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A B S T R A C T

Genome scale modeling (GSM) predicts the performance of microbial workhorses and helps identify
beneficial  gene  targets.  GSM  integrated  with  intracellular  flux  dynamics,  omics,  and
thermodynamics have shown re- markable progress in both elucidating complex cellular phenomena
and computational strain design (CSD). Nonetheless, these models still show high uncertainty due to
a poor understanding of innate pathway regula- tions, metabolic burdens, and other factors (such as
stress  tolerance  and  metabolite  channeling).  Besides,  the  engineered  hosts  may  have  genetic
mutations  or  non-genetic  variations  in  bioreactor  conditions  and  thus  CSD  rarely  foresees
fermentation rate and titer. Metabolic models play important role in design-build-test-learn cycles
for strain improvement, and machine learning (ML) may provide a viable complementary approach
for driving strain design and deciphering cellular processes. In order to develop quality ML models,
knowledge  engineering  leverages  and standardizes  the  wealth  of  information in  literature  (e.g.,
genomic/phenomic  data,  synthetic  biology  strategies,  and  bioprocess  variables).  Data  driven
frameworks can offer new constraints for mechanistic models to describe cellular regulations, to
design  pathways,  to  search  gene  targets,  and  to  estimate  fermentation  titer/rate/yield  under
specified growth conditions (e.g.,  mixing,  nutrients,  and O2). This review highlights the scope of
information collections, database constructions, and machine learning techniques  (such  as  deep
learning and transfer learning), which may facilitate “Learn and Design” for strain development.

1. Introduction

Although synthetic biology has enabled powerful genome
editing,  construction  of  industrial  viable  hosts  is  still
challenging  (Chubukov   et  al.,  2016).  Traditional  strain
designs only look into the biosynthesis pathways followed by
push-pull-power-block  (3PB)   principles   (Liu  et  al.,  2017).
Although  these  intuitive  approaches  resolve  obvious
bottlenecks  in  upstream  pathways,  remove  competing
reactions,  or  in-  crease  cofactor  availability,  they  do  not
guarantee high productivity. Therefore, modern CSD relies on
stoichiometric  models  (e.g.,  genome  scale  models)  and
reaction  thermodynamic  information  that  search  broader
gene targets and predicts advantageous mutants. Meanwhile,
omics  data  such  as  gene expressions,  proteomics  and  13C-
metabolic flux  analysis  are  commonly  leveraged  to  obtain
insights into multiple  levels  of biological information (Ishii et
al.,  2007).  More  recent  efforts  have  attempted  to  capture
metabolic dynamics and decipher cellular

regulatory mechanisms. After resolving parameter estimation
and in- terpretability coupled with computational intensity of
large  dynamic  systems,  these  mechanistic  models  can
significantly improve CSD ap- plications.

Unlike typical models encoding fundamental laws (such as
mass and energy balances), data driven algorithms (machine
learning,  ML)  make  predictions  by  deriving  patterns  from
training sets comprising large amounts of experimental data.
Since  these  models  are  black  boxes  de-  riving  predictive
capabilities purely from experimental  data, simula- tions do
not  require  a  complete  mechanistic  understanding  of  cell
physiologies.  Data  mining,  genome modeling,  and big  data
techniques can leverage complex genetics, fermentation data
and omics results for highlighting scenarios (such as different
promoter strengths and  in-  duction characteristics) that may
maximally yield metabolic outputs (Chen, 2016;  Monk et al.,
2016;  Utrilla et al., 2016). Moreover,  with  rapid increase of
published metabolic engineering studies and recent
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Fig. 1. Pathway-level strain design strategies: Lycopene production as
a  case  study.  To  improve  production  in  yeast,  modifications  are
required  including:  (1)  “Push”  carbon  flows  towards  the  acetyl-CoA
precursor,  in  which several  acetyl-  CoA routes  (including  acetyl-CoA
synthase and citrate lyase reactions).  (2)  “Pull” carbon flow towards
lycopene (i.e., overexpress mevalonate pathways).
(3) “Block”  fluxes  competing  for  mevalonate  pathways  (e.g.,  lipid

synthesis);
(4) “Power” cell  metabolism by engineering redox cofactor balances
and  pro-  moting ATP production (i.e., increase oxidative
phosphorylation).

advances in  artificial  intelligence research,  the use of  data
driven  ap-  proaches  may  facilitate  the  understanding  of
cellular processes and assist mechanistic modeling for quality
CSD.

2. Advances and limitations in computational strain design

Strain design requires an understanding of cellular
metabolism and regulation, followed by identifications of

genetic strategies to repro- gram cell metabolism for useful
ends. In the past, strain improvement was achieved via

random mutations or overexpression of a single bio- synthesis
gene. With the advance of genome sequencing and synthetic
biology, targeted modifications of multiple genes or pathways

have become commonplace to redirect carbon flows to desired
products (Lee and Kim, 2015; Parekh et al., 2000). 3PB

principles have been in- tuitively used to manipulate cell
performance. For example (Fig. 1), common strategies to

optimize a yeast strain for the de novo production of lycopene
include PUSH (increase the supply of the precursor cyto-
plasmic acetyl-CoA), PULL (improve enzyme activities for
lycopene synthesis), POWER (enhance ATP and NAD(P)H

generation), and BLOCK (inhibit competing pathways). 3PB are
not always effective because they may induce new bottlenecks

after each genetic mod- ification, and thus design-build-test-
learning cycle has to be performed. For an engineered host,

many upstream pathways may place rate- limiting steps. Thus,
genome-wide modifications must be performed after creation

of proof-of-concept strains. In this context, GSM is useful to
predict mutant physiologies, in which cell processes are

inherently constrained by steady-state mass balances (i.e., flux
balance analysis, FBA) (Orth et al., 2010). Such

underdetermined systems are solved using objective functions
(Schuetz et al., 2007). For example, biomass growth objective

has shown decent accuracy to describe cultures in carbon
limited conditions (Fong and Palsson, 2004). Marriage between

GSM and optimization frameworks (e.g., OptForce and
OptKnock) can search gene targets throughout metabolic

networks (Burgard et al., 2003; Burgard et al., 2004; Pharkya
and Maranas, 2006; Ranganathan et al., 2010). Typical CSD
has the following layers: (1) construct genome scale models

for the host, (2) search appropriate enzyme/ pathway targets,
and (3) predict the behavior of the cell under given genetic

and growth conditions. CSD aids engineers with a quantitative

analysis of metabolic network and suggests a starting-point or a
prior- itized intervention. It is particularly useful for

combinatorial gene



manipulations when the host production is limited by both
carbon re- courses and energy molecules (ATP and NADPH).
In  a  case  study,  a  CiED  (cipher  of  evolutionary  design)
framework  successfully  identified  non-intuitive genetic
perturbations that resulted in optimal phenotypes  for  the
production of flavanone (Fowler et al., 2009). Moreover, Opt-
Force  algorithm  has  been  successfully  used  to  identify
multiple gene targets in the pentose phosphate pathway for
photosynthetic produc- tion of isoprenoids by cyanobacteria
(Lin et al., 2017).

CSD paradigms with  flux optimization  theory  still  show
high  un-  certainty due to cellular regulations and nonlinear
metabolic  responses  to  multiple  genetic  modifications.
Besides, a typical GSM does not in- clude kinetic parameters,
regulatory  factors  (such  as  transcriptional  factor), or non-
enzyme factors (e.g., product tolerance, cell stresses, and
genetic  stability).  Particularly,  stoichiometry-only  CSD
procedures  cannot  capture  the  effect  of  metabolite
concentrations and their feed- back inhibitions. Current CSD
still  has  poor  capability  to  predict  out-  come of pathway
overexpression or identify rate-limiting enzymes. New
modeling tools leverage omics, kinetic, and thermodynamic
informa-  tion to  improve both metabolic  insights  and CSD
applications   (Long  et  al.,  2015).  First,  COBRA combined
with  transcriptomics  and  pro-  teomics  data  has  shown
successes  to  predict  strain  performance  based  on the
relationship between gene/protein profiles and the fluxome
(e.g.  tFBA  (van  Berlo  et  al.,  2011),  GIMME  (Becker  and
Palsson, 2008), iMAT (Zur et al., 2010), ME-Models (O'Brien
et al., 2013), and E-FLUX (Colijn et al., 2009)). Using gene
data from high throughput sequencing tech- nique, GSM can
not only narrow flux intervals,  but also can identify genes
that likely regulate microbial fluxes (Machado and Herrgård,
2014).  Second,  thermodynamics  has been used to  reduce
modeling bias/uncertainty, including thermodynamics-based
metabolic  balance  analysis  (Henry  et  al.,  2007),  network-
embedded thermodynamic ana- lysis (Kümmel et al., 2006),
and  energy  balance  analysis  (Beard  et  al., 2002).  Third,
combining GSM with kinetic modeling has elucidated useful
insights into cellular dynamics. For example, a genome-scale
E. coli  model  k-ecoli457 (containing 457 model  reactions)
can describe dynamic flux data for multiple mutant strains
as well as substrate-level regulatory interactions (Khodayari
and Maranas, 2016). Similarly, k- OptForce software enables
identification of a minimal set of interven- tions, comprised
of  both  enzymatic  kinetics  and  reaction  flux  changes,  to
achieve the overproduction of the target product. Such an
approach  can  find  non-intuitive  interventions  aiming  at
alleviating metabolite inhibition of key enzymes (Chowdhury
et al., 2014).

The CSD still faces hurdles: cellular productivity is always
much  lower  than model  predictions.  In general,  increasing
flux through a reaction is much more complicated to achieve
than  decreasing  or  eliminating  it.  Besides  transcriptional
regulations, several hidden  fac-  tors play roles in metabolic
re-programming that is difficult to be in- cluded in GSM (Fig.
2). First, enzyme expressions and product synthesis
consume  cellular  NAD(P)H,  ATP  and  building  blocks.
Balancing  be-  tween carbon and energy fluxes can be
complex if biosynthesis requires ATP and NAD(P)H. To reveal
metabolic burdens from engineered pathways (Ceroni et al.,
2015),  both  experiments  and  models  have  to be  used  to
quantify  the  tradeoffs from synthetic  biology components.
Second, bio-productions can pose stresses or membrane
damages on the  host,  which can further  increase the ATP
maintenance loss or other cellular stress responses (Hoehler
and  Jørgensen,  2013).  Third,  pathway  engineering  may
induce metabolite changes within central metabolism, which
drive flux adaptions at substrate level (such as  Mi-  chaelis-
Menten  kinetics,  allosteric  or   feedback   regulations)
(Gerosa  et al., 2015;  Tummler et al., 2014). For example,
cellular ATP/ADP/ AMP ratio strongly affects sugar catabolic
rates.  Fourth,  the  engineered  hosts  can  be  unstable  in
bioreactor  conditions  due  to  genetic  mutations  and  non-

genetic cell-to-cell variations. Cell behavior or genetic stability
is closely related to nutrient supplies, bioreactor modes, and
fermen- tation duration, or other process factors, which are
often  ignored  in  a  modeling  framework.  Fifth,  synthetic
genetic  components  may  have  varied outcomes after
introducing into a host. Even the order of genes



Fig. 2. Basic schematic of microbial metabolism and strain design showing the interplay  between carbon and energy processes  subject to
regulation/influential    factors (highlighted in yellow boxes). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. Rapid increase of metabolic engineering data (information was based on PubMed key words search
on Jan 25, 2018).

in  a  pathway  may  change  productivity  of  a  heterologous
pathway  due  to  unknown  expression  balance  of  cascade
enzymes  (Nishizaki  et  al., 2007).  Finally,  innate  enzyme
channels  (i.e.,  co-localize  cascade  en-  zymes  to  shuttle
metabolites)  is  another  hidden  factor  that  may con-  found
pathway regulations  (Poshyvailo  et  al.,  2017).  In  summary,
metabolic  pathways  are  orchestrated  by  overlapping
regulatory  me-  chanisms,  affecting  thousands  of  molecular
components. Modeling of genetic inputs and their nontrivial
interactions/tradeoffs,  as  a  whole,  presents  a  formidable
challenge.

3. Machine learning and knowledge engineering

Currently, genomics data at different cellular levels are still
in-  sufficient  to  determine  holistic   metabolic   regulations
(Kochanowski et  al.,  2013).  Prediction  of  fluxes  based  on
metabolite  concentrations  or  enzyme  abundance  is  still
inaccessible for the majority of metabolic reactions (Gerosa et
al.,  2015;  Hackett  et  al.,  2016).  Due to  these  lim-  itations,
data driven approaches may be used in conjunction to  me-
chanistic models to simulate complex cellular behavior by
transforming both accountable and unaccountable influential
variables  (Fig.  2).  Machine  learning  (ML)  is  a  branch  of
artificial intelligence that train computers to perform tasks by
gaining  the  capability  from ‘experience’  (data) rather than

being specifically programmed to do so. ML studies



are broadly classified into supervised, unsupervised and
reinforced learning. In supervised learning, the computer
develops an input-output model from sets of inputs and

‘correct’ (i.e., labeled) outputs. In un- supervised learning
(e.g., cluster analysis), hidden patterns and struc- tures can
be uncovered from the data. ML has many applications such

as finance, personalized medicine, cancer diagnosis,
computer vision, and energy forecasting (Jordan and

Mitchell, 2015; Libbrecht and Noble, 2015). ML techniques
have gained widespread use in compu- tational biology

(Razavian, 2004;  Sommer  and  Gerlich,  2013;  Tarca et al.,
2007). Traditional applications include analysis of gene and
protein networks. More recent applications have sought to

guide design of microbial cell factories. For example, a PCA-
based (Principal Com- ponent Analysis) framework improved

yield using fermentation, gene expression and proteomics
datasets (Alonso-Gutierrez et al., 2015). Other studies have

elucidated useful insights into cellular metabolism by
combining ML with metabolic modeling. For example,

knowledge about kinetic parameters or metabolite
concentrations involves high uncertainty. Through the use

of ML principles (e.g., support vector machine),
researchers can obtain a narrow range of kinetic parameters

or metabolite concentrations (Andreozzi et al., 2016; Yang
et al., 2017).

Rapid growth of synthetic biology in the past decade has
generated  a  large  amount  of  literature  and  experimental
databases (Fig. 3). However, every case study uses different
conditions and the number of



variables is very large. In the ML field, better organized data
always  trump  better  algorithms.  Thus,  it  is  necessary  to
standardize the data- sets and build databases by extracting
and clustering published  data  (i.e.,  Knowledge Engineering)
(Sowa, 2000;  Studer et al., 1998).  To date, there are many
databases  that  focus  on  documenting  known  knowledge
about cellular networks (genomic, transcriptomic, meta- bolic,
and regulatory networks) and the interactions between them
(Jing et al., 2014).  These  include  KEGG  (Kanehisa,  2002;
Kanehisa  et  al.,  2016),  BiGG  (King  et  al.,  2016),  Rhea
(Alcántara  et  al.,  2011),  CecaFDB  (Zhang  et  al.,  2014),
MetaCyc (Caspi et al., 2016), and BioCyc (Karp et al., 2017).
While such databases can potentially provide con- siderable
insight into cellular metabolism and its regulation, they have
limitations  since  they  do  not  contain  information  about
performance of engineered strains (yield, titer, and production
rate) nor parameters related to bioprocess conditions (such as
reactor  configurations  and  growth  medium).  Recently,  a
number of  efforts  have focused on  cur-  ating experimental
metabolic  information  from published  literature  (Winkler  et
al.,  2015;  Wu  et  al.,  2016).  Frameworks  like  Experimental
Data Depot (EDD) (Morrell et al., 2017), LASER (Winkler et al.,
2015), and OMERO (Allan et al., 2012) have been developed
to  standardize  documentation  and  integration  of  biological
experimental  information.  Frameworks  for  specific
microorganisms have also been developed (Maarleveld et al.,
2014).  These  frameworks  also  enable  basic  data  vi-
sualization  as  well  as  a  suite  of  tools  for  data
manipulation/analyses. Other frameworks like KBase (Arkin et
al.,  2016)  focus  on  integrating  not  only  data  but
computational  methods for enhanced predictive  fi-  delity  of
biological functions.

Knowledge databases will benefit data standardization and
pave the  way  for  artificial  intelligence  to  boost  CSD  and
automation  of  strain  development.  Detailed  information
(including fermentation process variables, omics data, genetic
tools or components) is valuable for ML to make predictions.
Frameworks like LASER and EDD provide tem- plates for such
information  to  be  gathered  and  standardized.  Typical
mechanistic  models  need  to  simplify  complex  biological
systems, while ML can estimate strain physiological responses
under diverse biopro- cess (such as nutrients and bio-reactor
modes)  and  genetic  factors  (e.g.,  metabolic burdens from
gene overexpression or other synthetic biology parts) without
understanding  cellular  processes.  Particularly,  the  deep
learning  (DL),  a  recent  powerful  class  of  ML  techniques,
capable of handling massive datasets and mining complicated
patterns hidden  in  data,  will  prove useful  towards this  end
(Angermueller  et  al.,  2016).  Nonetheless,  DL  algorithms
require much larger amounts of quality data than traditional
ML approaches, which can be practical only  after  significant
progresses in knowledge engineering.

4. Paradigms of machine learning techniques in
bio- manufacturing

Both bioprocessing and systems biology have widely
employed ML,  which  can  play  an  important  role  in  design-
build-test-learn  cycle  for  strain  improvement  and
fermentation optimizations (Fig. 4).  Table  1 gives published
ML applications to predict metabolic outcomes. Most of these
applications  follow  a  similar  workflow:  (1)  identification  of
output variables (like yield, titer, or rate); (2) iterative feature
selection to identify input factors that are most influential on
performance me- trics; (3) model selection depending on data
availability; and (4) model training and validation. Data driven
model provide complementary information to GSM. The later
focuses on predicting biosynthesis yields,  while  production
rates and titers are determined by the synergistic impact of
product  yields,  bioprocesses,  strain  tolerance,  and  biomass
growth. ML could take into account the genetic design of the
microbial host system and the “suboptimal” conditions under
which the fermen- tation process occurs. The hybrid of ML-
GSM may  identify  effective  metabolic  strategies  or  targets

and  qualitatively  benchmark  various  performances  of
engineered production platforms.

Fig. 4 shows possible paradigms for utilizing data-driven
techniques



in systems metabolic engineering. The earlier applications of
ML  in  fermentation  processes  usually  involved  data  from
bioprocess  studies.  These  studies  aim  to  link  influential
factors (e.g.,  bioreactor  conditions)  to  cell  productivity  via
linear/nonlinear  regressions  or  neural  network  (paradigm
#1).  Most  of  the applications  listed in  Table 1 are of this
kind. The advantage of this scheme is that the data formats
of inputs/ outputs are relatively simple (usually from one set
of study). Because the dataset size is usually small, model
scope is fairly limited. Another type of efforts has sought to
decode  complexity  in  cellular  networks  by  using  omics
dataset  as  well  as  details  of  synthetic  biology  constructs
(paradigm #2). These frameworks learn system behaviors at
different regulation layers and decode key genes that control
desired  cellular  functions,  which  enable  design-build-test-
learn cycle during strain  im-  provements (Gill et al., 2016).
They  can  also  improve  the  fidelity  of  metabolic  network
reconstructions used for genome scale modeling (Oyetunde
et al., 2016). A limitation of such frameworks is that they do
not usually consider the bioprocess conditions or
engineering strategies.  Researchers  may  potentially
combine  the  benefits  of  the  first  two  paradigms.  Via
knowledge engineering to generate a database that contains
structured  input  (species,  nutrient,  culture  conditions,
genetic  tools,  strain  tolerance  and  stability)  and  outputs
(yield/rate/titer),  ML  can  capture  microbial  physiologies  in
response to various genetic and fermentation conditions. For
example, ML models were developed for a priori estimation
of chemical productivity from engineered E. coli and S.
cerevisiae,  given a set  of  model  inputs (e.g.,  biosynthesis
steps,  nutrient  supplementation,   bioreactor   modes)
(Colletti  et  al.,  2011;  Varman et al., 2011). Such models
via  linear  regressions  correctly  predict  that  the  product
synthesis  using  long  pathways  unavoidably  gives  poor
production yield and titer. These models are useful for
manufacturers to  decide whether a product should be
produced via engineered microbial  cell factories or via a
chemical synthesis route.

The  advantages  of  GSM/FBA  over  ML  lie  in  their
interpretable  and  biologically  meaningful  solutions.  On the
contrary,  ML  models  rely  purely  on  statistics,  thus  may
generate predictions that violate some biological constraints
or lie out of reasonable ranges. In this regard, ML models are
expected to  gain  great improvement  when combined  with
GSM/FBA  models.  GSMs  can  help  identify  whether  ML
outcomes  are  biologically  feasible,  within  biological
reasonable  ranges,  or  directly  place upper bounds for ML
outcomes. ML, FBA algorithm and constraint  logic
programming can be integrated to offer an expressive way
to re- present knowledge that involves statistics, constraints
(usually on in- tegers or real numbers) and logics (paradigm
#3).  Such hybrid  models  take into  account  the  metabolic
network, genetic design of the micro- bial host system, and
the “suboptimal”  conditions  under  which  the  fermentation
process occurs. For example, supervised learning methods
and FBA have been used together to predict bacterial central
metabo- lism (Wu et al., 2016). In that study, experimental
data of 37 bacteria species from over 100  13C-MFA papers
were  extracted  and converted into structured data.  Three
supervised algorithms,  Support Vector  Ma-  chine (SVM),  k-
Nearest Neighbors (kNN), and Decision Tree were em- ployed
to train regressors to predict fluxes using features (substrate
types, genetic modifications, and cultivation methods). The
ML can generate reasonable flux boundaries for FBA models
to reduce solution space during flux predictions of nonmodel
microbial species. In sum- mary, paradigm #3 binds the ML
predictions with the GSM optimiza- tions, which can not only
predict production metrics (like yield, titer and rate) but also
can  suggest  optimal  genetic  engineering  strategies  to
employ (like what kind of plasmid to use, promoter strength,
etc.) during design-build-test-learn cycle.

Finally, metabolic engineering is a rapid-developing field.
The new high-throughput technologies can quickly generate
large  amount  of  data, such as high throughput mass

spectrometry (Fuhrer and Zamboni, 2015) and microfluidics
(Heinemann et al., 2017a, 2017b). These data allow extensive
validation of ML platforms and parameter estimations. Even
those failed experimental data are valuable for training ML.
For  example,  combinatorial  synthesis  and  screening
approaches create vast



Fig. 4. Paradigms of data-driven techniques in systems metabolic engineering.

numbers of off-target phenotypes that can be used to study
engineered metabolism by supervised learning. On the other
hand,  many  input/  output  variables  are  not  continuous  or
complete  among  different  da-  tasets.  Advanced  Deep
Learning (DL) can investigate noisy but large biological data
(Chicco et al., 2014; Leung et al., 2014). Due to its nonlinear
mapping  power,  DL  can  unify  incomplete  inputs/outputs.
Small dataset sizes (which are usually the case for metabolic
en-  gineering  data)  can  be  tackled  by  strategies  such  as
unsupervised pre- training (Bengio et al.,  2013). During the
learning  process,  noisy  and  incomplete  data  will  be
automatically “flattened” in their new re- presentation space.
Furthermore,  DL  can  solve  one  system  and  apply  the
knowledge gained to a different but related new system (Dai
et  al., 2007;  Raina et  al.,  2007),  which  may offer  systems
design  or  a  priori  estimation  of  broad-scope  microbial
factories.  Subsequently,  advanced  mechanistic  models,
knowledge engineering, and machine learning lead to ever-
improving artificial intelligence framework that relies less and
less on the intuition of human engineers (paradigm #4).

5. Hindrances to successful application of machine 
learning techniques

Despite  the  promise  of  ML  for  synthetic  biology  and
metabolic  en-  gineering,  several  hurdles  still  need  to  be
tackled.  A  key  challenge  for  applying  ML  is  the  lack  of
formatted, high-quality, and high quantity data. For example,
DL  will  need  ~10,000  conditions  to  be  effective.  Large
research groups are devoting increasingly time and
manpower to  establish  and  standardize  systems  biology
database that will facilitate the validation and improvement of
ML  frameworks  in  the  near  future  (Arkin  et  al.,  2016).
However,  most  existing  publications  contain  data  with  no
unified  format  and  these  datasets  have  to  be  manually
curated from non-standardized reports. It is quite challenging
to  extract  the  information  from  a  large  amount  of
publications, because the data could be noisy and each paper
contains large amounts of variables. Errors can arise from the
original  authors  of  the  paper  or  researchers  attempting  to
extract the information. This opens up the need of au- tomatic
and  semi-automatic  tools  for  collecting  experimental  data
from  literature. Natural language processing (NLP) may
enable the automatic  extraction  of  relevant  data  from
thousands  of  publications,  which  can  perform  text

summarization, evaluate paper quality, and minimize the



impact and occurrence of human errors. On the other hand,
transfer learning is a ML technique which alleviates the data
insufficiency  problem  by  transferring  knowledge  in  one
domain (typically with lots of data) to another domain where
data  are  scarce  (LeCun  et  al.,  2015)  (paradigm  #4).  For
example, data and models on E. coli are relatively abundant.
This knowledge can be transferred to the non-model micro-
bial platforms, which have few available data by well-tuned
transfer  learning  algorithms.  Such  practices  will  not  only
facilitate the specific task of microbial  prediction, but also
build  a  unified  viewpoint  of  re-  presentation  learning  and
domain adaptation through the study on practical biological
data (Pan and Yang, 2010).

Another major concern is the fact ML models do not
generalize well  to  data  points  representing  conditions  not
present  in  the  training  data.  For instance, the training
datasets are enormous to identify gene targets  for
engineering  a  new  host  while  optimizing  bioreactor
conditions  for  typical  fermentations  requires  far  less  data.
This  challenge  underscores  the  importance  of  creating
hybrid data-driven and mechanistic models. The success of
such hybrid frameworks has been demonstrated in recent
efforts  (Kogadeeva  and  Zamboni,  2016;  Khodayari  and
Maranas,  2016;  Wu  et  al.,  2016).  One  study  showed  the
possibility of using data-driven approaches to guide future
developments  of  mechanistic-based  models  (King  et  al.,
2017).  Furthermore,  there  has  been  a  rapid  increase  in
metabolic  engineering  data,  while  the  influential  factors
(e.g.,  genetic  tools, basic microbial pathways and hosts)
have remained fairly limited.  Specifically,  the variability  of
key upstream pathways towards bio- synthesis is unchanged
(Fig.  5),  and  most  bio-manufacturing  comes  from  a  few
precursors (such as PEP,  acetyl-CoA and pyruvate).  Proper
feature extraction from existing metabolic engineering data
might  re-  sult  in  rather  robust  coverage  of  possible
conditions. Therefore, the number of model parameters may
not increase as the size of the training  database  grows,
which ensures the predictive fidelity of the ML plat- form.

In conclusion, metabolic engineering field has
accumulated large set of data that are beyond the capability
of traditional data analytics. ML presents a frontier research
to  gain  new  understanding  of  microbial  metabolism,  to
improve the reproducibility of experimental work,  to enable
the rapid design of efficient and robust strains, and to inform
commercial decisions. By combining traditional mechanistic
models  with knowledge engineering and data-driven
techniques, a new strain



Table 1
Application of data-driven techniques in metabolic engineering fields.

ML technique Application Comment Reference

Neural networks Improve the yield of  target protein Used NN technique to build predictive model from 
experimental

results and stochastic sampling. Discovered experimental 
conditions that give ~350% improvement of yield

Caschera et al. 
(2011)

Naïve Bayes, kNN, 
decision trees, 
logistic regression

Metabolic pathway prediction The ML methods performed as well as the well-designed 
and refined algorithm (PathoLogic). Besides, ML methods 
have the advantage of easily adding new features to test 
and further optimize the performance.

Dale et al. (2010)

Multiple kernel 
learning, transfer 
learning

Predicting protein interactions in fungal 
secretion pathways

They predicted the protein-protein interaction in the cross-
species T. reesei by the learning features obtained from S. 
cerevisiae.

Kludas et al. 
(2016)

Transfer learning Predict the matrix metalloprotease (MMPs) 
substrate

cleavage sites

Neural networks Use NN to investigate the effect of process 
condition

(e.g. time, temperature, pH, etc.) on xylitol 
production

Neural networks Optimize the fermentation process of 
cyclodextrin

glycosyltransferase production.

Neural networks Optimization of fermentation parameters of 
rapamycin

production  by Streptomyces  hygroscopicus 
NRRL 5491

SVM, Neural networks Predict the yield of glutamic acid from 
fermentation

process parameters (pH, temperature, carbon 
source concentration, aeration)

They learn the knowledge from the source domain (MMP-9 
and MMP-12) to improve the prediction of cleavage sites of 
other MMPs (MMP-2, -3, -7, and -8) in the target domain.
In this study, a multilayer perceptron (MLP) based feed 
forward neural network model with Levenberg-Marquardt 
back propagation (BP-MLP) algorithm was trained with 339 
experimental data points. The model could predict the 
optimal harvest time in xylitol production.
They first found the key influential factors using Plackett-
Burman Design (PBD) and then optimized by NN. The NN 
contains one hidden layer.
The authors applied Plackett–Burman design (PBD) method,
artificial neural networks (ANN), and genetic algorithms 
(GA). The ANN was used to further optimize the key factors 
found in PBD method.
They choose SVM method because it is suitable for small 
datasets (which is usually the case for production data). 
They also determined that SVM was more accurate in 
predicting yield than NN.

Wang et al. (2017)

Pappu and 
Gummadi 
(2016)

Amiri et al. (2015)

Sinha  et al. (2014)

Wang et al. (2016)

Gaussian process 
model, SVM

Estimate the probability of a given enzyme to 
catalyze a given reaction

The authors created a semi-supervised Gaussian model to
predict  if  a given enzyme is able to catalyze the desired
reaction.
Furthermore, the Michaelis constant was also predicted by
Gaussian  progress  regression  to  quantify  the  affinity
between enzyme and the reaction. The results shows the
ML can be a powerful tool to speed up the application of
synthetic biology.

Mellor et al. (2016)

Decision tree Develop a data-driven model to accurately 
design CRISPR-based transcription regulator.

The authors used pairwise datasets of guideRNAs and
gene expression to build a predictive model

Sheng et al. (2017)

SVM Predict the essential genes in E. coli metabolism The authors proposed a strategy of data curation and 
feature

selection to improve the performance of SVM model. 
Instead of performing flux balance analysis, which are 
condition specific, to obtain flux features, they applied flux 
coupling analysis to get the higher sensitivity and 
specificity of the model.

Nandi et al. (2017)

PCA Identify specific enzymes that limiting the 
production of target molecules in a pathway

Based on the PCA distribution, they manipulated the 
gene expression level of mevalonate pathway enzymes
in E. coli to improve the production of limonene up to 
40%.

Alonso-Gutierrez
et al. (2015)

Fig. 5. Common biosynthesis pathways from the central metabolic 
network.

design framework will ultimately automate synthetic biology 
and bio- manufacturing.
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