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ARTICLE

Learning fast and fine-grained detection of amyloid
neuropathologies from coarse-grained expert labels
Daniel R. Wong 1,2,3,4,5, Shino D. Magaki6, Harry V. Vinters6,7, William H. Yong8, Edwin S. Monuki8,

Christopher K. Williams6, Alessandra C. Martini 8, Charles DeCarli 9, Chris Khacherian8, John P. Graff 10,

Brittany N. Dugger 10✉ & Michael J. Keiser 1,2,3,4,5✉

Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuro-

pathology. We release a deep learning model for rapid object detection and precise infor-

mation on the identification, locality, and counts of cored plaques and cerebral amyloid

angiopathy (CAA). We trained this object detector using a repurposed image-tile dataset

without any human-drawn bounding boxes. We evaluated the detector on a new manually-

annotated dataset of whole slide images (WSIs) from three institutions, four staining pro-

cedures, and four human experts. The detector matched the cohort of neuropathology

experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques

and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality

predictions that approximately correlated with gold-standard human CERAD-like WSI scoring

(p= 0.07 ± 0.10). The openly-available model can quickly score WSIs in minutes without a

GPU on a standard workstation.
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Deep phenotyping of Alzheimer disease requires accurate
evaluation of whole slide image (WSI) data1. For amyloid-
β (Aβ) pathologies, such as plaques and cerebral amyloid

angiopathy (CAA), quantifying Aβ burden phenotypes in the
brain can aid in understanding disease mechanisms and
progression2–4. There is a great need for quantitative, scalable
means of assessing neuropathologies as current practices can
suffer from interrater reliability issues and limited statistical
analysis power, especially when relying on semi-quantitative
scores. Current neuropathology assessments for AD pathologies
such as NFT stage5,6 and amyloid plaque phase7 have added
immensely to understanding the pathological progression of
neurodegenerative diseases. Most schematics have used ordinal
scales or the presence or absence of pathologies in specific areas.
Recently, quantitative neuroanatomic-specific data have aided
more robust correlations and understanding of selective vulner-
ability. This has led to further precision medicine approaches and
the emergence of disease subtypes1,8–10. However, in neuro-
pathological practice, quantifying Aβ burden has primarily been
semi-quantitative11 with variable interpretation12,13. Interpreting
WSIs is a time-consuming task14 with experts regularly spending
many hours a day assessing slides15.

Deep learning has helped to address these challenges, providing
quantitative and automated solutions to identifying and quanti-
fying Aβ burden13,16,17. Deep learning can augment neuro-
pathologist expertise16 and combine multiple expert annotations
into a robust and automated labeler13. For more localized tasks
like object detection18 and semantic segmentation19, deep learn-
ing has also provided accurate and automated means of quanti-
fying Aβ and tau neuropathologies20–22. However, such studies
require significant human expert labor to create high-quality
training datasets in the form of manually drawn bounding boxes
or segmentations and categorical labels. Furthermore, the models
typically require specialized dedicated and expensive hardware
like graphic processing units (GPUs)23, without which the pre-
diction task of quantifying pathologies can take hours for even a
single WSI. Furthermore, as with many deep learning studies,
generalizability to data from different institutions is difficult to
guarantee17,24,25.

Here, we present a fast You Only Look Once version three
(YOLOv3) based model26 that rivals human-expert level detec-
tion of cored plaque and CAA pathologies. Moreover, we created
this model from a dataset not intended for object detection,
requiring much less human labor than a traditional object
detection dataset. We evaluated the model on WSIs outside of its
training corpus, which were diverse in both stain and institutional
source. The model, released at https://github.com/keiserlab/
amyloid-yolo-paper, can quickly score WSIs without a GPU,
paving the way for more accessible and equitable deep learning
applications in the research and clinical space. Furthermore, we
showed that without a GPU, the model can still score WSIs in a
matter of minutes, with speed improvements of at least eight
times over various state-of-the-art deep learning approaches for
quantifying neuropathologies16,22. To determine the model’s
potential for adoption of widespread scoring use, we evaluated it
on WSIs with known CERAD-like scores11,27 and found strong
correspondence. The model enables scalable, reproducible, and
precise detection for rapid clinical research applications.

Results
We built an object detector from a noisy and sparse dataset.
We repurposed a publicly available dataset from a previous
study13 not meant for object detection training. The previous
study had collected human annotations post hoc on a 256 × 256
pixel tile basis for tiles centered on approximate bounding boxes

of cored plaque and CAA pathologies derived from traditional
and automated computer vision techniques (see “Methods”).
Consolidating this dataset into 659 larger field-of-view
(1536 × 1536 pixel) images devoid of human-drawn boxes, we
reformatted the data to a form more suitable for object detection.
This dataset had many limitations: (1) a single pathology often
incorrectly spanned many approximate boxes, particularly for
CAAs (Supplementary Fig. 1); (2) the 1536 × 1536 fields lacked
comprehensive annotations, resulting in a sparse label set prone
to false negatives; (3) traditional watershed techniques defined
each box, rather than human intelligence; (4) the dataset size was
relatively small (659 images from 29 WSIs); and (5) due to lim-
itations 1, 2, and 3 there was no reliable quantitative benchmark
to assess model performance. For this study, we did not collect
further human annotations for training, instead adapting the
existing dataset to a more suitable form. Limitations 2–5 would
have required additional human annotation work. To solve lim-
itation 1, we performed an iterative merging procedure such that
overlapping label boxes of the same class were joined (Supple-
mentary Fig. 1; “Methods”).

Once we merged the label data for use in the current study,
we trained a YOLOv3 network26 to identify cored plaque and
CAA pathologies (“Methods”). We denote this initial model as
model-1. Average precision (AP) for each class at varying
intersection-over-union (IOU) thresholds typically exceeded
0.6 (Supplementary Fig. 2a); however, the model had some
flaws. Visually, model-1 incorrectly labeled single instances
with many overlapping boxes, especially for CAAs (Supple-
mentary Fig. 2b). Hence, we trained a new model incorporating
two enhancements. For the first, we joined overlapped output
CAA predictions from model-1 to consolidate the fragments
(“Methods”). Secondly, we used our previously released
consensus-of-two convolutional neural network (CNN)
model13 to filter out low-quality CAA detections by removing
detections that did not meet a final CNN classification
prediction of 0.5 or higher. Finally, we merged output boxes
of the same class, arriving at our final model, denoted model-2
(“Methods”). Figure 1a shows model-2’s average precision over
varying IOU thresholds (Supplementary Fig. 3) and example
image predictions (Fig. 1b). Although model-2’s average
precision over varying IOU thresholds (Fig. 1a) does not
greatly differ from model-1’s, model-2 identified pathologies
better by visual evaluation. This is sensible, as improved
bounding box quality not only improved training but also
increased the stringency of the validation benchmark. Conse-
quently, we used model-2 for the remainder of the study.

Fine-grained human expert annotations of pathologies were
variable. To assess the model’s prospective capabilities, we needed
a higher quality test dataset (one free from limitations 1-3) to
derive reliable quantitative metrics. For this, four experts (anon-
ymized as NP1-NP4) independently annotated an entirely new
dataset from a new decedent cohort, drawing boxes around and
classifying pathologies (“Methods”). These test data differed
markedly from our training and validation data, which only had
sparse and incomplete computer-generated boxes with expert
labels. This new dataset consisted of 200 1536 × 1536 pixel images
spanning four different immunohistochemical stains for Aβ
deposits. We found that the four neuropathology annotators did
not always agree on this fine-grained task, with average agreement
accuracy for cored = 0.43 ± 0.05 and CAA= 0.33 ± 0.11 at an
IOU threshold = 0.50 (Fig. 2a). Given this variability, we addi-
tionally created a “consensus annotation” benchmark set wherein
each “positive” object and its box were independently supported
by at least two out of the four annotators (Fig. 2b; “Methods”).
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The model achieved human-expert-level precision. When we
assessed the model against both individual-expert annotations
and the consensus annotation datasets, we found it achieved
expert-level precision at identifying both cored plaque and CAA
pathologies on these new datasets despite never having been
trained on manual bounding boxes (Fig. 3a). To cross-compare
expert consistency across the annotations and thereby determine
the achievable performance range from human variability, we
treated each expert’s annotations as though they were model
predictions and compared them against each other. In this pro-
cedure, each annotator’s labels sequentially became a ground

truth benchmark, against which we compared every other expert’s
annotations; we subsequently calculated the average precision
(shown as the blue-dotted line in Fig. 3a). For most IOU
thresholds (less than or equal to 0.70) and most benchmarks, the
model operated within the range of human-expert level perfor-
mance. For CAAs, the model’s AP exceeded the average AP
between human experts for four out of five benchmarks at IOU
thresholds less than or equal to 0.60. For the strictest IOU
thresholds ≥0.80, which require a more exact match between the
predicted and label bounding box coordinates, the model fell
short of human-expert performance (which itself was relatively

Fig. 1 Model-2 performance and example image predictions. Cored = Cored plaque, CAA = cerebral amyloid angiopathy. a Average precisions (AP) over
the validation set at various IOU thresholds. The AP at IOU= 0.90 is undefined for CAA. Positive annotation sample sizes for Cored = 1274, CAA= 355.
b 12 example images from the validation set. Cored prediction: red, cored label: black “*”; CAA prediction: blue, CAA label: black “@”. Note that these
training label data are sparse and do not contain every pathology (“Methods”). Stains first row (left to right): 6E10, 6E10, NAB228, 4G8. Second row: 4G8,
4G8, 4G8, 4G8, third row: NAB228, 6E10, 4G8, 4G8. Scale bar = 100 µM at upper left.
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low) for four out of five benchmarks. Of all the human experts,
the model’s predictions most closely matched the annotations of
NP1, who spent significantly more time annotating than any of
the other annotators (Fig. 3b). NP1 spent nearly three times as
long as NP2 and about twice as long as NP3 and NP4. Visually,
the model predictions closely matched consensus annotations

(Fig. 3c). Model-1 also achieved human-expert-level performance
(Supplementary Fig. 4), although model-2 outperformed it.

Model predictions correlated with clinical CERAD-like scores.
We sought to test whether the model could quantify select Aβ

Fig. 2 Fine-grained human bounding-box style annotations vary slightly. a Interrater agreement accuracy among annotators, with a minimal IOU
threshold of 0.50 used for counting two objects of the same class as an overlap (“Methods”). b Left column: example overlaid annotations from each of the
four annotators (each a different color); right column: corresponding consensus annotation. Scale bar = 100 µM.
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deposits, CAAs, and cored plaques on WSIs. Hence, we asked if
an automated score calculated for entire WSIs based on the
model’s detection of Aβ pathologies would reflect human-expert-
based CERAD-like category scoring11. We used a testing holdout

set of 63 WSIs labeled with this semi-quantitative gold standard
for pathology from a previous study16.

We used our model to exhaustively detect and count
pathologies within each of the 63 WSIs. We found that the

Fig. 3 Model achieved human-expert level performance at identifying cored and CAA pathologies. a Average model precision scores for identifying
cored plaque (left) and CAA pathologies (middle). Y-axis: average precision, x-axis: IOU threshold that determines the minimal IOU required for a
prediction to overlap with a label to be a true positive. Higher IOU thresholds are more stringent. The figure legend indicates which of the annotators is the
ground truth benchmark for assessing the model (NP1 = neuropathologist 1, NP2 = neuropathologist 2, etc). The black line indicates model AP against the
consensus annotator benchmark (Fig. 2b, right column). The blue dotted line is the average precision of comparing expert annotators to each other
(“Methods”). The blue-shaded region is one standard deviation above and below the average-expert precision. Sample sizes (ground truth, Cored positive
annotations, CAA positive annotations): (NP1, 370, 259), (NP2, 153, 153), (NP3, 121, 395), (NP4, 235, 324), (consensus with IOU= 0.50, 231, 289).
b Total hours each annotator spent annotating (x-axis) versus AP at IOU= 0.50 of the model on the annotator’s benchmark (y-axis). “*” indicates cored
plaque performance, “@” indicates CAA performance. c Model predictions overlaid against consensus annotation. Cored plaque prediction: red, cored
plaque label: black “*”; CAA prediction: blue, CAA label: black “@”. The consensus annotation defines the labels. Scale bar = 100 µM.
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counts (Fig. 4a) derived from the model predictions significantly
correlated with CERAD-like severities (Fig. 4b). We performed a
two-sided student’s t-test to determine if the model-derived count
distributions differed significantly between the different CERAD-
like categories. We found significant differences for all category
pairs at an alpha of 0.05, except for the pair “none” and “sparse”
(student’s t-test p-value= 0.30, power = 0.62). Power for all other
comparisons exceeded 0.99.

The model is much faster than existing approaches. Next, we
evaluated the model’s practical usability as measured by its speed.
Hence, we evaluated the 63 WSIs from our CERAD-like dataset
using one NVIDIA Titan Xp GPU and computed the model’s
average speed per WSI. The model averaged one minute and forty
seconds to score a single WSI. Consumer-grade GPUs are not
universally available in pathology practices, so we tested model
speed without GPU; the model averaged five minutes and thirty
seconds per WSI on an Intel Xeon CPU (Supplementary Table 1).

We compared this YOLOv3 model’s evaluation time with two
different deep-learning approaches for quantifying neuropathol-
ogy burden. First, we compared with our previously published
approach of using a CNN sliding window to count plaque
burden, which took three hours and four minutes per WSI on an
NVIDIA GTX 1080 GPU16. Even without a GPU, this YOLOv3
model was 33 times faster (5 min 30 s/WSI) than the older GPU-
enabled sliding window approach (181 min 30 s/WSI). On
average, when we used a GPU, the YOLOv3 model was 110
times faster than our previous approach28. Second, we compared
the YOLOv3 model’s speed to a semantic segmentation method
for tauopathies22. This different state-of-the-art approach to
quantifying neuropathologies reported 45 minutes per WSI using
a GPU; this YOLOv3 model was 8x-27x faster, depending on
GPU usage. Exact runtimes will vary by hardware. It is important
to note that GPU dependency or lack thereof is dependent on
model architecture.

Discussion
We present a rapid object-detection model for identifying Aβ
pathologies, cored plaque and cerebral amyloid angiopathy across
a range of immunohistochemically stained slides. Three points of

the study merit particular emphasis: (1) we developed a detector
model from a dataset that did not require the same time and labor
usually needed for building accurate object detectors; (2) the
model matched human-expert performance; and (3) the model
showed promise for usability without special GPU hardware for
evaluation. Regarding the first point, we overcame one of the
main problems with training object detectors through an iterative
process: manual labeling and localization of high-quality
bounding box data. The model still relied on accurate catego-
rical labels in its training, but this is much less work than drawing
a box and providing a categorical label, which is important for
scalability. We hope our proof-of-concept encourages other deep
learning studies to explore the prospect of bootstrapping from a
more economical standpoint via more pragmatic proxy data,
perhaps even by building more directly off of preliminary training
data from conventional computer vision tools. We were
encouraged to see the approach could identify the two pathologies
with high precision, starting from only 659 initially noisy and
sparsely-annotated high-resolution training images.

The final model achieved human-expert-level performance on
a prospective test despite using a lower-quality training dataset
devoid of human-derived bounding boxes. Although the study’s
scope of four expert annotators and 200 prospectively annotated
images does not ensure generalizability to all experts, pathologies,
stains, areas, cases, and institutions, it was encouraging to see the
model most closely aligned with the annotator who spent the
most time annotating (Fig. 3b). With expert-level precision on
held-out data, models such as these may readily be used as a
secondary or preliminary labeler by neuropathologists, particu-
larly to flag unusual cases. The current model’s effectiveness will
depend strongly on whether an expert needs strict down-to-the-
pixel bounding-box overlap between the prediction and the actual
pathology because the model falls slightly below human-expert
level performance at the strictest IOU thresholds. For annotation
tasks demanding high locality, a pixel-by-pixel level of precision
via semantic segmentation may be a more apt technical approach.

Accordingly, several caveats apply to the study. First, although
our prospective test dataset was composed of cases across three
different institutions, variable in stain, and annotated by four
experts, it consisted of only two hundred 1536 × 1536 pixel
images derived from 56 WSIs. There can be numerous variables

Fig. 4 Model correlated with clinical CERAD-like scoring. a Box plots for each CERAD-like category. Y-axis is the model-derived count of cored plaques,
and the x-axis is the CERAD-like category. Scatter plot overlaid as blue dots (each dot corresponds to a unique WSI). Hollow black circles indicate outliers
outside the third quartile plus 1.5x interquartile range. *p < 0.05, n.s. is not statistically significant. b P-values from a two-sided student’s t-test comparing
model-derived count distributions between each CERAD-like category.
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that alter algorithm outputs29. Therefore much of the model’s
generalizability has yet to be explored. Likewise, performance on
stains outside of the four used has yet to be determined, although
we did not see much performance variation by stain except for
6E10 (Supplementary Fig. 5). Furthermore, CAA pathology is
diverse30, but this model does not differentiate between subtypes;
we would be interested to explore CAA-subtype identification in
a future study. We confined our study to slides immunohisto-
chemically stained with antibodies against Aβ. We have not
determined the model’s efficacy on other stain types, like hema-
toxylin and eosin (H&E) or silver stains. Finally, we relied on
author-reported runtime analyses for various comparative speed
benchmarks against alternative computational methods when
their code was unavailable. These assessments necessarily span-
ned 1–2 generations of CPU and GPU hardware. However, given
a GPU is approximately two orders of magnitude faster at deep
learning tasks than the contemporaneous CPU, we found the
CPU-only speedup of the YOLOv3 model against GPU-enabled
alternatives compelling.

The model’s predicted Aβ deposit counts correlated sig-
nificantly with CERAD-like category scoring at the WSI level
(Fig. 4a) without any training specifically for this purpose. A score
of predicted-object counts struggled to significantly differentiate
the “sparse” versus “none” CERAD-like categories, perhaps due
to the low sample sizes (n= 6 and n= 11) and resulting in a low
power of 0.62. Nonetheless, we hope the model can quickly assess
WSIs and provide a proxy for CERAD-like scoring, especially in
detecting cases with higher plaque burden.

We freely release the trained model, annotated dataset, and
study source code for easy access and use. We provide an example
environment (using conda) to standardize model deployment.
Although we found the consensus-annotation benchmark seemed
a more stable label dataset than any given individual expert’s
annotations on average, consistent with the common notion of
the “wisdom of the crowd,” we did not tune the model for specific
expertise nor neuropathology focus areas. Consequently, inter-
ested researchers may wish to fine-tune or entirely retrain this
model on more precisely formulated annotations to fit their
needs. We hope the model and dataset’s open-source release,
enabling quick evaluation of WSIs even without a GPU, will
facilitate the shareable and scalable application of deep learning in
neuropathology.

Methods
Training and validation dataset preparation. The training of model-1 and
model-2 builds on the methods and dataset first presented in Wong et al.13. We
provide a brief description of the methods used to build this dataset. We collected
29 WSI brain sections of the temporal cortex from 3 different sites: 11 from the
Alzheimer Disease Research Center at the University of California, Davis (UC
Davis); 11 from the University of Pittsburgh; and seven from UT Southwestern
(Supplementary Fig. 6). Slides were derived from formalin-fixed paraffin-embed-
ded sections and stained with antibodies directed against Aβ. UC Davis used the
Aβ 4G8 antibody (1:1600; Covance Labs, Madison, WI, USA), the University of
Pittsburgh used a NAB228 antibody, and UT Southwestern used a 6E10 antibody.
UC Davis used the chromagen 3,3′-diaminobenzidine and counterstained with
hematoxylin. University of Pittsburgh used the chromagen Nova Red from Vector
(Sk-4800). UT Southwestern used the Leica Bond robotic immunostaining plat-
form with proprietary detection reagents. The detection kit used a red chromogen
which employs an alkaline phosphatase enzyme and a Fast Red chromogenic
substrate. We imaged all WSIs on an Aperio AT2 at either ×20 or ×40 magnifi-
cation at the different institutions. We resized all ×40 images to ×20. For partici-
pant demographic data, please refer to Wong et al.13.

We color-normalized the WSIs31. Each WSI was uniformly tiled to 1536 × 1536
pixel non-overlapping images. After tiling, we applied a hue saturation value (HSV)
color filter and smoothing technique to detect candidate plaques using the python
library openCV. We used different HSV ranges for the different stain types as
follows: 4G8 HSV = (0, 40), (10, 255), (0, 220); NAB228 HSV = (0, 100), (1, 255),
(0, 250); and 6E10 HSV = (0, 40), (10, 255), (0, 220).

Within each tiled 1536 × 1536 pixel image, each candidate pathology was
bounding boxed via the watershed algorithm and then annotated by four

neuropathology experts. Each expert performed a multi-class labeling task,
selecting any or none of the classes: cored plaques, diffuse plaques, and CAA. After
annotation, we applied a consensus-of-two strategy to obtain our final label set,
such that a candidate plaque p was recorded as positive if any two experts marked p
as positive for class c, else we recorded p as negative. For example, a consensus-of-
two strategy means at least two annotators identified the pathology, even if the
remaining annotators did not. We discarded the diffuse plaque pathologies from
our dataset and focused on the classes cored plaques and CAA. Diffuse plaques are
not well-defined as objects (hence the term diffuse) and are thus out of scope for an
object-detection method. If any bounding box of class c overlapped with any other
bounding box of class c, we merged the boxes into a single bounding box of class c,
which was the minimal superset of the two bounding boxes. The result was 659
1536 × 1536 pixel images that contained either a cored or CAA pathology.

Training model-1. We split the 29-WSI dataset of 659 images into 70% training
and 30% validation. We trained an initial YOLOv3 network from the image dataset
for 200 epochs using a pre-trained Darknet, a batch size of eight, and a learning
rate of 0.001. The file config/yolov3-custom.cfg at https://github.com/keiserlab/
amyloid-yolo-paper contains full training hyperparameters. We selected the model
weights from the epoch giving us the highest mean average precision over the
validation set.

Training model-2. We ran model-1 over the training set. We merged model
output prediction boxes of the same class using the same data preprocessing
procedure as the original bounding box merging. We combined the resulting
merged predictions with the existing training labels to create a new training dataset.
We then used the model published in Wong et al.13. to remove bounding boxes
with predicted confidence <0.5 for the relevant deposit to filter unlikely (false-
positive) model-1 predictions. We trained a new model from this new training
dataset, called model-2. The training parameters were the same as those used for
training model-1.

Selecting images for prospective test. To assess our model on data it had never
seen, we collected a new dataset of 56 WSIs that differed from those used for
training and validation. These new WSIs came from three different institutions: UC
Davis, UC Los Angeles (UCLA), and UC Irvine (UCI). UC Davis used a 4G8 stain,
UCLA used both an ABeta40 and ABeta42 stain, and UCI used a 6E10 stain
(Supplementary Data 1). We imaged all WSIs on an Aperio AT2 (UC Davis),
Aperio CS2 (UCLA), and an Aperio Versa 200 (UCI) scanner at ×20 or ×40
magnification at the different institutions. For UCLA and UC Davis slides, each
pixel corresponds to 0.5 microns. For UCI slides, each pixel corresponds to 0.274
microns. For each of the four stains, we selected the top 12 WSIs with the highest
count of human-annotated CAAs, resulting in 48 different WSIs. UC Davis and
UCLA had an approximate tissue thickness for each WSI of 6 µm, while UCI had a
tissue thickness of approximately 5 µm. UC Davis, UCI, and UCLA all used the
chromagen 3,3′-diaminobenzidine.

For each of these 48 slides, we selected three 1536 × 1536 pixel fields to be used
for prospective testing as follows: (1) field with the largest count of CAA positive
model predictions (from model-2); (2) field with the largest count of CAA positive
human annotations; and (3) top two fields with the largest count of cored positive
model predictions (from model-2). In addition, for each of the four stains, we
randomly selected two WSIs that were different from the original 48. We randomly
picked two fields for each of these eight WSIs. This resulted in a total prospective
test set size of 200 images, each with 1536 × 1536 pixels.

Annotating prospective test images. Four neuropathology experts independently
annotated each of the 200 images used for prospective testing. These experts were
different from the original five who helped to create our training and validation
dataset in the prior study13, except for one expert (B.N.D.) who helped with
labeling the training and validation set and the prospective test images. We pro-
vided standardized annotation instructions to all experts (Supplementary Note 1).
We used the web platform called “SuperAnnotate”32 for obtaining bounding box
labels. Each annotator had one month to complete the annotations.

Assessing interrater agreement. We evaluated the interrater agreement accuracy
between two annotators (denoted as “A1” and “A2” in this section) for prospective
testing as follows. For the superset of all pathologies of class P (either cored or
CAA) identified by A1 or A2 (with cardinality “total”), we determined if both
annotators gave congruous labels for each plaque. Two label boxes form a con-
gruous pair if they share the same class label and intersect with IOU threshold of at
least 0.50. We allowed each label pathology to be a part of at most one congruous
pair (i.e., if multiple of A1’s labels overlapped with a single label from A2, only one
of A1’s labels was part of the pair). We defined “overlaps” as the number of
congruous pairs between A1 and A2. The final interrater accuracy between A1 and
A2 derives from “overlaps” divided by “total” (Fig. 2).

Assessing model performance on the prospective test images. We used
model-2 to assess performance on the prospective test images. For each of the 200
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images, we derived final predictions by merging any predicted bounding boxes that
overlapped with any others of the same class. For each CAA bounding box pre-
diction, we center-cropped the box to derive a 256 × 256 pixel image and fed this
image into a previously published CNN model (the consensus-of-two model first
presented in Wong et al.13). If the consensus-of-two model gave a negative CAA
prediction, then this prediction was removed.

For all model evaluations, if there were multiple detections for a single label, we
counted the highest confidence detection as a true positive and the rest as false
positives (keeping consistent with the precedent set forth by the PASCAL VOC
challenge33).

To determine the ceiling performance we could expect from our model, we
assessed how well each expert annotator matched the other experts (blue shaded
region in Fig. 3a). For each expert annotator (denoted as “A” for this section), we
first fixed A as the ground truth, compared the other annotators’ labels (not
including A) to A’s ground truth, and derived the precision. We did not include the
consensus “annotator” in this comparison. We averaged the resulting 12 different
comparisons and precision scores for each IOU threshold and plotted the standard
deviation around the average (Fig. 3a).

Correlating model-derived plaque counts with CERAD-like scoring. The ori-
ginal CERAD scoring27 aimed to denote the densities of neuritic plaques per
1 mm2 area, and stains used consisted of Thioflavin-S or silver. As we were eval-
uating different Aβ deposits on Aβ-stained tissue, we utilized the term “CERAD-
like”. For each of the 63 WSIs with CERAD-like scores available in Tang et al.16, we
tiled the WSI into non-overlapping 1536 × 1536 pixel tiles. We ran model-2 over all
tiles to identify predicted pathologies. We merged any predicted bounding boxes
that overlapped with any others of the same class and counted the number of
predicted cored bounding boxes to compare with the clinical CERAD-like score.

We performed a two-sided student’s t-test between each CERAD-like category’s
distribution of model-derived pathology counts. The null hypothesis was that the
two distributions were no different, and the alternative hypothesis was that the two
distributions were indeed different. Each point of any distribution was a single
model-derived plaque count from one WSI. We used an alpha threshold of 0.05 to
assign significance.

Statistics and reproducibility. For all hypothesis testing, we used a standard
threshold of p < 0.05 to assign significance. All results are reproducible, with source
code located at https://github.com/keiserlab/amyloid-yolo-paper. Where appro-
priate, sample sizes are defined in the Figures and Figure Legends.

Ethics declarations. Materials utilized for these studies consisted of human post-
mortem brain samples that were digitized into digital WSIs. Only living subjects are
defined as Human Subjects under federal law (45 CFR 46, Protection of Human
Subjects). All participants or a legal representative of the participant signed
informed consent during the participant’s life as part of the University of California
Alzheimer’s Disease Research Center programs. All human subject involvement
was overseen and approved by the Institutional Review Board (IRB) at the rele-
vant University of California site. All data followed current regulations, laws, and
IRB guidelines.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All image data is freely available at DOI: 10.17605/OSF.IO/FCPMW (https://doi.org/10.
17605/OSF.IO/FCPMW).

Code availability
The complete source code and fully trained models are available at: https://github.com/
keiserlab/amyloid-yolo-paper34 and https://doi.org/10.5281/zenodo.7944799.
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