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ABSTRACT OF THE DISSERTATION

On the Construction of Minimal Model for Some A-infinity Algebras

By

Jiawei Zhou

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Li-Sheng Tseng, Chair

For a formal differential graded algebra, if extended by an odd degree element, we prove

that the extended algebra has an A∞-minimal model with only m2 and m3 non-trivial. As

an application, the A∞-algebras constructed by Tsai, Tseng and Yau on formal symplectic

manifolds satisfy this property. Separately, we expand the result of Miller and Crowley-

Nordström for k-connected manifold. In particular, we prove that if the dimension of the

manifold n ≤ (l+1)k+2, then its de Rham complex has an A∞-minimal model with mp = 0

for all p ≥ l.

v



Chapter 1

Introduction

Rational homotopy theory was introduced by Sullivian [16] and Quillen [15]. Rational homo-

topy equivalence is an isomorphism on homology or cohomology with rational coefficients,

which is called a quasi-isomorphism. Compared to homotopy theory, rational homotopy

theory ignores the information of torsion. However, it makes the calculation much easier.

As an geometric application, Vigué and Sullivian proved that if the cohomology ring of a

simply connected closed Riemannian manifold is not generated by at least two elements,

then the manifold has infinitely many geometrically distinct closed geodesics [19].

Algebraically, the cohomology ring can be viewed as a differential algebra (dga). We say a

dga is formal if it is quasi-isomorphic to its cohomology. Thus, we can study its homotopy

type by its cohomology. If the de Rham complex of a manifold is a formal dga, the manifold

itself is called formal. A natural question is, what conditions or characteristics ensure that

a manifold is formal?

For a compact complex manifold, Deligne, Griffiths, Morgan and Sullivan proved that it is

formal if the ddc-lemma holds [6]. One may ask what would make a compact symplectic
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manifold formal. Babenko and Taimanov in 1998 conjectured that a simply-connected com-

pact symplectic manifold is formal if and only if it satisfies the hard Lefschetz property [1].

Both directions of the statement are now known to be false. Gompf constructed a simply-

connected 6-manifold which does not satisfy the hard Lefschetz property [8]. This example

is formal because Miller proved that all simply-connected compact 6-manifolds are formal

[14]. The other direction was studied in [10][13], and was further clarified by Cavalcanti who

gave a simply-connected non-compact symplectic manifold with the hard Lefschetz property,

but is not formal [3] (see also [4]).

Since there is no relationship between the hard Lefschetz property and the formality of a

symplectic manifold, we can consider if they are related in the context of another cochain

complex on symplectic manifolds. Tsai, Tseng and Yau constructed cochain complexes con-

sisting of primitive forms, or more generally, filtered forms which are defined by the Lefschetz

decomposition [18]. These complexes carry an A∞-algebra structure, and for simplicity, we

will just call them TTY-algebras.

The formality of an A∞-algebra is defined differently, but it is equivalent to formal as a dga

when the A∞-algebra is a dga. By Kadeishvili [11][12], every A∞-algebra (A,mA) is quasi-

isomorphic to its cohomology H∗(A) equipped with an A∞ structure m such that m1 = 0

and m2 is induced by mA
2 . (H∗(A),m) is called an A∞-minimal model of (A,mA). Note that

the A∞-minimal model here is different than the minimal model of a dga defined by Sullivan

[6], even if A itself is a dga. If A has an A∞-minimal model (H∗(A),m) such that mp = 0

for all p except for p = 2, then we say A is formal.

As we will see, the TTY-algebra can be non-formal even when the symplectic manifold is

formal. For example, it is non-formal for the torus T 2N (See Example 3.7). On the other

hand, there are some formal manifolds such as the projective spaces and the Euclidean spaces

whose TTY-algebras are also formal (See Example 3.6). So we here consider a statement

for TTY-algebra which is weaker than formal, and can be induced from the formality of the
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manifold. In Chapter 3, we prove the following:

Theorem 1.1. Suppose (M,ω) is a formal symplectic manifold. Its TTY-algebra is formal

if the symplectic form ω is exact. When ω is non-exact, its TTY-algebra has an A∞-minimal

model with mp = 0 for all p except for p = 2 or 3.

By the work of Tanaka and Tseng [17], the TTY-algebra of p-filtered forms on a symplectic

manifold (M,ω) is quasi-isomorphic to a dga which is the de Rham complex on M extended

by an odd-degree element θ, such that dθ = ωp+1. So we can consider the A∞-minimal model

of this dga instead, and we construct it explicitly in the proof. Thus, the homotopy type

of the TTY-algebra is determined by its cohomology together with the given operation m3.

Theorem 1.1 follows from the more general result below for dgas.

Theorem 1.2. Suppose A is a formal dga. ωA ∈ A is an even-degree element. Extend A to

Ã = {α + θAβ| α, β ∈ A} with dθA = ωA. Then Ã has an A∞-minimal model with mp = 0

for all p except for p = 2 or 3.

In Chapter 4, we show that given a k-connected compact manifold M , we can find an explicit

way to obtain the A∞-minimal model for its de Rham complex Ω∗(M). This generalizes

Miller’s result [14] that the manifold is formal if its dimension n ≤ 4k + 2, and Crowley-

Nordström’s result that when n ≤ 5k+2, the homotopy type is determined by its cohomology

H∗(M) together with a 3-tensor on H∗(M), which they called the Bianchi-Massey tensor

[5].

Theorem 1.3. Suppose M is an n-dimensional k-connected compact manifold. If l ≥ 3 such

that n ≤ (l + 1)k + 2, then Ω∗(M) has an A∞-minimal model with mp = 0 for p ≥ l.

When l = 3, this statement is the theorem of Miller [14]. When l = 4, it is the theorem of

Crowley and Nordström [5]. For higher l, it implies that the homotopy type of Ω∗(M) is

determined by its cohomology together with operations m3, · · · ,ml−1.
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This paper is organized as follows. In Chapter 2, we review the definitions and some basic

properties of dga, A∞-algebra and TTY-algebra. In Chapter 3, we prove Theorem 1.1 by

first proving Theorem 1.2. Chapter 4 consists of the proof of Theorem 1.3. We conclude in

Chapter 5 by stating two conjectures that extend the results of this paper.
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Chapter 2

Preliminaries

In this chapter we recall the definition and some basic properties of differential graded

algebra, A∞-algebra and TTY-algebra.

2.1 Differential graded algebras

Definition 2.1. A differential graded algebra (dga) over a field k is a graded k-algebra

A =
⊕

i>0A
i together with a k-linear map d : A→ A such that

i) k ⊂ A0;

ii) The multiplication is graded commutative: For x ∈ Ai, y ∈ Aj, we have x·y = (−1)ijy·x;

iii) The Leibniz product rule holds: d(x · y) = dx · y + (−1)ix · dy;

iv) d2 = 0.

Example 2.2. Let M be a manifold. Its differential forms form a dga (Ω∗(M), d,∧), where

d is the differential operator and ∧ is the wedge product of differential forms.
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Example 2.3. If M is a complex manifold, (Ω∗(M), ∂̄,∧) is also a dga. Here ∂̄ is the

Dolbeault operator.

Also, the subspace
⊕

q≥0 Ω0,q(M) is another dga, since ∂̄Ω0,q ⊂ Ω0,q+1 and Ω0,q ∧ Ω0,q′ ⊂

Ω0,q+q′ .

Example 2.4. Given a dga (A, d), its cohomology (H∗(A), d) is also a dga, with d ≡ 0. The

multiplication on H∗(A) is naturally induced by the multiplication on A.

Definition 2.5. Let (A, dA) and (B, dB) be two dgas. A dga-homomorphism is a k-linear

map f : A→ B such that

i) f(Ai) ⊂ Bi;

ii) f(x · y) = f(x) · f(y);

iii) dB ◦ f = f ◦ dA:

· · · dA // Ak
dA //

f
��

Ak+1

f
��

dA // · · ·

· · · dB // Bk dB // Bk+1 dB // · · ·

Naturally, f induces a homomorphism:

f ∗ : H∗(A, dA)→ H∗(B, dB).

f is called a dga-quasi-isomorphism if f ∗ is an isomorphism.

Definition 2.6. Two dgas (A, dA) and (B, dB) are equivalent if there exists a sequence of

dga-quasi-isomorphisms:

(C1, dC1)

zz %%

· · · · · ·

zz ""

(Cn, dCn)

zz %%
(A, dA) (C2, dC2) · · · · · · (B, dB)
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Definition 2.7. A dga (A, dA) is called formal if (A, dA) is equivalent to a dga (B, dB) with

dB = 0. Identically, (A, dA) is equivalent to (H∗(A), d = 0) if and only if (A, dA) is formal.

We say a manifold M is formal if its de Rham complex (Ω∗(M), d,∧) is a formal dga.

Theorem 2.8 (Deligne-Griffiths-Morgan-Sullivan, 1975). A complex manifold where ddc-

lemma holds is formal. In particular, all Kähler manifolds are formal.

Example 2.9. Given a set S of degree n, let Λn(S) denote the polynomial algebra generated

by S when n is even, or the exterior algebra generated by S when n is odd.

Suppose x, y, z are all degree 1 elements with dx = dy = 0 and dz = xy. Let A = Λ1(x, y, z),

then A is non-formal.

Geometrically, we can construct a 3-dimensional nilmanifold as follows. Let N3 denotes the

space of upper triangular matrices 
1 a b

0 1 c

0 0 1


where a, b, c are real numbers. Let Γ ⊂ N3 be the subgroup of integral matrices. Then set

M3 = N3/Γ. The de Rham complex of M3 is quasi-isomorphic to A = Λ1(x, y, z) in the

example above. Therefore, M3 is non-formal.

Example 2.10. Suppose the degrees of x, y are 2 and the degrees of φ, ψ are 3. Let dx =

dy = 0, dφ = x ∧ x, and dψ = x ∧ y. Then Λ2(x, y)⊗ Λ3(φ, ψ) is non-formal.

In this example, there is no element of degree 1, so H1 = 0. This examples shows that simply

connected does not imply formal.
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2.2 A∞-algebra

Definition 2.11. Let k be a field. An A∞-algebra over k is a Z-graded vector space

A =
⊕

n∈ZA
n endowed with graded k-linear maps

mp : A⊗p → A, p ≥ 1

of degree 2− p satisfying

∑
r+s+t=l

(−1)r+stmr+t+1(1
⊗r ⊗ms ⊗ 1⊗t) = 0

for all l ≥ 1.

Specially, when l = 1, we have

m1m1 = 0;

When l = 2, we have

m1m2 = m2(m1 ⊗ 1 + 1⊗m1);

When l = 3, we have

m2(1⊗m2 −m2 ⊗ 1) = m1m3 +m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1).

If m3 = 0, m2 is associative.

A dga is a special A∞-algebra, where m1 is the differential operator d, m2 is multiplication,

and mp = 0 for all p ≥ 3.

Definition 2.12. A morphism of A∞-algebra f : A → B is a family of graded maps
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fp : A⊗p → B of degree 1− p such that:

∑
(−1)r+stfr+t+1(1

⊗r ⊗mA
s ⊗ 1⊗r) =

∑
(−1)smB

r (fi1 ⊗ fi2 ⊗ · · · ⊗ fir)

for each l ≥ 1, where the left hand side sum runs over all decompositions l = r + s+ t, and

the right hand side sum runs over all 1 ≤ r ≤ l and all decompositions l = i1 + i2 + · · ·+ ir.

The sign on the right side is given by

s = (r − 1)(i1 − 1) + (r − 2)(i2 − 1) + · · ·+ 2(ir−2 − 1) + (ir−1 − 1).

Specially, when l = 1, we have

m1f1 = f1m1.

The morphism f is called a quasi-isomorphism if f ∗1 is an isomorphism.

Theorem 2.13 (Kadeishvili [11][12]). If (A,mA) is an A∞-algebra, then H∗(A) has an

A∞-algebraic structure such that

i) m1 = 0 and m2 is induced by mA
2 ;

ii) there is a quasi-isomorphism f of A∞-algebras H∗(A) → A and f ∗1 is the identity of

H∗(A).

This structure is unique up to isomorphism of A∞-algebras.

Definition 2.14. H∗(A) with the structure above is called an A∞-minimal model for A.

We say A is formal if we can chose all mp to be 0 for p ≥ 3 on its A∞-minimal model.

We will give an explicit construction of the A∞-minimal model, and this idea will be used

for the constructions in later chapters. For convenience, we use following notation:
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Let f : A→ B be an A∞-morphism between algebras. For p ≥ 3, set

Fp =
∑

i1+···+ir=p
2≤r≤p

(−1)(r−1)(i1−1)+(r−2)(i2−1)+···+1·(ir−1−1)mB
r (fi1 ⊗ · · · ⊗ fir)

−
∑

r+s+t=p
2≤s≤p−1

(−1)r+stfr+t+1(1
⊗r ⊗mA

s ⊗ 1⊗t).

(2.1)

Fp is defined by f1, · · · , fp−1,mA
1 , · · · ,mA

p−1, and mB
1 , · · · ,mB

p . mA
p and fp are determined

by Fp. m
A
p = [Fp] and fp needs to satisfy f1m

A
p −mB

1 fp = Fp. Therefore, we can define fp

and mp inductively.

Proof of Theorem 2.13: Let AE denote the subspace of all the exact forms in A. By Zorn’s

Lemma, we can find a subspace AC , such that the subspace of all closed form can be written

as AE⊕AC . By Zorn’s Lemma again, we can find a subspace A⊥ such that A = AE⊕AC⊕A⊥.

Then for each α ∈ AE, there is a unique β ∈ A⊥ such that α = dβ. So we can define a map

Q : AE → A⊥ such that Qα = β. Then Qd = 1AE and dQ = 1A⊥ , where 1 is the identity

map.

For example, if M is a Riemannian manifold and A = Ω∗(A), we can set AC be the space of

harmonic forms, A⊥ = im d∗, and Q = d∗.

For each [x] ∈ H∗(A), there exists a unique x0 ∈ AC such that x0 ∈ [x]. Set f1([x]) = x0. For

f2, set f2 = Q(f1m2 −m2(f1 ⊗ f1)). To define higher mp and fp, suppose m1, · · · ,mp−1 on

H∗(A) and f1, · · · , fp−1 are defined, then mp = [Fp] and fn needs to satisfy f1mp−m1fp = Fp.

Set fp = Q(f1mp − Fp). By induction we can construct an A∞-minimal model of A.

By the theorem below, a dga satisfying the definition of formal in the dga sense is equivalent

to satisfying the definition of formal as an A∞-algebra. So in this context we will simply say

this dga is formal.

Theorem 2.15 (see [12]). If A is a dga, it is formal as a dga if and only if it is formal as

10



an A∞-algebra.

2.3 TTY-algebra

Given a 2N -dimensional symplectic manifold (M,ω), we have three basic operators:

1. L : Ωk → Ωk+2, sends α 7→ ω ∧ α.

2. Λ : Ωk → Ωk−2, sends α→ 1
2

∑
(ω−1)ijι∂xi ι∂xjα.

3. H : Ωk →: Ωk, sends α→ (n− k)α.

{L,Λ, H} generates an sl2 Lie algebra acting on Ω∗.

[H,Λ] = 2Λ, [H,L] = −2L, [Λ, L] = H.

Definition 2.16. A differential form α is called primitive if Λα = 0. The set of all primitive

k-forms is denoted by P k.

Theorem 2.17 (Lefschetz Decomposition). On a 2N-dimensional symplectic manifold, ev-

ery αk ∈ Ωk can be uniquely written as

αk =
⊕

j+2s=k
j+s≤N

Ljβs

where βs ∈ P s. Thus,

Ωk =
⊕

j+2s=k
j+s≤N

LjP s.

When j + s > N , LjP s = 0. Specially, P k = 0 for k > N .

With Lefschetz decomposition, we can define the following operators:

11



4. L−p : Ωk → Ωk−2p.

L−p(Ljβs) =


Lj−pβs, if j ≥ p,

0, if j < p.

i.e.

L−p(
∑

Ljβk−2j) = βk−2j−2p + Lβk−2j−2p−2 + · · · .

5. ∗r : Ωk → Ω2N−k.

∗r(Ljβs) = LN−j−sβs.

6. Πp : Ωk → Ωk.

Πp(Ljβs) =


Ljβs, if j ≤ p,

0, if j > p.

i.e.

Πp(
∑

Ljβk−2j) = βk + Lβk−2 + · · ·+ Lpβk−2p.

Definition 2.18. The set of p-filtered k-forms are defined by

F pΩk := ΠpΩk.

Note that F 0Ωk = P k and FNΩk = Ωk.

For each Ljβs ∈ LjP s, d(Ljβs) ∈ LjP s+1 ⊕ Lj+1P s−1. Thus we can decompose d as

d = ∂+ + L∂−,

where ∂+ : LjP s → LjP s+1 and ∂− : LjP s → LjP s−1. ∂+ and ∂− have the following

properties:

∂2+ = ∂2− = 0, [L, ∂+] = [L,L∂−] = 0, L∂+∂− = −L∂−∂+.

12



For p-filtered forms, we can define

d+ =Πp ◦ d,

d− = ∗r d∗r,

where d+ : F pΩk → F pΩk+1 and d− : F pΩk → F pΩk−1. When p = 0, d± are exactly ∂±.

We also have d2+ = d2− = 0. Furthermore, (∂+∂−)d+ = d−(∂+∂−) = 0. Thus, we have the

following cochain complex [18]:

0 // F pΩ0
+

d+ // F pΩ1
+

d+ // · · · d+ // F pΩN+p
+

∂+∂−
��

0 F pΩ0
−

oo F pΩ1
−

d−oo · · ·d−oo F pΩN+p
−

d−oo

where F pΩk
± = F pΩk.

The above cochain complex has an A∞-algebra structure, constructed by Tsai, Tseng and

Yau [18]. For simplicity we call it TTY-algebra. The A∞-algebra is (F pΩ∗,ml), where the

operations ml are defined below:

The m1 equation.

m1α =


d+α, if α ∈ F pΩk

+ and k < N,

−∂+∂−α, if α ∈ F pΩN
+ ,

−d−α, if α ∈ F pΩk
−.

The m2 equation. For m2(α1, α2), when α1 ∈ F pΩk1
+ and α2 ∈ F pΩk2

+ , we set

m2(α1, α2) = Πp(α1∧α2)+Πp∗r
(
−dL−(p+1)(α1∧α2)+(L−(p+1)α1)∧α2+(−1)k1α1∧(L−(p+1)α2)

)
.
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Actually, if k1 + k2 ≤ N + p, the second term is 0. If k1 + k2 > N + p, the first term is 0.

When α1 ∈ F pΩk1
+ and α2 ∈ F pΩk2

− , we set

m2(α1, α2) = (−1)k1 ∗r
(
α1 ∧ (∗rα2)

)
.

When α1 ∈ F pΩk1
− and α2 ∈ F pΩk2

+ , we set

m2(α1, α2) = ∗r
(
(∗rα1) ∧ α2

)
.

When α1 ∈ F pΩk1
− and α2 ∈ F pΩk2

− , we set

m2(α1, α2) = 0

By definition, m2 is graded commutative:

m2(α1, α2) = (−1)k1k2m2(α2, α1).

The m3 equation. For m3(α1, α2, α3), when αi ∈ F pΩki
+ for all 1 ≤ i ≤ 3 and k1 +k2 +k3 ≥

N + p+ 2, we set

m3(α1, α2, α3) = Πp ∗r
(
α1 ∧ L−(p+1)(α2 ∧ α3)− L−(p+1)(α1 ∧ α2) ∧ α3

)
.

For the other cases, we set

m3(α1, α2, α3) = 0.

The higher ml equation. When l ≥ 4, we set ml = 0.

14



The TTY-algebra is quasi-isomorphic to a dga: the mapping cone of

Ω∗(M)[−2p− 2]→ Ω∗(M), α 7→ ωp+1 ∧ α,

Alternatively, this mapping cone can be viewed as the differential forms of a S2p+1 sphere

bundle over M .

Algebrically, this mapping cone is an extension of Ω∗(M), by an element θ of degree 2p+ 1

such that dθ = ωp+1. Let A = Ω∗(M) and set the extension

Ã = A⊗ Λ2p+1(θ)

or equivalently write it as

Ã = {ξ + θη| ξ, η ∈ A}.

The dga structure on Ã is given by

d(ξ + θη) = dξ + ωp+1 ∧ η − θ(dη)

and

ξ ∧ θη =(−1)|ξ|θ(ξ ∧ η)

θξ ∧ η =θ(ξ ∧ η)

θξ ∧ θη =0,

where ξ, η ∈ A and |ξ| is the degree of ξ.

Theorem 2.19 (Tanaka and Tseng [17]). F pΩ∗(M) is quasi-isomorphic to Ã.
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Chapter 3

Minimal model on an extension of

formal dga

Since the TTY-algebra F pΩ∗ is quasi-isomorphic to Ã = Ω∗(M) + θΩ∗(M), we can consider

the homotopy type of Ã instead. We will show that when M is formal, Ã is quasi-isomorphic

to the extension of H∗(A) by θ. Then we can consider a much simpler dga.

Theorem 3.1. Suppose A,B are two dgas and f : A → B is a quasi-isomorphism. ωA ∈

A, ωB ∈ B are d-closed even-degree elements such that f ∗([ωA]) = [ωB]. Extend A,B to

Ã = {α+ θAβ| α, β ∈ A} with dθA = ωA and B̃ = {x+ θBy| x, y ∈ B} with dθB = ωB. Then

there exists a quasi-isomorphism g : Ã→ B̃.

Proof. Without loss of generality, we can assume f(ωA) = ωB. Otherwise, by assumption

ωB = f(ωA) + dr for some r ∈ A. Then we can consider ω′B = ωB − dr and θ′B = θB − r

instead of ωB and θB.

Set

g(α + θAβ) = f(α) + θBf(β).
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It is easy to check that g is linear, preserves wedge products and gdA = dBg. It remains to

show that g∗ is bijective.

1) g∗ is injective.

Suppose α + θAβ is closed in Ã and g∗[α + θAβ] = 0. There exists x, y ∈ B such that

d(x+ θBy) = g(α + θAβ).

Thus,

dx+ ωB ∧ y − θBdy = f(α) + θBf(β).

So we have

dx+ ωB ∧ y = f(α) and dy = −f(β).

On the other hand,

0 = d(α + θAβ) = dα + ωA ∧ β − θAdβ.

Hence, β is closed and ωA ∧ β = −dα. Since f ∗[β] = −[dy] = 0, β must be exact in A.

Assume η ∈ A such that dη = β, by

d(y + f(η)) = −f(β) + f(dη) = 0

and f ∗ is surjective, there exists ξ ∈ A and z ∈ B such that

dξ = 0 and f(ξ) = y + f(η) + dz.

17



Then

f(α + ωA ∧ η) =f(α) + ωB ∧ f(η)

=dx+ ωB ∧ y + ωB ∧ f(η)

=dx+ ωB ∧ (f(ξ)− dz)

=f(ωA ∧ ξ) + dx− dz.

So f(α + ωA ∧ η − ωA ∧ ξ) = dx− dz is exact in B. Also

d(α + ωA ∧ η − ωA ∧ ξ) = dα + ωA ∧ β = 0.

Hence, α + ωA ∧ η − ωA ∧ ξ is exact since f ∗ is injective. Let γ ∈ A such that

dγ = α + ωA ∧ η − ωA ∧ ξ.

Therefore,

α + θAβ =dγ − ωA ∧ η + ωA ∧ ξ + θAdη

=dγ − d(θAη) + d(θAξ),

which is exact in A. That shows g∗ is injective.

2) g∗ is surjective.

Given arbitrary closed x+ θBy ∈ B̃, we have

dx+ ωB ∧ y = 0 and dy = 0.
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As y is closed and f ∗ is surjective, there exists β ∈ A, z ∈ B such that

f(β) = y + dz and dβ = 0.

Then

f(ωA ∧ β) = ωB ∧ (y + dz) = −dx+ d(ωB ∧ z).

Since ωA ∧ β is closed and f ∗ is injective, ωA ∧ β must be exact. So there exists α ∈ A such

that dα = ωA ∧ β. Thus,

d(x− ωB ∧ z + f(α)) =− ωB ∧ y − ωB ∧ dz + f(dα)

=− ωB ∧ (y + dz) + f(ωA ∧ β)

=− ωB ∧ f(β) + ωB ∧ f(β)

=0.

So there exists ξ ∈ A and w ∈ B such that

f(ξ) = x− ωB ∧ z + f(α) + dw and dξ = 0.

Therefore,

f(ξ − α) + θBf(β)

=x− ωB ∧ z + dw + θB(y + dz)

=x+ θB ∧ y − d(θBz) + dw

i.e.

g∗[ξ − α + θAβ] = [x+ θBy].

Thus, g∗ is surjective.
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When A is formal, there exists a zigzag of quasi-isomorphisms. We can extend each isomor-

phism by the previous theorem, and obtain the following:

Corollary 3.2. Suppose A is a formal dga. ω ∈ A is a closed even-degree element. Ã =

{α + θAβ| α, β ∈ A}, where dθA = ωA. Ã is quasi-isomorphic to the extension of H∗(A):

{x+ θHy| x, y ∈ H∗(A)}, where dθH = [ωA].

Identically, every extension of a formal dga by an odd-degree element is quasi-isomorphic to

the extension of a dga A whose differential is 0. We then construct an A∞-minimal model

for the extension of A.

Theorem 3.3. Suppose A is a dga and dA = 0. ωA ∈ A is an even-degree element. Let

Ã = {α + θAβ| α, β ∈ A} with dθA = ωA. Then Ã has an A∞-minimal model with mp = 0

for all p except for p = 2 or 3.

Proof. Since dA = 0, for arbitrary α, β ∈ A, α + θAβ is closed if and only if ωA ∧ β = 0.

It is exact if and only if α ∈ I(ωA) and β = 0, where I(ωA) = {ω ∧ α| α ∈ A} is the ideal

generated by ωA in A. Thus,

H∗(Ã) =
(
A/I(ωA)

)
⊕ kerL,

where L : A→ A such that Lα = ωA ∧ α.

1) Defining of f1.

Decompose A = I(ωA)⊕AC for some subspace AC of A. For each cohomology class [α+θAβ]

in H∗(Ã), by the discussion above, there exists unique α0 ∈ AC , β0 ∈ kerL such that

α0 + θAβ0 ∈ [α + θAβ]. So we can set

f1 : H∗(Ã) −→ Ã

[α + θAβ] 7−→ α0 + θAβ0.
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It is easy to verify f1 is a quasi-isomorphism.

2) Defining of f2.

Given another decomposition of A by A = kerL⊕A⊥ for some subspace A⊥ of A. For each

α ∈ I(ωA), there exists a unique β ∈ A⊥ such that α = ωA ∧ β. So we can define a map

Q : I(ωA)→ θAA by Q(α) = θAβ., then define f2:

f2(x, y) = Q
(
f1m2(x, y)− f1(x) ∧ f1(y)

)
.

Such f2 is well-defined. Suppose

f1(x) = α + θAβ, f1(y) = ξ + θAη,

then

m2(x, y) = [f1(x) ∧ f1(y)] = [α ∧ ξ + θAβ ∧ ξ + (−1)|α|θAα ∧ η].

Hence,

f1m2(x, y) = f1([α ∧ ξ]) + θAβ ∧ ξ + (−1)|α|θAα ∧ η,

and

f1m2(x, y)− f1(x) ∧ f1(y) = f1([α ∧ ξ])− α ∧ ξ ∈ I(ωA).

As dQ is the identity map on I(ωA), f2 satisfies the equation

m1f2 = dQ
(
f1m2 −m2(f1 ⊗ f1)

)
= f1m2 −m2(f1 ⊗ f1).

3) Defining of m3 and f3.
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m3 and f3 need to satisfy

f1m3 −m1f3 = F3 = m2(f1 ⊗ f2 − f2 ⊗ f1)− f2(m2 ⊗ 1− 1⊗m2),

and m3 is the cohomology class of F3. By the definition of f2, its image is in I(θA), which is

the ideal generated by θA in Ã. Hence, for any x, y, z ∈ H∗(Ã),

m2(f1 ⊗ f2 − f2 ⊗ f1)(x, y, z)− f2(m2 ⊗ 1− 1⊗m2)(x, y, z) = θAα

for some α ∈ A. Thus,

m3(x, y, z) = [θAα], and f1m3(x, y, z) = f1([θAα]) = θAα.

Therefore, m1f3(x, y, z) = 0, and we can set f3 = 0.

4) Triviality of m4 and f4.

As f3 = 0, m4 and f4 need to satisfy

f1m4 −m1f4 = −m2(f2 ⊗ f2) + f2(m3 ⊗ 1 + 1⊗m3).

We claim m2(f2 ⊗ f2) = 0 since im f2 ∈ I(θA) and θA ∧ θA = 0. On the other hand, for any

x, y, z, w ∈ H∗(Ã), we can assume

m3(x, y, z) = θα and f1(w) = β + θγ

for some α, β, γ ∈ A. Then

f1m2

(
m3(x, y, z), w

)
= f1

(
[θAα ∧ (β + θγ)]

)
= f1[θAαβ] = θAαβ,
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and

m2

(
f1m3(x, y, z), f1(w)

)
= f1

(
[θAα]

)
∧ (β + θAγ) = θAαβ.

Hence, m1f2
(
m3(x, y, z), w

)
= 0. By previous discussion we have f2 = Qm1f2, so f2(m3 ⊗

1) = 0. Similarly, f2(1⊗m3) = 0.

Therefore, m4 = 0 and we can set f4 = 0.

5) Triviality of higher mp and fp.

For higher degrees, we will prove mp = 0 and fp = 0 by induction. Suppose mp = 0 on

H∗(Ã) for 4 ≤ p ≤ n − 1 and fp = 0 for 3 ≤ p ≤ n − 1, where n ≥ 5. mn and fn need to

satisfy

f1mn −m1fn

=
∑

i1+···+ir=n
r≥2

(−1)δ1mr(fi1 ⊗ · · · ⊗ fir)−
∑

r+s+t=n
2≤s≤n−1

(−1)δ2fr+t+1(1
⊗r ⊗ms ⊗ 1⊗t)

=
n−1∑
i=1

(−1)δ1m2(fi ⊗ fn−i)−
1∑
r=0

(−1)δ2f2(1
⊗r ⊗mn−1 ⊗ 1⊗(1−r))

where δ1 =
∑r

t=1(n− t)(it − 1) and δ2 = r + st.

Since n ≥ 5, either i ≥ 3 or n− i ≥ 3, so m2(fi ⊗ fn−i) = 0. Also, n− 1 ≥ 4. So mn−1 = 0.

That implies f1mn −m1fn = 0. Therefore, mn = 0 and we can take fn = 0.

By the previous theorem, we have the following statement for formal dga.

Theorem 3.4. Suppose A is a formal dga. ωA ∈ A is an even-degree element. Extend A to

Ã = {α + θAβ| α, β ∈ A} with dθA = ωA. Then Ã has an A∞-minimal model with mp = 0

for all p except for p = 2 or 3.

By Theorem 2.19, the TTY-algebra of a symplectic manifold M is quasi-isomorphic to Ã,

where A = Ω∗(M). A is a formal dga when M is formal. So we have
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Theorem 3.5. Suppose (M,ω) is a formal symplectic manifold. Its TTY-algebra is formal

if the symplectic form ω is exact. When ω is non-exact, its TTY-algebra has an A∞-minimal

model with mp = 0 for all p except for p = 2 or 3.

When ω is non-exact, the TTY-algebra may be or may not be formal. There are examples

for both cases. The TTY-algebra of primitive forms (p = 0 in Definition 2.18) on a projective

space is formal, but the TTY-algebra of primitive forms on a torus is not.

Example 3.6. Let A = Ω∗(CPN) be the space of differential forms on a complex projective

space (CPN , ω). The TTY-algebra of primitive forms on CPN is quasi-isomorphic to the

extension Ã = {α + θβ|α, β ∈ A}, where dθ = ω. The dga A is formal since CPN is

Kähler. By Corollary 3.2, Ã is quasi-isomorphic to the extension of H∗(A), which is B =

{x+ θHy|x, y ∈ H∗(A)} and dθH = [ω]. B has an A∞-minimal model with only m2 and m3

non-trivial.

H i(A) =


〈[ωp]〉, if i = 2p, 0 ≤ i ≤ 2N

0, otherwise

Thus,

Bi =


〈[ωp]〉, if i = 2p, 0 ≤ p ≤ N

〈θH [ωp]〉, if i = 2p+ 1, 0 ≤ p ≤ N

0, i > 2N + 1

Since [ωp] = d(θH [ωp−1]), H i(B) must be trivial except for i = 0 or 2N + 1. For any

x, y, z ∈ H∗(B), the total degree of m3(x, y, z) can only be k(2N + 1) − 1 where k is the

number of x, y, z in H2N+1, i.e. 0 ≤ k ≤ 3. As k(2N + 1)−1 6= 0 or 2N + 1, m3(x, y, z) must

be 0. That implies m3 is trivial in the A∞-minimal model. Therefore, the TTY-algebra of

primitive forms on CPN is formal.

Example 3.7. We use the same notations as the previous example. Let A = Ω∗(T 2N) be
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the space of differential forms on a torus (T 2N , ω). The TTY-algebra of primitive forms

on T 2N , ω is quasi-isomorphic to the extension Ã = {α + θβ|α, β ∈ A}, where dθ = ω. A

is formal since T 2N is Kähler. By Corollary 3.2, Ã is quasi-isomorphic to the extension of

H∗(A), which is B = {x + θHy|x, y ∈ H∗(A)} and dθH = [ω]. Let f : H∗(B) → B be an

A∞-quasi-isomorphism.

On a torus, we can find a basis {e1, · · · , e2N} of H1(A) such that

[ω] =
N∑
j=1

e2j−1 ∧ e2j.

Let

y =
N∏
j=2

e2j−1 = e3 ∧ e5 ∧ · · · ∧ e2N−1.

we will prove that m3([ye1], [e2], [e2]) is non-trivial.

Note that ye1 is in BN = HN(A)⊕θHHN−1(A). Since the map L : HN−1(A)→ HN+1(A) by

wedging [ω] is injective, the only closed form in θHH
N−1(A) is 0. So the subspace of closed

forms in BN is HN(A). The subspace of exact forms in BN is the ideal generated by [ω] in

HN(A). Thus, [ye1] is a non-trivial cohomology class. It follows that f1([ye1]) = ye1 + [ω]z

for some z ∈ HN−2(A).

On the other hand, e2 is in B1 = H1(A) ⊕ θHH0(A). In B1, the subspace of closed forms

is H1(A) and the only exact form is 0. So [e2] is also a non-trivial cohomology class and

f1([e2]) = e2.

By (ye1) ∧ e2 = [ω] ∧ y = d(θHy), we have m2([ye1], [e2]) = 0 and

m1f2([ye1], [e2]) = −f1([ye1]) ∧ f1([e2]) = −((ye1) ∧ e2 + [ω]ze2) = −d(θH(y + ze2)).

It follows that f2([ye1], [e2]) = −θH(y + ze2) + x1, where x1 is a closed form in BN . By the
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discussion above, x1 ∈ HN(A).

Since e2 ∧ e2 = 0, we have m2([e2], [e2]) = 0 and f2([e2], [e2]) = x2 for some closed form

x2 ∈ B1. Hence, x2 ∈ H1(A). Then

F3([ye1], [e2], [e2]) =
(
m2(f1 ⊗ f2 − f2 ⊗ f1)− f2(m2 ⊗ 1− 1⊗m2)

)
([ye1], [e2], [e2])

=(−1)Nf1([ye1]) ∧ f2([e2], [e2])− f2([ye1], [e2]) ∧ f1([e2])

=(−1)N(ye1 + [ω]z)x2 − (−θH(y + ze2) + x1)e2

All elements in HN+1(A) are in the ideal of [ω]. So they are exact in BN+1. Thus,

m3([ye1], [e2], [e2]) = F3([ye1], [e2], [e2]) = [θH(y + ze2)e2] = [θHye2]. Since θHye2 is closed

but not exact in BN+1, m3([ye1], [e2], [e2]) cannot be 0. Therefore, B is not formal so that

the TTY-algebra of primitive forms on T 2N is not formal.

Actually, when N = 1, the TTY-algebra of primitive forms is quasi-isomorphic to Example

2.9.
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Chapter 4

Minimal model on k-connected

compact manifold

We here recall a result of Miller for k-connected compact manifolds. A manifold M is called

k-connected if it is path-connected and its homotopy group πr(M) = 0 for 1 ≤ r ≤ k. Our

goal in this chapter is to generalize Miller’s result.

Theorem 4.1 (Miller [14]). Let M be an n-dimensional k-connected compact manifold. If

n ≤ 4k + 2, then M is formal.

Given an A∞-algebra (A,mA
p ), by Theorem 2.13 we can construct an A∞-minimal model

on H∗(A) and a quasi-isomorphism f : H∗(A) → A such that fp(x1, · · · , xp) = 0 when

m1fp(x1, · · · , xp) = 0. This quasi-isomorphism is well-defined because fp needs to satisfy

f1mp − m1fp = Fp, where Fp is defined in (2.1) and mp = [Fp]. In this chapter we use

M(A) to denote the A∞-minimal model and f : M(A) → A to denote the specific quasi-

isomorphism constructed in this way, i.e. fp(x1, · · · , xp) = 0 when m1fp(x1, · · · , xp) = 0.

Given suchMA and f , suppose that x1, · · · , xp ∈M(A) such that |x1|+· · ·+|xp| ≥ n+p−1 for
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some p ≥ 2. Then |Fp(x1, · · · , xp)| ≥ n+ 1. Hence, Fp(x1, · · · , xp) = 0, and fp(x1, · · · , xp) =

0. Therefore, fp = 0 when the total degree is greater than or equal to n + p − 1. That is,

fp(x1, · · · , xp) = 0 for |x1| + · · · + |xp| ≥ n + p − 1. Based on this, we have the following

lemma:

Lemma 4.2. Suppose A is a dga. Let x1, · · · , xp ∈M(A) with degree r1, · · · , rp respectively.

r1 + · · ·+ rp = n+ p− 2. Then the following cyclic sum is 0.

p∑
j=1

(−1)αjFp(xj, · · · , xn, x1, · · · , xj−1) = 0,

where

αj = (j − 1)(p+ 1) + (r1 + · · ·+ rj−1)(n− p+ 1).

So when p ≥ 3,
p∑
j=1

(−1)αjmp(xj, · · · , xn, x1, · · · , xj−1) = 0.

Proof: For convenience, set xj+p = xj for each j. Then we need to show

p∑
j=1

(−1)αjFp(xj, · · · , xj+p−1) = 0.

For each j,

Fp(xj, · · · , xj+p−1)

=
( p−1∑
a=1

(−1)a−1mA
2 (fa ⊗ fp−a)−

∑
a+b+c=p
2≤b≤p−1

(−1)a+bcfa+c+1(1
⊗a ⊗mb ⊗ 1⊗c)

)
(xj, · · · , xj+p−1).

The degree of (1⊗a ⊗mb ⊗ 1⊗c)(xj, · · · , xj+p−1) is

(2− b) + (n+ p− 2) = n+ p− b = n+ (a+ c+ 1)− 1.
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Thus, fa+c+1(1
⊗a ⊗mb ⊗ 1⊗c)(xj, · · · , xj+p−1) = 0. Then

p∑
j=1

(−1)αjFp(xj, · · · , xj+p−1)

=
∑

1≤a≤p−1

p∑
j=1

(−1)a−1+αjmA
2 (fa ⊗ fp−a)(xj, · · · , xj+p−1)

Set

Φa,j = (−1)a−1+αjmA
2 (fa ⊗ fp−a)(xj, · · · , xj+p−1).

Since xj+p = xj, we have Φa,j+p = Φa,j. We will show that Φa,j + Φp−a,j+a = 0.

For each 1 ≤ a ≤ p− 1 and 1 ≤ j ≤ p, Φa,j can be written as

(−1)ξfa(xj, · · · , xj+a−1) ∧ fp−a(xj+a, · · · , xj+p−1),

where

ξ = a− 1 + αj + (1− (p− a))(rj + · · ·+ rj+a−1).

On the other hand, we can write Φp−a,j+a as

(−1)ηfa(xj+p, · · · , xj+p+a−1) ∧ fp−a(xj+a, · · · , xj+p−1).

We determine η now. By definition,

Φp−a,j+a = (−1)p−a−1+αj+amA
2 (fp−a ⊗ fa)(xj+a, · · · , xj+a+p−1).
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Since

mA
2 (fp−a ⊗ fa)(xj+a, · · · , xj+a+p−1)

=(−1)(1−a)(rj+a+···rj+p−1)fp−a(xj+a, · · · , xj+p−1) ∧ fa(xj+p, · · · , xj+p+a−1),

and

fp−a(xj+a, · · · , xj+p−1) ∧ fa(xj+p, · · · , xj+p+a−1)

=(−1)(1−(p−a)+rj+a+···+rj+p−1)(1−a+rj+p+···+rj+p+a−1)

· fa(xj+p, · · · , xj+p+a−1) ∧ fp−a(xj+a, · · · , xj+p−1),

we have

η =p− a− 1 + αj+a + (1− a)(rj+a + · · · rj+p−1)

+ (1− (p− a) + rj+a + · · ·+ rj+p−1)(1− a+ rj+p + · · ·+ rj+p+a−1)

As rj + · · ·+ rj+p−1 = n+ p− 2, the last term of η is

(1− (p− a) + rj+a + · · ·+ rj+p−1)(1− a+ rj+p + · · ·+ rj+p+a−1)

=(1− p+ a+ rj+a + · · ·+ rj+p−1)(1− a)

+ (1− p+ a+ rj+a + · · ·+ rj+p−1)(rj + · · ·+ rj+a−1)

=(1− p+ a)(1− a) + (rj+a + · · ·+ rj+p−1)(1− a)

+ (1− p+ a+ n+ p− 2− rj − · · · − rj+a−1)(rj + · · ·+ rj+a−1)

=(1− p+ a)(1− a) + (rj+a + · · ·+ rj+p−1)(1− a)

+ (n+ a− 1)(rj + · · ·+ rj+a−1)− (rj + · · ·+ rj+a−1)
2.
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Hence,

(−1)η

=(−1)p−a−1+αj+a+(1−a)(rj+a+···rj+p−1)+(1−p+a)(1−a)+(rj+a+···+rj+p−1)(1−a)

· (−1)(n+a−1)(rj+···+rj+a−1)−(rj+···+rj+a−1)
2

=(−1)−(1−p+a)+αj+a+(1−p+a)(1−a)+(n+a−1)(rj+···+rj+a−1)−(rj+···+rj+a−1)

=(−1)−a(1−p+a)+αj+a+(n+a)(rj+···+rj+a−1).

Then

(−1)ξ+η =(−1)a−1+αj+(1−p+n+2a)(rj+···+rj+a−1)−a(1−p)+a2+αj+a

=(−1)−1+a(p−1)+(n−p+1)(rj+···+rj+a−1)+αj+αj+a .

As

αj + αj+a

=(j − 1)(p+ 1) + (r1 + · · ·+ rj−1)(n− p+ 1) + (j + a− 1)(p+ 1)

+ (r1 + · · ·+ rj+a−1)(n− p+ 1)

=(2j + a− 2)(p+ 1) + 2(r1 + · · ·+ rj−1)(n− p+ 1) + (rj + · · ·+ rj+a−1)(n− p+ 1),

we have

(−1)αj+αj+a =(−1)a(p+1)+(rj+···+rj+a−1)(n−p+1)

=(−1)a(p−1)+(n−p+1)(rj+···+rj+a−1)

Therefore, (−1)ξ+η = −1. Then (−1)ξΦa,j = (−1)ηΦp−a,j+a and Φa,j + Φp−a,j+a = 0.
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When a 6= p
2
,

p∑
j=1

Φa,j +

p∑
j=1

Φp−a,j =

p∑
j=1

Φa,j +

p−a∑
j=1−a

Φp−a,j+a =

p∑
j=1

Φa,j +

p∑
j=1

Φp−a,j+a = 0.

When a = p
2
,

p∑
j=1

Φa,j =
a∑
j=1

Φa,j +

p∑
j=a+1

Φp−a,j =
a∑
j=1

Φa,j +
a∑
j=1

Φp−a,j+a = 0.

By the discussion above,

p∑
j=1

(−1)αjFp(xj, · · · , xj+p−1) =
∑

1≤a≤p−1

p∑
j=1

Φa,j = 0.

Lemma 4.3. Let A be a dga. 1 ∈ A0 is the identity such that mA
1 1 = 0 and m2(1, α) =

m2(α, 1) = α for all α ∈ A. For simplicity, in H0(A) we use 1 to denote [1], the cohomology

class of 1. For x1, · · · , xp ∈ M(A), mp(x1, · · · , xp) = 0 if some xj = 1 and p 6= 2. Also,

when p 6= 1, fp(x1, · · · , xp) = 0 if some xj = 1.

Proof: Since the only exact form in A0 is 0, f1(1) must be the identity 1 in A0. m2(1, x) =

m2(x, 1) = x for all x ∈M(A) because m2 on M(A) is induced by mA
2 .

For each x ∈M(A), we have

m1f2(1, x) = (f1m2 −m2(f1 ⊗ f1))(1, x) = f1m2(1, x)−m2(1, f1(x)) = f1(x)− f1(x) = 0

Thus f2(1, x) = 0, similarly f2(x, 1) = 0.

When p ≥ 3, we will show that Fp(x1, · · · , xp) = 0 if some xj = 0 by induction. Assume the
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statement is true for all k when 2 ≤ k < p, i.e. fk(x1, · · · , xk) = 0 and mk(x1, · · · , xk) = 0

if some xj = 0.

For Fp(x1, · · · , xp), since mA
k = 0 for k ≥ 3, Fp can be simplified as:

Fp =

p−1∑
r=1

(−1)r−1mA
2 (fr ⊗ fp−r)−

∑
r+s+t=p
2≤s≤p−1

(−1)r+stfr+t+1(1
⊗r ⊗ms ⊗ 1⊗t)

When xj = 1, there are 3 cases.

Case 1. j = 1.

As x1 = 1, fr(x1, · · · , xr) = 0 when r > 1. Thus, the first term can be written as

p−1∑
r=1

(−1)r−1mA
2 (fr ⊗ fp−r)(x1, · · · , xp) = mA

2

(
f1(1), fp−1(x2, · · · , xp)

)
= fp−1(x2, · · · , xp).

For the second term, if r > 0, then 1 < r + t+ 1 ≤ p− 1 and

fr+t+1(1
⊗r ⊗ms ⊗ 1⊗t)(x1, · · · , xp)

=± fr+t+1(1, x2, · · · , xr,ms(xr+1, · · · , xr+s), xr+s+1, · · · , xp)

=0.

When r = 0, ms(x1, · · · , xs) = 0 if s 6= 2. Thus, the second term can be simplified as

∑
r+s+t=p
2≤s≤p−1

(−1)r+stfr+t+1(1
⊗r ⊗ms ⊗ 1⊗t)

=
∑
s+t=p

2≤s≤p−1

(−1)stft+1(ms(1, x2, · · · , xs), xs+1, · · · , xp)

=(−1)2(p−2)f(p−2)+1(m2(1, x2), x3, · · · , xp)

=fp−1(x2, · · · , xp).
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Therefore,

Fp(x1, · · · , xp) = fp−1(x2, · · · , xp)− fp−1(x2, · · · , xp) = 0.

Case 2. 2 ≤ j ≤ p− 1.

Consider the first term. When r < j, 1 ≤ p−j < p−r ≤ p−1. Hence, fp−r(xr+1, · · · ,xj, · · · , xp) =

0. When r ≥ j ≥ 2, fr(x1, · · · ,xj, · · · , xr) = 0 since r ≤ p− 1. So

p−1∑
r=1

(−1)r−1mA
2 (fr ⊗ fp−r)(x1, · · · , xp) = 0.

For the second term, when r+ s < j, r+ t+ 1 > t > p− j ≥ 1. As s > 1, r+ t+ 1 ≤ p− 1.

Hence,

fr+t+1(1
⊗r⊗ms⊗1⊗t) = ±fr+t+1

(
x1, · · · , xr,ms(xr+1, · · · , xr+s), xr+s+1, · · · ,xj, · · · , xp

)
= 0.

Similarly, when r ≥ j, r + t+ 1 > j ≥ 1. So

fr+t+1(1
⊗r⊗ms⊗1⊗t) = ±fr+t+1

(
x1, · · · ,xj, · · · , xr,ms(xr+1, · · · , xr+s), xr+s+1, · · · , xp

)
= 0.

Therefore, the second term is non-trivial only when r < j ≤ r + s. Furthermore, in this

case, ms(xr+1, · · · ,xj, · · · , xr+s) = 0 for all 3 ≤ s ≤ p− 1. So the only non-trivial cases are

r = j − 2 or j − 1, and s = 2. Then the second term is

∑
r+s+t=p
2≤s≤p−1

(−1)r+stfr+t+1(1
⊗r ⊗ms ⊗ 1⊗t)

=(−1)(j−2)+2(p−j)(−1)(|x1|+···+|xj−2|)·2fp−1
(
x1, · · · , xj−2,m2(xj−1, 1), xj+1, · · · , xp

)
+ (−1)(j−1)+2(p−j−1)(−1)(|x1|+···+|xj−1|)·2fp−1

(
x1, · · · , xj−1,m2(1, xj+1), xj+2, · · · , xp

)
=(−1)j−2fp−1(x1, · · · , xj−1, xj+1, · · · , xp) + (−1)j−1fp−1(x1, · · · , xj−1, xj+1, · · · , xp)

=0.
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Case 3. j = p. It is similar to Case 1.

Therefore, Fp(x1, · · · , xp) = 0 if some xj = 0. Then mp(x1, · · · , xp) = 0 and fp(x1, · · · , xp) =

0 in M(A).

Lemma 4.4. Suppose M is an n-dimensional connected compact orientable manifold. If

Hr(M) = 0 for 1 ≤ r ≤ k, and l ≥ 3 is an integer such that n ≤ (l + 1)k + 2, then Ω∗(M)

has an A∞-minimal model with mp = 0 for p ≥ l.

Proof: Let A = Ω∗(M). A is an A∞-algebra with mA
1 = d, mA

2 = ∧, and mA
p = 0 when

p ≥ 3.

We start from the A∞-minimal model M(A) and the quasi-isomorphism f : M(A) → A

constructed at the beginning of this chapter. Our goal is to obtain another A∞-algebra

structure (M ′′(A),m′′) on H∗(A) and a quasi-isomorphism h : M ′′(A)→ A such that m′′p = 0

for p ≥ l.

The idea is modifying fl−1 to some gl−1, then we can get an A∞-minimal model (M ′(A),m′)

and a quasi-isomorphism g : M ′(A) → A such that m′l = 0. Next we modify gl to some

hl, and get another A∞-minimal model (M ′′(A),m′′) together with a quasi-isomorphism

h : M ′′(A)→ A, such that m′′l+1 = 0.

We use the following notations: Let {xr,1, · · · , xr,br} be a basis of Hr(A), where br is the

dimension of Hr(A). Then Hn(A) is generated by µ = xn,1. By Poincaré duality, there exists

yn−r,1, · · · , yn−r,br ∈ Hn−r(M) such that xr,i ∧ yn−r,j = δijµ.

For arbitrary p ∈ Z and z1, · · · , zp ∈ H∗(A) such that |z1| + · · · + |zp| = n + p − 2,

mp(z1, · · · , zp) ∈ Hn(A). So there exist a constant number C(z1, · · · , zp) such thatmp(z1, · · · , zp) =

C(z1, · · · , zp)µ.

i) Defining of m′ and g.
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Now we define m′ and g. Set m′p = mp for p ≤ l − 1 and gp = fp for p ≤ l − 2. Then

g1m
′
p−mA

1 gp = f1mp−mA
1 fp = Fp = Gp when p ≤ l−2. Also, m′l−1 = [Gl−1] = [Fl−1] = ml−1.

So they are well defined.

For gl−1(xr1,i1 , · · · , xrl−1,il−1
), when r1+· · ·+rl−1 < n+l−2, let s = (n+l−2)−(r1+· · ·+rl−1).

Then fl−1(xr1,i1 , · · · , xrl−1,il−1
) ∈ Hn−s(A). Also for xs,t ∈ Hs(A), mk(xr1,i1 , · · · , xrl−1,il−1

, xs,t) ∈

Hn(A). So we can set

gl−1(xr1,i1 , · · · , xrl−1,il−1
)

=fl−1(xr1,i1 , · · · , xrl−1,il−1
) +

bs∑
t=1

l−1∑
j=1

(−1)φ(j)
l − j
l
C(j, t)f1(yn−s,t),

where

φ(j) = j(l + 1) + s(n− 1) + (r1 + · · ·+ rj−1)(n− l + 1)

and

C(j, t) = C(xrj ,ij , · · · , xrl−1,il−1
, xs,t, xr1,i1 , · · · , xrj−1,ij−1

).

When r1 + · · ·+ rl−1 ≥ n+ l − 2, we simply set gl−1 = fl−1.

We will prove Gl is exact by the definition above. So m′k = 0. Then we can define gl

satisfying m′1gl = −Gl. Such gl may not make Gl+1 be exact. So we define m′′ and h.

ii) Defining of m′′ and h.

Set m′′p = m′p for p ≤ l and hp = gp for p ≤ l− 1. Similar to the discussion for m′p and gp, we

can show that they are well defined.

For hl(xr1,i1 , · · · , xrl,il), when n = (l + 1)k + 2 and rj = k + 1 for all 1 ≤ j ≤ l, its total
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degree is n− (k + 1). So we set

hl(xk+1,i1 , · · · , xk+1,ik)

=gl(xk+1,i1 , · · · , xk+1,ik) +

bk+1∑
t=1

l∑
j=1

(−1)βj
l + 1− j
l + 1

C ′′(j, t)g1(yn−k−1,t).

where βj = jkl + (k + 1)(l + 1) and

C ′′(j, t) = C ′′(j, il+1) = C(xk+1,ij , · · · , xk+1,ik , xk+1,t, xk+1,i1 , · · · , xk+1,ij−1
).

The definition of βj comes from the definition of φ(j) above. If we replace l by l+ 1 for φ(j),

we get

φ′(j) = j((l + 1) + 1) + s(n− 1) + (r1 + · · ·+ rj−1)(n− (l + 1) + 1).

This φ′(j) satisfies (−1)φ
′(j) = (−1)βj when r1 = · · · = rj−1 = k + 1 and n = (l + 1)k + 2.

For other cases, we simply set hl = gl.

To prove the theorem, we need to verify the following statements.

1. gl−1 is well defined.

2. m′l = 0.

3. hl is well defined.

4. m′′l+1 = 0.

5. m′′p = 0 for p ≥ l + 2.

1. gl−1 is well defined

Since gp = fp when p ≤ l−2, we have Gl−1 = Fl−1 and m′l−1 = ml−1. The image of gl−1−fl−1
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is a linear combination of f1(ys,t), which are all mA
1 -closed. Hence,

g1m
′
l−1 −mA

1 gl−1 = f1ml−1 −mA
1 fl−1 = Fl−1 = Gl−1.

2. m′l = 0

For m′l(xr1,i1 , · · · , xrl,il), if some rj = 0, xrj ,ij must be a constant number because H0(A) is

generated by 1. By Lemma 4.3, m′l(xr1,i1 , · · · , xrl,il) = 0.

When all rj > 0 and xrj ,ij are non-zero, rj must be greater than k since Hr(A) = 0 for

1 ≤ r ≤ k. Thus, the degree of m′l(xr1,i1 , · · · , xrl,il) is at least l(k + 1) + (2 − l) = lk + 2.

By Poincaré duality, Hr(A) = 0 when r ≥ n − k except for r = n. As n ≤ (l + 1)k + 2,

lk + 2 ≥ n− k. Therefore, m′l(xr1,i1 , · · · , xrl,il) = 0 if its degree is not n. So we only need to

consider the case that the degree is n, i.e. r1 + · · ·+ rl = n+ l − 2.

As mA
p = 0 for p ≥ 3, Gl can be divided by the following four parts. We will talk about

them separately.

Gl =
l−1∑
a=1

(−1)a−1mA
2 (ga ⊗ gl−a)−

∑
a+b+c=l
2≤b≤l−1

(−1)a+bcga+c+1(1
⊗a ⊗m′b ⊗ 1⊗c)

=
(
mA

2 (g1 ⊗ gl−1) + (−1)l−2mA
2 (gl−1 ⊗ g1)

)
(1)

+
l−2∑
a=2

(−1)a−1mA
2 (ga ⊗ gl−a) (2)

−
∑

a+c=l−2

(−1)agl−1(1
⊗a ⊗m′2 ⊗ 1⊗c) (3)

−
∑

a+b+c=l
3≤b≤l−1

(−1)a+bcga+c+1(1
⊗a ⊗m′b ⊗ 1⊗c) (4)

(4.1)
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For part (1) of (4.1),

(
mA

2 (g1 ⊗ gl−1) + (−1)l−2mA
2 (gl−1 ⊗ g1)

)
(xr1,i1 , · · · , xrl,il)

=(−1)r1(2−l)g1(xr1,i1) ∧ gl−1(xr2,i2 , · · · , xrl,il) + (−1)lgl−1(xr1,i1 , · · · , xrl−1,il−1
) ∧ g1(xrl,il).

Consider the second term. Since r1 + · · ·+ rl−1 + 2− l = n− rl, we have

gl−1(xr1,i1 , · · · , xrl−1,il−1
)

=fl−1(xr1,i1 , · · · , xrl−1,il−1
) +

brl∑
t=1

l−1∑
j=1

(−1)φ(j)
l − j
l
C(j, t)f1(yn−rl,t).

As yn−rl,t ∧ xrl,il = δijµ, f1(yn−rl,t) ∧ f1(xrl,il) is exact when t 6= il, and is (−1)rl(n−rl)f1(µ)

plus some exact form when t = il. So we have

gl−1(xr1,i1 , · · · , xrl−1,il−1
) ∧ g1(xrl,il)

=fl−1(xr1,i1 , · · · , xrl−1,il−1
) ∧ f1(xrl,il) +

l−1∑
j=1

(−1)φ(j)+rl(n−rl)
l − j
l
C(j, il)f1(µ) +R1,

where R1 is some exact form,

φ(j) = j(l + 1) + rl(n− 1) + (r1 + · · ·+ rj−1)(n− l + 1),

and C(j, t) is defined by

C(xrj ,ij , · · · , xrl−1,il−1
, xrl,t, xr1,i1 , · · · , xrj−1,ij−1

).

When t = il,

C(j, il) = C(xrj ,ij , · · · , xrl,il , xr1,i1 , · · · , xrj−1,ij−1
).
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Similarly, for the first term

g1(xr1,i1) ∧ gl−1(xr2,i2 , · · · , xrl,il)

=f1(xr1,i1) ∧ fl−1(xr2,i2 , · · · , xrl,il) +
l−1∑
j=1

(−1)ψ(j)
l − j
l
C ′(j, i1)f1(µ) +R2,

where R2 is some exact form,

ψ(j) = j(l + 1) + r1(n− 1) + (r2 + · · ·+ rj)(n− l + 1),

and C ′(j, t) is defined by

C(xrj+1,ij+1
, · · · , xrl,il , xr1,t, xr2,i2 , · · · , xrj ,ij).

When t = i1,

C ′(j, i1) = C(xrj+1,ij+1
, · · · , xrl,il , xr1,i1 , · · · , xrj ,ij).

Therefore,

(
mA

2 (g1 ⊗ gl−1) + (−1)l−2mA
2 (gl−1 ⊗ g1)

)
(xr1,i1 , · · · , xrl,il)

=
(
mA

2 (f1 ⊗ fl−1) + (−1)l−2mA
2 (fl−1 ⊗ f1)

)
(xr1,i1 , · · · , xrl,il)

+
l−1∑
j=1

(−1)r1l+ψ(j)
l − j
l
C ′(j, i1)f1(µ) +

l−1∑
j=1

(−1)l+φ(j)+rl(n−rl)
l − j
l
C(j, il)f1(µ) +R

where R = R1 +R2 is exact.

Observe when 1 ≤ j ≤ l − 2,

C ′(j, i1) = C(xrj+1,ij+1
, · · · , xrl,il , xr1,i1 , · · · , xrj ,ij) = C(j + 1, il).
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We can also let C(l, il) denote

C ′(l − 1, i1) = C(xrl,il , xr1,i1 , · · · , xrl−1,il−1
).

Then C ′(j, i1) = C(j + 1, il) for 1 ≤ j ≤ l − 1. On the other hand,

ψ(j)− φ(j + 1)

=j(l + 1) + r1(n− 1) + (r2 + · · ·+ rj)(n− l + 1)

− (j + 1)(l + 1)− rl(n− 1)− (r1 + · · ·+ rj)(n− l + 1)

=− (l + 1) + r1(l − 2)− rl(n− 1).

So we have

(−1)r1l+ψ(j) = (−1)r1(2l−2)−(l+1)−rl(n−1)+φ(j+1) = −(−1)l−rl(n−rl)+φ(j+1),

and they are equal to

(−1)r1l+j(l+1)+r1(n−1)+(r2+···+rj)(n−l+1) = (−1)αj+1

where

αj+1 = j(l + 1) + (r1 + · · ·+ rj)(n− l + 1)
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is the notation in Lemma 4.2. Therefore, we can write

l−1∑
j=1

(−1)r1l+ψ(j)
l − j
l
C ′(j, i1)f1(µ) +

l−1∑
j=1

(−1)l+φ(j)+rl(n−rl)
l − j
l
C(j, il)f1(µ)

=
l−1∑
j=1

(−1)r1l+φ(j+1) l − j
l
C(j + 1, i1)f1(µ) +

l−1∑
j=1

(−1)l+φ(j)+rl(n−rl)
l − j
l
C(j, il)f1(µ)

=
l∑

j=2

(−1)αj
l − j + 1

l
C(j, il)f1(µ)−

l−1∑
j=1

(−1)αj
l − j
l
C(j, il)f1(µ)

=
l−1∑
j=2

(−1)αj(
l − j + 1

l
− l − j

l
)C(j, il)f1(µ) + (−1)αl

1

l
C(l, il)f1(µ)

− (−1)α1
l − 1

l
C(1, il)f1(µ)

=
l∑

j=1

(−1)αj
1

l
C(j, il)f1(µ)− (−1)α1C(1, il)f1(µ)

For part (2) of (4.1), since 2 ≤ a ≤ l − 2, we have l − a ≤ l − 2. Then ga = fa, gl−a = fl−a,

and
l−2∑
a=2

(−1)a−1mA
2 (ga ⊗ gl−a) =

l−2∑
a=2

(−1)a−1mA
2 (fa ⊗ fl−a)

For part (3) of (4.1), the total degree of (1⊗a ⊗m′2 ⊗ 1⊗c)(xr1,i1 , · · · , xrl,il) is r1 + · · ·+ rl =

n+ l − 2. In this case gl−1 = fl−1. Thus,

∑
a+c=l−2

(−1)agl−1(1
⊗a ⊗m′2 ⊗ 1⊗c)(xr1,i1 , · · · , xrl,il)

=
∑

a+c=l−2

(−1)afl−1(1
⊗a ⊗m2 ⊗ 1⊗c)(xr1,i1 , · · · , xrl,il).

For part (4) of (4.1), as 3 ≤ b ≤ l − 1, we have a + c + 1 ≤ l − 2. So ga+c+1 = fa+c+1,
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m′b = mb, and

∑
a+b+c=l
3≤b≤l−1

(−1)a+bcga+c+1(1
⊗a ⊗m′b ⊗ 1⊗c) =

∑
a+b+c=l
3≤b≤l−1

(−1)a+bcfa+c+1(1
⊗a ⊗mb ⊗ 1⊗c)

By the discussion above, we get

Gl(xr1,i1 , · · · , xrl,il)

=Fl(xr1,i1 , · · · , xrl,il) +
l∑

j=1

(−1)αj
1

l
C(j, il)f1(µ)− (−1)α1C(1, il)f1(µ) +R.

Then

m′l(xr1,i1 , · · · , xrl,il)

=ml(xr1,i1 , · · · , xrl,il) +
l∑

j=1

(−1)αj
1

l
C(j, il)µ− (−1)α1C(1, il)µ

As C(j, il)µ = ml(xrj ,ij , · · · , xrl,il , xr1,i1 , · · · , xrj−1,ij−1
), we have

l∑
j=1

(−1)αj
1

l
C(j, il)µ =

1

l

l∑
j=1

(−1)αjml(xrj ,ij , · · · , xrl,il , xr1,i1 , · · · , xrj−1,ij−1
) = 0

by Lemma 4.2. On the other hand,

(−1)α1C(1, il)µ = ml(xr1,i1 , · · · , xrl,il).

Therefore, we have proved

m′l(xr1,i1 , · · · , xrl,il) = 0.

3. hl is well defined
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Similar to the discussion for gl−1, we have Hl = Gl, m
′′
l = m′l and hl − gl is closed. Thus,

h1m
′′
l −mA

1 hl = g1m
′
l −mA

1 gl = Gl = Hl.

4. m′′l+1 = 0

For m′′l+1(xr1,i1 , · · · , xrl+1,il+1
), it is 0 when some rj = 0. If all rj > 0, then rj ≥ l + 1. The

total degree is at least (l+ 1)k+ 2. So it is 0 except for n = (l+ 1)k+ 2 and the total degree

is n, i.e. every rj = k + 1. Thus, we only need to consider this special case.

Similar to the proof of m′l = 0, we divide Hl+1 by three parts.

Hl+1 =mA
2 (h1 ⊗ hl) + (−1)l−1mA

2 (hl ⊗ h1) (1)

+
l−1∑
a=2

(−1)a−1mA
2 (ha ⊗ hl+1−a) (2)

−
∑

a+b+c=l+1
2≤b≤l

(−1)a+bcha+c+1(1
⊗a ⊗m′′b ⊗ 1⊗c) (3)

(4.2)

For part (1) of (4.2),

mA
2 (hl ⊗ h1)(xk+1,i1 , · · · , xk+1,il+1

)

=
(
gl(xk+1,i1 , · · · , xk+1,il) +

bk+1∑
t=1

l∑
j=1

(−1)βj
l + 1− j
l + 1

C ′′(j, t)g1(yn−k−1,t))
)
∧ g1(xk+1,il+1

)

=gl(xk+1,i1 , · · · , xk+1,il) ∧ g1(xk+1,il+1
) +

l∑
j=1

(−1)βj+(k+1)(n−k−1) l + 1− j
l + 1

Cjg1(µ) +R3

where R3 is exact and

Cj = C ′′(j, il+1) = C(xk+1,ij , · · · , xk+1,ik+1
, xk+1,i1 , · · · , xk+1,ij−1

).
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On the other hand,

mA
2 (h1 ⊗ hl)(xk+1,i1 , · · · , xk+1,il+1

)

=(−1)(1−l)(k+1)g1(xk+1,i1) ∧
(
gk(xk+1,i2 , · · · , xk+1,il+1

)

+

bk+1∑
t=1

l∑
j=1

(−1)βj
l + 1− j
l + 1

C ′′′(j, t)g1(yn−k−1,t)
)

=(−1)(1−l)(k+1)g1(xk+1,i1) ∧ gl(xk+1,i2 , · · · , xk+1,il+1
)

+
l∑

j=1

(−1)(1−l)(k+1)+βj
l + 1− j
l + 1

Cj+1g1(µ) +R4

where R4 is exact and

C ′′′(j, t) = C(xk+1,ij+1
, · · · , xk+1,il+1

, xk+1,t, xk+1,i2 , · · · , xk+1,ij−1
).

Then C ′′′(j, i1) = Cj+1.

By the discussion above

(
mA

2 (h1 ⊗ hl) + (−1)l−1mA
2 (hl ⊗ h1)

)
(xk+1,i1 , · · · , xk+1,il+1

)

=
(
mA

2 (g1 ⊗ gl) + (−1)l−1mA
2 (gl ⊗ g1)

)
(xk+1,i1 , · · · , xk+1,il+1

)

+
l∑

j=1

(−1)(1−l)(k+1)+βj
l + 1− j
l + 1

Cj+1g1(µ)

+
l∑

j=1

(−1)l−1+βj+(k+1)(n−k−1) l + 1− j
l + 1

Cjg1(µ) +R′

where R′ = R3 +R4 is exact.

Using the notation of Lemma 4.2,

αj = (j−1)((l+1)+1)+r1 + · · ·+rj−1(n− (l+1)+1) = (j−1)(l+2)+(j−1)(k+1)(n− l).
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By definition n = (l + 1)k + 2, we have (−1)n(k+1) = 1. So

(−1)αj = (−1)(j−1)l−(j−1)(k+1)l = (−1)(j−1)kl.

Also,

(−1)(1−l)(k+1)+βj = (−1)(1−l)(k+1)+jkl+(k+1)(l+1) = (−1)jkl = (−1)αj+1 .

It follows that

(−1)l−1+βj+(k+1)(n−k−1) = (−1)l−1+jkl+(k+1)(l+1)−(k+1) = (−1)jkl+kl+2l−1 = (−1)αj−1.

Hence,

l∑
j=1

(−1)(1−l)(k+1)+jk l + 1− j
l + 1

Cj+1g1(µ) +
l∑

j=1

(−1)l−1+jk+(k+1)(n−k−1) l + 1− j
l + 1

Cjg1(µ)

=
l∑

j=1

(−1)αj+1
l + 1− j
l + 1

Cj+1g1(µ) +
l∑

j=1

(−1)αj−1 l + 1− j
l + 1

Cjg1(µ)

=
l+1∑
j=2

(−1)αj
l + 1− (j − 1)

l + 1
Cjg1(µ)−

l∑
j=1

(−1)αj
l + 1− j
l + 1

Cjg1(µ)

=(−1)αl+1
1

l + 1
Cl+1g1(µ) +

l∑
j=2

(−1)αj(
l + 1− (j − 1)

l + 1
− l + 1− j

l + 1
)Cjg1(µ)

− (−1)α1
1

l + 1
C1g1(µ)

=
l+1∑
j=1

(−1)αj
1

l + 1
Cjg1(µ)− (−1)α1C1g1(µ).

For part (2) of (4.2), when 2 ≤ a ≤ l, l+ 1− a ≤ l− 1. Hence, ha = ga and hl+1−a = gl+1−a.

Then
l−1∑
a=2

(−1)a−1mA
2 (ha ⊗ hl+1−a) =

l−1∑
a=2

(−1)a−1mA
2 (ga ⊗ gl+1−a).

For part (3) of (4.2), when b ≥ 3, a + c + 1 ≤ l − 1 so that hl+1−a = gl+1−a. When b = 2,
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a+ c+ 1 = l. In this case we also have

hl(1
⊗a ⊗m2 ⊗ 1⊗c)(xk+1,i1 , · · · , xk+1,il+1

) = gl(1
⊗a ⊗m2 ⊗ 1⊗c)(xk+1,i1 , · · · , xk+1,il+1

)

because hl is not acting on (Hk+1(A))⊗l.

Therefore,

Hl+1(xk+1,i1 , · · · , xk+1,il+1
)

=Gl+1(xk+1,i1 , · · · , xk+1,il+1
) +

l+1∑
j=1

(−1)αj
1

l + 1
Cjg1(µ)− (−1)α1C1g1(µ) +R′.

That implies

m′′l+1(xk+1,i1 , · · · , xk+1,il+1
)

=m′l+1(xk+1,i1 , · · · , xk+1,il+1
) +

l+1∑
j=1

(−1)αj
1

l + 1
m′l+1(xk+1,ij , · · · , xk+1,il+1

, xk+1,i1 , · · · , xk+1,ij−1
)

− (−1)α1m′l+1(xk+1,i1 , · · · , xk+1,il+1
).

By Lemma 4.2 again the second term is

m′l+1(xk+1,ij , · · · , xk+1,il+1
, xk+1,i1 , · · · , xk+1,ij−1

) = 0.

Since α1 = 0, we have the conclusion

m′′l+1(xk+1,i1 , · · · , xk+1,il+1
) = 0.

5. m′′p = 0 for p ≥ l + 2
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For m′′p(x1, · · · , xp) with p ≥ l+ 2, either the degree of some xj is 0, or the total degree is at

least (2− p) + p(k + 1) = pk + 2 ≥ (l + 2)k + 2 > (l + 1)k + 2 ≥ n. Hence, m′′p = 0 in both

cases.

In conclusion, (M(A),m′′) is the minimal model we want.

By Hurewicz Theorem, k-connected compact orientable manifolds satisfy the condition of

Lemma 4.4, so the statement in the Lemma is true for them. We will show that the statement

in Lemma 4.4 is also true when the manifold is not orientable.

Theorem 4.5. Suppose M is an n-dimensional k-connected compact manifold. If l ≥ 3 such

that n ≤ (l + 1)k + 2, then Ω∗(M) has an A∞-minimal model with mp = 0 for p ≥ l.

Proof. By the defition of k-connected, πr(M) = 0 for all 1 ≤ r ≤ k. It follows that

Hr(M) = 0 by Hurewicz Theorem.

When M is orientable, by Lemma 4.4, Ω∗(M) has an A∞-minimal model with mp = 0 for

p ≥ l.

When M is not orientable, Hn(M) = 0. Let M̃ be the orientation bundle of M . We also

have M̃ is connected and πr(M̃) = 0 for 1 ≤ r ≤ k. So when 1 ≤ r ≤ k, Hr(M̃) = 0. By

twisted Poincaré duality, Hn−r(M) ' Hr(M̃) = 0. Therefore, Hr(M) = 0 for all r ≥ n− k.

We use the minimal model M(A) of A = Ω∗(M) and the quasi-isomorphism f : M(A)→ A

at the beginning of this chapter. For any p ≥ l, mp(x1, · · · , xp) = 0 when some |xj| = 0. If all

|xj| > 0, |xj| is at least k+1. The total degree of mp(x1, · · · , xp) is at least p(k+1)+2−p =

pk + 2 ≥ lk + 2 = (l + 1)k + 2− k ≥ n− k, so mp must be 0.
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Chapter 5

Two Conjectures

In the proof of Lemma 4.4, gl and hl+1 are constructed in a similar way. It would be

interesting to construct A∞-minimal models for other types of dgas or A∞-algebras following

this way. For example, we may be able to extend Cavalcanti’s result that a compact orientable

k-connected manifold of dimension 4k + 3 or 4k + 4 with bk+1 = 1 is formal [2].

Conjecture 1. Suppose M is an oreintable n-dimensional k-connected compact manifold,

with bk+1 = 1. If j ≥ 3 such that n ≤ (j + 1)k + 4, then Ω∗(M) has an A∞-minimal model

with mt = 0 for t ≥ j.

Another conjecture is based on Theorem 3.4, which would fit as the k = 3 case of the

following broader statement.

Conjecture 2. Suppose A is a dga. ωA ∈ A is an even-degree element. Extend A to

Ã = {α + θAβ| α, β ∈ A} with dθA = ωA. If A has an A∞-minimal model with mp = 0 for

p ≥ k, then Ã has an A∞-minimal model with mp = 0 for p ≥ k + 1.

Furthermore, it is interesting to consider what properties can be implied for A∞-minimal

models with mp = 0 for p ≥ k. If there are some geometric meanings associated to each k,
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this may lead to a different type of classification of manifolds.
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[10] R. Ibáñez, Y. Rudyak, A. Tralle, and L. Ugarte. On certain geometric and homotopy
properties of closed symplectic manifolds. In Proceedings of the Pacific Institute for
the Mathematical Sciences Workshop “Invariants of Three-Manifolds” (Calgary, AB,
1999), volume 127, pages 33–45, 2003.

[11] T. V. Kadeishvili. The algebraic structure in the homology of an A(∞)-algebra. Soob-
shch. Akad. Nauk Gruzin. SSR, 108(2):249–252 (1983), 1982.

[12] B. Keller. Introduction to A-infinity algebras and modules. Homology Homotopy Appl.,
3(1):1–35, 2001.

[13] G. Lupton and J. Oprea. Symplectic manifolds and formality. J. Pure Appl. Algebra,
91(1-3):193–207, 1994.

51



[14] T. J. Miller. On the formality of (k−1)-connected compact manifolds of dimension less
than or equal to 4k − 2. Illinois J. Math., 23(2):253–258, 1979.

[15] D. Quillen. Rational homotopy theory. Ann. of Math. (2), 90:205–295, 1969.

[16] D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ.
Math., (47):269–331 (1978), 1977.

[17] H. L. Tanaka and L.-S. Tseng. Odd sphere bundles, symplectic manifolds, and their
intersection theory. Camb. J. Math., 6(3):213–266, 2018.

[18] C.-J. Tsai, L.-S. Tseng, and S.-T. Yau. Cohomology and Hodge theory on symplectic
manifolds: III. J. Differential Geom., 103(1):83–143, 2016.
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