
Lawrence Berkeley National Laboratory
Joint Genome Institute

Title
Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence 
Factors Associated with Human Pathogens

Permalink
https://escholarship.org/uc/item/7v38h81c

Journal
Frontiers in Microbiology, 7(SEP)

ISSN
1664-302X

Authors
Bashir, Mina
Ahmed, Mahjabeen
Weinmaier, Thomas
et al.

Publication Date
2016

DOI
10.3389/fmicb.2016.01321
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v38h81c
https://escholarship.org/uc/item/7v38h81c#author
https://escholarship.org
http://www.cdlib.org/


ORIGINAL RESEARCH
published: 09 September 2016
doi: 10.3389/fmicb.2016.01321

Frontiers in Microbiology | www.frontiersin.org 1 September 2016 | Volume 7 | Article 1321

Edited by:

Martin Grube,

University of Graz, Austria

Reviewed by:

Tomislav Cernava,

Austrian Centre of Industrial

Biotechnology, Austria

Tim Sandle,

University of Manchester, UK

*Correspondence:

Parag A. Vaishampayan

vaishamp@jpl.nasa.gov

Specialty section:

This article was submitted to

Microbial Symbioses,

a section of the journal

Frontiers in Microbiology

Received: 09 March 2016

Accepted: 10 August 2016

Published: 09 September 2016

Citation:

Bashir M, Ahmed M, Weinmaier T,

Ciobanu D, Ivanova N, Pieber TR and

Vaishampayan PA (2016) Functional

Metagenomics of Spacecraft

Assembly Cleanrooms: Presence of

Virulence Factors Associated with

Human Pathogens.

Front. Microbiol. 7:1321.

doi: 10.3389/fmicb.2016.01321

Functional Metagenomics of
Spacecraft Assembly Cleanrooms:
Presence of Virulence Factors
Associated with Human Pathogens

Mina Bashir 1, 2, Mahjabeen Ahmed 1, 3, Thomas Weinmaier 4, Doina Ciobanu 5,

Natalia Ivanova 5, Thomas R. Pieber 2 and Parag A. Vaishampayan 1*

1 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,

USA, 2Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria, 3Department of Biological

Sciences, California State Polytechnic University, Pomona, CA, USA, 4Division of Computational Systems Biology,

Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria, 5Department of Energy, Joint

Genome Institute, Walnut Creek, CA, USA

Strict planetary protection practices are implemented during spacecraft assembly

to prevent inadvertent transfer of earth microorganisms to other planetary bodies.

Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning

and decontamination procedures to reduce total microbial bioburden. We wanted to

evaluate if these practices selectively favor survival and growth of hardy microorganisms,

such as pathogens. Three geographically distinct cleanrooms were sampled during the

assembly of three NASA spacecraft: The Lockheed Martin Aeronautics’ Multiple Testing

Facility during DAWN, the Kennedy Space Center’s Payload Hazardous Servicing Facility

(KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory’s Spacecraft Assembly

Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF

cleanroom at three time points: before arrival of the Phoenix spacecraft, during the

assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from

the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing

on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater

impact on microbial communities than sampling location Samples collected during

spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and

potential virulence factors, which determine pathogenicity in all the samples tested

during this study. Though the relative abundance of pathogens was lowest during the

Phoenix assembly, potential virulence factors were higher during assembly compared

to before and after assembly, indicating a survival advantage. Decreased phylogenetic

and pathogenic diversity indicates that decontamination and preventative measures

were effective against the majority of microorganisms and well implemented, however,

pathogen abundance still increased over time. Four potential pathogens, Acinetobacter

baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneumophila, and

their corresponding virulence factors were present in all cleanroom samples. This is

the first functional metagenomics study describing presence of pathogens and their
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corresponding virulence factors in cleanroom environments. The results of this study

should be considered for microbial monitoring of enclosed environments such as

schools, homes, hospitals and more isolated habitation such the International Space

Station and future manned missions to Mars.

Keywords: cleanroom, pathogens, indoor environments, microbiome, spacecraft, virulence factors,

Acinetobacter, functional metagenomics

INTRODUCTION

Detection of signs of life on other planets is of particular
interest for many of NASA’s planetary missions. In order
not to mistake earthborn microorganisms for unknown
potential extraterrestrial life, planetary missions are subject
to internationally accepted standards of planetary protection,
established by the Committee of Space Research (COSPAR)
(National Research Council, 2006). Jet Propulsion Laboratory’s
Planetary Protection Group has undertaken huge efforts (NASA
Policy Directive (NPD) 8020.7G, 1999) to avoid inadvertent
contamination of other planets with earthborn organisms, and to
minimize the bioburden on spacecraft. Spores are of particular
interest, given their high resistance to multiple sterilization
techniques, including radiation (Venkateswaran et al., 2003; La
Duc et al., 2007; Vaishampayan et al., 2012).

All spacecraft parts undergo extensive cleaning and
sterilization steps, such as exposure to dry heat, vaporized
hydrogen peroxide, radiation and alcohol on surfaces.
Additional protocols to reduce the influx of particulate
matter include daily vacuuming and mopping of floors,
HEPA air filtration, regular replacement of tacky mats
at all entry points, and strict gowning procedures. These
precautions are routinely taken but with high frequency and
stringency during the spacecraft assembly. All personnel
that enter the cleanroom are required to put on cleanroom
garments. This includes a full body suit, hair and beard nets,
facemasks, additional head covering, gloves, shoe covers,
and cleanroom boots. These are necessary measures since
humans are the major source of contamination in these
environments (La Duc et al., 2004; Probst et al., 2013). To
monitor contamination levels, cleanrooms are regularly sampled
for biological activity, particularly when spacecraft parts are
being assembled and cleaned (La Duc et al., 2007; Vaishampayan
et al., 2010a).

Multiple sterilization methods are chosen, because there is
no known method that can eradicate all microbes, which is
still compatible with spacecraft components. Only very resistant
microorganisms, such as spores, pathogens, and extremophiles,
can overcome these strict decontamination procedures (Ghosh
et al., 2009; Derecho et al., 2014). Some microorganisms
are even able to survive the harsh conditions of interstellar
travel. Researchers placed spore-forming bacteria, isolated from
cleanroom environment, outside the International Space Station
for 18 months along with exposure to simulated Mars-
like conditions, including atmospheric pressure and selective
UV-radiation and some of them were still able to survive
(Vaishampayan et al., 2012).

Our goal was to elucidate whether decontamination measures
lead to selection of hardy microorganisms, including pathogens,
in the cleanrooms and therefore posing a potential threat to
human health. Pathogens might thrive in these environments
perhaps due to their selective phenotypic characteristics,
metabolic capabilities and reduced competition for scarce
nutrients and niches. We were particularly interested in
human pathogens, given that humans are the main source of
contamination in cleanrooms (La Duc et al., 2004; Probst et al.,
2013), and also because they are exposed to these constantly-
evolving microbes. Most studies aiming at determining the
microbiome of cleanrooms (La Duc et al., 2009; Sandle, 2011;
Vaishampayan et al., 2013; Mahnert et al., 2015; Moissl-Eichinger
et al., 2015), other indoor environments (Adams et al., 2015)
or even the International Space Station (Checinska et al., 2015)
have used 16S rRNA amplicon sequencing. 16S rRNA amplicon
sequencing is often used to screen for potential pathogens (Case
et al., 2007; Stadlbauer et al., 2015; Bashir et al., 2016). However,
the lack of discriminability does not allow differentiating between
potential and true pathogens. Previous functional metagenomic
studies investigated pathogens in other indoor environments
(Tringe et al., 2008; Afshinnekoo et al., 2015), but this is the first
study, which focuses on the detection of pathogens as well as
virulence factors in cleanrooms.

Three geographically distinct cleanrooms were sampled
during the assembly of three NASA spacecraft: Phoenix in
Cape Canaveral, Florida, DAWN in Fort Worth, Texas, and
Mars Science Laboratory (Curiosity) in Pasadena, California.
Sample sets from Phoenix mission were collected from the
cleanroom at three time points: before arrival of the spacecraft,
during the assembly and testing of the Phoenix spacecraft, and
after removal of the spacecraft from the facility. All samples
were subjected to whole metagenome shotgun sequencing
on an Illumina HiSeq 2500 platform. We screened for
pathogens and virulence factors, which determine pathogenicity.
Clinically relevant pathogens were identified by searching
taxonomic classification and potential virulence factors were
identified by comparing reads to the Microbial virulence
database.

MATERIALS AND METHODS

Sample Collection and Processing
Multiple samples were collected from the floor of the Kennedy
Space Center’s Payload Hazardous Servicing Facility (KSC-
PHSF), where the Phoenix spacecraft was assembled. Sample
sets were collected from the KSC-PHSF surfaces at three time
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points: before arrival of the Phoenix spacecraft (10 samples; PHX-
B), during the assembly and testing of the Phoenix spacecraft
(8 samples; PHX-D), and after removal of the spacecraft from
the KSC-PHSF facility (10 samples; PHX-A). 10 samples from
the Lockheed Martin Aeronautics’ Multiple Testing Facility
(LMA-MTF) floor were collected during the DAWN spacecraft
assembly. Samples were collected from the Ground Support
Equipment (GSE) at Jet Propulsion Laboratory’s spacecraft
assembly facility (JPL-SAF) during the Mars Science Laboratory
(2 samples; MSL) spacecraft assembly. These three cleanroom
facilities were certified at ISO 8 (3,520,000 particles >0.5µm
m−3) level and maintained according to the standard cleaning
practices. Each sample was collected from 1m2 of the cleanroom
floor or GSE by a wet surface sampling technique using Biological
Sampling Kits (BiSKits, QuickSilver Analytics, Abingdon, Md.)
and polyester wipes, respectively. Samples from each sampling
event were concentrated using Amicon Ultra-15 centrifugal
filter tube (Millipore, Jaffrey, NH, Ultracel-50 membrane) as
described earlier (La Duc et al., 2009). DNA was extracted
from each concentrated sample using bead beating and an
automated DNA extraction instrument (Autolyser A-2 DNA,
Axcyte Genomics, Menlo Park, CA) and pooled equimolar, as
described earlier (Vaishampayan et al., 2010b). DNA samples
were archived at −80◦C until further use. Negative controls
such as field control (sampling devise control), reagent control
(during DNA extraction) at each step were collected. None of the
negative controls had a sufficient DNA concentration for library
preparation and were thus not included in further downstream
analysis.

Metagenomic Sequencing
Sample processing was performed in a sodium hypochlorite
(bleach) treated laminar flow hood in an ultra-clean
environment. Operators were using single-use lab-coats,
bleached gloves, hairnets, and booties. Due to low DNA
concentrations, samples were subject to multiple displacement
amplification (MDA) (Dean et al., 2002). Each sample was
divided into 1ml aliquots, which were amplified via MDA using
Repli-g single-cell whole genome amplification kit (Qiagen
part #150345). All plastic ware and water were ultraviolet (UV)
treated in a Stratalinker 2400 UV Crosslinker (Stratagene, La
Jolla, CA) with 254-nm UV for 30–90min on ice (Woyke et al.,
2011). This represents a UV dose range of 5.7–17.1 J/cm2,
calculated by measuring the distance from inside the tubes to the

light bulb (4 cm). Buffer and enzyme come pre-cleaned and don’t
require UV-radiation. MDA reaction was prepared following
manufacturer protocol for single cells, scaling reaction volume
down to 15µl final volume and addition of Syto13 dye for
real-time monitoring. MDA reaction was stopped when sample
amplification reached saturation.

Amplified fractions of each sample were combined, and this
pooled DNA product (100 µl) was sheared using a Covaris
E210 instrument (Covaris, Woburn, MA) set to: 10% duty cycle,
intensity 5, and 200 cycles per burst for 1 min. The concentration
and fragment size of each sheared product was determined
using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA) in accordance with the manufacturer’s recommended
conditions. The sheared DNA was end-repaired, A-tailed, and
ligated to Illumina adaptors according to standard Illumina
PE protocols (Illumina, San Diego, CA). The concentration of
the resulting Illumina-indexed libraries was again determined
using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA). Libraries were pooled and normalized to a
final concentration of 400mM each, and the primary bands
corresponding to the sizes were gel-purified and dissolved in
30µl TE. One flow-cell was generated from a pooled library,
which was subsequently subjected to sequencing in an Illumina
HiSeq2500 instrument (2 × 250 bp), in accordance with
manufacturer-provided protocols. The raw sequence data are
available within IMG/M (https://img.jgi.doe.gov/cgi-bin/mer/
main.cgi) and NCBI’s short read archive under the accession
number SRP077843.

Sequence Data Analysis
We started with a total of 15,001,132 paired reads for PHX-B,
14,654,014 for PHX-D, and 22,355,430 for PHX-A before quality
filtering and pairing. ForMSL andDAWNwe had 57,892,216 and
2,899,364 reads, respectively (Table 1).

FastQC v0.10.1 (Andrews, 2010) was used to determine the
base quality throughout the 250 bp HiSeq-generated paired-
end reads. PEAR v0.9 (Zhang et al., 2014; default parameters)
was used to merge paired reads. Unmerged forward and reverse
reads were retained. Merged and unmerged reads were processed
using prinseq-lite v0.20.3 (Schmieder and Edwards, 2011)
with the following parameters: “-min_len 100 -trim_qual_right
20 -trim_qual_left 20 -trim_left 8.” Adapter sequences and
overrepresented sequences were identified with FastQC and
removed using Cutadapt v1.1 (Martin, 2011). PhiX174 and

TABLE 1 | Data statistics: number of reads per sample starting with raw reads coming from the sequencer until final taxonomic and functional

classification.

Sequences PHX-B PHX-D PHX-A DAWN MSL

Paired raw reads 15,001,132 14,654,014 22,355,430 2,899,364 57,892,216

Passed quality filter 10,760,642 11,889,258 16,338,684 166,392 34,615,498

KEGG assignment 13,360 24,916 298,350 557 664,699

With Taxonomic classification 174,622 1,328,890 2,903,271 17,306 7,652,616

Metabolic diversity 145.8 188.5 42.9 119.8 5.5

Observed genera 396 36 104 82 25
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a JGI-standard collection of potential contaminant genomes
(Supplementary Table 1) were removed by mapping trimmed
high-quality reads using BBMap short read aligner v31.18
(Bushnell, 2014) to the respective genomes. Any reads matching
any of these contaminant genomes were removed from the
dataset.

To generate the human DNA sequence free dataset, all
remaining high-quality reads were mapped with BBMap short
read aligner against the human genome GRCh38 (including
mitochondrial DNA). All positive matches were removed from
the dataset.

Both, datasets including and excluding human DNA
sequences were compared to NCBI non-redundant database
using DIAMOND BLASTX v0.7.1 (Buchfink et al., 2014) with
default parameters. Results were imported to MEGAN v5.10.5
(Huson et al., 2007; minimal bit score of 80%; “minscore 80”) for
taxonomic binning, functional assignments to KEGG functions,
and generation of rarefaction curves (phylogenetic diversity
on genus level). After removal of unassigned and unclassified
reads, taxonomy and KEGG pathways (Kanehisa and Goto,
2000; Kanehisa et al., 2014) were visualized using Krona Tools
v2.4 (Ondov et al., 2011). Taxonomic and metabolic diversity
calculations were done in QIIME 1.9.1 (Caporaso et al., 2011)
with all samples subsampled to the smallest sample size observed.

Potential virulence factors were identified by comparing
contaminant- and human-DNA-sequence-free reads to the
Microbial Virulence Database MvirDB (Zhou et al., 2007)
using DIAMOND BLASTX (Buchfink et al., 2014) with a 80%
sequence similarity cut-off and maximum of target sequences of
one. Sequences which passed these criteria were extracted and
compared to NCBI non-redundant database using DIAMOND
BLASTX (Buchfink et al., 2014) with a maximum of target
sequences of one for virulence factor validation (Data Sheet 1 in
Supplementary Material). Classified sequences were searched for
clinically relevant pathogens (http://www.bode-science-center.
com/center/relevant-pathogens-from-a-z.html accessed on Dec
1 2015; Supplementary Table 2).

RESULTS

Phylogenetic Diversity of Cleanroom
Samples
Alpha rarefaction curves indicate, besides sufficient sampling
efforts, that diversity is drastically lower during the actual
spacecraft assemblies (PHX-D, DAWN, and MSL) compared
to before or after. This confirms that the very strict gowning,
cleaning and sterilization procedures were well executed, and
highly effective as previously described (Ghosh et al., 2010).
MSL had the highest sampling depth but lowest bioburden
(Figure 1A) as GSE undergo stringent cleaning procedures and
are exposed to less handling and human contact compared to the
cleanroom floors. Interestingly, microbial community profiles
during active spacecraft assembly (PHX-D, DAWN, MSL) were
more similar to each other than to samples from one location
(Figure 1B). Moraxellaceae was the dominating family, making
83, 73, and 62% of all classified sequences for PHX-D, DAWN,
and MSL, respectively. The majority of all Moraxellaceae, 94%

to 100%, were Acinetobacter spp. (Figure 2 and Presentation S2
in Supplementary Material), making it the most dominating taxa
during spacecraft assembly.

In general, bacteria were the most dominant kingdom present
in all tested cleanrooms with 63 to >99% of all classified
sequences. Archaea and viruses on the other hand accounted
for less than 0.1% relative abundance combined (Figure 2 and
Presentation S2 in Supplementary Material). Surprisingly, the
amount of potentially human DNA was minimal. Only 0.04–2%
of all sequences were classified as primates: PHX-B 2%, PHX-D
0.08%, PHX-A 0.2, DAWN 0.05, and MSL 0.2% (Presentation S2
in Supplementary Material).

In PHX-B eukaryotes made 36% of all classified sequences.
Most of these sequences (22% of total; 60% of eukaryotes)
belong to the class of arthropods, such as insects and arachnids.
In all other samples less than 0.1% of all classified sequences
were arthropods. Probably arthropod sequences originated from
free DNA associated with dust particles, given that no living
spiders or insects are present in any cleanrooms. In MSL all
eukaryotic sequences were assigned to craniate. Fungi were
also not prominent in our cleanrooms. The fungal abundance
ranged from 0.0008% (MSL) to 1% (PHX-B) (Presentation S2 in
Supplementary Material).

Metabolic Diversity During Spacecraft
Assembly
Functional assignment resulted in 13,360 KEGG orthologous
(KO) for PHX-B, 24,916 KOs for PHX-D, 298,350 KOs for
PHX-A, 557 for DAWN and 664,699 for MSL (Table 1 and
Data Sheet 1 in Supplementary Material). Figure 3 indicates
that the majority of the functional classification was assigned to
metabolism (PHX-B 67%, PHX-D 67%, PHX-A 90%, DAWN
75%, MSL 29%; Figure 3 and Data Sheet 1 in Supplementary
Material). Although the percentage of sequences assigned to
metabolism did not differ much across samples (Figure 3 and
Data Sheet 1 in Supplementary Material), we saw a higher
metabolic diversity during assembly compared to before or after
spacecraft assembly samples (Table 1). We also found that the
metabolism of pantothenate and coenzyme A is higher during
assembly (PHX-D 4%, DAWN 2%) compared to PHX-B or PHX-
A, 0.2% respectively (Data Sheet 1 in Supplementary Material).
Nevertheless, no function associated with pantothenate and
coenzyme A was found in MSL during assembly. Fifty-two
percent of all functional classification from MSL was assigned
to Holliday junction DNA helicase RuvB (Genetic Information
Processing; Replication and Repair). In PHX-B, 9%were assigned
to Genetic Information Processing, 12%, in PHX-D 3%, in PHX-
A 11% in DAWN, and 52% in MSL (Figure 3).

Potential Pathogens in Cleanroom
Samples
After taxonomic classification we selectively screened the
classified binned sequences of all our samples for clinically
relevant pathogens (Supplementary Table 2). In total we found
48 different human pathogens in all cleanrooms, responsible for
various diseases, from gastrointestinal, to the nervous system.
Twenty nine different pathogens were detected in PHX-B,
18 in PHX-D, 33 in PHX-A, 10 in DAWN and 11 in MSL
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FIGURE 1 | Diversity is lower during assembly. (A) Rarefaction curves of samples taken during assembly (PHX-D, DAWN, MSL) show less genera at the same

sample size compared to samples taken before (PHX-B) and after (PHX-A) assembly. (B) Principal coordinates analysis on genus taxonomic level based on a

Bray-Curtis dissimilarity matrix. Samples taken during spacecraft assembly show a similar community profile although the sampling locations were hundreds of miles

apart.

FIGURE 2 | Moraxellaceae dominate cleanroom during spacecraft assembly. Relative abundance of taxa at family level. Human, viral and archaeal impact was

minimal. All taxa with a collective abundance of equal or less than 2% from all samples were combined in “Other”. See Presentation S1 in Supplementary Material for

more details and lower taxonomic levels.

(Table 2). Strikingly, four pathogens, namely Acinetobacter
baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella
pneumophila, were detected in all cleanrooms, even though
they are geographically separate. Besides these four pathogens,
present in all samples, we found pathogens that were exclusive to
KSC-PHSF, during all three time points, namely, Bacillus cereus,
Burkholderia pseudomallei, Enterobacter cloacae, Enterococcus
faecalis, Listeria monocytogenes, Pseudomonas aeruginosa,
Staphylococcus aureus and Staphylococcus epidermidis. In
case of PHX-D, 83% of all classified reads were identified as
Acinetobacter spp. (Presentation S2 in Supplementary Material),
which is listed as a clinically relevant pathogen (Supplementary

Table 2). Additionally, we found a decreased pathogen diversity
during the actual spacecraft assembly in KSC-PHSF, while
pathogen abundance almost triples over time (PHX-B 1.52,
PHX-D 2.34, and PHX-A 4.26%; Table 2).

Pathogens and Corresponding Virulence
Factors in Cleanrooms
Virulence factors are features, which distinguish pathogens from
commensals or symbionts (Das et al., 2011). We found that the
fraction of sequences identified as potential virulence factors
increased over time in case of Phoenix (Table 3), although
overall diversity was lower during assembly (Figure 1A). DAWN
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FIGURE 3 | Metabolic genes cover majority of functional

classifications. KEGG Pathway analysis of PHX-B, PHX-D, PHX-A, DAWN

and MSL. During assembly of PHX-D and DAWN, we see that a bigger

fraction of all classified sequences have been assigned to metabolism. See

Presentation S2 in Supplementary Material for more details.

had approximately half the virulence factor fraction compared
to Phoenix, but MSL, which was sampled from GSEs, had
approximately 20 times less potential virulence factors compared
to Phoenix.

To evaluate if we could find pathogens and their
corresponding virulence factors, we identified potential virulence
factors that are specifically associated with the pathogens found
in our samples. We found 14 different potential virulence factors,
which correspond to the classified pathogens in PHX-B, 48 for
PHX-D and 41 for PHX-A. Nine different virulence factors were
found to correspond with the classified pathogens in DAWN,
and 6 were found for the MSL mission.

We were particularly interested in detecting potential
virulence factors of the four pathogens, A. baumannii, A.
lwoffii, E. coli, and L. pneumophila, which were found in all
geographically separated cleanrooms. We found a Acinetobacter
sp. specific aminoglycoside 6′-N-acetyltransferase lv and tetA,
which are kanamycin B and tetracycline resistance genes,
respectively, in PHX-D.Moreover, we found adeABC, which is an
A. baumannii specific multidrug efflux pump and beta-lactamase
TEM-1 (Supplementary Table 3).

We found that the abundance of potential virulence factors
with associated pathogens increased over time (Table 4).
Although, virulence factors diversity did not change over time,
we observed a trend toward increased pathogens with associated
virulence factors (Table 4, pathogenic diversity). Again, MSL had
the smallest pathogenic diversity.

DISCUSSION

In this study, we demonstrated for the first time the presence of
pathogens and their corresponding virulence factors in spacecraft
assembly cleanrooms. Our approach allowed us not only to prove
the presence of pathogens in the spacecraft assembly cleanrooms,
but also their associated potential virulence factors. Most studies
investigating the cleanroom microbiome have only used 16S
rRNA amplicon sequencing (Vaishampayan et al., 2013; Mahnert
et al., 2015). For example, the archived samples from KSC-PHSF
during the Phoenix mission used in this study have previously

been described using a cultivation based (Ghosh et al., 2010) and
cultivation independent technique (Vaishampayan et al., 2010a).
On one hand, cultivation based techniques offer a very limited
insight into the wide spectrum of microbial diversity, given
that most microorganisms are not cultivable, while 16S rRNA
amplicon sequencing on the other hand shows a more broad
picture, but does not allow a reliable phylogenetic classification
below genus level and does not provide any information
regarding virulence factors and potential pathogenicity.

We observed that cleanroom samples are dominated by
bacteria as reported previously (Weinmaier et al., 2015).
Contrary to previous studies, which found substantially more
human, archaeal and viral sequences in cleanrooms (Moissl-
Eichinger, 2011; Weinmaier et al., 2015), we found significantly
less of each taxon in all cleanrooms tested during this study.
These previous studies have sampled uncontrolled gowning area
and ISO-8 cleanrooms, where no active spacecraft assembly
was ongoing. Moreover, each cleanroom is unique, because
of factors such as geographical location (Moissl et al., 2007),
assembly activities, different decontamination procedures and
most importantly, different workers, which are the main source
of contamination.

We saw an increased metabolic diversity in samples collected
from cleanrooms during spacecraft assembly. Cleanrooms are
sometimes referred to as extreme environments; not only due
to strict decontamination procedures, but also due to the
lack of nutrients, water and cofactors (La Duc et al., 2007;
Ghosh et al., 2010). Since there are very few resources to
rely on in an area that is maintained to be uninhabitable,
any microbes able to survive here would have to synthesize
all necessary factors themselves. Sterilization procedures and
gowning requirements are even stricter during assembly, making
it even harder for microorganisms to survive. Strict gowning
protocols and increased frequency of cleaning leads to decrease in
introduction of human associated microbes, despite high human
activities in the cleanroom during assembly. This might also
explain lower phylogenetic diversity during Phoenix spacecraft
assembly compared to before or after assembly. In addition to
the decreased phylogenetic diversity, pathogenic diversity was
also lower during spacecraft assembly, however, we observed
an increase in pathogen abundance over time. This suggests
that strict decontamination procedure favor the growth of
pathogens. Nevertheless, studies with bigger sample sizes need
to confirm our descriptive findings. A considerable amount,
in case of MSL more than 50%, of all reads was assigned to
genetic information processing. This highlights the importance
of genetic information processing, including DNA repair in such
a harsh environment. Surprisingly, microbial profiles during
assembly were very similar. Although, DAWN and MSL samples
were collected from geographically distinct locations, they were
more similar to PHX-D than PHX-B or PHX-A. This suggests
that decontamination procedures have a bigger effect on the
cleanroom microbiome than location. Taken together, these
results show that decontamination and gowning measures were
not only sufficient, but also well executed.

Most virulence factors are organized in so-called
pathogenicity-islands (Schmidt and Hensel, 2004). Commensals
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TABLE 2 | Pathogen diversity is lowest during assembly: pathogens found in the different cleanroom samples.

Pathogen PHX-B (%) PHX-D (%) PHX-A (%) DAWN (%) MSL (%)

Urinary tract infection (catheter-associated or otherwise) Acinetobacter baumannii* 0.2 2 0.5 2 0.8

Acinetobacter lwoffii* 0.1 0.3 0.001 0.2 0.0006

Bacillus cereus 0.1 0.0002 0.005 – –

Brevundimonas diminuta 0.007 0.02 – 0.02 –

Burkholderia cepacia 0.02 – – – –

Enterobacter aerogenes – – 0.004 – –

Enterobacter cloacae 0.01 0.0002 0.0002 – –

Enterococcus faecalis 0.0006 0.00008 0.05 0.01 –

Enterococcus faecium 0.0006 – – – –

Escherichia coli* 0.06 0.004 3 0.2 0.004

Klebsiella pneumoniae 0.003 – 0.0004 – 0.00004

Providencia stuartii – – 0.00003 – –

Pseudomonas aeruginosa 0.2 0.0002 0.0004 – 0.2

Serratia marcescens – 0.002 – – –

Staphylococcus haemolyticus 0 – 0.001 – –

Staphylococcus saprophyticus – – 0.003 – –

Stenotrophomonas maltophilia 0.3 0.003 – – 0.0004

Abundance (%) 1.0012 2.3297 3.5650 2.4300 1.0050

Number of pathogens 13 10 12 5 6

Pneumonia, respiratory disease or infections Acinetobacter baumannii* 0.2 2 0.5 2 0.8

Brevundimonas diminuta 0.007 0.02 – 0.02 –

Burkholderia cepacia 0.02 – – – –

Chlamydia psittaci – – 0.00003 – –

Coxiella burnetii 0.001 – – – –

Enterobacter aerogenes – – 0.004 – –

Klebsiella pneumoniae 0.003 – 0.0004 – 0.00004

Legionella pneumophila* 0.0006 0.0005 0.07 0.006 0.0005

Serratia marcescens – 0.002 – – –

Streptococcus pneumoniae – – 0.0001 – –

Streptococcus pyogenes – – 0.0003 – –

Histoplasma capsulatum 0.002 – – – –

Abundance (%) 0.2336 2.0225 0.5748 2.0260 0.8005

Number of pathogens 7 4 7 3 3

Meninges, central and peripheral nervous system Bacillus cereus 0.1 0.0002 0.005 – –

Burkholderia pseudomallei 0.006 0.00008 0.02 – –

Clostridium botulinum – – 0.0004 – –

Haemophilus influenzae – – 0.004 – –

Leptospira interrogans – – 0.0001 – –

Neisseria meningitidis – – 0.3 0.02 0.00008

Polyomavirus 0.009 – – – –

Streptococcus pyogenes – – 0.0003 – –

Abundance (%) 0.1150 0.0003 0.3298 0.0200 0.0001

Number of pathogens 3 2 7 1 1

Cardiovascular (sepsis, endocarditis) Candida parapsilosis – – 0.00003 – –

Enterococcus hirae 0.0006 – – – –

Escherichia coli* 0.06 0.004 3 0.2 0.004

Haemophilus influenzae – – 0.004 – –

Neisseria meningitidis – – 0.3 0.02 0.00008

Pseudomonas aeruginosa 0.2 0.0002 0.0004 – 0.2

(Continued)
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TABLE 2 | Continued

Pathogen PHX-B (%) PHX-D (%) PHX-A (%) DAWN (%) MSL (%)

Serratia marcescens – 0.002 – – –

Staphylococcus capitis 0.0006 – 0.001 – –

Staphylococcus epidermidis 0.002 0.0005 0.04 0.006 –

Staphylococcus lugdunensis – – 0.00003 – –

Streptococcus pneumoniae – – 0.0001 – –

Streptococcus pyogenes – – 0.0003 – –

Trichinella spiralis 0.02 – – – –

Abundance (%) 0.2826 0.0067 3.3458 0.2260 0.2041

Number of pathogens 6 4 10 3 3

Gastrointestinal (gastroenteritis, stomach ulcers, diarrhea) Campylobacter coli/jejuni 0.2 – – – –

Corynebacterium ulcerans 0.0006 – – – –

Helicobacter pylori – 0.00008 – – –

Listeria monocytogenes 0.002 0.00008 0.02 – –

Providencia stuartii – – 0.00003 – –

Vibrio cholerae – 0.002 0.2 0.02 0.00008

Abundance (%) 0.2026 0.00216 0.22003 0.02 0.00008

Number of pathogens 2 3 3 1 1

Skin, wound, or surgical opening Burkholderia pseudomallei 0.006 0.00008 0.02 – –

Candida parapsilosis – – 0.00003 – –

Enterobacter cloacae 0.01 0.0002 0.0002 – –

Pediculus humanus corporis 0.2 – – – 0.0007

Staphylococcus aureus 0.07 0.003 0.03 – 0.0002

Staphylococcus haemolyticus 0.002 0.0005 0.04 0.006 –

Staphylococcus lugdunensis – – 0.00003 – –

Streptococcus pyogenes – – 0.0003 – –

Abundance (%) 0.288 0.00378 0.09056 0.006 0.0009

Number of pathogens 5 3 7 0 2

Typhus Orientia tsutsugamushi 0.0006 – – – –

Rickettsia prowazekii 0.0006 – 0.0005 – –

Glanders, Malleus Burkholderia mallei – – 0.01 0.006 –

Gonorrhea Neisseria gonorrhoeae – – 0.0005 – –

Pathogens associated with more than two diseases Alcaligenes faecalis – 0.0005 0.0002 – –

Peritonis, meningitis, otitis media, appendicitis, blood stream infection

Bacillus anthracis – – 0.0001 – –

Anthrax (pulmonary, cutaneous, and gastrointestinal)

Trichinella spiralis 0.02 – – – –

Aedema, urticaria, meningitis, encephalitis, myocarditis, and pneumonia

Number of pathogens 29 18 33 10 11

Total pathogen abundance (%) 1.5168 2.3364 4.2623 2.4880 1.0066

−...Not present.

*...Pathogens found in all cleanroom samples.

can turn into pathogens by acquiring pathogenicity-island
through phages, or horizontal gene transfer. For example, wild
type Vibrio cholerae are not able to cause deadly diarrhea.
Only upon infection by the CTX prophage they acquire a
pathogenicity island coding for virulence factors, such as the

cholera toxin and pili, needed for recognition host and disease
induction (Das et al., 2011). Therefore, virulence factor detection
is the only reliable method to identify pathogens.

Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia
coli and Legionella pneumophila were found in all samples,
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TABLE 3 | Accumulation of virulence factors over time: total number of

virulence factors and hits normalized to hits per million reads found in

cleanrooms.

Sample Total MvirDB hits MvirDB hits/Mio reads

PHX-B 252 23

PHX-D 5662 476

PHX-A 12703 777

DAWN 39 234

MSL 615 18

TABLE 4 | Virulence factors with their corresponding pathogens.

PHX-B PHX-D PHX-A DAWN MSL

Sum 24 2867 5458 16 501

Sum norm. 2 241 334 96 15

Virulence diversity 14 48 41 9 6

Virulence diversity norm. 1 4 2 54 0.2

Pathogenic diversity* 3 6 11 3 2

norm: normalized to counts per million reads.

*Number of pathogens with ≥1 corresponding virulence factors.

although samples were collected from three geographically
distinct sites. These prevalent pathogens have to be very
resistant to overcome all the cleaning and decontamination
procedures. Acinetobacter spp., such as A. baumannii and
A. lwoffii are non-fastidious and can rely on a single energy source
from different substrates (Rathinavelu et al., 2003). They are
resistant to radiation (Firstenberg-Eden et al., 1980b) and several
disinfectants and can survive in a wide range of temperatures
(Firstenberg-Eden et al., 1980a) and even in low pH. These
features might explain why Acinetobacter spp. were the most
dominating species during spacecraft assembly in this study.
Acinetobacter spp. have also been reported in high abundance
in cleanrooms in previous studies (Vaishampayan et al., 2010a;
Mahnert et al., 2015). Acinetobacter baumannii has been isolated
from water and soil (Yeom et al., 2013), but it has also been
found in other hostile environments such as intensive care units.
Although A. baumannii is not pathogenic to healthy individuals,
it can be an opportunistic pathogen in immunocompromised
patients. Hence, it is one of the ESKAPE pathogens (Boucher
et al., 2009), which are multidrug-resistant bacteria, responsible
for the majority of nosocomial infections (Rice, 2008).

We found A. baumannii specific beta-Lactamase TEM-1,
AdeABC and another cation/multidrug efflux pump, which
might be responsible for A. baumannii’s resistance against all
decontamination measures. AdeABC alone is responsible for
resistance to aminoglycosides, tetracyclines, erythromycin,
chloramphenicol, trimethoprim, fluoroquinolones, some
beta-lactams, and also recently tigecycline since they have
been described as substrates for this multidrug efflux pump
(Wieczorek et al., 2008). We did not detect A. Iwoffii associated
potential virulence factors in our data set. MvirDB has only
three A. Iwoffii (formerly known as Acinetobacter calcoaceticus)
associated virulence factors (two beta-lactamases and a

chloramphenicol acetyl transferase). Nevertheless, the presence
of this opportunistic pathogen in all our sample collection from
locations separated by hundreds of miles, its resistant features,
and our finding that Acinetobacter spp. were dominating in all
three locations during assembly, suggests that A. lwoffii and
A. baumannii are actually viable in the spacecraft cleanroom
environment. L. pneumophila, another pathogen present in all
three distinct locations, is the causative agent of the Legionnaires’
disease (Shevchuk et al., 2011), with symptoms such as fever,
chills, and coughing. We found Legionella secretion pathway
protein E (LspE), which is part of a type II secretion system
required for its full virulence and environmental persistence
(Hales and Shuman, 1999). In addition, other L. pneumophila
associated virulence factors, such as the catalase-peroxidase
KatB and superoxide dismutase were present, potentially
explaining why this species is resistant to hydrogen peroxide
treatment, one of the decontamination procedures. The last
potential pathogen we found in all cleanrooms was E. coli.
Although, we have found several virulence factors such as
transposases and antimicrobial resistance genes, we cannot
confirm whether or not this specific E. coli is a pathogen, given
that more and more antimicrobial resistance genes are being
found in commensal E. coli (Kaesbohrer et al., 2012; Tadesse
et al., 2012; Wasyl et al., 2013). While we think that the four
pathogens found in all geographically separated cleanrooms
are alive, given their resistant features, we are not able to tell if
the classified taxa and functions derive from intact living cells
or if they are originating from dead cells. In an ongoing study
we’re including propidium monoazide staining, enabling us to
differentiate between sequences coming from intact live and dead
microorganisms.

Interestingly, potential virulence factor abundance increased
over time, despite lower phylogenetic diversity during assembly.
We have concluded that virulence factors may provide a survival
advantage in this very hostile environment (Rathinavelu et al.,
2003). Multidrug efflux pumps might be pumping out harmful
compounds before they are able to execute their deadly effect
(Yoon et al., 2013). This virulence factor accumulation seems to
be species dependent, as we also see an increase in pathogenic
abundance over time. We also found pathogens not belonging
to the bacterial kingdom; such as Candida parapsilosis, a fungus,
which plays an important role in wound and tissue sepsis of
immunocompromised patients and makes up to 15% of all
Candida infections.

One limitation of this study is the low biomass in cleanroom
samples, due to the repeated strict cleaning and decontamination
practices. MDA was necessary to acquire DNA concentrations
sufficient for library preparation. MDA can introduce bias,
by favoring some DNA fragments over others (Direito et al.,
2014). Therefore, some microorganisms might not have been
detected in our approach, while others might be overrepresented.
Although, we performed stringent quality filtering of our
reads, it’s impossible to get rid of all errors and biases.
Homology based approaches such as BLASTx against specialized
databases such as MvirDB are biased, because a sequence
with an 80% sequence similarity might have a better hit
to a reference which is not in the database. However, we
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searched all positive MvirDB hits against NCBI non-redundant
database, and the majority was classified as virulence factors
(see Presentation S1 in Supplementary Material). Moreover,
the circumstantial evidences of the presence of virulence
factors associated with human pathogens in cleanroom samples
should be confirmed by implementation of selective cultivation
based approaches and viability-based molecular assays in future
missions.

Humans spend most of their lives indoors (Höppe
and Martinac, 1998). Recent studies have speculated that
human microbiome is the major contributor to the overall
indoor microbiome (Lax et al., 2014). Stringent cleaning
and maintenance practices in highly controlled indoor
environments such as cleanrooms, hospitals and intensive
care units may lead to a relative increase of human pathogens
in these environments. This may have serious impact
on health of the inhabitants. Monitoring pathogens and
virulence factors in these indoor environments may prevent
diseases such as nosocomial infections and sustain human
health.

The results of this study could be used to develop fast and
cost-efficient tests (Craw et al., 2015) to detect the presence
of specific pathogens or their virulence factors in enclosed
environments such as public transport, pharmaceutical
cleanrooms, hospitals, and intensive care units. This study
has broadened our understanding of the role of pathogens
in such highly controlled environments and should be
considered for microbial monitoring of the ISS during sustained
presence of humans in space and future manned missions to
Mars.
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