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BAYESIAN HIERARCHICAL MODELING AND ANALYSIS FOR
ACTIGRAPH DATA FROM WEARABLE DEVICES

BY PIERFRANCESCO ALAIMO D1 LORO ", MARCO MINGIONE %%, JONAH LIPSITT 3,
CHRISTINA M. BATTEATE *¥, MICHAEL JERRETT > AND SUDIPTO BANERJEE °

L Department GEPLI, LUMSA, " p.alaimodiloro @ lumsa.it
2Department of Political Sciences, Roma Tre University, Tmarco.mingione@unimmaS.it

3Depan‘ment of Environmental Health Sciences, University of California, Los Angeles, i jonahlipsitt@ gmail.com;
mjerrett@ucla.edu

4Center of Occupational and Environmental Health, University of California, Los Angeles, 8 cbatteate@ucla.edu

5 Department of Biostatistics, University of California, Los Angeles, sudipto@ucla.edu

The majority of Americans fail to achieve recommended levels of physi-
cal activity, which leads to numerous preventable health problems such as di-
abetes, hypertension, and heart diseases. This has generated substantial inter-
est in monitoring human activity to gear interventions toward environmental
features that may relate to higher physical activity. Wearable devices, such as
wrist-worn sensors that monitor gross motor activity (actigraph units) contin-
uously record the activity levels of a subject, producing massive amounts of
high-resolution measurements. Analyzing actigraph data needs to account for
spatial and temporal information on trajectories or paths traversed by subjects
wearing such devices. Inferential objectives include estimating a subject’s
physical activity levels along a given trajectory; identifying trajectories that
are more likely to produce higher levels of physical activity for a given sub-
ject; and predicting expected levels of physical activity in any proposed new
trajectory for a given set of health attributes. Here, we devise a Bayesian hier-
archical modeling framework for spatial-temporal actigraphy data to deliver
fully model-based inference on trajectories while accounting for subject-level
health attributes and spatial-temporal dependencies. We undertake a compre-
hensive analysis of an original dataset from the Physical Activity through
Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to as-
certain spatial zones and trajectories exhibiting significantly higher levels of
physical activity while accounting for various sources of heterogeneity.

1. Introduction. Promoting a healthy lifestyle continues to stoke substantial research
activities in public health. The “Physical Activity Guidelines for Americans” (2nd edition)
suggests that most individuals, depending on age and body composition, receive 150-300
minutes of moderate to vigorous physical activity (MVPA) weekly (Piercy et al., 2018). In
general, the scientific community agrees that regular physical activity (PA) can have imme-
diate and long-term health benefits (Reiner et al., 2013; Bull et al., 2020). Despite these
well-known benefits, most Americans fail to meet recommended requirements (Piercy et al.,
2018). Specifically, only 1 in 5 high-school adolescents and 1 in 4 adults meet recommended
levels of physical activity. Given the well-established relationships between lack of PA and
several obesity-related chronic conditions such as heart disease, type 2 diabetes, and can-

Keywords and phrases: Bayesian hierarchical models, Directed acyclic graph, Gaussian processes, Physical
activity, Sparsity, Spatial-temporal statistics.
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cer, as well as many physical and mental health benefits, an urgent need exists to improve
monitoring of PA and to establish public health programs that promote more PA!.

Technologies for monitoring spatial energetics (James et al., 2016; Drewnowski et al.,
2020) and promoting physical activity continue to emerge. Among others, actigraphy broadly
refers to the monitoring of human rest and activity cycles using wearable devices. Actig-
raphy data are gathered directly from wearable sensors or indirectly through smart-phone
mobile applications and record repeated measurements at a very high resolutions. In partic-
ular, accelerometers are motion sensors that measure acceleration along different axes and
are able to collect large amounts of data (Plasqui and Westerterp, 2007; Sikka et al., 2019).
They are increasingly conspicuous because of their affordability, accuracy, and availability in
smart-phones, smart-watches and other wearable devices. Many devices also include Global
Positioning System (GPS) sensors that reference measurements with location tracking along
trajectories, or paths, traversed by the subject. Collected data can be quickly downloaded and
promptly analyzed to obtain insights into their pattern and structure.

We pursue a comprehensive analysis of an original actigraphy data set from the Physi-
cal Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study.
Actigraphy and GPS data analysis customarily involve idle records that occur if a charged
device does not detect acceleration over a specified time interval (e.g., 10 seconds). While
idle records may correspond to periods of a subject’s inactivity, they can also arise from other
factors including technical malfunctions or the subject not wearing the device. On the other
hand, eliminating idle records does not exclude all inactive periods because the accelerome-
ter still records minor movements from where it is worn while a subject may be mostly in-
active. Attempting to account for idle records as representative of inactive periods are likely
to confound assessments of a subject’s activity levels with current technological capabilities.
Hence, we do not consider idle records and focus on the following specific data analytic aims:
(i) estimating a subject’s physical activity levels along trajectories; (ii) identifying trajectories
that are more likely to produce higher levels of physical activity for a given subject; and (iii)
predicting expected levels of physical activity in any proposed new trajectory for a given set
of health attributes. Researchers find actigraph tracking especially attractive as it allows for a
better understanding of what behavioral and environmental factors influence population and
individual health and, hence, aid in public health recommendation and policy.

Actigraphs generate data evolving over space and time, which suggests rich classes of
space-time models for analysis (Gelfand et al., 2010; Cressie and Wikle, 2015). In particular,
actigraph analysis presents some notable challenges (Kestens et al., 2017): the data sets are
large, or even massive, as they are recorded at very high frequencies; they exhibit dependence
along trajectories which should be accounted for both explanation and prediction (Ray et al.,
2018; Bai et al., 2018). We argue against a customary spatial-temporal process over R x RT
and propose disentangling spatial effects from temporal dependence along trajectories. The
balance of the paper is organized as follows. Section 2 introduces the PASTA-LA data-set
with insights into accelerometry data. The model for the temporal correlation is introduced
in Section 3, while spatial effects are discussed in Section 3.4. An extensive simulation study
validating our model is proposed in Section 3.5. Data analysis, model assessment and com-
parisons are presented in Section 4. Finally, we conclude with a discussion in Section 5.

2. Data. Our data set is compiled from the original Physical Activity through Sustainable
Transport Approaches in Los Angeles (PASTA-LA) study conducted on a cohort of 460 indi-
viduals monitored between May 2017 and June 2018. Data were collected through different

"More details at https://www.cdc.gov/chronicdisease/resources/publications/
factsheets/physical—-activity.htm
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sources: online questionnaires, a smartphone app named MOVES, a GPS device (Global-
Sat DG-500), and a wearable actigraph unit (Actigraph GT3X+). Data collected through the
MOVES app, whose reliability must still be verified and discussed, are not considered in
this paper. While 460 is the sample size of the complete study, the GPS and actigraph de-
vices were deployed only on a nested sample of 134 individuals due to cost considerations.
We analyze data collected through these two devices that were supposed to be worn by the
participants in the nested sample for two one-week periods (one in 2017 and one in 2018).
Study protocols for safeguarding participant information received necessary institutional re-
view board (IRB) approval. The data were stored on a secure computer and a redacted version
was created for purposes of data sharing.

2.1. Questionnaires. The online questionnaires included two baseline and four follow-
up surveys: one baseline and two follow-ups for each collection period of the actigraph and
GPS data. Each survey consisted of responses pertaining to the participant’s demographics
and transportation habits. Here, we consider the first baseline questionnaire, which is the
only one available for all the participants in the nested sample. Personal information and
other socioeconomic factors have been encoded as follows for subsequent analysis:

¢ Sex: Female or Male;

» Ethnicity: Asian, Black/African/Caribbean, Latin-American, White, or Other (mixed mul-
tiple ethnic groups or prefer not to answer);

* Age (years) class: (0, 18], (18,25], (25, 34], (34,45], (45,70];

« BMI (kg/m?) class’: underweight if BMI € (15,18.5], normal if BMI € (18.5,24.5],
overweight if BMI € (24.5, 30], and obese if BMI > 30;

* Yearly Income Level (in thousands $): (0,10], (10,25], (25,50], (50,75], (75,100],
(100, 150], (150, 4-00], and Don’t know/Prefer not to answer;

* Educational attainment: High-school diploma, College graduate, Associate degree,
Graduate;

We filtered unreasonable values of the BMI, i.e. BMI< 10, which was observed just for one
individual, leaving 133 out of 134 individuals in the nested sample. A user ID was assigned
to each survey response data and a redacted master key was generated using all ID types for
joining with other study data.

2.2. Actigraph. The Actigraph unit is an accelerometer roughly the same size and weight
of the average wrist-watch. It can be worn on the wrist, hip, and thigh and measure the di-
rectional acceleration at a specified time frequency (up to 100 Hz). The Actigraph GT3X+
model used for the PASTA-LA study can detect accelerations measured in gravitational units
(G) with a sensitivity of +3 milligravity (/mG) in the three orthogonal planes (anteropos-
terior, mediolateral, and vertical). Data are stored in an internal memory and can be down-
loaded to other hardware for analysis through a proprietary software. The participants were
asked to start wearing the accelerometer on their dominant wrist as soon as it was handed
to them, as the devices could have been properly calibrated at that time. The study protocol
demanded that participants wear the Actigraph unit at all times other than during bathing
and sleeping (awake time was assumed approximately from 7am to 11pm). The sampling
frequency has been set to 30 Hz and the idle sleep mode has been activated in order to save
battery and memory. With this mode on, the device would go idle every-time it records no
acceleration (< £40m(@) for 10 consecutive seconds. The Actigraph GT3X+ grants access

2mxmdhgtosmn¢udgMddhwsofmernwrofDmemernUdzmdevaonhttps://www.cdc.

gov/obesity/basics/adult-defining.html
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to the a . gt 3x file with the raw acceleration measurements. It can be loaded in R using the
read.gt3x package and contains the raw accelerations at each timestamp. Such accelera-
tions comprise the basic ingredients to get a proxy for body movement from an accelerometer
(Mathie et al., 2003; Migueles et al., 2019; Bammann et al., 2021). There are substantial in-
vestigations into its statistical relationships with PA measures, such as energy expenditure
measures (EE) (Crouter, Clowers and Bassett Jr, 2006; Freedson et al., 2012; Taraldsen et al.,
2012) and the Metabolic Equivalent of Task (MET) (Lyden et al., 2014; Staudenmayer et al.,
2015; Migueles et al., 2017; van Loo et al., 2018). Among various metrics, we take the in-
stantaneous body vector Magnitude of Acceleration (MAG) as the primary endpoint of our
analysis (van Hees et al., 2011; White et al., 2016; Doherty et al., 2017). Further discussion
about the conversion of MAG into energy expenditure measures is reported in Section 7 of
the Supplementary Material (Alaimo Di Loro et al., 2023).

We were able to retrieve the Actigraph raw data only on K = 97 out of the 133 original
individuals. Let x, y and z be the dynamic acceleration of the body of the k-th individual.
The point-wise MAG is defined as:

(1) MAG; =/a3, +yi, + 22,  k=1,...,K.

However, the raw accelerations recorded by the accelerometer must be appropriately pro-
cessed to glean body movement (Doherty et al., 2017). Indeed, the raw acceleration recorded
by each axle is the sum of both the static and the dynamic acceleration, but only the second
is the effect of actual body movement. First, we remove idle records, i.e. all the occasions
in which the accelerometer recorded zero acceleration for longer than 15 seconds and the
device went idle. It is very unlikely that these idle records with zero acceleration coincide
with a subject’s inactive periods because the accelerometer still records positive, albeit small,
magnitudes of accelerations over inactive periods due to movements in the wrists, hips and
thighs. Idle records, on the other hand, are likely to arise from technical malfunctions or from
a subject violating protocol and not wearing the device in the experimental time window.

Second, the raw accelerations recorded by single axles must be disentangled from un-
wanted static or non-static components: the effect of the earth’s gravitational force and other
external accelerations (e.g car, bus, elevators) at low frequencies, machine noise and vibra-
tions at high frequencies. To address this issue, we adopted a Band-Pass Butterworth digital
filter of order 4 with frequency window (0.25,10) to clean the signals from these long and
short waves (Mathie et al., 2003). Indeed, most human activities result in signals with a fre-
quency between 0.25Hz and 10Hz (Khusainov et al., 2013). An example of how the raw
signal is modified through this process is provided in Figure 9 of the Supplementary Mate-
rial (Alaimo Di Loro et al., 2023). We subsequently evaluate the point-wise MAGy,; using
the filtered accelerations (T, Yrt, zkt). However, the instantaneous MAG evaluated at the
original 30Hz frequency is extremely erratic and the single value may not represent well the
PA intensity of the participant at that time. For this reason, it is usually averaged over 5 to
10 second epochs to acquire a more suitable measure of PA intensity (Migueles et al., 2017;
Doherty et al., 2017). Here, we perform a kernel smoothing of the 30Hz measurements in
order to be representative of the single time-point, and get a 1 second time resolution. The
resulting vector magnitude is

2) MAGy, = Y ky(t — t;) - MAGy,,
J

where k() is a Gaussian kernel with bandwidth b = 5 seconds. This ensures that the impact
of the neighboring points becomes negligible for |t — ¢;| > 10 seconds (see Figure 10 of the
Supplementary Material (Alaimo Di Loro et al., 2023) as an example). Finally, we removed
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all the observations recorded outside of the pre-specified daily time-window, i.e. from 7am
to 11pm.

2.3. GPS. The GPS device GlobalSat DG-500 recorded the subject’s location (latitude
and longitude) roughly every 5 seconds, together with date, time, and speed (km/h, mea-
sured as distance over time through linear interpolation). This work restricts the attention to
93 out of 97 subjects living and working in the Westwood neighborhood of Los Angeles in
order to avoid a geographical imbalance that could bias and invalidate the model estimates.
This area hosts the university campus of UCLA and it includes the largest part of all the
available observations. Westwood is a walk-friendly neighborhood with a lot of green areas,
parks, and major roads with shops and amenities. People were free to move inside and be-
tween buildings (e.g. people at the gym, office, etc) and we are interested in quantifying their
movement in all these settings.

However, GPS measurements can be affected by possible inaccuracies, especially around
buildings, that may cause unreasonable jumps in a very small time-span. We note that most
of these issues are already mitigated by an automatic filtering process of the GPS device,
that would drop records for which the signal is not strong enough. Nevertheless, to further
enhance the cleaning process of GPS measurements, we removed all data points for which
the computed average speed between two subsequent points was larger than 100km /h. We
picked such a high threshold as we do not want to drop observations related to individuals
standing or sitting in a bus or car.

2.4. External covariates. PA levels are not only affected by individual characteristics,
but can be fostered by specific features of the surrounding area they are navigating. Therefore,
we included three external covariates to account for some of the built-in environment features
of the Westwood area. In particular, we used the following.

(i) The weighted overlay distance to parks (in £km) with a spatial resolution of 23 x 23 which
can be downloaded from https://egis2.lacounty.gov/arcgis. It represents a
weighted distance of each point from officially recognized parks and it can be seen as a
proxy of the green area density (see Figure 1a; darker shades indicate proximity to parks).

(i) The Normalized Difference Vegetation Index (NDVI), which is available with a spatial
resolution of 30 x 30, can be downloaded from https://earthexplorer.usgs.
gov/ and provides a measure of the greeness of the patch itself (see Figure 1b; darker
shades depict more greenness).

(iii)) The slope (azimuth), with a spatial resolution of 23 x 23, is computed from the dig-
ital elevation model (DEM) downloaded from http://www.webgis.com/terr_
pages/CA/deml/losangeles.html. It represents the average angular inclination
of the ground patch with respect to the horizon line (see Figure 1c; darker shades depict
higher slopes).

While previous studies (e.g., Maddison et al., 2009) have reported on these variables affecting
PA levels, they usually consider the environmental impact on the average PA level through a
buffer around the home location of the participant, and not on its instantaneous PA level. With
our current work, we want to discover and establish direct associations between PA levels of
a subject and these spatially-indexed covariates along trajectories.
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Fig 1: Spatial-varying covariates: (a) distance to parks, (b) NDVI and (c) Slope.

2.5. Joining. GPS and accelerometer data were all assigned a participant ID aligned with
the questionnaires’ master-key to facilitate joining across all ID types (including email) while
redacting and encrypting user data. The first baseline questionnaire, Actigraph, and GPS were
available for the aforementioned group of K = 93 individuals. Henceforth, we refer to this
specific group of units. The joining of different data sources follows these steps.

1. Actigraph data are joined to the first baseline questionnaire using the individual master-
key. The resulting data set includes the physical activity endpoint recorded by the Acti-
graph at the different timestamps and all the available individual information, but no spa-
tial information.

2. GPS data are joined to the dataset obtained in 1) using the individual master-key and the
timestamp. Following the processing in Section 2.2, the Actigraph data are available at
the same time resolution of GPS data as long as the subject wore them simultaneously.
Therefore, we decided to use the GPS as the leading table in the joining process. This
avoids use of artificial data (e.g. interpolating GPS locations).

3. Spatial covariates are joined to the data set obtained in 2) through the minimum distance
criteria, i.e. each location is assigned the value of the closest point on the grid for each
spatial-varying covariate.

The temporal coverage is not balanced across individuals because (i) subjects move around
Westwood in different segments of the overall time window; and (ii) some participants violate
the study protocol. Indeed, not all the participants were available for both of the one-week
surveillance periods in 2017 and 2018. In fact, only 58 out of the 93 participants have data for
the first week only and missed the follow-up survey. In the end, we go from the least repre-
sented individuals having =~ 5 x 10? observations (= 2 hours of data) to the most represented
ones with more than ~ 5 x 10° observations (= 14 days of data). Considering all the 5 sec-
ond time segments between the first and last observed point of each individual in each day as
the potential observation window, the proportion of missing measurements ranges between
~ 31% and =~ 97%. The overall proportion of missing measurements in the entire database
(based upon aggregated 5-second time segments for all individuals) is &~ 83%. Figure 2 shows
the number of observations for each individual £k = 1,..., K in each hour h =7,...,22,
where the y-axis has been ordered in ascending order according to proportion of missing
measurements for each subject. Overall, we can state that all hours are well-represented, but
only few individuals have data for the whole daily time window. Summing up, all subse-
quent analysis will refer to the final data set consisting of N ~ 7 x 10° measurements across
K =93 individuals, scattered over Westwood (see Figure 3).
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3. The model. The outcomes corresponding to the K = 93 subjects are referenced with
respect to the time at which they are recorded and the position in the trajectory. While it is
tempting to work with a spatiotemporal process, dependence introduced by such processes
may not be appropriate. An individual can visit the same location numerous times in his/her
trajectory. These revisits need not occur at regular intervals and can be at distant time points.
This suggests that proximity of two spatial locations in a trajectory need not result in strongly
dependent MAGs recorded there. It appears more reasonable to model dependence among
MAG measurements through a temporal process. In fact, such temporal processes can be
motivated by the position vectors defining the trajectories as we describe below.
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Fig 4: Example of observed points (a) and trajectory (b): black dots are realizations, grey line
is domain of the process

Let Zi() : R — R be a spatial process corresponding to individual k. The domain of Zj(-)
is restricted to the trajectories v (t) = (vE(t),v¢(t)), where k=1,..., K and t € RT, which
defines the movements of the k-th individual along time. As shown in Figure 4, the process
actually belongs to a one-dimensional space, for which we define a proper distance measure
d(tri,te;) = ||ve(te;) — ve(ti)||, where tx; is the i-th recorded time point from individual
k. We approximate such distances as the elapsed time between the two points d(ty;,tx;) =
|tk; — tri|, which would result in a good approximation of the spatial distance (especially if
the subject is moving at constant speed). More generally, the elapsed separation across time
will reflect dependence better than the spatial distance. The faster an individual is moving
from one point to the other, the shorter the time elapsed, and higher the correlation between
the two measurements. Hence, we model our measurements as Y; (1) = Zp oy (-) : Rt = R,
which, by construction, is a valid stochastic process.

This will form the edifice of the model in Section 3.1, where we are modeling the depen-
dence by solely considering stochastic evolution through time. How should spatial informa-
tion be introduced in the model? Two individuals at the same spatial coordinate experience
the same spatial effect but different temporal effects because their physical activities are a
function of their trajectory’s temporal evolution. An added complication is that trajectories
intersect and overlap and, in practice, can have multiple observations at the same location.
Even more flexible spatiotemporal covariance kernels (e.g., nonseparable or nonstationarity)
will struggle to recognize the above features. Hence, we introduce the spatial effect in the
mean using spline regression (see Section 3.4).

3.1. Temporal model. Let T = UK_ Ty where Ty, = {t;m}ZT:""1 and t; € R be the set of

the n = 31, Ti observed time points. We model Y (7)) as the finite realization of a K-
variate process Y () over R*:

3) Y (t)=X(t,7(t) B+w(t)+e(t), teR",

where Y (t) = (Y1(t), Ya(t),..., Yk (t)) " isa K x 1 vector of measurements at time ¢ on the
K individuals, X (t,~(t)) is a p x K matrix, each row being the values of a covariate for the
K individuals, w(t) = (wy(t),ws(t),...,wk(t))" isa K x 1 vector comprising a temporal
process for each individual, and €(t) ~ N (0,72 ), 72 € R*, is a white noise process

for measurement error. Each element of w(t) is specified as wy(t) gp (0,co(+,-)), where
co(+,-) is a covariance function with parameters 6 € O.
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Let yi; and xx; be the outcome and covariates for individual k at time point ¢;, respec-
tively, so {(yki,@ri): k=1,...,K,i=1,...T}} is the observed data. Let y, and wy be
T} x 1 vectors comprising all measurements and random effects on patient k, respectively.
Forming the n x 1 vectors y = [le Yq. --~y£_]T and w = [wlT ws, ---'w[T(_]T, and the

n x p matrix X = [X LX) ... X IT<] T, where X, is the T}, X p matrix of predictors corre-
sponding to y,,, we extend (3) to a hierarchical model with posterior distribution
“4)

p(B,w,0,7%|y) ccp(8,7%) x N(B| g, Vi) x N(w|0,Co) x N(y| XB +w,7I,).

The covariance matrix Cg = diag (Co, 1,Co,2,...,Co, i) is n x n block-diagonal with
Co, 1 = [co(tri,tr;)] as the T}, x T}, temporal covariance matrix corresponding to individual
k. Each individual is allowed its own covariance parameters, 8y, and 0 = {61,05,...,60x}
in (4) is the collection of all the covariance kernel parameters. Applying (4) involves the
determinant and inverse of Cg, which require O(n?) storage space and O(n?) floating point
operations (flops). The block-diagonal structure of Cyg considerably alleviates this burden

since det(C') = Hle det(Cp, 1) and C~' = diag (C’glll, 05212, ey C;}l( K) . This reduces

the flop count from O(n?) = O((331_, Ti.)?) to O(K Y1, (Tx)?), with a significant saving
of calculations especially when the T},’s are reasonably small (< 10*). Furthermore, each
C, i can be computed in parallel rendering further further scalability to the algorithm.

However, analyzing the Actigraph data in Section 2 will involve T} > 10° measurements
from some individuals. Full inference will be impractical without any exploitable structure
for each Cly, . Analyzing massive spatiotemporal data has witnessed burgeoning interest
and a comprehensive review is beyond the scope of this work (see, e.g., Banerjee, 2017;
Heaton et al., 2019, and references therein). We will pursue an approximation due to Vecchia
(Vecchia, 1988) that has generated substantial recent interest (Datta et al., 2016a,b; Katzfuss
et al., 2020; Katzfuss and Guinness, 2021; Peruzzi, Banerjee and Finley, 2022) in scalable
Bayesian modeling.

3.2. Independent DAG models over individuals. We adapt Vecchia’s likelihood approx-
imation (Vecchia, 1988) to the random effects wy, for each k =1,2,..., K. Beginning with
the observed time points {tx1 < txa < --- < txp, } for individual k£ and the directed acyclic

graphical (DAG) representation p(wy) = p(wg1) HiT:’“zp(wki | W1, - -+ We(i—1)), we define
T,
®) plwy) & plwy) = plwir) [ [ plweslwevg)
=2
where p(-) is the joint density derived from p(wy) by restricting the parents (conditional
sets) of each wy; in the DAG to a set wyn(;) = {wg; : j € N (i)}, where N (i) is a set of
prefixed size m comprising the m nearest neighbors of tx; from the past. Thus, N (i) =
{tkii=m), - -+ < tyi—1)} for i >m and N (i) = {tg1,...,txi—1)} for i < m. Such approx-
imations yield valid probability likelihoods (Lauritzen, 1996; Stein, Chi and Welty, 2004;
Murphy, 2012) and can be extended to stochastic processes (Datta et al., 2016a) for infer-
ence on arbitrary time points.

The connection between sparsity and conditional independence follows by writing (5)
as a linear model wy, = Aywy, + 1, where Ay is a 1), x Ty, strictly lower triangular ma-
trix, m;, ~ N7, (0,Dy) and Dy, is the Tj, x T}, diagonal matrix such that [Dy],; = d;; =
Var (wy;|{ws;,j <i}) fori=1,...,T;. The DAG imposes the lower-triangular structure on
Ay, and its (7,7)-th entry is allowed to be nonzero only for j € N(i). Therefore, each row

~ 1
of Ay, has at most m nonzero entries so that C;, = (I, — Ay) "D} (I, — Ay) is sparse,
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where 5;1 is the precision matrix corresponding to p(wy). Replacing C with Cin (4) yields
a computationally efficient hierarchical model with Hszl N(wy,|0,C}) as the prior on w.
The key observation is that the nonzero elements of the i-th row of Ay is the solution
aj, of the m x m linear system Cg ;[N (i), N(i)]a = Cq [N (i),i], where [-,-] indicates
submatrices defined by the given row and column index sets. Obtaining the nonzero elements
of Ay and Dy, costs O(Tym?) (scales linearly with T}) instead of O(T}}) as would have

~ 1
been without sparsity. This cheaply delivers the quadratic form w,;rC r Wp in terms of Ay

and D;, and the determinant det(é’k) = H;TF:’“l d;; at almost no additional cost. The lower
triangular matrix Ay is not just sparse but also banded, with a lower bandwidth equal to m.

Consequently, 6’,;1 is also banded with lower and upper bandwidth equal to m. This leads
to further accrual of computational benefits. The overall cost is O(Yr_, Tym?) = O(nm?)
(linear in n) for computing the posterior for any given values of the parameters.

3.3. Implementation using collapsed models. The Bayesian hierarchical model in (4),
either with C'y or with 6’9 in the prior for w, allows full posterior inference for {3, w, 0, 7%}
using Markov chain Monte Carlo (MCMC). Gibbs sampling with random walk Metropolis
steps provide full conditional distributions in closed form for {3, w} and also for 72 with an
ZG(a-,b,) prior. However, this convenience is nullified in practice by strong autocorrelation
and poor mixing of the chains (Liu, Wong and Kong, 1994). Samplers based on spatial DAG-
based models have been devised, explored and compared in Finley et al. (2019). Instead of
(4), we sample from

(6) p(B,0,7°|y) xp(8,7%) x N(B| ps, Vi3) x N(y| XB,Co +7°L) ,

which is derived from (4) by integrating out w, thereby “collapsing” the parameter space to
a much smaller domain without w. This considerably improves mixing and convergence.
We will need to compute the inverse and determinant of A = Cg + 721 ,,, which is n x n.

2o %1 . . ~—1 .
While A does not share the same convenient factorization of C'  and is also not guaran-
teed to be sparse, the Sherman-Woodbury-Morrison formulas reveal

~-1

% A =72 with Q=C 472,
where €2 enjoys the same sparsity as C~'. Moreover, det(A) = 72"det(C)det(£2). The core

of the algorithm is therefore to compute 1~X_1 through (2. In our application, the random effect
is assumed to be the realization of K independent temporal processes. As discussed in Sec-
tion 3.2, this implies a block-diagonal structure for C that can be shown to be shared also by
Q (see Eq. (7)). Each block €2, of €2 can be computed independently for each individual and
the same holds for its inverse and its determinant. This means that the body of the algorithm
will consist of a loop over all the individuals, which allows for straightforward paralleliza-
tion (see Algorithm 1 in the Supplementary Material (Alaimo Di Loro et al., 2023)). Unlike in
spatial DAGs (Datta et al., 2016a; Finley et al., 2019), we do not need fill-reducing permuta-
tion methods since neighbors sets for temporal processes consist of contiguous observations
and {Qk}szl are banded matrices with no gaps.

We devised a Gibbs sampler with Metropolis random walk updates for (6), where 3 is
updated from its full conditional distribution, while {8, 72} are updated using an adaptive
Metropolis step based on Haario et al. (2001). Here, after the first few iterations, a new
proposal covariance matrix is regularly computed on the run according to the empirical co-
variance of the current chain. Subsequently, a mixture of the original and adaptive proposal
is used as the new proposal. Convergence toward the desired acceptance rate is assured for



11

an appropriate choice of the variance terms and of the adaptation rule (Roberts and Rosen-
thal, 2009). The algorithm has been coded using the R 4.0 .5 statistical environment. All
expensive computations are managed by the Eigen library (version 3.3.7), which provides
efficient routines for numerical linear algebra with an emphasis on sparse matrices. Our im-
plementation of (6) outperforms the algorithms that update w in terms of computational
speed as it is implemented in the spNNGP package (Finley, Datta and Banerjee, 2017). We
present these comparisons in the Supplementary Materials (Alaimo Di Loro et al., 2023)
including a link to the GitHub repository hosting codes to implement the models.

3.4. Including spatial effects. Accounting for spatial information in our Actigraph
dataset presents some new considerations. As mentioned in Section 1, spatial information is
available to us in terms of the physical location along the trajectory as well as through covari-
ates that are functions of space. Considering the discussion in Section 3, the analytical goals
of this dataset suggest accounting for spatial heterogeneity. Here, as argued earlier, modeling
w(+) in (3) as a spatio-temporal process, including scalable versions, has challenges given
that: (i) the trajectory’s domain does not have a positive area; and (ii) associations among
the measurements are more amenable to the temporal scale. Therefore, we introduce spatial
effects into the mean employing a smooth function of space, fs(-) : R> — R, approximated
by a spline basis representation (see, e.g., Goodman and Hardin, 2006; Ramsay and Silver-
man, 2007). For instance, if J, and J, are the dimensions of independently defined B-spline
basis expansions on the = and y coordinates, respectively, then fs ((x,y)) = fs((x,y)) =
S Y 1 B (ixiv)Bri. (1) By, (y). where B, j, = [B,]; and By, = [B,);, are
the j,-th and j,-th element of the B-spline basis along the two axis. For any location
(x,7) € R? the elements of the previous sum can be more compactly expressed through
the tensor product basis Bg(z,y) = (B, ® B,) (z,y). The size of this basis is Jg = J, - J,,
and depends on the size of the two original spline basis, which in turn depends on the cho-
sen number of knots knots,, knots, and degree deg,, deg, (namely J. = knots. + deg, for
c = x,y). We now modify (3) to include the spline,

(®) Y(t)=X(t,7(t)B+ Bs (v(t) Bs +w(t) +e(t), teRT,

where (1) = {v1(t),¥2(t),- -, Y ()} V(1) = (Ve (t), Wy (1) : RY — R? s the tra-
jectory function mapping time ¢ for individual k to its position and Bg (v(t)) is the
K x Jg matrix with row k corresponding to the Jg basis elements for the coordinates
at time point ¢ for individual k. A proper choice of Js (i.e. knots and degree) is re-
quired to fit a spline surface flexible enough to describe the spatial variations at the scale
of interest without incurring over-fitting. Let B = Bg ((7)) be the n x Jg matrix con-
taining the B-spline basis elements evaluated at the observed location of each individual
~(T)={n(t11),(t12),- -, vk (txT, )} Following Equation (6), we sample from

9)

p(ﬁa657077—2‘y) Ocp(077—2) XpS(/BS) X N(IB“’I’[%VE) X N(y’X/8+B/657CQ+T2In> )

where the prior pg(-) needs to be specified. The Actigraph data includes millions of obser-
vations in a limited study area, of which some assume different values in the same loca-
tion (or in its immediate vicinity) so over-fitting will not be an issue. However, some areas
present sparsely observed points (trajectories are not uniformly distributed, as shown in Fig-
ure 3). This may cause coefficients corresponding to those regions to be weakly identified.
To control for the balance of all these components, we may assign ad-hoc priors to the spatial
spline regression coefficients (Eilers and Marx, 1996) for penalizing deviation from a certain
degree of smoothness and favoring identifiability. This behavior suggests the Bayesian P-
Spline (Hastie et al., 2000; Lang and Brezger, 2004). While keeping the Gaussian priors, we
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effectuate shrinkage by choosing a suitable precision matrix P and introducing a shrinkage
A
parameter \ at a deeper level of the hierarchy. To be precise, B¢ | A o< exp {— 5 B SP,BE}

and A ~ G(ay, B\). We consider two possible forms for P, which imply different penaliza-
tion for the coefficients:

* Ridge-like prior, which is to say P = Pr;, =1 j;
¢ First-order random walk prior, which is to say:

P=Ppgw: [Prwl|j=q-1 i~]
0 otherwise

where n; is the number of neighbors of knot 7 and ¢ ~ j denotes a neighboring relationship
between the knots.

Both precision matrices provide a multivariate Gaussian prior distribution on the coeffi-
cients. However, the latter is improper since rank (Pry ) < Js. Nevertheless, if we col-
lect the B-Spline basis elements with the other covariates as X* = [X, B| and stack the
corresponding coefficients into the joint vector ¥ = |3, 3], then the posterior distribu-
tion of the latter is a proper multivariate Gaussian with full conditional distribution %) |-

Ny ('l,b ‘G_lg, G_l), where G = X*T./NX_lX* + V;l and g = X*Tx_ly + V;lpw with
T
V;l = diag (V,gl, A P) and g = [uﬁ, “55} = 0". Moreover, the Gamma prior on \

implies a Gamma full-conditional distribution \ |- oc G (A |ax +1/2, By + BS PBs).

Estimating the model in (8) is achieved through a straightforward extension of Algo-
rithm 1. We jointly update 1) and A from their full conditional distributions. In particular,
the Gibbs’ sampling step of Algorithm 1 can be modified to get full inference also on the
spline coefficients 34 and the shrinkage parameter A (see Algorithm 2 in the Supplemen-
tary Material Alaimo Di Loro et al., 2023). In practical terms, this requires Jg additional
linear coefficients to be estimated, whose size p* = p 4+ Jg may undermine the efficiency
of the algorithm. For example, calculations in Step 1b are quadratic w.r.t. p* — O(np*?).
Steps 1a and 1b (i.e. the most expensive in p*) are executed in the first iteration and subse-
quently, only in those iterations where new values of @ are accepted. When 0 is rejected, we
retain in memory the previously computed value (which would stay unchanged). Thus, if we
attain an optimal acceptance rate of ~ 20% — 30% in the Metropolis Hastings step on 8, the
computation is avoided in the majority of cases with a sensible improvement in computation
time and speed.

3.5. Simulations. We conducted simulation experiments to evaluate the model described
in Section 3.4 and compared the performance of our algorithm in terms of fitting, predic-
tion error and computational speed with other routines available from the spNNGP package
(Finley, Datta and Banerjee, 2017). Additional comparative experiments are provided in the
Supplementary Material (Alaimo Di Loro et al., 2023). We executed our MCMC algorithms
on a computing environment equipped with 12 modern computational nodes with 32 cores
each, roughly equivalent to 3 TeraFlop/sec, and 256Gb of RAM. Each of the presented ap-
plications have been executed on a single node exploiting the computational power of all
cores. The results presented are based upon posterior samples that were retained after di-
agnosing convergence using visual tools (e.g., traceplots, autocorrelation), effective sample
sizes, Monte Carlo standard errors (MCSE) and other diagnostics offered by the coda, mcse
and bayesplot packages in the R computing environment; the Supplementary Material
(Alaimo Di Loro et al., 2023) includes specific details.
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S-Spline P-Spline
Param. (True) Point Interval Point Interval
Bo1 (—3.76) -3.799 (-3.846,-3.752) -3.797 (-3.844,-3.75)
Bo2 (0.65) 0.572 (0.523,0.62) 0.575 (0.526,0.623)
Bos (—0.60) -0.649 (-0.697,-0.6) -0.646 (-0.693,-0.598)
Bo4 (2.36) 2.326 (2.277,2.374) 2.328 (2.28,2.376)
Bos (—0.33) -0.359 (-0.408,-0.31) -0.356 (-0.404,-0.308)
51 (2.59) 2.599 (2.59,2.608) 2.599 (2.59,2.608)
B2 (2.70) 2.691 (2.683,2.7) 2.691 (2.683,2.7)
B3 (—0.58) -0.586 (-0.595,-0.577) -0.586 (-0.595,-0.577)
o? (1) 1.001 (0.973,1.032) 0.993 (0.965,1.023)
¢ (1) 0.994 (0.948,1.04) 1.01 (0.964,1.063)
72 (1) 1.001 (0.984,1.018) 1.001 (0.984,1.018)
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.95 0.99 0.95 0.99
RMSPE (1) 0.07 (1.18) 0.03 (0.84) 0.07 (1.19) 0.03 (0.84)
PIW 4.66 4.44 4.66 4.44
DIC 115’543 115’556
Fitting time (h) 2.18 2.2

TABLE 1

Parameter estimates, predictive validation and fitting times (hours) on the simulated dataset for all the
considered models.

We first generated T, = 2 x 10° time points for K = 5 individuals, where each time
point t; followed exponential waiting times between observations, i.e. tx; = 22;11 Op, and
on i Exp(5). Given the time points, we constructed spatial trajectories v, (), k=1,..., K,
by simulating s, = [yx(tk1),- - - ,’yk(tka)]T, where subsequent components were indepen-
dent Gaussian random walks over the square S = (1, 10) x (1,10), with the variance of each
step along the horizontal and vertical axis proportional to the elapsed time between two sub-
sequent observations. If the trajectory left the square, it was projected onto the border and the
next step would resume from there. The simulated trajectories are shown in Figure 5a.

Northing
Northing

5.0
Easting

5.0
Easting

(a) Trajectories (b) Points

Fig 5: Observed trajectories (a) and observed points (b) for the simulated dataset.

Given the time points and positions (Figure 5b), we generated the latent temporal Gaussian
processes wy(-) £ GP(0,co(-,-)) with an exponential covariance cq(t, t') = o exp{—¢ -
|t —t'|}, where 02 > 0 represents the variance of the process, ¢ > 0 is the decay in temporal
correlation (range) and 72 > 0 the residual variance (nugget). The spatial effects are then
introduced through fs(:) : S — R by considering a tensor product spline basis of degree 2
and with 9 knots over the square domain (including boundary knots), where the spline coef-
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ficients 3¢ have been fixed to randomly generated values from A (0, A\Ig;) with A = 0.5.
The model also included individual-specific intercepts { 5%}2:1 and the effect of 3 covari-
ates with random values drawn independently at each location from a N (0, 1) distribution,
leading to covariate vectors {a:ki}iT:’“l , k=1,..., K. The effect of the covariates is assumed
common across individuals, and set to be determined by slopes 3 = [31, B2, 83] .

We generated values of the outcome for individual & at time ¢;; and location sy; = vk (tx;)
according to the generative process defined by (8) with parameters fixed as above. This
yielded a simulated dataset Dy, = {(Ind;, ¢;, sj,yj,a:jT)};L: . with n = 10° observations,
where Ind; denotes the individual corresponding to row j. Then, we fit the model in (9) on
70% of the total observations in Dy;,, using Algorithm 1 with the Gibbs’ sampling modi-
fied as in Algorithm 2. The remaining 30% were held out to assess out-of-sample predictive
performances in terms of Relative and Root Mean Squared Prediction Error (RMSPE), Cov-
erage, and Predictive Interval Width (PIW). Intercept and slope regression parameters were
assigned NV'(0, 10°) priors; the variance components, o2 and 72, were both assigned inverse
Gamma ZG(2,2) priors; and the decay parameter ¢ received a Gamma prior G(1,1). For
the spline coefficients, we considered both the penalized versions in Section 3.4. The first is
referred to as an S-Spline (shrinking splines), and the second as P-Spline (penalized splines).

Table 1 presents the posterior estimates. We also included the Deviance Information Cri-
terion (DIC) for both models. Performances in the two settings are almost identical, but the
DIC favors the S-Spline model. This is not surprising as the data were generated using an
analogous shrinkage prior for the 3¢’s. Further details, including the estimates of the spline
coefficients are provided in the Supplementary Material (Alaimo Di Loro et al., 2023). Fig-
ure 6 presents the posterior estimate of the spatial surface. We compare the true latent surface
with just the S-Splines as it performs slightly better with respect to the DIC, but notice that
P-Splines provides practically identical estimates.

—
] P
eeeeeeeeeee pline
> if s ij
(a) True splines surface (b) Estimated S-Splines

Fig 6: True and estimated spline surfaces using S-Splines.

4. Application. We apply the proposed model in (8) to estimate the MAG (measured in
G) for participants in the study accounting for subject-specific features and spatial effects on
the mean, while modeling the latent temporal dependence as described in Section 3.1. We
split the data into training (70%) and testing (30%) subsets, where the records have been
allocated to each subset according to a random sample stratified by individual. The testing
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set is used to assess the out-of-sample predictive performances in terms of Relative Mean
Squared Prediction Error (RMSPE), root Mean Squared Prediction Error (tMSPE), Cov-
erage (Cov), and Predictive Interval Width (PIW). Posterior inferences are based on 5,000
samples retained after diagnosed convergence from 10,000 MCMC iterations.

4.1. Model specification. Spatial effects are introduced by considering the tensor prod-
uct of two analogous univariate B-spline basis on each spatial axis. After a preliminary val-
idation through the DIC (see Figure 14 of the appendix), we choose two bases of degree
3 with 12 equally spaced knots over a square encompassing Westwood. This sums up to
Js=(9+3) x (9+ 3) = 144 terms for our complete spline basis, including the boundary
knots. All numerical variables in X (-, -) have been standardized for improving the efficiency
of the MCMC sampling (Gilks and Roberts, 1996). The presence of temporal dependence
in individual trajectories was investigated through an individual-specific exploratory analysis
on the residuals from a standard linear regression and an Ornstein-Uhlenbeck process (GP
with an exponential covariance function) was specified to capture temporal dependence as a
parsimonious and effective model for the behavior of the underlying residual process.

Finally, the outcome is log-transformed in order to comply with the Gaussianity assump-
tion of the model. We denote the parameter associated with variable “varname” as SByamame

and the levels of each categorical covariate as varname ;) for j =1,. .., Jyamame- Hence,
(10)
Jemi Jsex
E[log(MAG(t))] = Bo+ Y _ Bewr; - | (BMI, =BMI(;)) + Y fsex - | (Sexi = Sexj)) +
j=2 j=2
Jage JEh

> Bages -1 (Ager = Agey)) + D By -1 (Ethy = Ethgy) +
j=2 j=2

+ BaistHome - distHomey, (7% (t)) + Bnovi - NDVI(7(t))+
+ /BdistParks : diStParkS(’Yk (t)) + BSlope : Slope(’)/k (t>)+

Js
+Y  Bs,;Bs; ((t))

j=1
where I(-) denotes the indicator function, wy/(-) is the DAG-based approximation (Sec-

tion 3.2) for GP(0,ce(+,-)), and € (t) KN (0,72). The baseline subject represents an under-
weight Asian female less than 18 years of age. Other socioeconomic factors (e.g. education
and income level) have been excluded from the analysis as they are strongly associated with
ethnicity and age.

4.2. Prior distributions. The prior choices for each set of parameters and/or coeffi-
cients followed ad-hoc strategies. We incorporated priors such as 3 ~ N (O, 1081 J),
0% ~TG(2,2) and 72 ~ ZG(2,2) with J being the total number of 3 coefficients. The high
spatial density of observations in several areas of the map enables robust estimation of the
spatial effects. However, over-fitting may emerge from the the high dimension of the spline
basis. Furthermore, there are areas in Westwood that present sparsely observed data-points
and the model could struggle to identify the spline coefficients referred to those areas and
jeopardize convergence of the MCMC algorithm. Hence, we consider the S-Spline (Ridge-
like prior) described in Section 3.4 to mitigate these potential issues, where the shrinkage
parameter \ has been assigned a G(1,1) prior.
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4.3. Results. Fitting the model required ~ 7 hours on a computer equipped with 2 pro-
cessors AMD EPYC 7452, each one having 32 cores for a maximum of 256Gb of RAM.
The acceptance rate obtained is =~ 28%, supporting the consistency of our adaptive strategy.
Table 2 presents parameter estimates and performance metrics for the model in (8) with the
explanatory variables specified in (10) alongside estimates from a Bayesian linear regression
model that includes the spatial spline terms, but neglects the temporal dependence structure.

The estimates from the two models are largely consistent with each other, although ac-
counting for temporal dependence tends to somewhat mitigate the effects of some predictors.
We anticipate the temporal process to absorb the impact of certain predictors — especially
when their relationship with the dependent variable is complex and nonlinear — and this
appears to be the case with “Slope”, which loses its significant positive impact on MAG once
the temporal process is incorporated. All other variables seem to retain the nature of their
impact on MAG. These coefficients are interpreted with respect to the baseline measure of
an underweight 18 year old Asian female.

The intercept represents the natural logarithm of the MAG for the baseline subject and
reckons with both active as well as inactive time points for the high-resolution digitally fil-
tered data. Since we model continuously over time, the resulting value of the MAG, which
is about exp(—2.9) ~ 0.06, corresponds to the low region of moderate physical activity level
(see the Supplementary Material, Alaimo Di Loro et al., 2023). Other gleanings from Ta-
ble 2 indicate that MAGs vary by ethnicity in the study cohort as Whites tend to record lower
MAGs, while Latin Americans and African Americans tend to register larger MAGs com-
pared to Asians. Impact of Age groups on MAGs also tend to vary with the groups of 25-34
and 45-70 year old subjects tending to register lower MAGs than the baseline (young), while
the middle-aged group tends to be higher than the baseline. This is not entirely surprising
because subjects in the 25-34 year old group tend to exercise less than the younger (base-
line) and middle-aged groups with 25-34 year old subjects having less time as they embark
on their careers (less free time), while those in the 45-70 range also tend to follow a less
vigorous lifestyle regimen due to their age. The effect of Body Mass Index (BMI) is also
seen to vary based upon the categories of weight. While all three categories indicate a signif-
icantly higher MAG compared to the baseline, the impact of the overweight, but not obese,
category seems higher than the other two. We do not fully know the extent to which larger
body weights affect accelerometer readings, but this variation must also account for the fact
that higher BMI may also correspond to muscular (not unfit) individuals engaging in more
vigorous lifestyle regiments. The spatially-indexed predictors indicated the expected positive
impact of NDVI (more greenness encourages more outdoor activities and exercise) while it
is also expected, especially in Westwood, that subjects tend to exercise along paths closer to
their home thereby explaining the negative coefficient for the weighted distance to home.

The estimate of the temporal decay parameter ¢ implies that the temporal correlation drops
to 0.05 in about 3/¢ ~ 4.3 minutes, where ¢ ~ 0.7 is the posterior median of ¢. Unsurpris-
ingly, including the spatial effect and the temporal process improves predictive performances
(RMSPE or PIW in Table 2) over a model including only spatial effects (excluding the tem-
poral process). The model incorporating the temporal process delivers satisfactory coverage
and outperforms its competitor in all of the other indices for the training and testing data.

Figure 7a shows the estimated spatial surface, while Figure 7b presents the width of the
posterior predictive intervals. The map clearly evinces zones (darker shades of red high-
lighted with white contours) that tend to depict high levels of physical activity. For example,
the largest dark red blob in the north center-left almost perfectly tracks the UCLA campus
boundary reflecting a campus environment with active mobility (walking, running, biking).
Other zones of high activity identify with locations where more participants in the study live,
including those residing in student dorms (northwest corner) and residential areas immedi-
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Param. Model (8) without temporal process Model (8) with temporal process

Point Interval Point Interval
Intercept -2.750 (-2.754, -2.746) -2.92 (-2.94,-2.91)
Eth. White -0.128 (-0.146, -0.111) -0.190 (-0.258, -0.125)
Eth. Other 0.122 (0.110, 0.134) 0.128 (0.077, 0.178)
Eth. Latin-American 0.259 (0.247, 0.271) 0314 (0.264, 0.362)
Eth. Black/African/Caribbean 0.263 (0.248, 0.278) 0.400 (0.340, 0.461)
Sex Male -0.348 (-0.358, -0.338) -0.298 (-0.338, -0.258)
Normal weight 0.121 (0.110, 0.132) 0.297 (0.252, 0.343)
Over weight 0.351 (0.330, 0.372) 0.482 (0.398, 0.566)
Obese 0.220 (0.181, 0.258) 0.401 (0.241, 0.560)
Age (25-34] -0.387 (-0.398, -0.377) -0.320 (-0.362, -0.279)
Age (34-45] 0.080 (0.064, 0.097) 0.125 (0.057, 0.191)
Age (45-70] -0.105 (-0.132, -0.079) -0.091 (-0.192, 0.006)
Dist. from home -0.135 (-0.142, -0.128) -0.074 (-0.102, -0.046)
Slope 0.052 (0.047, 0.0.56) -0.003 (-0.12, 0.005)
Dist. to parks -0.221 (-0.227,-0.214) -0.066 (-0.089, -0.043)
NDVI 0.226 (0.221, 0.231) 0.010 (0.004, 0.015)
o2 2.266 (2.237,2.297)
¢ 0.718 (0.704, 0.731)
72 2.10 (2.08, 2.13) 0.050 (0.048, 0.053)
Metric Out-of-sample In-sample Out-of-sample In-sample
DIC 17°588°058 973’329
Coverage 0.95 0.95 0.93 0.99
RMSPE (r) 1.44 (0.68) 1.44 (0.68) 0.55(0.09) 0.1 (0.003)
PIW 5.69 5.69 2 1.18

TABLE 2

Parameter estimates and model performance metrics for model (8) with and without the temporal process.

ately around and in the predefined Westwood/UCLA study area (such as the south central
zone) or Century City shopping center (to the east). Lighter shades (orange) correspond to
areas that are less developed (open space), such as the areas in the north east; or they are
areas with a high degree of transportation infrastructure and traffic (e.g., toward the western
boundary). These correspond to highways (such as the Interstate-405 highway or other ve-
hicular transportation corridors) that often have lower levels of activity because they inhibit
outdoor physical activities due to noise, pollution, safety, etc. Our analysis reveals three ad-
ditional high activity areas that are not gleaned from non-spatial models: the Los Angeles
National Veteran Park; the Century City shopping center and the Stone Canyon Park. The
color gradient closely follows the spatial characteristics of the Westwood neighborhood and
reveal how spatial patterns can impact physical activity behavior after accounting for varia-
tion attributable to known explanatory variables.

Figure 8 shows two examples of observed (left) and reconstructed (right) MAGs along
trajectories carved out by two subjects. We find a good degree of agreement between the two
plots, and the ability of our model to recover the log(MAG) in locations where it has not
been observed. The reliability of the predictions can be demonstrated through different met-
rics and, unsurprisingly, accommodating spatial effects and the temporal process improves
predictive performances as measured by MSPE or PIW. We deliver these personalized tra-
jectory plots for every subject in the study and also predict personalized MAGs for each
subject along any new trajectory. This enables personalized recommendations based upon
an individual’s health attributes including suggestions for more effective paths to follow for
optimal physical activities, while also informing community level interventions in the built
environment.

5. Discussion. We have devised a Bayesian modeling framework to conduct fully
model-based inference for high-resolution accelerometer data over trajectories compiled
from the PASTA-LA study. Our key data analytic developments included (i) modeling de-
pendence over trajectories; (ii) accounting for subject-specific spatial-temporal variation for
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Fig 7: (a) Spatially smoothed estimates from a shrinkage spline over Westwood, Los Angeles;
(b) Standard deviation for the shrinkage spline.

daily mobility; and (iii) predicting or interpolating PA levels across trajectories; and (iv) iden-
tify zones of high physical activity in Westwood, Los Angeles. Our spatiotemporal analysis
offers richer inference and reveals relationships between physical activity levels and a variety
of factors, both at the subject level (e.g., personal attributes) and as a function of space and
time. The temporal process was able to effectively extract the features of the data at finer res-
olutions, while the spatial splines accounted for residual spatial heterogeneity. Accommodat-
ing both temporal dependence and spatial heterogeneity demonstrably improved predictive
ability and enabled us to effectively delineate zones of high physical activity. Furthermore,
the ability of the model to pool information across individuals at all time points allows us to
infer about those who present sparsely observed space-time points (due to technical issues
or protocol violation). In particular, we can interpolate and infer about PA levels with full
uncertainty quantification and ensure the desired coverage by our prediction intervals. The
methods we develop can be adapted to model animal tracking and be compared to existing
spatial models (see, e.g., Hedley and Buckland, 2004).

Recent public health reviews call for interdisciplinary technological advances to more ef-
fectively measure spatiotemporal energetics of activity spaces in obesity and chronic disease
research (James et al., 2016; Kestens et al., 2017; Drewnowski et al., 2020). Individual-level
data, at aggregate, can be used to identify anchor points for physical activity and reveal causal
pathways between built environment exposures and health. Our work is a novel contribution
demonstrating methodologies to answer these pressing research questions.

Our analysis also resolves practical difficulties in using actigraph data. It is not cost-
effective to deploy research-grade GlobalSat GPS and Actigraph units as they are very ex-
pensive and continued usage requires heavy staff involvement. Our methods can be applied to
analogous, but less complete, data derived from smart phones and smart watches, then such
devices could be deployed in much larger studies with much larger sample sizes at a fraction
of the cost. Given the spatiotemporal nature of outdoor PA research, our ability to predict in
areas of data missingness drastically improve inference related to the impacts of the built and
natural environments on physical activity and active mobility.
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Fig 8: Estimated log(MAG) for two randomly selected individuals: (a) estimated log(MAG)
(red points) and 95% prediction intervals (red dashed line) for each point within the observed
time-windows; (b) including the location.

We recognize that there are several avenues for further research. Substantive investiga-
tions pertaining to the PASTA-LA study will focus on the impact of intervention schemes
designed to promote physical activities and ask questions related to controlling for weather
while estimating the impact of the intervention. Our DAG-based approach for scalable tem-
poral processes can be further enriched with recent developments (Katzfuss and Guinness,
2021; Peruzzi, Banerjee and Finley, 2022), although any of the methods reviewed and eval-
uated by Heaton et al. (2019) can be incorporated into our framework. We also recognize a
wealth of future research surrounding wearable devices and actigraphy data. Examples in-
clude methodological advancements in clustering of trajectories according to different levels
of physical activity and creating personalized health recommendation systems for patients
with regard to trajectories (e.g., walking, running or biking routes) that will be most appro-
priate for them. Related to the clustering of trajectories, one can also pursue model-based
learning about individual effects from the extent of (appropriately quantifies) spatial over-
lap in trajectories and discerning them from spatial effects Finally, there is possible merit in
modeling both the non-idle and idle times with a more comprehensive hierarchical specifica-
tion (Bai et al., 2018). The joint modeling could be achieved using Mixture Models, Hidden
Markov Models, or the modeling of multivariate Gaussian censored outcomes (De Oliveira,
2005; Molstad, Hsu and Sun, 2021). Combining such approaches with efficient estimation
strategies is the major challenge, which will be tackled in future developments of this work.
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SUPPLEMENTARY MATERIAL

6. Details about data processing. Figure 9 depicts a snapshot of the raw acceleration
recorded by the three axles subjected to digital filtering executed by the band-pass Butter-
worth filter of order 4 in the frequency window (0.25,10). The elimination of low frequency
bands makes the signals stationary around zero, canceling protracted times away from the
origin. The effect of the high frequency filtering is less evident, but ensures the cleaning of
(typically) low signals occurring at very high frequency.

Figure 10 presents a snapshot of the effect on the point-wise MAG evaluated from the
filtered acceleration signals when it is smoothed through the Gaussian kernel according to
Equation (2). Significant, but extemporaneous, spikes which are not really indicative of the
overall body movement are tampered. The intensity is, instead, quantified as a weighted av-
erage of all the neighboring signals. Indeed, the body movement is relevant to PA only if it
is protracted for a sufficiently large time window. The single instant, which is a null-measure
set, is not as informative as the local average intensity.

M' b I# b UWM ‘M Jw‘w MM “MWH
Mu b et ol

() (e) ()
Fig 9: Snapshot of the pre (a-c) and post (d-f) filtering of the axles of a single individual.
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Fig 10: Snapshot of observed (black) and smoothed (red) MAG for a single individual.

7. Relationship between vector magnitude and MET. An extensive review of pro-
posed accelerometer measurement cut-points and transformation into physical activity met-
rics is available in Migueles et al. (2017). Most of the studies are performed on specific
populations, in controlled environments, or during controlled activities. Results are not al-
ways coherent with one another based upon current technological capabilities, which has
been stoking a significant amount of research. Ellis et al. (2014), Hildebrand et al. (2014),
and Staudenmayer et al. (2015) studied the relationship between the raw acceleration MAG,
as derived from the GT3X+, and various PA measures using different regression techniques.
They found good correlation in both controlled and free-living environments. In particular,
Staudenmayer et al. (2015) validated the results with the EE and METs as quantified by a
portable calorimeter and compared the accuracy in predicting them when the device is worn
on different parts of the body. The author(s) found the dominant wrist to be as good as any
other position when the MAG is derived from the raw accelerations instead of the Actilife
proprietary software.

While Ellis et al. (2014) uses a Random Forest algorithm and Staudenmayer et al. (2015)
considers multiple summary measures of the MAG signal to estimate the corresponding PA,
Hildebrand et al. (2014) provides a linear function that relates MAG with VO2 which, in
turn, correspond to MET cutpoints. The MAG-to-VO2 relationship for adults wearing an
Actigraph on the wrist expounded in Hildebrand et al. (2014) is:

11) V02 = 0.032 - MAGy; + 7.28 ,

where the MAG is expressed in mG and averaged per minute. The corresponding MET cut-
points to classify different PA intensity level are in Table 3.

Activity intensity | MET range MAG (mG)

Sedentary or light [0, 3) [0, 100.6)

Moderate [3,6) [100.6, 428.8)

Vigorous [6, 00) [428.8, o0)
TABLE 3

MAG activity count cut-points for different PA intensity levels.

Based upon the aforementioned literature, inference for the MAG is transformed into
METs through (11) to interpret results from a physical activity perspective. Nevertheless,
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equations directly relating accelerometer measurements with physical activity metrics in free-
living studies must be interpreted with caution. Relationships between MAG and MET have
been posited in controlled studies and validated while patients are performing specific tasks
(i.e. walking on a treadmill, gardening etc.). The relationship between the recorded move-
ment (acceleration) and the corresponding energy expenditure can vary significantly across
different tasks affecting the reliability of acceleration-based energy expenditure metrics (Ly-
den et al., 2011; Freedson et al., 2012; Montoye et al., 2018; Migueles et al., 2019).

8. Technical details about the implementation of the Collapsed Temporal NNGP.
Algorithms 1 and 2 provide the steps for estimating the proposed model. The accompanying
website, https://github.com/minmar94/EfficientTNNGPforActigraph,
supplies the computer codes to fit the proposed model with some examples on simulated data.
Algorithm 1 follows the developments in Finley et al. (2019) with two modifications. First,
we exploit the temporal domain to make it even more efficient in the neighbor search and in
avoiding the fill-in permutation matrix. Second, we generalize to deal with a block-diagonal
covariance matrix to account for multiple independent individuals with nested dependent
structures. Algorithm 2 is invoked in Step 2 of Algorithm 1 as it replaces typical Bayesian
regression updates with the penalized approach developed in Section 3.4.

Algorithm 1: Sampling from the posterior of the collapsed temporal model
0: Initialization
begin
fork=1,...,K do
a: Compute dfj =[t; —tl, Vit €Ty

b: Find the neighbor sets { Ny, (i)} %,
end
end

1: Metropolis-Hastings update for {6, 72}
~—1
0,7‘2‘ o 9,7’2 X 1 _ex (—l ~XB)TA - X )
p(0,7%]-) cxp(8,77) = P 7 (y—XB) (y—XB)

begin
fork=1,...,K do

.
a: Compute L), = (ITk - Ak> , dj = diag(Dy,) and Ry, = D, ! (ITk - Ak> using C}, and

1T
{Ng (Z)}szl
b: Compute 4, = L - R + T_QITk exploiting sparsity

c: Compute g, =y, — Xy Banddp, = HZT=k1 dj ;
d: Compute v, = ﬂlzl'r’k, up = Q;le, and 8¢y, = det(€2y,) exploiting the sparse Cholesky

decomposition of €2,
e: Collect rj,, v;, and uy, into 7, v and u, respectively.

end
f: Compute ¢y = 727 - Hkl-(=1 oD, - Hszl g, and g2 = rTr/r2 —pToy/rd

g: Get p(9772\~) o< L\/q%z/m '17(9»7'2)

end
2: Gibbs’ sampler update for 3

Bl ~Np(B~1b,B~1), where B = xTA 'x ¢+ Vgl andb=XTA ‘y+ Vgluﬁ
begin
a: Compute F' = Vgl and = Vglu,@
b: Compute b=y | X /72—y v/r4+ and B = XTX/'r2 — XT'u/7-4 + F
¢: Generate 8 ~ Np(B~1b, B~ 1)
end
Repeat steps 1 and 2 to obtain M MCMC samples for {3,6, 72}
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Algorithm 2: 1) and A Gibbs’ update in the collapsed algorithm with shrinkage
1: Gibbs’ sampler update for 1
Y| ~Nj(G71g,G™1), where G = x*TA ' x* + V;}l and g = X*TK_ly + V;lud,
begin
a: Compute F' = V:bl and = V:plud,
b: Compute g =y ' X* /72—y T v/r*+ and G= X* ' X* /2 — X*Tv/r* + F
c: Generate ¥ ~ N (G~ 1g,G™1)
end

2: Gibbs’ sampler update for \
M-~ Ga (a3, B5), where o} = ay +1/2 and 35 = S + 85 PBg
begin
a: Compute h = ﬂ:grPﬂS and get: of =y + 1/2and B =B\ +h
b: Generate A ~ G (o}, 55)
end

9. Additional simulation experiments. We carried out two additional experiments to
test the reliability of our algorithm and verify comparative performances with the “Sequen-
tial NNGP” as it is implemented in the spNNGP package (Finley, Datta and Banerjee, 2017).
We did not consider the Response NNGP because it is not designed to recover the latent
component. Our first experiment is described in Section 9.1 and includes simulated obser-
vations for one single individual; the second one includes simulated observations for mul-
tiple individuals and is described in Section 9.2. Codes to reproduce the following results
and additional comparative analyses of NNGP versus the full GP model are available at
https://github.com/minmar94/Efficient TNNGPforActigraph.

9.1. Experiment 1. We generated observations {y(tj)}jT:1 for K =1 individual, using

T = 10° time-points, where each t; = 22;11 On, and 0p, ~ Exp(5), V h. The model included
an intercept By and 3 covariates, x1, 25 and x3 all drawn from A/(0, 1), with associated
slopes 31, B2 and B3. We modeled the covariance structure between any two simulations at
time-points ¢ and ¢’ using the exponential covariance function,

(12) Covg [Y (1), Y ()] = co(t,t') = o2e@t¥D 52 ¢ eRT,

where o2 represents the variance of the process (sill), ¢ is the decay in temporal correlation
(inversely proportional to range) and 72 the residual variance (nugget). In this data generation
step the parameters have been set to the following values: Sy = —1.878, 31 = 0.326, 33 =
—0.302, B3 = 1.182, 02 = ¢ = 72 = 1. A chunk of the simulated trajectory and its density
can be observed as an example in Figures 11a and 11b, respectively.

We fitted the model on the simulated data using our Collapsed NNGP implementation,
specifically optimized for the temporal setting, while fitting the Sequential NNGP using the
SpNNGP package. The latter, while generally used for fitting spatial (i.e. two-dimensionals)
models, can be adapted to the temporal (uni-dimensional) case by providing a set of locations
where ¢ is one of the coordinates and the other is fixed to a constant value (e.g. {s; }jT:1 =

{(t;, O)}].Tzl). In our implementation, the intercept and slope were assigned vague normal

prior distributions (N(0,10°)). The variance components, o2 and 72, were both assigned
inverse Gamma priors (ZG(2,2)) and the decay parameter, ¢, was assigned a Gamma prior
G(1,1).

On the other hand, spNNGP assumes a flat prior on the intercept and slope coefficients and
a uniforma U (a, b) prior on the decay parameter ¢. In this experiment we fixed a = 0.5 and
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Fig 11: Simulated uni-dimensional Gaussian process (a) and its density (b).

Param. (True) Collapsed NNGP Sequential NNGP

: Point Interval ESS Point Interval ESS
Bo (—1.88) -1.87 (-1.89, -1.85) 4999 -1.87 (-1.89,-1.85) 57
51 (0.33) 0.33 (0.32,0.34) 4999 0.33 (0.32,0.34) 1285
B2 (—0.30) -0.30 (-0.31,-0.29) 4999 -0.30 (-0.31,-0.3) 1365
B3 (1.18) 1.18 (1.17, 1.19) 4999 1.18 (1.17,1.19) 1342
a2 (1) 1.00 (0.97, 1.03) 472 1.00 (0.97,1.03) 294
¢ (1) 0.99 (0.95, 1.04) 496 0.99 (0.95, 1.04) 65
72 (1) 1.01 (0.99, 1.03) 457 1.01 (0.99, 1.03) 165
Metric Out-of-sample In-sample Out-of-sample In-sample
Coverage 0.95 0.99 0.96 0.99
RMSPE () 0.39 (1.19) 0.20 (0.85) 0.39 (1.19) 0.20 (0.85)
PIW 4.68 4.46 4.78 4.47
Run time (h) 1.77 1.86

TABLE 4

Parameter estimates, predictive validation and fitting times (hours) on the simulated dataset for all the
considered models.

b = 30. All the models were trained on the same random sample composed of 70% of the total
observations, while the the remaining 30% were held out to evaluate the out-of-sample pre-
dictive performances using Relative Mean Squared Prediction Error (RMSPE), Root Mean
Squared Prediction Error (tMSPE), Coverage, and Predictive Interval Width (PIW).

We fixed the number of neighbors m = 10 in the DAG and executed 10,000 MCMC it-
erations. The first 5,000 simulations were dropped as burn-in, while the last 5,000 were
retained for estimation and prediction purposes. No thinning has been considered. Results
are summarized in Table 4. The two approaches provide substantively indistinguishable in-
ference in terms of estimation and prediction. However, our implementation is faster than its
competitor (at least in the context of the temporal setting) and provides pronouncedly better
performances in terms of Effective Sample Size (ESS).

9.1.1. Computation time evaluation. We quantified the linearity of all the algorithms:
by construction, the fitting time should increase linearly with the sample size. We split
observations in [ = 1,...,5 different fitting windows {t1,...,¢7;} with increasing sizes
T, = {{2!}%_, U {100}} x 103. The computation time for each iteration, fixing m = 30
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Fig 12: Time elapsed (in seconds) for 1 MCMC iteration for the two considered algorithms
with increasing sample size T and fixed m = 30.

neighbors in the DAG, for all the considered algorithms has been recorded with M = 100.
Figure 12 shows that all algorithms scale linearly with the sample size. However, our im-
plementation of the collapsed NNGP, while pointed out as generally less efficient than its
competitors in Finley et al. (2019), scales with a rate of ~ 0.376 - 10~* per data point, while
the Sequential NNGP scales with a rate equal to ~ 4.5736 - 10~%, which is ostensibly higher.
Table 5 presents detailed results.

T x 10%  Algorithm  Min qo2s Median Mean qg7s Max
Collapsed  0.01 0.01 0.02 0.02 003 0.03

1 Sequential ~ 0.12 0.12 0.13 0.14 0.18 0.18
9 Collapsed  0.03  0.03 0.03 004 006 0.07
Sequential 0.25  0.25 0.26 027 031 034
4 Collapsed 0.06 0.06 0.07 0.09 0.16 0.16
Sequential  0.50  0.50 0.52 0.64 1.21 1.21
8 Collapsed 0.13 0.14 0.30 0.26 0.32 0.41
Sequential  1.01 1.01 2.34 1.99 241 2.56
16 Collapsed 0.27 0.28 0.60 0.46 0.63 0.64
Sequential  2.02  2.02 4.65 346 475 477
39 Collapsed  0.55  0.56 1.23 1.17 1.28 1.37
Sequential 4.08  4.09 9.40 8.87 9.59 10.16
64 Collapsed  1.01 1.03 2.46 1.90 279 285
Sequential ~ 2.51 7.49 18.71 14.43  20.13 20.69
100 Collapsed  1.60 1.61 1.67 1.68 1.87 1.99
Sequential 11.68 11.74 11.93 12.01 12.80 13.87
TABLE 5
Time (in seconds) of one MCMC iteration for the two considered algorithms with increasing sample size (T) and
fixed m = 30.

Additionally, we wanted to quantify the computational advantage of the proposed NNGP-
based collapsed algorithm over the standard MCMC update of the full GP model, where the
latter is already implemented in R through the spLM () function in the spBayes package
(Finley, Banerjee and Gelfand, 2013). Since Datta et al. (2016a) demonstrated that the NNGP
approximation with m = 30 neighbors provides almost exactly the same inference of the full
GP, we fixed m = 30 and built different sets of data with increasing number of data-points,
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Fig 13: Time elapsed (in seconds) for 1 MCMC iteration for the Collapsed NNGP and the
Full GP with increasing sample size T.

but this time with 7; = 100, 1,000, 5,000, 10,000 (sizes have been reduced to accommo-
date the slow update of the full GP). Figure 13 shows that for 7; = 100 the computational
time difference between the full GP and the collapsed NNGP is negligible. However, as the
size increases the savings increase exponentially: 15 seconds (per iteration) when n = 5,000
and 122 seconds per iteration when n = 10, 000. For the last scenario, considering 10,000
MCMC iterations, the collapsed NNGP will provide results 14 days in advance of the Full
GP model.

9.2. Experiment 2. 'The aim of this experiment is to verify the ability of our algorithm in
recovering the true parameters and to determine if pooling information from multiple indi-
viduals can help in improving the accuracy of the estimates. Comparisons with the Sequen-
tial NNGP is not feasible because the latter precludes the contemporary fitting of multiple
Gaussian processes with common parameters. Thus, we compare performances of the Pooled
NNGP (that’s how we will refer to the collapsed algorithm in what follows) with the single
models estimated separately for each individual.

We generated 2 - 10* observations for K = 5 individuals, using the same scheme as in
Experiment 1 (total of 10% data-points). Results are presented in Table 6. The model also
included 3 covariates and an intercept for each individual drawn from independent N (0, 1).
Observations were then generated as described in Section 9.1. The simulated data was split
into two sets: 70% constituted the training set for estimation purposes, while the remaining
30% was used to assess model predictive performances. RMSPE, coverage of the predictive
95% credible intervals and their mean width were used as measures of the goodness of fit.

For all the models, the intercept and slope parameters were assigned a flat normal prior
distribution N'(0,10). The variance components, o and 72, were both assigned inverse
Gamma ZG(2,2) priors, while the decay parameter ¢ received a Gamma prior G(1,1). The
advantage of pooling information from multiple individuals for the estimation of common
parameters, while the independence assumption among them still holds, is evident accord-
ing to all criteria. First, there is a sensible gain in estimating the accuracy of the common
parameters. Indeed, while the true value of the parameters are included in the intervals also
considering one single individual at a time, the widths of 95% credible intervals are sensibly
smaller when we pool the information together. Furthermore, some slight advantage is also
visible for prediction purposes, where the Pooled NNGP delivers larger coverage and smaller
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RMSPE. Additionally, due to the parallel implementation of our code, there is almost no loss
in terms of the computational time required for the fitting: ~ 40 minutes to fit one individual
as opposed to =~ 55 minutes to fit the pooled model.
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Fig 14: Selection of the optimal number of knots for the basis of the B-splines.

10. Further details about the results in Section 4. This section provides a few addi-
tional details about the estimates resulting from Section 4. Figure 14 shows the behavior of
the DIC as a function of the number of knots for the basis of the B-splines accounting for
the non-parametric spatial effect. We note that the DIC starts improving when the number of
knots is greater than 7 and proceeds to offer the best fit when the number of knots is equal
to 12. Figure 15 contains some basic residual diagnostics aimed at verifying if the perfor-
mances are stable across the whole outcome domain and also indicates the Gaussianity of the
residuals. Figure 16 provides the traceplot of the chains of 6 parameters to check their con-
vergence and stationarity. We report two randomly selected [3’s, the shrinkage parameter ),
and ¢, o, 72. All other /3’s show comparable patterns. Figure 17 illustrates the capability of
the estimated model (see Section 4) to approximate the marginal distribution of the observed
outcome, although it is bimodal. This is not surprising because the temporal Gaussian process
acts as a non-parametric prior that interpolates the observed data (see, e.g., Banerjee, 2019),
which makes it a highly effective model for high-resolution data even if the distribution of
the observations is decidedly non-Gaussian.
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histogram of the residuals.
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