by both genetic and environmental factors, but to date its 

associations with exposures in the ambient environment have been understudied 1.

Produced by the granulosa cells in follicles, anti-Müllerian hormone (AMH) has been 

found to be correlated with other markers of ovarian reserve and menopausal age, and thus 

may be used as a reliable predictor of reproductive aging 4–9. In addition, epidemiologic 

studies also suggested that women with low AMH had higher risks of cardiovascular and 

metabolic diseases 10,11. Several environmental factors, including particulate air pollution, 

traffic, ultraviolet (UV) radiation, and greenspace, have been linked with AMH and age 

at menopause 12–17. However, these studies only examined the association of single 

exposure, without considering the complex mixture of exposures that is truly experienced. 

Additionally, other studies have linked impaired fertility and menstrual disorders, which 

are common consequences of reproductive aging, with occupational exposure to organic 

compounds that are also present in the ambient atmosphere 18–22. However, whether 

exposure to low levels of these compounds in the ambient environment can affect women’s 

reproductive system remains unclear. Physical environmental factors such as light and noise 

have been suggested to disrupt neuroendocrine homeostasis, which may adversely affect 

ovarian function. Furthermore, these factors may share emission source or have correlated 

geospatial distribution. Thus, co-exposures should be considered. However, few studies have 

considered the individual and joint effects of exposure to these factors when presenting 

simultaneously in the environment.

In this study, we aimed to examine the association of exposure to multiple environmental 

factors with AMH levels among women from a large, prospective US cohort. In addition to 

investigating the association of each individual exposure, we sought to estimate the overall 
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association of simultaneous exposure to multiple factors and to identify the key exposure(s) 

that influence the outcome using mixture methods.

Methods

Study population

The Nurses’ Health Study II (NHSII) is an ongoing, prospective, nationwide female cohort 

with 116,429 registered nurses aged between 25 to 42 when enrolled in 1989. During 

follow-up, questionnaires have been sent to the participants every two years to collect 

information on health status and risk factors. Between 1996 and 1999, participants with 

no history of cancer were asked to provide blood samples for biomarker substudies, which 

were ultimately received from 29,611 women. At blood collection, participants completed 

a short questionnaire measuring current weight, smoking, and other factors. Participants 

were provided with supplies and instructions to return blood samples to the laboratory 

overnight. Samples were then processed immediately and stored in the vapor phase of 

liquid nitrogen freezers (−130°C) 23. Informed consent for participating in NHSII and 

blood sample collection was implied by receipt of completed follow-up questionnaires and 

blood samples, respectively. The study protocol was approved by the institutional board of 

Brigham and Women’s Hospital.

Plasma AMH was measured in a subset of these participants as part of five substudies, 

including three nested case–control studies of breast (N=794) and ovarian cancer (N=44) 

and early menopause (N=818), one prospective study of age trajectory of AMH (N=800), 

and one cross-sectional study of differences in AMH by race and ethnicity (N=306) (eFigure 

1) 5,24,25. Premenopausal women who were not pregnant or breastfeeding and had not used 

oral contraceptives or exogenous hormones in the past six months before blood collection 

were eligible for all these substudies. We summarized inclusion criteria and matching factors 

by substudy in eTable 1. To reduce the possible impact of hormone-related cancer or 

menopause on AMH, we excluded women who reported breast, ovarian, or endometrial 

cancer or natural menopause within 2 years after blood collection. For women who were 

selected as controls for more than one study (N=44), we randomly selected one AMH 

measure.

Outcome measurement

Plasma AMH levels were assayed using the picoAMH enzyme-link immunosorbent assay 

(Ansh Labs, Webster, TX) at Massachusetts General Hospital (for the case–control study 

of ovarian cancer and the cross-sectional study), Boston Children’s Hospital (for the case–

control study of early menopause and the prospective study), and Ansh Labs (for the case–

control study of breast cancer), separately. All samples were analyzed in random order. 

Coefficients of variation in quality control samples from a blinded plasma pool ranged 

between 0.6–14.5% in all assays. For samples below the limit of detection (N=4 with 

detection limit of 0.0023 ng/mL and N=1 with detection limit of 0.05 ng/mL), we assigned 

values of half the detection limit by assay.
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Exposure Assessment

We considered exposure to surrounding greenness, particulate matter (PM), noise, outdoor 

light at night, UV, and air toxins and collected measures of these exposures at residential 

addresses of each participant. Details of exposure assessment is described in eAppendix.

Briefly, we measured greenness using the Normalized Difference Vegetation Index (NDVI), 

which ranges from −1 to 1, from the Advanced Very High Resolution Radiometer with 

a 1 km resolution 26. We used NDVI in July of each year to achieve the largest contrast 

and set negative values to 0 (indicating no green vegetation), based on recommendations in 

the current literature 27. PM exposure was calculated as the annual averages of PM2.5–10 

and PM2.5 measured at residential address from a geospatial prediction model 28. We 

estimated noise exposure from a geospatial model that provides time-integrated estimates 

over 2000–2014 for median anthropogenic noise measures (L50) in daytime (7AM-7PM) 

and nighttime (7PM-7AM), respectively, at a 270m resolution 29. We measured outdoor 

light at night by the annual average nighttime visible and near-infrared radiance (at ~1km 

resolution) from the earth surface using the satellite image data obtained from the US 

Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) 
30. We calculated solar UV radiation exposure using the average July noontime erythemal 

UV collected from National Aeronautics and Space Administration satellite UV data and 

downscaled to ~1 km resolution 31. We obtained exposure to hazardous air pollutants from 

the 1999 US Environment Protection Agency’s National Air Toxics Assessment (NATA) 

project. We selected pollutants that have been suggested to be mammary carcinogens or 

estrogenic disruptors or to have reproductive toxicity, and excluded those with more than 

25% zero values among the participants as suggested in previous studies 32–34. To further 

ensure temporal comparability between the 1996 and 1999 and/or the 1999 and 2002 NATA 

assessment at the same location, we included toxics with high correlations, defined by 

the commonly used cutoff as Spearman correlation coefficients greater than 0.70 35,36. 

We included a total of six hazardous air pollutants (1,3-butadiene, benzene, diesel PM, 

formaldehyde, methylene chloride, and tetrachloroethylene).

For all exposures, we calculated the cumulative average from 1989 to the nearest 

questionnaire year prior to blood collection to represent long-term exposure in adulthood, 

approximately covering exposures across the early 30s to 40s among our participants.

Covariates

We selected covariates a priori that were potential confounders or predictors of AMH or 

ovarian reserve by subject matter knowledge and data availability in NHSII (eFigure 2), 

including age (in months and in a cubic spline with 3 degrees of freedom), body mass index 

(BMI, kg/m2), smoking status (never, past, and current smokers) and parity (nulliparous and 

parous) collected at blood draw, race and ethnicity (white, black, and others) measured at 

baseline, history of oral contraceptive use (never and ever) and breastfeeding (nulliparous 

or for less than 1 month, 1–12 months, and more than 12 months), and questionnaire 

cycle of blood collection (1995, 1997, and 1999). Information was limited for indiviudal 

socioeconomic status (SES) in NHSII, including the highest education level of the spouse 

in 1997 and pre-tax household income collected in 2001. We considered these two variables 
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and the 2000 Census tract median household income to represent participant SES in the 

model. We included a categorical variable of batch, which corresponded to each substudy, to 

account for between-assay differences across substudies.

Statistical analysis

We merged data from all substudies into one dataset for statistical analysis. We chose to 

do so because the participants were selected from the same cohort and all exposures and 

covariables were measured in the same way. Therefore, heterogeneity across substudies 

was limited. In addition, analyzing data within each substudy and then pooling the results 

would greatly increase the uncertainty of estimates from our mixture analyses due to 

smaller sample sizes. To avoid impacts of extreme values in the exposure, we calculated 

the Mahalanobis distance across all exposure measures. We have applied this measure to 

identify extreme values in multi-dimensional data and considers the correlations of all 

variables in the matrix. We excluded participants whose Mahalanobis distance values above 

or below three standard deviations (SDs) from the mean. We used three SDs as the cutoff 

because our preliminary inspection suggested this cutoff can eliminate possible extremes 

while keeping sufficient variations in exposures. Pair-wise Spearman correlation coefficients 

were then calculated across the exposures. Because statistical models for mixture analyses 

can be unstable and difficult to interpret, we employed different statistical modeling 

approaches to examine the association of plasma AMH with the exposures, as described 

below.

We first used multivariable single-exposure linear models to examine the associations of 

each individual exposure with AMH, adjusting for age, race and ethnicity, parity, BMI, 

smoking status, spouse education, pre-tax household income, Census tract median household 

income, and batch. To further account for possible confounding between exposures, we also 

fitted a multi-exposure model with all exposure measures included simultaneously.

Next, to address the strong correlation between exposures, we used principal component 

analysis (PCA) to explore patterns of exposure among the participants. Components from 

PCA were independent linear combinations of the exposures. The component loadings 

indicated the exposures’ contribution and the component scores quantified the participants’ 

levels of exposure to each component. To examine the association of different exposure 

patterns (represented by components) with AMH, we fitted a linear model with all 

component scores included, adjusted for all potential confounders.

Finally, we used Bayesian Kernel Machine Regression (BKMR) to identify key individual 

exposures, to detect potential non-linear exposure–response relationships and effect 

modification between exposures, and to estimate the joint association of all exposures 

with AMH 37,38. BKMR uses a flexible kernel function to model the joint and individual 

association of the exposure and the outcome in a Bayesian regression model. For better 

model efficiency, we applied a variant of BKMR that performs hierarchical variable 

selection, by first selecting a group of exposures for inclusion and then individual 

exposure within the group. Exposure groupings are pre-specified and were performed 

based on the PCA results, the correlation structure across the exposures, and subject 

matter knowledge. We also applied the Gaussian predictive process approach to improve 
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computational efficiency. This approach uses a set of knots covering the exposure space in 

BKMR and compute the projection of each vector of exposures onto a lower dimensional 

space. Therefore, instead of inverting a matrix with dimension equals to the number of 

observations, BKMR only needs to invert a smaller matrix with dimension of the number of 

knots in the algorithm 37. We assessed relative importance of the exposure by the posterior 

inclusion probabilities and computed the corresponding exposure–response curve by fixing 

all other exposures at the median.

Secondary analysis

Considering AMH declines faster in older age and exposure characteristics may differ by 

urban and rural areas, we examined possible effect modification by age (above and below 

age 40 at blood collection) and urban versus rural area (2000 Census tract population density 

above or below 1000 people/km2) by adding interaction terms in the linear models and 

fitting separate BKMR models. We also conducted sensitivity analyses that additionally 

adjusted for history of oral contraceptive use and breastfeeding, and questionnaire cycle 

of blood collection in the models. To assess the potential impact of perimenopause and 

hormone-related cancers on AMH, we repeated the analysis excluding women who reported 

natural menopause or breast, ovarian, or endometrial cancer in the 5 years after blood 

collection. Women with polycystic ovary syndrome (PCOS) can have higher AMH levels, 

therefore, we repeated the analysis after excluding women who reported irregular menstrual 

cycles in adulthood as a proxy of PCOS, due to a lack of valid PCOS diagnosis data in 

NHSII. To examine for possible influence of remaining extreme values in exposure, we 

further excluded participants whose Mahalanobis distance were above 1 and 2 SDs from the 

mean and those whose exposure levels were above or below 6 standard deviations from their 

means, respectively.

We log-transformed plasma AMH to improve normality of residuals. We transformed all 

exposures to z scores for PCA and BKMR. Estimates from the linear models are presented 

as the percentage change and 95% confidence intervals (CIs) of AMH with an interquartile 

range (IQR) increase of the exposure or with 1 SD increase in the component score. For 

BKMR, we used the group posterior inclusion probabilities and the conditional probabilities 

for each exposure in the group to determine importance of the exposures. The joint 

association of the exposures was estimated by fixing all exposures at the 75th percentile 

relative to the median. To aid in interpretation, we determined the change in AMH with age. 

All analysis were conducted in SAS 9.4 (SAS Institute, Cary, NC) and R (version 3.6.3) (R 

Foundation for Statistical Computing, Vienna, Austria).

Results

Descriptions

Major demographic, lifestyle, and socioeconomic characteristics, and all environmental 

exposures were comparable among women who provided blood samples and the entire 

NHSII cohort (eTable 2). We assayed blood samples from 2,714 women for plasma AMH. 

Among them, we excluded 211 women who reported menopause or cancer before or in the 

2 years after blood collection and 64 women who used oral contraceptives or hormones 
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near blood collection. We also excluded three women with missing smoking status, one 

woman with missing exposures, and 13 women with extreme values in the exposure profile 

as determined by Mahalanobis distance. A total of 2,447 women were included in analyses.

Characteristics of the included participants are summarized in Table 1 and eTable 3. 

Briefly, the mean age at blood collection was 39.8 years and the mean plasma AMH 

level was 2.3 ng/mL. Most participants were white (90.2%). The average duration of 

exposure measurement (from cohort enrollment to the nearest questionnaire year prior to 

blood collection) was 7.1 years. We found moderate to high correlations within noise 

and light at night (Spearman correlation coefficients=0.66–0.85) and within hazardous air 

pollutants (Spearman correlation coefficients=0.59–0.90), and between these two clusters 

(Figure 1). NDVI was negatively correlated with all other exposures. For comparison to the 

environmental results, a 1 month increase in age was associated with a 0.91% (95%CI=0.80, 

1.0) lower AMH in our participants, and this association was stronger among women older 

than 40 (percentage reduction=1.5%, 95%CI=1.3, 1.8) than in younger women (percentage 

reduction =0.25%, 95%CI=−0.04, 0.54).

Single and multi-exposure models

After adjusting for potential confounders, we found that ambient benzene and formaldehyde 

were associated with lower AMH in single exposure models (Table 2). For example, one 

interquartile range width (IQRw) in benzene was associated with 5.5% (95%CIs= 1.0, 9.8) 

lower AMH and, for formaldehyde, with 6.1% (95%CIs=1.6, 10) lower AMH, equivalent 

to 6.0 and 6.7 months increase of age, respectively. However, we found no associations 

were found for the other exposures. Compared to single-exposure models, associations in the 

multi-exposure model often changed direction or magnitude and had inflated 95%CIs.

PCA

We selected the first four principal components from PCA, which explained 81.1% of the 

total variation in the 13 exposure measures. As shown in Figure 2, component 1 had high 

loadings for light at night and hazardous air pollutants and component 2 had high loadings 

for PM2.5–10 and UV. Component 3 had high loadings for noise and the last component 

had a high loading for PM2.5. NDVI had negative loadings for the first three components. 

The model using component scores showed an inverse association between AMH and 

component 1 (percentage change of AMH per 1 SD increase of the component score= 

−4.6%, 95%CIs= −9.0, −0.08), while no associations were found for the other components 

(percentage changes of AMH = −1.9 to 1.3%) (Table 3).

BKMR

Based on results from the single exposure models and PCA, we allowed BKMR to select 

from the exposures in the first component (i.e., light at night and hazardous air pollutants), 

as well as NDVI (as it loaded high on the first component) for inclusion. The remaining 

exposure measures were added as covariates. The results indicated moderate support for 

inclusion of NDVI and the group of hazardous air pollutants (group posterior inclusion 

probabilities=0.25 and 0.11, respectively) but not for LAN (group posterior inclusion 

probability<0.01) (Table S3). Within the group of hazardous air pollutants, formaldehyde 
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had the highest conditional posterior inclusion probability (0.83) followed by benzene 

(0.16), while the other pollutants were not selected. Greenness showed a non-linear 

exposure–response relationship with AMH, in which NDVI was positively associated with 

AMH at lower levels but then the association became negative as NDVI continued to 

increase (Figure 3A). Formaldehyde and benzene both showed decreasing trends with AMH 

and the curve was steeper for high levels of formaldehyde (Figure 3A). We observed 

no obvious effect modification among the exposures. Overall, simultaneous exposure to 

greenness, light at night, and hazardous air pollutants was inversely associated with AMH 

(Figure 3B). For example, the AMH level was 8.2% lower (95%CIs= 0.72, 15) when fixing 

all exposures at the 75th percentile compared to the median, which was equivalent to a 

9-month increase in age.

Secondary analyses

The observed associations in the full sample were generally only apparent among women 

older than 40. As shown in Table 4, the single exposure models showed that one IQRw 

increase of benzene was associated with 8.4% lower AMH (95%CIs=2.4, 14) and, in 

formaldehyde, 9.8% lower AMH (95%CIs=4.0, 15) among women above 40. 1,3-butadiene 

was also associated with lower AMH in these women (percentage change per 1 IQRw 

increase: −5.8%, 95%CIs= −9.9, −1.4). Meanwhile, benzene was associated with a −2.2% 

(95%CIs=−8.4, 4.3), formaldehyde with −1.9% (95%CIs=−8.0, 4.6), and 1,3-butadiene 

with1.4% (95%CIs=−3.2, 6.3) changes in AMH, respectively, among those under age 40. 

Similarly, component 1 was negatively associated with AMH for women above age 40 

(percentage change per 1 SD increase in the component score= −9.3%, 95%CI= −15, −3.4) 

among older women while no associations were found for women under age 40 (0.20%, 

95%CIs = −6.1, 7.0).

BKMR models in women over 40 selected surrounding greenness, formaldehyde, and 

benzene with comparable overall effect estimates as the main model, while no exposures 

were selected and no overall associations of the exposures with AMH were detected for 

younger women (eTable 4, Figure 4). No effect modification was evident between urban and 

rural areas in the single exposure or component score models, although formaldehyde was 

associated with lower AMH among women from urban areas (Table 4). BKMR showed a 

negative overall association of the exposures with AMH among women in the urban areas, 

but no associations were found for women in rural areas (eFigure 3).

Sensitivity analyses in models additionally adjusted for oral contraceptive use, 

breastfeeding, and questionnaire cycles and in models excluding women who reported 

menopause, hormone related cancer in 5 years after blood draw, and had irregular menstrual 

cycles in adulthood showed similar results (eTable 5, eFigure 4). Results were also robust 

when we repeated these sensitivity analyses in women above 40 (eTable 6 and eFigure 

5). The estimated associations were similar, albeit slightly attenuated, after restricting to 

participants whose exposure Mahalanoibis distance within 1 and 2 SDs from the mean and 

removing participants whose exposure levels were above or below 6 SDs from the mean 

(data not shown).
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Discussion

In this study, we examined associations of exposure to different environmental factors with 

plasma AMH levels using different mixture methods. Results from the single exposure 

models, PCA, and BKMR consistently suggested that ambient formaldehyde and benzene 

were associated with lower AMH. These associations were mainly evident among women 

older than 40 and were robust in sensitivity analyses. In general, our results showed that, 

of all the environmental exposures considered, ambient formaldehyde and benzene may be 

important factors related to female reproductive aging.

Ambient formaldehyde is mainly emitted by power plants, manufacturing facilities, 

incinerators, and motor vehicle exhaust, while ambient benzene is mainly from coal and 

oil combustion, motor vehicle exhaust, and evaporation from gasoline stations. Although 

both chemicals have been recognized as human carcinogens, evidence of their reproductive 

effects is still limited 39,40. Several studies have suggested that occupational exposure 

to formaldehyde and benzene could impair ovarian function and fertility. A study of 

wood workers found women with high formaldehyde exposure (mean concentration = 

0.40 mg/m3) had longer time to pregnancy than the unexposed controls 21. One study 

showed among 70 women working in day care centers with formaldehyde-releasing 

building materials (mean exposure = 0.43 mg/m3), approximately 35% reported menstrual 

irregularities, while none in the control group (mean exposure = 0.08 mg/m3) reported 

the outcome 19. Other studies suggested women who were exposed to organic solvents 

containing formaldehyde and/or benzene had higher risks of menstrual irregularity, 

abnormal menstrual cycles or oligomenorrhea, and reduced fertility 18,20,22,41. However, 

these studies were conducted in occupational settings, where exposure levels were much 

higher (~250 times) than in the ambient environment. In addition, some studies only 

examined exposure to a mixture of chemicals and thus associations with individual 

chemicals were not clear. In the current study, we used mixture methods and found that 

formaldehyde and benzene were associated with lower AMH, a marker of ovarian reserve, 

even at low exposure levels found in the ambient environment.

Factors that are associated with oocyte or follicular survival, or can accelerate follicle 

depletion may affect AMH levels. Genotoxicity and oxidative stress were the possible 

main pathways mediating cellular damage and apoptosis from formaldehyde and benzene 

exposures, as suggested in an animal study 42. Two in vitro studies found chromosomal 

aberrations and DNA damage in ovary cells treated with formaldehyde and benzene 

metabolites 43,44. Animal studies suggested formaldehyde and benzene can stimulate 

reactive oxygen species production in reproductive tissue 42,44,45. Evidence in humans 

also showed increased markers of genotoxicity and oxidative stress with exposure to these 

compounds 46–53. Animal studies have shown formaldehyde and benzene activate the 

hypothalamus-pituitary-adrenal (HPA) axis, which can alter neuroendocrine homeostasis 

and suppress the hypothalamus-pituitary-gonad axis, leading to ovulatory dysfunction 
54–56. Other animal studies also showed that elevated glucocorticoids, a marker of HPA 

activation, may impair oocyte developmental potential and competence, eventually resulting 

in anovulation and excess follicle atresia 57–60.
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Interestingly, BKMR suggested a non-linear relationship between NDVI and AMH while 

no associations were found for greenness in single or multi-exposure models and PCA. 

However, this finding may be attributable to overfitting, which can be difficult to diagnose 

and prevent in BKMR. Therefore, this result should be interpreted with caution. Although 

our previous analysis in the NHSII suggested PM was modestly associated with earlier 

menopause 15, we observed no associations between PM2.5–10 or PM2.5 and AMH. So far, 

two studies reported inconsistent results for the association of PM with AMH 12,14. Such 

inconsistency may be due to differences in the study population, exposure levels and time 

windows of exposures examined, and geographic characteristics.

The observed associations in the main analysis were found in women above age 40, while 

there was less evidence of associations among younger women. These findings suggest 

that women in the late reproductive and peri-menopausal stage may be more vulnerable to 

external exposures. All primordial oocytes are formed at the fetal stage and can stay resting 

in the ovary for more than 40 years, exposed to both the internal and external stressors 
61–63. It has been documented that oocytes have more chromosomal abnormality and cellular 

dysfunction with age, leading to greater vulnerability to any additional damage from the 

environment 63. Additionally, as follicle reserve has been greatly reduced by age 40, any 

excess follicle loss at this stage can be reflected by greater relative change in AMH 61,62.

A number of mixture analysis methods have been proposed and it is recommended to 

verify findings using different methods 64. Although the single exposure model, PCA, and 

BKMR consistently suggested that formaldehyde and benzene were associated with lower 

AMH, these results should be interpreted differently. Estimates from single-exposure models 

can inform the associations of each exposure with AMH but were subject to residual 

confounding by other exposures. Multi-exposure model can estimate the associations while 

holding all other exposures constant. However, collinearity among exposures can lead 

to unstable estimates and wide confidence intervals. PCA can avoid multicollinearity 

by projecting the exposures into fewer independent components, but the associations of 

individual exposure with the outcome cannot be estimated. Meanwhile, BKMR is flexible 

for selecting the most important exposures associated with the outcome and non-linear 

relationships, which the other methods may have limited ability to address. However, we 

only included exposures in the first component for BKMR selection to reduce the impact 

of noise by other exposures. Therefore, our BKMR results should be interpreted differently 

from linear models and PCA, as the most important exposures were selected from a subset 

of exposures and the individual and joint associations of exposures were estimated by 

holding the other exposures (i.e., those not included for selection) constant in addition to the 

covariates.

This study had notable limitations on exposure measurement. First, we relied on ambient 

measures of exposure at the residential address, which could lead to exposure measurement 

error. For example, these measures did not consider participant’s time spent at home, nor did 

they capture the use of mitigations. NDVI from satellite image had limited ability capturing 

the quality, type, accessibility, and actual interactions of the participants with greenspace. 

Because formaldehyde has also been suggested to be an indoor air pollutant, the ambient 

formaldehyde measure may not fully represent the actual personal exposure level for our 
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participants. The EPA has validated the 1999 NATA estimates with monitoring data and 

showed that benzene can be both over- and underestimated while formaldehyde was largely 

underestimated 65. However, as these air toxins are rarely monitored across the country, we 

had to rely on NATA to estimate exposure to hazardous air pollutants in this study. There 

were also temporal mismatches for noise, light at night, and hazardous air pollutants due 

to limited data availability. Although part of the exposure measurement error was likely 

non-differential, it can be difficult to quantify the overall impact of exposure measurement 

error due to the lack of monitoring data and the use of complex statistical modeling such as 

BKMR.

Other limitations include that we only controlled for a limited number of potential 

confounders in our models, so residual confounding is possible. However, our sensitivity 

analysis adjusting for additional covariates showed that our models are likely robust to 

residual confounding. Most participants were selected from nested case–control studies 

in NHSII, Therefore, collider stratification bias is possible. However, all controls were 

selected based on matching for demographic and health factors such as age, pregnancy, 

and breastfeeding, and the environmental exposure levels were comparable between the 

cases and controls (eTable 7). Plasma AMH levels were only measured once in our 

participants. Therefore, we cannot capture the AMH trajectory to reflect ovarian aging. 

Long-term stability of AMH in plasma samples is unclear, although previous studies 

suggested that plasma or serum AMH was stable under −80°C for 5–7 days 66. In addition, 

due to the limited exposure data available in NHSII, we did not consider other exposures 

such as endocrine disruptors and occupational exposures. Finally, our results had limited 

generalizability to the entire NHSII cohort and the general US women population as we 

oversampled women with breast cancer and early menopause in the study population.

Nevertheless, compared to previous studies, our study has a number of strengths. The 

sample size is relatively large. Unlike most other sex steroids, circulating AMH level was 

stable across menstrual cycle and so the timing of blood draw in menstrual cycle may 

not affect our outcome measurement 67. In addition to examining the associations of each 

single exposure with AMH, we conducted mixture analyses to characterize patterns of 

exposure among these environmental factors, estimate the overall and individual association 

of these exposures with AMH, and identify the key exposures. Although these methods may 

be used for different study questions 68, they consistently showed inverse associations of 

ambient hazardous air pollutants, among which formaldehyde and benzene were the most 

important exposures. Finally, this availability of nearly 10 years of environmental exposure 

data allowed us to examine the impacts of long-term exposures during adulthood.

Conclusion

In this mixture analysis, we comprehensively examined associations of multiple 

environmental exposures with AMH, a marker of reproductive aging, in a subset of NHSII 

participants. Results from the single and multiple exposure models, PCA, and BKMR 

consistently showed inverse associations of ambient formaldehyde and benzene with AMH. 

These observed associations were mainly found in women above age 40. Our results 

are consistent with the hypothesis that ambient formaldehyde and benzene can accelerate 
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ovarian aging, and that women in the late reproductive or perimenopausal stage are more 

susceptible.
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Figure 1. Spearman correlation coefficients among measures of surrounding greenness, 
particulate air pollution, noise, LAN, UV, and HAPs
The shade of each ellipse on the upper panel indicates the absolute value of the correlation 

coefficient. When an ellipse is leaning towards the left, this suggests the correlation between 

two variables are negative; when an ellipse is leaning towards the right, this suggests the 

correlation between two variables are positive.

Abbreviations: NDVI, normalized difference vegetation index; PM10–2.5, particulate matter 

with an aerodynamic diameters between 10 to 2.5 microns; PM2.5, particulate matter with an 

aerodynamic diameters less than or equal to 2.5 microns; L50, median anthropogenic noise; 

LAN, light at night; UV, ultraviolet radiation; HAPs, hazardous air pollutants.
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Figure 2. Component loadings for measures of surrounding greenness, particulate air pollution, 
noise, LAN, UV, and HAPs
The direction of the triangles denotes the direction of the loading (upward: positive, 

downward: negative).

Abbreviations: NDVI, normalized difference vegetation index; PM10–2.5, particulate matter 

with an aerodynamic diameters between 10 to 2.5 microns; PM2.5, particulate matter with an 

aerodynamic diameters less than or equal to 2.5 microns; L50, median anthropogenic noise; 

LAN, light at night; UV, ultraviolet radiation; HAPs, hazardous air pollutants.
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Figure 3. Exposure–response curve for surrounding greenness (NDVI), benzene, and 
formaldehyde with AMH (A) and overall association (percentage change and 95% credible 
intervals) of the exposure to environmental factors with AMH (B).
Abbreviations: NDVI, normalized difference vegetation index; AMH, anti-Müllerian 

hormone.

All exposures in the mixture matrix were standardized. All models were adjusted for age 

(in natural cubic spline with 3 degrees of freedom), body mass index, race–ethnicity, parity, 

spouse education status, pre-tax household income, Census tract median income, smoking, 

and other environmental exposures (PM10–2.5, PM2.5, daytime L50, nighttime L50, and UV).

Overall association was computed by comparing when all exposures are fixed at different 

quantiles to the median.
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Figure 4. Overall association (percentage change and 95% credible intervals) of the exposures 
with AMH among women under (A) and above age 40 (B).
Abbreviations: NDVI, normalized difference vegetation index; AMH, anti-Müllerian 

hormone.

All exposures in the mixture matrix were standardized. All models were adjusted for 

age (in natural cubic spline with 3 degrees of freedom), body mass index, Census tract 

median income, smoking, and other environmental exposures (PM10–2.5, PM2.5, daytime 

L50, nighttime L50, and UV).

Overall association was computed by comparing when all exposures are fixed at different 

quantiles to the median.
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Table 1

Participant characteristics at time of blood collection among 2,447 women in the Nurses’ Health Study II and 

by substudies 
a

mean ± SD or %

N 2,447

Age at blood collection, y (mean±SD) 40±4.0

Plasma AMH (ng/mL, mean±SD) 
b 2.3±2.6

Smoking status, %

Never smoked 72

Ever smoked 21

Currently smoke 7

Body mass index, kg/m2 (mean±SD) 25±5.2

Race/ethnicity, %

White 90

Black 4

Others 6

Parity, %

Nulliparous 19

Parous 81

History of oral contraceptive use,%

Never used 19

Ever used 81

History of breastfeeding, % Nulliparous or breastfed < 1 month 29

1–12 months 26

>12 months 45

Census tract median income, $1,000 (mean±SD) 65±24

Census tract population density, 1000 people per km2 (mean±SD) 3.8±11

Spouse education level, %

High school or less 17

Some college 44

Graduate school 28

Missing 10

Household pre-tax income, %

< $50,000 12

$50,000 – $74,999 23

$75,000 – $99,999 19

≥$100,000 30

Missing 16

Environmental exposures, (mean±SD) 
c

NDVI 0.5±0.1

PM10–2.5 (μg/m3) 11±4.6
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mean ± SD or %

PM2.5 (μg/m3) 15±3.0

Daytime L50 (dB) 46±4.0

Nighttime L50 (dB) 43±3.2

LAN (nW/cm2/sr) 31±28

UV (nW/m2) 189±27

1,3-Butadiene (μg/m3) 0.1±0.1

Benzene (μg/m3) 1.3±0.7

Diesel PM (μg/m3) 1.1±0.9

Formaldehyde (μg/m3) 1.5±0.8

Methylene chloride (μg/m3) 0.6±0.5

Tetrachloroethylene (μg/m3) 0.3±0.4

Abbreviations: SD, standard deviation; AMH, anti-Müllerian hormone; NDVI, normalized difference vegetation index; PM10–2.5, particulate 

matter with an aerodynamic diameters between 10 to 2.5 microns; PM2.5, particulate matter with an aerodynamic diameters less than or equal to 

2.5 microns; L50, median anthropogenic noise; LAN, light at night; UV, ultraviolet radiation.

a
All values were age-standardized except for age at blood collection and plasma AMH levels. Values were mean±SD for continuous variables and 

percentages for categorical variables.

b
Calibrated across different batches.

c
Calculated as cumulative average from 1989 to the year of blood collection.
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Table 2

Percentage change (95% confidence intervals) in AMH with an interquartile range increase of each exposure 

in single and multi-exposure models

IQRw Single exposure 
a

Multi-exposure 
a

NDVI 0.14 2.8 (−3.1, 9.0) −5.2 (−15, 5.7)

PM10–2.5 (μg/m3) 5.2 −3.2 (−8.0, 1.8) −5.6 (−12, 1.6)

PM2.5 (μg/m3) 4.2 1.4 (−4.9, 8.1) 9.6 (0.66, 19)

Daytime L50 (dB) 4.6 −2.2 (−7.2, 3.0) −0.90 (−12, 12)

Nighttime L50 (dB) 3.5 −1.7 (−6.4, 3.3) −0.8 (−9.8, 9.1)

LAN (nW/cm2/sr) 34 −2.9 (−8.2, 2.6) 4.1 (−6.0, 15)

UV (nW/m2) 33 −1.8 (−7.0, 3.6) 3.4 (−5.3, 12)

1,3-Butadiene (μg/m3) 0.10 −2.4 (−5.5, 0.92) 0.95 (−4.0, 6.2)

Benzene (μg/m3) 0.67 −5.5 (−9.8, −1.0) −1.0 (−14, 14)

Diesel PM (μg/m3) 0.61 −2.6 (−5.4, 0.33) −0.85 (−5.4, 3.9)

Formaldehyde (μg/m3) 0.77 −6.1 (−10, −1.6) −16 (−27, −2.1)

Methylene chloride (μg/m3) 0.33 −0.85 (−3.7, 2.1) 1.7 (−2.0, 5.6)

Tetrachloroethylene (μg/m3) 0.20 −1.4 (−3.6 0.94) 2.5 (−2.1, 7.4)

Abbreviations: AMH, anti-Müllerian hormone; NDVI, normalized difference vegetation index; PM10–2.5, particulate matter with an aerodynamic 

diameters between 10 to 2.5 microns; PM2.5, particulate matter with an aerodynamic diameters less than or equal to 2.5 microns; L50, median 

anthropogenic noise; LAN, light at night; UV, ultraviolet radiation; IQRw, interquartile range width.

a
Adjusting for age (in natural cubic spline with 3 degrees of freedom), body mass index, race/ethnicity, parity, spouse education status, pre-tax 

household income, Census tract median income, batches, and smoking.
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Table 3

Percentage change (95% confidence intervals) in AMH with 1 SD increase of component scores

High loading exposures % change (95%CI) 
a

Component 1 LAN, 1,3-butadeine, benzene, diesel particulate matter, formaldehyde, methylene chloride, and 
tetrachloroethylene −4.6 (−9.0, −0.08)

Component 2 NDVI (negative), PM10–2.5, and UV −1.9 (−6.2, 2.6)

Component 3 Daytime and nighttime L50 −0.76 (−5.1, 3.8)

Component 4 PM2.5 1.3 (−3.1, 5.8)

Abbreviations: AMH, anti-Müllerian hormone; PC, principle components; NDVI, normalized difference vegetation index; PM10–2.5, particulate 

matter with an aerodynamic diameters between 10 to 2.5 microns; PM2.5, particulate matter with an aerodynamic diameters less than or equal to 

2.5 microns; L50, median anthropogenic noise; LAN, light at night; UV, ultraviolet radiation.

a
Adjusting for age (in natural cubic spline with 3 degrees of freedom), body mass index, race/ethnicity, parity, spouse education status, pre-tax 

household income, Census tract median income, batches, smoking, and scores for all other components.
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