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workers reported a Cu(I) complex, supported by 9,10-bis{N,N-
propyl-N-(diphenylphosphino)aminomethyl}anthracene, which 
features a Cu–Ccent distance of 2.50 Å.[26]  Finally, the average C–C 
bond length of the Me6C6 ligand in 2 is 1.411 Å (range = 1.395(7) - 
1.423(7) Å), and is comparable with those of unbound Me6C6, 
suggesting that there is little net charge transfer in the Cu–arene 
interaction.[9]  Complex 3 features comparable C–C bond lengths for 
its Me6C6 ligand (1.416(1) - 1.421(2) Å).  The Cu–P bond lengths in 
2 (2.158(2) Å) and 3 (2.1242(4) Å) are similar to those of (η5-
Cp)Cu(PPh3) (2.116(2) Å).[33, 34] 

The binding of an arene to a metal can result in a significant 
shift of its 13C resonances.[35]   However, only small shifts are 
observed for the aryl carbons in 2 (131.2 ppm) vs. those of unbound 
Me6C6 (132.1 ppm).  A slight down field shift of the aryl carbon is 
observed for 3 (149.2 ppm).  Additionally, the methyl carbon 
resonances in 2 and 3 do not differ significantly from those observed 
for unbound Me6C6 (2: 19.06 ppm; 3: 16.07 ppm; free Me6C6: 16.71 
ppm).  Overall, these data are consistent with a relatively weak Cu-
arene interaction. 

To gain further insight into the bonding interactions in 2 and 3, 
DFT calculations were performed.  For comparison, the “naked” 
Cu-arene complexes, [Cu(C6H6)]

+ and [Cu(C6Me6)]
+, were also 

studied, as were their C6H6-bearing sister molecules, 
[(C6H6)Cu(PPh3)]

+ and [(C6H6)Cu(P(OPh)3)]
+. The optimized 

coordinates for all calculated species are given in the Supporting 
Information. The energy differences between the η6 and η2 binding 
modes for the naked complexes and 2 and 3 are tabulated in Table 1. 
For the “naked” complexes the calculations reveal that the η2 
structures are generally more stable (apart from [Cu(C6Me6)]

+ in the 
gas phase), in accordance with earlier calculations.[27, 28]  
Structurally, the two η6 complexes feature similar geometries; 
however, the Cu+ ion in [Cu(η6-C6Me6)]

+ is closer to the arene than 
in [Cu(η6-C6H6)]

+ (Cu–Ccent = 1.66 Å and 1.73 Å, respectively).  
The two η2 structures are also similar, but the distance between Cu+ 
and the C=C bond has increased to 1.89 Å and 1.92 Å for [Cu(η2-
C6Me6)]

+ and [Cu(η2-C6H6)]
+, respectively.   

Interestingly, the addition of PPh3 or P(OPh)3 to the 
[Cu(arene)]+ motif results in a reversal of the favored arene binding 
mode. The η6 motif becomes favoured by 8.78 and 13.83 kJ mol–1 
for 2 and 3 (in the gas phase), respectively (Table 1).  Inclusion of 
solvent (CH2Cl2) in the calculation results in a slight destabilization 
of η6 binding mode relative to the η2 mode, which we attribute to the 
attenuation of the electrostatic interaction due to the change in 
dielectric constant from vacuum to CH2Cl2, but the η6 mode is still 
favored. We attribute the lower stability of the η2 mode to the steric 
clash between the CH3 groups on Me6C6 and the [Cu(PR3)]

+ moiety.  
The larger ΔE(η6- η2) values calculated for compound 3, which 
features the phenyl groups on the P(OPh)3 moiety pointing towards 
the methyl groups of the Me6C6 ligand (see Table 1, Fig. S18), also 
support the notion that sterics dictate the binding mode.  Moreover, 
we calculate that [(C6H6)Cu(PPh3)]

+, which features the smaller 
C6H6 ligand, prefers the η2 motif, whereas [(C6H6)CuP(OPh)3]

+ 
exhibits a preference for an η1 motif, consistent with a diminished 
steric clash between the C6H6 ring and the [Cu(PR3)]

+ fragment (see 
SI).  The isolation of 1 is also consistent with this argument, as it 
reveals that a η2 binding mode of the Me6C6 ligand is preferred in 
the absence of a phosphine co-ligand.  Thus, several lines of 
evidence support the argument that sterics to play a dominating role 
in the choice of final binding mode.   

 

 

Table 1. Calculated relative energies for different binding modes of 2 
and 3. 

Complex 
ΔE(η6- η2) / kJ mol-1 

Gas phase CH2Cl2 

[Cu(C6H6)]
+ 9.79 17.6[a] 

[Cu(C6Me6)]
+ –3.99 4.51 

2 / PPh3
[c] –8.78 –7.19[b] 

3 / P(OPh)3
[c] –13.83 –12.16 

[a] The 6 structure is not a stationary point, so was calculated as a restricted 

optimization at a fixed C6v geometry [b] The 6 structure in this case is 

actually slightly off centre, i.e. 4. [c] The 2 binding mode was calculated 

using a restricted optimization. 

Inspection of the molecular orbitals (both for B3LYP and for a 
Hartree-Fock calculation, based on the DFT-optimized geometry) 
does not reveal a clear molecular orbital picture for the Cu-arene 
interaction. Moreover, the effect of solvent on the relative stabilities 
of the η2 and η6 binding modes, along with the importance of sterics 
in determining the hapticity, suggest a significant electrostatic 
component to the interaction.  Thus, to elucidate the bonding 
interaction further, the complexes were studied using a Mulliken 
partitioning scheme, permitting the Mulliken charges of the Cu+ ions 
in 2 and 3 to be calculated.  The calculated Cu+ charges for 2 and 3 
are 0.86 and 0.81 (in CH2Cl2), respectively (Table 2).  Both of these 
values are close to 1, which supports a largely electrostatic bonding 
interaction with very little covalency. The electrostatic bonding 
arrangement is further supported by analysis of the total electron 
density isosurfaces of 2 and 3 (see SI for details).[36]  We used H2 
(0.24 a.u.) and LiF (0.005 a.u.) as benchmarks for covalent and ionic 
bonding, respectively (see SI).  The calculated values for 2 and 3 (in 
vacuo) are: 2: η2 = 0.07 a.u., η6 = 0.05 a.u.; 3: η2 = 0.07 a.u., η6 = 
0.05 a.u.  Notably, these values are similar to that calculated for LiF, 
which supports the conclusion that arene binding in 2 and 3 is 
largely electrostatic. These data also suggest that the character of the 
Cu-arene interaction is insensitive to the choice of PR3 ligand, but is 
sensitive to the coordination mode: i.e., the lower electron density 
cutoff values for the η6 coordination mode indicate a less covalent 
interaction than the η2 mode.  Similar results are also observed for 
the ‘naked’ systems. For example, for [Cu(C6H6)]

+, the maximum 
values of the electron densities are 0.08 a.u. for the η2 mode and 
0.055 for η6 mode.  Our calculations also show that the η2 motif for 
the ‘naked’ systems becomes relatively more stable with the 
introduction of the CH2Cl2 solvent into the calculation, which 
indicates that the binding between naked Cu+ and the arene is also 
largely electrostatic in character, in accordance with previous 
results.[27, 28] 

Table 2. Mulliken charges on the central Cu+ ion for complexes 2 and 
3 with a η6 bound arene 

Complex Gas phase CH2Cl2 

2 / PPh3
[c] 0.83 0.86 

3 / P(OPh3)
[c] 0.78 0.81 
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Structural and theoretical 
investigation into a copper(I)–arene 
complex with an unsupported η6 
interaction 

Addition of PR3 (R = Ph or OPh) to [Cu(η2-Me6C6)2][PF6] results in formation of [(η6-
Me6C6)Cu(PR3)][PF6], the first copper arene complexes to feature an unsupported 
η6 arene interaction.  A DFT analysis reveals that the preference for the η6 binding 
mode is enforced by the steric clash between the methyl groups of the arene ligand 
and the phenyl rings of the phosphine co-ligand. 

 
 
 
 




