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Abstract

The onset time of an Acoustic Emission (AE) signal is an important feature for source localization. Due to the

large volume of data, manually identifying the onset times of AE signals is not possible when AE sensors are used

for health monitoring of a structure. Numerous algorithms have been proposed to autonomously obtain the onset

time of an AE signal, with di�ering levels of accuracy. While some methods generally seem to outperform others

(even compared to traditional visual inspection of the time signals), this is not true for all signals, even within the

same experiment. In this paper, we propose the use of an inverse Bayesian source localization model to develop

an autonomous framework to select the most accurate onset time among several competitors. Without loss of

generality, three algorithms of Akaike Information Criterion (AIC), Floating Threshold, and Reciprocal-based

picker are used to illustrate the capabilities of the proposed method.

Data collected from a concrete specimen are used as an input of the proposed technique. Results show that the

proposed technique can select the best onset time candidates from the three mentioned algorithms, automatically.

The picked onset time is comparable with manual selection, and accordingly has better accuracy for source

localization when compared to any of the single methods.
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1 Introduction

2 Introduction

Assessment of microcrack network characteristics in cement-based materials is vital to determine the consequences

of degradation on its physical behavior, e.g. mass transfer or tensile strength [1�3]. When a microcrack develops,

the released energy propagates as stress waves to the surface of the structure. Sensors, usually of a piezoelectric

type, are used to detect these acoustic emission (AE) signals generated by extension and coalescence of microcracks.

AE activities are localized knowing the di�erences in arrival times (i.e. when P waves reach to sensors) of signals at

di�erent sensor locations. The technique is known as the time of arrival (TOA) method, which is highly sensitive to

the accuracy of the measurement of the AE onset time [4].

AE activities are recorded in the presence of environmental and sensor noise. Detection of an actual AE signal in

a noise-contaminated signal environment is critical for robust source localization. Visual inspection plausibly is the

most precise way to determine the onset time, particularly for an experienced operator used to seeing AE signals.

This method, however, has two main drawbacks: �rst, considering that the microsecond duration of an AE signal

is miniscule compared to the monitoring life of a typical structure, it is not feasible to conduct visual inspections of

AE signals for continuous health monitoring of a structure. Second, AE signals are sometimes embedded in the noise

with a low signal-to-noise ratio (SNR), whether due to propagation distance, dissipation, or environmental noise.

Automatic pickers are intensively used to �nd the arrival time that best determines the onset of a signal from the

noise. These methods work based on di�erent features of signals such as amplitude, energy, and statistical properties.

Fixed and Floating Threshold methods, Akaike's Information Criterion (AIC), Hinkley Criterion [5], cross-correlation

based methods [6, 7], CWT based binary map [7] and Reciprocal-based Onset time selector [8] are a few examples

of many algorithms developed for automatic onset time detection. The goal of this paper is not to evaluate these

algorithms or to propose a new competing algorithm. Studies of these methods con�rms that although some methods

are in general more reliable than others, there are always cases that other methods could have obtained the onset

time more accurately [9]. In this work, we show that several di�erent methods can be used simultaneously to result

in a more accurate estimate of source coordinates. To do this, we introduce a Bayesian approach to automatically

select the most accurate onset time for source localization from the candidate algorithms' for onset time detection.

The proposed approach is explained by considering three onset time detectors. These methods, including a

model for source localization and the proposed approach for onset time selection, are explained and discussed in the

methodology section of this paper. Experimental data, generated by a pencil-lead breakage (PLB) test [10], is used

to illustrate the method capability. Results are shown by illustrating an example of onset time detection methods

on one of the signals, implementation of the proposed approach, and comparison of di�erent sets of onset time on

source localization.
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Figure 1: Concrete block and sensors layout

3 Experimental data

The data of this work is collected from a PLB test on a concrete block specimen shown in Figure 1. The AE

signals are recorded using ten sensors located on di�erent faces of the concrete block. The source is located in the

ZY face of the concrete block as shown in Figure 1.

The AE signals are recorded using ten sensors at di�erent faces of the concrete block. Source is located in the

ZY face of the concrete block as shown in Figure 1.

4 Methodology

This section is organized in to three parts. In the �rst part, three di�erent methods to detect the onset time of

AE signals are introduced. In the second part, the shortest path method which is used to obtain the P wave travel

time is explained. In the third part the proposed approach to select the best onset time among those onset times

obtained by the three methods is introduced.

4.1 Automatic onset detection algorithms

The three onset time selectors, or automatic pickers, are used in this paper are: I) Floating Threshold picker, II)

AIC picker, and III) The Reciprocal-based picker.



4.1.1 Floating Threshold

The Floating Threshold algorithm is one of the most common and simplest picking algorithms. Onset time is

the moment when signal amplitude passes a threshold calculated as a factor of the root mean square amplitude

for the �rst portion of each time series, known to be before the signal onset. In this work, we consider four times

the noise standard deviation as the threshold. It is assumed that noise follows a zero-mean normal distribution,

and it is therefore very unlikely that a sample of the noise distribution falls out of the interval speci�ed by four

standard deviations from zero. Therefore, the �rst point of a signal that passes this threshold is classi�ed as an AE

event, yielding the onset time. Although the Floating Threshold algorithm is used intensively due its simplicity, it

is not very useful when SNR is low or sudden spikes exist in the signal. The Floating threshold can be expressed

mathematically by Equation 1.

tonset = argmin(ti|abs(X[ti]) > Xtre), (1)

where tonset is the �rst arrival time, obtained by �nding the smallest time (ti) correspond to samples (X[ti]) with

absolute value greater than the threshold (Xtre)

4.1.2 AIC picker

Auto-regressive algorithms are another class of pickers which use statistical properties of a signal to �nd the onset

time. These algorithms are threshold independent and insensitive to random spikes in time-series [11]. The Akaike's

Information Criterion (AIC) is commonly used for onset determination of AE signals. The AIC function of an AE

signal reaches its minimum at the onset time. The AIC algorithm has been compared to many other auto-pickers,

and it is proven that it has a reliable onset determination [12,13]. Equation 2 shows a �tness function which is used

in the AIC method. The time corresponding to the minimum of this function is considered as the onset time of an

AE signal.

AIC(ti) = ti ln(σ2(X[1, ti])) + (tN − ti+1) ln(σ2(X[ti+1, tN ]))

tonset = argmin(AIC(ti))

(2)

In Equation 2 ti is the time corresponds to the ith sample and N is the total number of samples in signal X, σ2s[p, q]

is variance of the portion of signal X from sample p to q. The onset time is considered as the moment corresponding

to the minimum of the �tness function shown in Equation 2.

In an interesting study, the AIC and Floating Threshold methods are compared when onset times were obtained

manually using visual inspection as the metric. It was shown that AIC outperformed the Floating Threshold method

generally. However, in some cases the latter identi�ed the onset time more accurately [9].



4.1.3 The Reciprocal-based picker

This method is conceptually similar with the AIC method, the point of di�erence is its �tness function which is

shown in equation 3.

REC(ti) = − i

σ2(X[1, ti])
− N − i
σ2(X[ti+1, tN ])

tonset = argmin(REC(ti))

(3)

In research by Babjak et al., the AIC and Reciprocal-based picker were compared, and it was shown that the

Reciprocal-based picker could detect onset time more accurately than the AIC picker for their structural health

monitoring problem [8].

4.2 The shortest path model

The shortest path model is used to obtain the traveling time of a P wave from source to sensors. This model

is not the most accurate model for a heterogeneous material like concrete. The distance between the source and a

sensor divided by the P wave speed, models the time of arrival for each sensor. Equation 4 shows the mathematical

expression of this model [14].

∆ti =

√
(X0 −Xi)2 + (Y0 − Yi)2 + (Z0 − Zi)2

V
− t0 (4)

Where ∆ti + t0 is the time that an AE wave reaches to the ith sensor from the source. Source coordinates are shown

by X0, Y0, and Z0 and coordinates of the ith sensor are shown by Xi, Yi, and Zi. The last parameter of the model

is V which is the P wave speed.

4.3 The proposed Bayesian picker

Bayesian methods are intensively used for model updating inverse problems [15�17]. Equation 5 shows the

mathematical expression of the Bayes theorem,

P (θ|D) =
P (D|θ)P (θ)

P (D)
, (5)

where our initial belief about parameters, i.e. prior P (θ), is updated by seeing new evidence, D, conditioned on the

model parameters in the likelihood function P (D|θ). Here, the updated belief, known as the posterior, is shown by

P (θ|D).

Obtained onset times from an automatic picker can be used as input data, but since the onset times obtained from

di�erent methods are not exactly the same, the posterior for source location shows di�erent amount of uncertainty



and bias. Our data may be structured as a matrix of n ×m, which n is numbers of sensors and m is numbers of

candidates for an onset time. Here m is three since we used three methods to identify the onset times. Considering

that we used ten sensors in our test, the data D = [dij ]n×m will be a 10 by 3 matrix.

Obviously, one of the suggested onset times for each signal is closer to the unknown true value of the onset time.

Of course, we do not know which one is the most accurate without doing some kind of independent visual inspection.

However, intuitively the most accurate onset times leads to the least amount of uncertainty in the inference of source

coordinates. We propose to let the Bayesian model pick the onset times from the pool of data by introducing a new

latent parameter, denoted by α. The new parameter is a categorical parameter consists of one outcome out of m

possible outcomes. Here, since m is three, the possible outcomes of α would be 0, 1, or 2. Each of these numbers

represents one of the automatic pickers, i.e. 0 for AIC picker (di0), 1 for the �oating threshold (di1) and 2 for the

reciprocal-based picker (di2). Then the data is fed to the model using the Equation 6:

di = 0.5× di0(1− α)(2− α) + di1(α)(2− α) + 0.5× di2(α− 1)(α) (6)

When we run MCMC algorithm, each time only one of the obtained onset times is selected for each sensor. For

the prior of this parameter, we can assign the probability of 1
3 to each method if our initial belief about them

has no preference. However, based on the literature, generally in most of cases AIC picker gives us more accurate

estimation of the onset time than �oating threshold method [9]. Furthermore, in another work is was implied that

the Reciprocal-based picker arguably gives better estimation of onset time than AIC picker in most of the cases [8].

The power of Bayesian inference is that we can consider this information in our priors before observing the data by

assigning subjective probabilities to each automatic picker as we did in this work.

Priors for source coordinates are assigned uniformly distributed over the known block dimensions. Similarly, a

range of variation is selected for the wave speed prior. Finally, using our prior about the P wave speed and considering

the dimensions of the block, a positive-valued distribution is assigned to tmin.

Categorical Gibbs Metropolis method is used for inference about α, and No U-Turn Sampler (NUTS) method is

used for other parameters [18]. After implementing MCMC a chance of success is assigned to each picker for each

sensor considering numbers of related α value in each chain (e.g., counts of the value �1� in the MCMC chain of α

for the Floating Threshold method). Finally, the onset time with highest probability is selected for each sensor, and

the model is run again by considering only the chosen onset time.

5 Results

Figure 2 shows an example of the implementation of the three methods. It illustrates that these methods may

identify the onset time di�erently. From visual inspection it seems in this case that the Reciprocal-based picker



Sensor 8

AIC picker

Floating threshold

0.0002 0.0004 0.0006 0.0008 0.0010
Time (s) +1.9622e1

Reciprocal picker

Figure 2: Comparison of onset time detection using three methods for sensor 8

detects the onset time more accurately than other two, and Floating Threshold method is more accurate than AIC

picker. Implementing the proposed approach, the posterior for the categorical parameter, shown in Figure 3, re�ects a

similar expectation. Even though in the prior, based on the literature, we assigned more chance of success to the AIC

picker than Floating Threshold; our method for sensor 8 suggested a higher probability for the Floating Threshold

onset time in comparison with AIC picker, and the highest probability is obtained for the Reciprocal-based picker as

expected based on visual inspection shown in Figure 2. The categorical parameter sometimes shows a very similar

chance of success for two of pickers (e.g. AIC and reciprocal-based picker for sensor 1). Checking their corresponding

onset times, we found that these values are almost the same, and then a similar posterior probability is expected

intuitively.

To study the e�ect of onset times on source localization, each set of onset times is used for source localization

using Bayesian inference and performing MCMC sampling. Then, results were compared with the selected onset

times using the proposed method. The source obtained by those onset times which are selected by the proposed

approach shows less amount of uncertainty compared to when only onset times from one of the other methods are

used. Figure 4 shows the joint Bayesian inference for two coordinates of the source in comparison with that obtained

using the chosen onset times by the proposed approach.
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Figure 4: Comparison of source



6 Concluding Remark

In this paper, a Bayesian model selection process was formulated for optimal AE signal onset time detection for

the purpose of source localization. The selection process works by choosing the most accurate onset time from a

population of onset times identi�ed by using di�erent established algorithms. Here, three methods of AIC Picker,

Floating Threshold and Reciprocal-based method were used as a suite of well-known, mature, widely-used onset time

detectors. The proposed method was implemented on a set of experimental data obtained from a PLB test. Results

showed that the posterior probability obtained for each picker is in accordance with our expectation concluded from

visual inspection. Moreover, onset times obtained from each method were used for source localization. Bayesian

source localization using the selected onset times by the proposed method was less biased in comparison with the use

of each set of onset times separately. The proposed approach implementation is straightforward and fast, showing

strong potential to be used for continuous monitoring of structures using AE methods.
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