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' 	 STRAGGLING OF ENERGETIC HEAVY CHARGED  PARTICLES 
IN THIN ABSORBERS' 

Hans Bichsel 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

September 1969 

Abstract 

The statistical fluctuations in the energyloss ofheavychargd 

particles in thin absorbers due to collisions with atomic electrons are 

determined for collision cross sections obtained from the first Born 

approximation, using hydrogenic wavefunctions. 
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. Introduction. 

This paper is a further extension of the derivation of straggling 

2 	 . 	 3 
functions by Landau,: Vavilov, Blunck and Leisegang,. and Shulek 

et al. 	A better approximation to the true atomic collision cross 

sections is used at low energies, where the largest effects are ex-

pected. 

The transport equation for the energy loss is 

=i: w(€) X f(x,  - ) d€ - f(x, )X 

where f(x, ) is the probability density function of particles that have 

penetrated a thickness x of the absorber and have experienced an 

energy loss t, w(c) de is the differential collision cross section for 
00, 

single collisions, with an energy loss €, and o. 	
w(€) dc is the 

total collision cross section. 

Equation (i) has recently been discussed by TschaThr 5  and 

Kellerer. 
6  Collision cross sections are discussed in Section 2. It 

may be noted, though, that the true collision cross section w(€) dc 

for single atoms is zero below an energy. Emin equal to the difference 

in energy between the lowest possible excited state and the ground 

state of the atoms, and also is zeo for € > € . 	2mv2. Similarly, 
max 

f(x, -€) must be equal to zero for € > A. The limits of integration 

introduced by Vavilov have to be understood from these conditions. 

The solution of the transport equation using the Laplace . 

1,2 	 . 
transform 	is 	 . 	. 	. 	. 
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f
c+l- 

 exp 	- xfo  w(c) (I - e) d€] dp. (2) 
c.ioo 	L 	 - 

The derivation is discussed by Landau and Vav.ilov. Numerical methods 

are required for the evaluation of Eq. (2) for a general áollision crss 

section. Vavilov 2  achieved an analytic form for the integral over €, 

2  
using w(€) = k/€ , but performed a numerical integration for the integral 

over p. It should be noted that c - 0 can be used in the limits. It is 

possible to express the solution for a general w(€) in terms of a cor-

rection applied to the Vavilov solution. Therefore Vavil ov t s method 

is discussed in Section 3. Methods of performing the correction are 

discussed in Sections 4 and 5, and the modified straggling function is 

given in Section 6. Quantities calculated with w(€) = k/€ 2  are denoted 

with primes, e. g. , ft (x, , V2  

2. The Atomic Collision Cross Sections 

The praátical results for straggling calculations so far have 

been obtained with the use of the classical electron cross section, 1,Z.  

modified by estimates 3' of the influence of the tt resonance  effects on 

the second moment M 2. The collision cross section do' describing 

the collision of a heavy charged particle of charge ze, kinetic energy 

T, and velocity v 13c with a free electron of mass m and charge -e 

is given by 

dut w(€) d€ = k€ 2 d€ for €e < € < € 	 (3) 

dal = 0 for all other €, 

where k 1 	2Trz 2 e 4/m' 2. Since we are concerned with low energies, 
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2 
a sufficient approximation for Em  is given by € = 2 my . For the 

further applications in Eq. (1.3), the moments Mt of w(€) = k 1./€ 2  

for n > 1 will be required. They are calculated for an absorber con-

taining N atoms per cm 3  of atomic number Z, 

em  
M = kf E 

-2m  de = ke 1./(n-1.), 	 (4) 

where k = k NZ, and c 	0, as assumed in the previous papers. 

It is the intent of this paper to investigate the modifications 

necessary in the Vavilov theory caused by the use of more realistic 

collision cross sections. As a first, improved approximation, the 

7,8 
values calculated with the first Born approximation, 	using hydro- 

genic wave functions, 
9,

are used. Using Walske' s notation, 

da = k 5' (,W) dW, 	 (5) 

where W = e/(Z-d) 2R is the energy € lost by the particle expressed 

in suitable units, rl = mv 2/[ 2(Z-d) 2R is the energy of an electron 

having the same velocity as the incident particle; R = 13.6 eV is the 

Rydberg constant; d is a shielding factor for the nuclear charge of 

the absorber, depending on the electron shell; k is proportional to 

the number of electrons under consideration. 

The excitation function 5' is defined by 

J(,W) =fIF(n)I 2 Q 2 dQ 	 (6) 

where q is the change in momentum of.the incident particle, 

Q = q2/2m I F(, 	2 is the matrix element for the transition from 

the ground: state to the excited state of energy W of the atom. Notice 

that the energy E of the secondary electron (
11 6 ray") is E = e. - I, 
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where I is the ionization energy of the atomic shell. The excitation 

functions have been recalculated for, the K and L shells. 11  The dif-

ference between w(€) and J can be appreciated from a plot of 

da/d = JW 2  a 	as a function of W. This is given in Figs. 1. and Z. The 

increase for small W corresponds to the resonance effects discussed 

by Bohr. 	No simple analytic expression can be given for J or for 

its moments M: 

f
oo 

M = k 	J(rj, W) Wn  dW. 	 (7) 
n. 

f 

The lower limit is now exactly the lowest possible excitation energy 

W of the atomic shell, the upper limit can be set at oo, because J 

drops off rapidly near Wm  4 	2 mv2/(Z-d) 2Ry. It is to be ex- 

pected, though, that, for large r7j the tail beyond 4 i (see Figs. I and 

2) will contribute increasingly to the higher moments. 

The total collision cross section a t, equal to the moment M 0 , 

has been discussed, e. g., by Merzbacher and Lewis 
13

and by Brandt 

and Laubert. 
14 The stopping power S, equal to the first moment M 1 , 

is discussed in many papers. 9, 
15 

The stopping number B = M 1/k is 

compared with the expression £n 2 mv 2/I, used frequently in simpli-

fied stopping power theory, in Fig. 3. 

An approximation for the second moment has been given in 

Livingston and Bethe; 16  for the higher moments, Mn  M' is usually 

chosen. This is not a good assumption, as mentioned above. The 

second and third moments for the L shell are given in Figs. 4 and 5; 

some higher moments are listed in Table I. 
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For solids, the excitation function for valence electrons will be 

modified for energy losses below 50 or 100 eV by a resonance-type 

cross-section curve, 	18 th a finite slope toward low energie. 

For single atoms, extremely steep slopes are expected in the cross 

section at energy losses equal to the excitation energies. 	Although 

these effects are quite important for Cr and S, they produce relatively 

small changes in the higher moments M 2, M3, • • 

3. The Vavilov Solution 

In order to solve Eq. (2) it will be useful to consider separately 

the integral over €: 

i 	w(c) (1 - e) d€ . 	 (8) 

Since p is imaginary, I is complex. In general, the uncertainty in 

the knowledge of w(€) is greater at small values of E. Landau and 

Vavilov therefore extract the first moment M 1  of w(c) from I, 

M 1  fw(c) € dc, 	 (9) 

by adding and subtracting pc in the parenthesis: 

II = Pfw(c) € d€+fw(€) (1 - e 	pc) d€, 	 (10) 

with 

12 fw(€) (1 - e-PE  - pc) d€, 	 (11) 

and, since M 1  is the stopping power S of the material, we obtain 

I1 pS+12 . 	 (12) 
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The behavior of w(€) at small values of .€ is less important in I, and 

for 5, an experimental value can be chosen, thus eliminating un-

certainties in w(€) for the first moment. For the method described in 

Section 5, the power-series expansion of I Will be needed: 

1 2 	- 	
( 1)fl p

fw(€) € d€ - 	
() fl Pn, 	(3) 71-  

where the M = f w(€.) € d€ (see also Eqs. 4añd 7) are the moments 3 ' 6  

of the collision.cross section spectrum w(E). 

The evaluation of Eq. (11) using the free-electron collision 

spectrum has been given by Vavilov and is repeated here. The real 

and imaginary parts, 	(It and 	(P2 ), are written separately, with 

piy, ty.€m: 

Em  

(p) = kf 	 d€ = k y [cost - 	± Si(t)] 

= 	[cos t - i + t Si(t)], 

where Si(t) = 	
Sifl tt dt' ; 	S(0) = 0, 

	

Em 	- 
(I) - k 	 - 	d€ =--- t - sint + t[Ci(t) - In t - - 	 2 	 € f 	 € 

(1.5) 
t 

where Ci(t) 	cos t - 1. dtt + 
in t + , for 	0.57721.6. 	(16) 

	

fo 	tt 

I] 

The functions 	and are plotted in Figs. 6 and 7 for several values 

of 
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For an arbitrary collision spectrum w(c), two procedures can 

be used to determine I: 

direct numerical evaluation of Eq. (H), discussed in Section 4, 

calculations based on the use of Eq. (13), similar to the methods 

used in Refs. 3 and 4; discussed in Section 5. 

4. The Transform of the Quantum-Mechanical 

Collision Cross Sections 

The integral 12  defined in Eq. (11) has been calculated numer-

ically for the collision cross section J(W) defined in Section .2 for a 

number of purely imaginary values ofp, 0 < p I < 1000. Since only 

a limited number of values of J(W) are available at W = W, n = 1, 2, 

3..., and since (1-e 	- p€) oscillates rather strongly, the mean 

value theorem has to be used for the integral: 

1 2 (p, n) k EJ(W, n)J 	(1 -e 	-pW) dW = 

-pa 	-pb 
[b - a + p (e 	n - e 	n) 

	

- 	.(a 2 b 2)] 
	

(17) 

where a = (W W 	)h/'Z 
n 	n n- I. b =(W W )1/2 n 	n n+I. 

since the Wn  follow a geometrical progression The ratios 

r = 61 (I)16 (11z) and  r i = 9i(I2)/01 2 ) are.givenin Figs. 8 and 9 

for L-shell electrons. The numerical accuracy of the results can be 
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estimated from a comparison of the evaluation of Eq. (17), using 

with results calculated with Eqs. (14) and (15). The 

agreement is within 0, 1%; a slightly larger error for 12 is expected 

because.of the faster change of J(W) at small W. 

For very small values of p, Iz can be written as 

	

6 (Iz) = - p 2  M 2/2, 	 (18) 

	

9'(I) = p 3  M 3/6i, 	 (19) 

derived from Eq. (13), and therefore (Iz)/(I'z) M 2/M 	and 

. (I)/9,(It) M 3/M 3  

5. The Method of Moments 

The direct evaluation of Eq. (13) is not practical, because quite 

a large number of terms would have to be calculated. Blunck and 

Leisegang 3  and Shulek et al. suggested the comparison of M 2  with the 

moment M'2  of the free-electron cross section. This method can 

readily be extended to all moments. Using 6 	M - M' , with M n 	n 	n 	n 
from Eq. (7) and MI from Eq. (4), we obtain 

12 = - 	
(1) fl M,  p n 	 (j)flpfl 6/n! 	(20) 

n=2  

• The first sum isexactly P2 , and.the last sum therefore is the con-

tribution due to the difference in the higher moments of the true col-

lision cross section from the free-electron value 1/€2.  it is conven-

ient to introduce 
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D n 6  n  1W  n = (M n 1W  n ) - I to modify the second sum: 

- 2 
	

(j)11 p'
1  6/n! =kE(fl hl pn  €D/[n! 	

1m1  

D n  can be obtained from Figs. 4 and 5 and Table I. 

Using the substitution p = it/E m s we obtain 
CO 

S z  = E 	 k 	(j)n (it)D/[n!(-1)] . 	 (22) 

Shulek et al. have used this approach, introducing only a second 

moment M = k [€ Z /Z + 2 2.667 I. f. In (€ /I.), first dis- 2 	m eff 	 11 

cussed in Ref. 1.6, to get a second approximation to 12.  Corresponding 

curves, using the more appropriate second moments from Fig. 4, are 

shown in Fig. 8, for Yj = 1.5 and 10. Since the region 1 <p < 10 is 

still quite important for the convergence of Eq. (2) (see Fig. 14), this 

procedure is usually not satisfactory. The imaginary part is unchanged, 

since it does not contain M,. The use of higher moments in Eq. (20) 

leads to problems; D 4  is quite small (Table I), whereas the higher 

moments give larger contributions and lead to wild fluctuations of S 

for p above 0.5 or 1.0. As elegant as the method may appear, it is 

not practical. 

6. Modifications of the Vavilov Function 

With the function 1 defined in Eq. (11), it is now possible to 

write Eq. (Z) in the form 

f(x, ) 	 e 	- x12 dp, 	 (23) 
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where A = xS is the mean energy loss of a beam of particles. Further, 

using K = xk/€ and p = it/€, we have 

f(x, ) = 	1: exp it 	- K r[ cos t - I + t Si(t)] 
 In 

- i K r. [t - sin t + t (Ci(t) - n t - 	
} 

dt 	 (24) 

00 
f 	exp 	r [cos t - I ± t Si(t)]} 

x cos t [A] + 	r. [ty. - t + sin t + t In t - t Ci(t)] dt. 

Note that the imaginary part of the integral is antisy -rnmetric in t and 

therefore does not contribute to the integral. For r = r = 1, Eq. (24) 

is exactly Vavilov' s expression [Eq. (V-16)] for p 2 = 0. The terms 

containing P in Eq. (V-16) appear because of the choice of 
-2 	2 w(€) k € (1-13 €/€m)  by Vavilov. This relativistic correction 

factor has been neglected herebecause the excitation function J(W) 

is nonrelativistic. Notice that the factor eK  outside of the integral 

in Eq. (V-16) is not constant in Eq. (24). 

The function f(x, L) has been calculated for several values of 

K for the values of 11L  given in Fig. 8. The results are given in 

Figs. 10-13. For comparison, the Vavilov curves and curves in-

cluding the correction for the second moment (Shulek et al.) are also 

given. 
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An impression of the problems encountered in the numerical 

integration of Eq. (24) can be obtained from a plot of the integral as a 

function of the upper limit. An example is shown in Fig. 14. 

7. Comments and Conclusions 

Straggling functions derived from the transport equation with 

the use of collision cross sections calculated in the first Born approxi-

mation, with hydrogenic wavéfunctions, are discussed. Substantial 

deviations from the Vavilov functions and the functions modified by 

Shu.lek et al. are found, especially for low energy particles in thin 

absorbers. Further improvements in the theoretical treatment re-

quire better collision cross sections. For the general use of the 

procedure suggested here, it is necessary to calculate the contributions 

for all the shells of a given absorber. No reliable collision cross 

sections for the higher shells are presently available. A scaling 

procedure with adjustable parameters similar to the method used for 

the "shell corrections" in stopping power 1.5  or, alternatively, collision 

cross sections calculated from a.statistical model of the atom, 
20 

 might 

be used. 	 . 

Existing experimental data 
21-25 

 are not at suitable energies, 

or, in general, accurate enough to confirm the trends discussed here. 

For future straggling measurements, it will probably be nec-

essary to determine the first moment (the stopping power) and the 

second moment (the standard deviation) from the experiment. The 

third and fourth moments deviate only little from the free-electron 
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moments and probably cannot be determined experimentally with suf-

ficient accuracy to distinguish between the two theories. For the 

higher moments, even very small amounts of slit edge scattering, 

nuclear reactions, etc., contribute heavily to the experimental 

probability densities. The derivation of further details of the collision 

cross sections from straggling measurements thus does not appear 

1.8 promising, except maybe in extremely thin absorbers, with only a 

few collisions per particle. For this type of experiment, Kellerêr 1  s 

convolution method would be more suitable 6  for the analysis. 
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Table I. Higher moments Mn  of the quantum mechanical collision 

cross section. M depend very little on W 
n 	 m 

n 

Li:  5 6 7 8 9 10 

0.1 1,08 1.97 4.57 

0.2 1.04 1,51. 2.65 

0,25 1.026 1.42 2.30 4.62 26.2 1926 - 

0,4 1,012 1,27 1.80 

0.9 1.003 1.12 1,35 

1.5 1,001 1,074 1,210 1.434 1.821 2,85 25.5 

4 1.0005 1.03 1.08 

10 1,0005 1.01 1,032 1.061 1.102 1.16 1,24 

20 1.0005 1.01' 1,016 

40 1.0005 1.003 1.008 

100 1.000 1.000 1,002 1.004 1,008 1.0115 1.016 

is 
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- 	Figure Captions 

Fig. 1. The excitation function J K forthe K .  shell.: Plotted is the 

product JKW2,  whereW is the electron energy in atomic units: 

W =. €(eV)/3.6X(Z-0.3) 	The parameter rl K = 8800 

is equal to the energy (in atomic units) of an electron of the same 

velocity v = c as the incident.particle. The energy Emax = Z my2  

for a free electron corresponds to W 	= 4 ri . The lower limit 
max K 

for the integrals is Wi n  = IK(eV)/3.6X(Z_0.3)2, where 1K  is the 

energy to lift a K-s-hell electron to the lowest unoccupied level of 

the atom with atomic number Z (a relativistic correction is. neg- 

2 
lected he-re). The asymptotic value is JW .- 1. 

Fig. 2. The product JLW.2  for the L shell. The units are the same as 

defined for the K-shell, except that (Z-0.3) 2  is to be replaced by 

• 

	

	(Z.-4.15) 2 . N.otic that J as .wll as J extends beyond 4flL:  there 

is a small probability of collisions for energies € >2 my 2 . W - 	 mm 

- 	depends on Z: for Al, W mm 	 mm 0.0926, for Pb, W 	0,167. The 

• a 
asymptotic value of J L  W is 4. 

Fig. 3. The stopping number BL  as a function of ij for Z 50, com- 

pared with BL=  3.37Xfn(2 nv 2/I). The shell correction CL  is 

the difference between BL  and  EL:  CL = BL -. B. 

Fig. 4. The ratio r 2  = M2/M of the quantum mechanical and the free 

electron cross sections for the L shell. The four curves are drawn 

for W = W. = 0.093 (silicon), 0,1.1.5 (copper), 0.135 (silver) and 
min 

0,167 (lead). For rl >4, the expression of Ref. 1.6 agrees approxi-

mately with the curves given here, but deviates strongly at smaller 



UCRL-19293 

Fig. 5. The ratio r 3  = 3/M31 for the L shell. The same values for 

W 	are used as for Fig. 4. . mm 	•.. 	 . .. 

Fig. 6. The real part 6(I) of the integral I for three values of 

Wm =4tj L,as a function of the Laplace transform parameter y. 

The electron energies corresponding to.W are € =W X13.6eV 
-- 	 . 	m 	m m 

(Z-4 1.5)2  The dotted line is 6t(1 2 ), when the quantuni-mechanical 

collision cross section is used, for 	= 10. This function is the 

exponent in the integrand of Eq. (24). 

Fig. 7. The imaginary part of the integral I for three values of Wme 

The dotted lines show the function for 12.  This function, added to 

y(i-), forms the argument of the cos in Eq. (24). 

Fig. 8. The ratio . r of the real part of I and the real part of I. The 

dotted lines indicate the correction by Shuleket al. (Ref. 4). 

Fig. 9. The ratio r1= (Ia)/(I)  of the imaginary part of I  and 

Fig. 1.0. Straggling function f(x, i) for low eáergy particles, in a thin 

detector. The abscissa is X = (-)/xk+(X.)swhere . 

(X.) 0.57721.6 - p 2  - 1. - InK. The solid line represents results 

of my theory, the dotted line is the Vavilov curve for p 2  = 0. The 

2 ff dierence for a slightly larger 3 is very small. The full width at 

half maximum (fwhm) of f' is 1.1% larger than that off. Example: 
eW 

protons in an argon-filled counter. With 

= mv2/t2 R(Z_4 15)2] 40 T(MeV)/(Z-4.15) 2 , the energy of theY. 
proton is about 1.2 MeV., Since K =.1,x0.O2 mg/cm2  or i cm at 

about 40 torr. The mean energy loss amounts to about 3 keV, and 

would be affected seriously by, 6-ray escape The narrowing of 

the straggling curve predicted here for the 4 shell would be 
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partially compensated by a widening contributed by :  the M-shell 

electrons. 

Fig. 11. Straggling function f(x,L) for L-shell electrons at TI.L = 1.5 

(solid line). This is approximately the energy giving the maximum 

quantum mechanical effect (see Fig. 4). The fwhm of f(x, z) is 

about 3410 wider than that of f'(x,). Since the area under the 

curve [equal to the moment M 0  =ff(xs L) dI  is not very sensitive 

to the contributions from the tails of the function, the peak height 

of the normalized function from an experiment gives important in-

formation. To find it, determine the number of particles occurring 

in the peak channel (the spectrum is assumed to be measured in a 

multichannel analyzer) as a fraction of the total number of particles 

in the spectrum, multiply it with xk/c, where- c is the width of a 

channel in the same units as xk, and compare with the, maximum 

value of f(x,). The measurement of fwhm or the determination 

of the standard deviation is more sensitive, though. 

Fig. 12. Medium-energy particles in a thin detector (e, g., 25-MeV 

protons in a silicon detector of thickness x z 3.7 mg/cm 2  with 

63 keV). My theory: solid line; Vavilov theory for 3 2 = 0: 

dotted line. The theory by Shulek et al. differs by only a few 

percent from the solid line. The ratio of the fwhm is 1,12. 

Fig. 13, Similar to Fig. 11, for K = 1, This would apply to 4-MeV 

2- protons in a silicon detector of 1 mg/cm , 	70 keV. The ratio 

of the fwhm is about 1,05, the ratio of the peaks is about the same. 
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Fig. 14, The integral of the inverse Laplace transform for the strag-

gling function f(x,), Eq. (24), as a function of the upper limit, 

for K = 0,1, and X = 12,3. The solid line is used for the function 

with the quantum-mechanical cross section, the dotted line for the 

free electron cross section. The large oscillation for p < I re-

quires great care in the numerical integration to avoid errors in 

the relatively small value of the integral. For smaller values of 

X, the oscillations are less important. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuan,t to his employment or contract 
with the Commission, or his employment with such contractor. 
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