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ABSTRACT OF THE DISSERTATION 

 

 

Development of behavioral analysis tools  

for the assessment of threat avoidance learning in mPFC 

 

by 

 

Christopher John Gabriel 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2024 

Professor Laura A. DeNardo, Co-Chair 

Professor Scott A. Wilke, Co-chair 

 

The medial prefrontal cortex is involved in many functions, including memory, decision 

making, and emotional regulation. This region is strongly tied to a variety of psychiatric 

diseases, especially those involved in balancing approach-avoidance conflicts, such as anxiety 

disorders and depression. Understanding the cellular mechanisms that regulate mPFC functions 

is critical for learning how they become maladaptive and contribute to disease. 

Threat avoidance is a critical behavior for surviving in a dynamic environment. However, 

one must balance threat avoidance with other behaviors, such as foraging and nesting. Many 

psychiatric disorders including anxiety disorders, depression, and phobias feature excessive, 

maladaptive avoidance as a central symptom. Understanding how regulation of avoidance 

behavior emerges under normal circumstances is critical for understanding how maladaptive 

regulation produces excessive avoidance in patients. 
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As new methods in neuroscience allow the examination of neural activity in ever greater 

resolution, there is a growing need for tools that can automate the processing and analysis of 

animal behavior and align it with respect to simultaneously recorded data streams. 

This thesis presents a new software program, BehaviorDEPOT, that allows forecasting of 

animal behavior from keypoint tracking and generates detailed reports of kinematic and postural 

behavior statistics to facilitate downstream analyses. This pipeline provides a new tool aimed at 

non-computational users that bridges estimation of an animal’s location with the extraction of 

detailed information about the animal’s posture, movement, location, and behavior. 

This thesis combines the capabilities of BehaviorDEPOT with miniscope imaging of 

mPFC to examine the emergence of activity patterns associated with avoidance learning. 

Examining mPFC dynamics throughout rapid learning, this thesis reveals how changes in neural 

representations of threatening cues and safe locations are some of the first to emerge during 

learning. This thesis characterized signatures of learning in mPFC and identified an emergent 

population activity pattern during the onset of conditioned tones that correlates with learning rate 

and emerges before changes in behavior. This body of work contributes a useful tool that has 

already been adopted by neuroscientists and reveals activity patterns in mPFC that will 

contribute to our knowledge of maladaptive aversive learning. 
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Chapter 1: Introduction 
 

Functions of mPFC 

The medial prefrontal cortex (mPFC) is a key brain region with demonstrated roles in a 

variety of functions, including decision-making, emotional regulation, motivation, and social 

behavior (Euston et al., 2012; Giustino & Maren, 2015; Mack et al., 2024). Altered mPFC activity 

is associated with numerous neuropsychiatric disorders, including schizophrenia, autism 

spectrum disorders, anxiety disorders, depression, specific phobias, and Alzheimer’s disease 

(Buxhoeveden et al., 2006; Maner & Schmidt, 2006; Papaleo et al., 2012; Xu et al., 2019; 

Ironside et al., 2020). Understanding how mPFC contributes to the emergence of adaptive 

behavior – at the level of cells and circuits – will elucidate the nature of its specific and general 

functions as well as its contribution to disease states. 

The mPFC plays a role in both appetitive and aversive learning processes and controls 

decision making after learning has occurred. In each case, mPFC promotes the behavioral 

flexibility required to learn associations and strategies that lead to ideal outcomes (Ragozzino, 

2007; Laskowski et al., 2016). This positions mPFC to have an important role in learning the 

value of cues and adaptive strategies in both appetitive and aversive scenarios. 

 

Role of mPFC in Fear Learning and Memory and Threat Avoidance 

mPFC is important for learning about and responding to threatening stimuli (Shin & 

Liberzon, 2010; McKlveen et al., 2015). One subregion of the mPFC, the prelimbic cortex (PL), 

plays a key role in expression and regulation of conditioned fear and threat avoidance 

(Corcoran & Quirk, 2007; Courtin et al., 2013). This region is implicated in control of emotional 

responses as well as selection of appropriate adaptive actions (Euston et al., 2012). 

Though PL projects to and receives inputs from a variety of brain regions, fear 

expression is especially tied to input from the hippocampus and the amygdala. PL integrates 
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inputs from these regions to regulate expression of fear memory (Burgos-Robles et al., 2009; 

Sharpe & Killcross, 2014). PL signaling appears to enhance the expression of learned fears, 

including interfering with fear extinction, though its role may vary based on task parameters 

(Guistino & Maren, 2015). During expression of fear, PL activity correlates with freezing, both 

during memory retrieval and after failing to extinguish previously learned fear (Burgos-Robles et 

al., 2009). 

The neural mechanisms by which PL controls expression of learned fear have been the 

subject of increased study but remain poorly understood. At the level of single cells, PL encodes 

threat-predictive cues; however, these cells acquire highly heterogeneous responses to these 

cues and frequently encode variable mixtures of them (Herry & Jercog, 2022). Prefrontal 

regulation of behavior appears to depend on a variety of complementary mechanisms. 

Information can be encoded in both the frequency and temporal patterns of PL neural activity 

(Rozeske & Herry, 2018) and in interneuron-mediated disinhibition of neural circuits during fear 

learning (Tovote et al., 2015). There is also growing evidence that neural oscillations in mPFC 

regulate fear expression (Herry & Johansen, 2014). 

Compared to conditioned fear, less is known about the prefrontal mechanisms 

underlying threat avoidance. Recent studies showed that PL plays a critical role in learning and 

expression of threat avoidance, in which animals learn to exhibit a response to avoid a predicted 

threat (Moscarello & LeDoux, 2013; Jiao et al., 2015; Diehl et al., 2018). Projections from PL 

bidirectionally modulate expression of avoidance in well-trained animals (Diehl et al., 2020). 

However, it remains poorly understood how PL rapidly encodes the predictive relationships 

between conditioned cues and adaptive actions required for threat avoidance. 

 

Threat Avoidance is Necessary for Survival but Comes with Costs 

 The ability to predict and preemptively avoid encounters with threatening stimuli is 

essential for survival. Avoidance can be innate, such as rodent’s natural avoidance of bright 
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locations or urine from a predator (Staples, 2010). But to survive in a dynamic environment, 

animals also require learned avoidance capabilities. Associative learning can motivate 

avoidance of novel stimuli, and stimuli previously paired with threat are sufficient to drive 

avoidance behavior (Bechterev, 1913).  

 Though avoidance is an effective strategy for mitigating threats, it also comes with costs. 

To avoid a threat also means missing opportunities for other behaviors essential to survival and 

procreation, such as foraging, mating, and nest building. When avoidance becomes excessive 

relative to the level of threat, this behavior becomes maladaptive. Excessive avoidance at the 

cost of more productive activities is commonly seen in human psychiatric disorders, including 

depression and obsessive-compulsive disorder (OCD) (Dickson & MacLeod, 2006; Gillan et al., 

2014). Avoidance is also a central symptom of anxiety disorders and can be highly generalized 

or domain-specific (Stein & Stein, 2008; DiMartini et al., 2019). In each of these disorders, 

excessive avoidance responses negatively impact the well-being of the patient. Anxiety 

disorders are among the most prevalent human psychiatric diagnoses, are frequently co-morbid 

with other disorders, and can be significantly exacerbated by environmental stressors (Wittchen 

et al., 2002; Lester & Michelson, 2024). 

 

The Problem of Avoidance Learning 

The topic of avoidance learning has been extensively studied over the last century with 

studies and reviews dissecting the complexities inherent to avoidance learning (Bolles, 1972). 

Threat avoidance was first studied in the context of classical conditioning, with the earliest 

studies examining conditioned finger withdrawal to shock in humans (Bechterev, 1913; Watson, 

1916). By the 1930s, the focus had shifted to instrumental learning and researchers adopted 

new procedures for behavioral testing, including the shuttle box assay (Warner, 1932; Hunter, 

1935; Brogden, Lipman, & Culler, 1938). In the shuttle box assay, the animal is placed in a two-

chamber arena and must respond to the presentation of a tone with movement to the opposite 
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chamber. Failure to shuttle by the end of the presented tone results in the animal receiving a 

mild shock. Tones are presented at random intervals to prevent the animal from predicting 

upcoming trials. This task was used to study avoidance across different species (Solomon & 

Wynne, 1953) and was combined with other paradigms to study the impacts of learning outside 

of the avoidance context (Kamin et al., 1963; Morris, 1974). Yet, the insights gleaned from 

studying threat avoidance created more questions than they answered. 

One proposed mechanism was reinforcement of avoidance actions by reduction of fear 

elicited by the conditioned stimulus (Mowrer & Lamoreaux, 1942). This theory brought the 

escape response into the mechanism of learning–while experiencing shock, the animal makes a 

variety of responses and whatever stops the effect of the shock (i.e. escape) ends up strongly 

reinforced. This also proposed a role for fear in acquisition of avoidance; fear would motivate 

avoidance and reduction of that fear would reinforce it. This led to experiments that would 

establish the two-factor theory of threat responses as the leading theory. In this framework, 

threat responses are established through classical conditioning, then avoidance responses are 

reinforced by the reduction of previously established fear (Mowrer, 1947 and 1950). 

However, there are significant shortcomings with two-factor theory. In one experiment 

involving dogs learning a shuttle box avoidance response, the animals reached peak 

performance and remained at this high level of performance for long blocks of many trials 

(Solomon & Wynne, 1953). If fear reduction is motivating avoidance behavior, then why doesn’t 

the avoidance response extinguish when animals avoid hundreds of shocks in a row? The 

observation that well-trained animals tend to only express fear when delaying the avoidance 

response clarified that fear was not present on most successful trials. 

Attention soon turned away from the explicit mechanisms that guide fear learning to the 

experimental contingencies that could manipulate learning. Examining the impact of conditioned 

stimulus (CS) termination and ability to avoid revealed that each factor was approximately equal 

in importance. Only rats with both contingencies available learned robustly (Kamin, 1956). 
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However, this was further complicated by the interaction between the demands of each task and 

the response required to avoid. Ultimately, the contingencies that permitted strong learning in 

some tasks were ineffective in others (Mogenson, Mullin, & Clark, 1965). For instance, in the 

shuttle box assay, the avoidance, escape, and CS termination contingencies make equal 

contributions to performance; in a running wheel avoidance task, only the avoidance 

contingency has a large effect (Bolles, Stokes, & Younger, 1966). 

 In several experiments, there were no behavior differences observed between rodents 

conditioned with avoidable versus unavoidable shock (Schlosberg, 1936; Munn, 1939). 

Conversely, in other experiments, the avoidance contingency produced markedly better 

performance over the unavoidable condition (Brogden, Lipman, & Culler, 1938). These 

contradictions reveal that the nature of the avoidance response matters: if the requirements to 

avoid do not match with the animal’s innate repertoire of threat responses, then avoidance 

learning does not occur. As an example, rodents and opossums will fail to acquire an avoidance 

response that requires foot withdrawal (Schlosberg, 1936; Kappauf & Scholsberg, 1937; James, 

1937) while similar leg withdrawal procedures have been successful in dogs, pigs, and other 

animals (Liddell, 1934; Whatmore, Morgan, & Kleitman, 1946). Similarly, rodents will readily 

learn an avoidance response that requires running, a natural response to threat for those 

species, but will fail to learn responses like foot flexion, which do not align with their natural 

response to threat. These data indicate that avoidance responses and the principles that guide 

their learning cannot be generalized across different assays or species. Instead, the single 

biggest consideration for successful learning may be how well the specific avoidance response 

aligns with an animal’s species-specific avoidance repertoire.  

Animals appear to express a fixed set of innate defensive responses that are specific to 

each species. One study observed the natural defensive behaviors of goats and observed that 

they also expressed a variety of those behaviors throughout the process of learning a foot 

flexion avoidance task (Gibson, 1952). Another study compared two similar avoidance tasks in 
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rodents, noting that an avoidance response that aligns with a rodent’s natural defensive 

behavior will be learned more quickly and more thoroughly than one that does not (Grossen & 

Kelley, 1972). This led to the species-specific defense reaction (SSDR) hypothesis, which posits 

that rodents will readily perform an avoidance response if it requires the use of its innate SSDRs 

and will not readily perform responses that do not invoke a SSDR (Bolles, 1970; Crawford & 

Masterson, 1982). 

Studies of threat avoidance experienced a boom through the 1960’s, but then fell out of 

fashion due to difficulty resolving contradictory results of various assays and animals with a 

universal framework that could explain them all (Bolles, 1972; LeDoux et al., 2017). Since the 

2000s, studies of threat avoidance have been rising again, perhaps because of the relevance of 

threat avoidance to human mental health and because of the advent of new technology 

permitting neurobiological exploration and manipulation of neural circuitry with greater resolution 

and control. 

 

Platform-mediated Avoidance 

Another model of avoidance which has been increasingly utilized is the platform-

mediated avoidance (PMA) assay (Grossen & Kelley, 1972; Bravo-Rivera et al., 2014, Diehl et 

al., 2019). In PMA, an opaque platform covers part of an electrified grid floor, and a series of 

presented tones all co-terminate with a foot shock. To avoid the foot shock, the animal must 

access the safety platform before the shock is delivered. Animals first learn the association 

between tone and shock. Then they learn that the tone-predicted shock can be avoided by 

accessing the platform before the end of the tone. In other words, animals must learn to 

preemptively avoid a foot shock by choosing to access the platform when the tone is presented.  

In contrast to the shuttle box assay – in which every location can potentially result in a 

shock – PMA has a location (the platform) for animals to associate with safety. Additionally, in 

many implementations of the shuttle box, the avoidance response results in early termination of 
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the conditioned tone. In PMA, animals do not have this level of unrealistic control over predictive 

cues. These aspects of PMA better model real-world scenarios involving threat avoidance. The 

PMA assay also offers opportunities to discover a unique set of neurobiological mechanisms, 

such as the encoding of safe vs. threatening locations, and how entries and exits out of safe 

locations are modulated by the presence of threat-conditioned stimuli. Using this task, I will 

examine how the presence of the safety platform shapes the neural responses to avoidance 

and how the significance of the conditioned tone is modulated by learning. 

 

Neural Circuitry Underlying PMA 

 Activity within PL circuits is associated with acquisition of PMA. Encoding in PL reflects 

both fear and context after a single aversive event, regardless of behavioral outcome 

(Zelikowsky et al., 2014). Inactivation of PL impairs avoidance expression without effects on 

conditioned freezing behavior (Bravo-Rivera et al., 2014). Expression of the immediate early 

gene c-Fos – a marker of neuronal activity – in PL positively correlates with avoidance levels, 

including in cases of excessive avoidance (Bravo-Rivera et al., 2014 and 2015). Similarly, 

optogenetic and pharmacologic manipulations of PL activity revealed that PL manipulations can 

bidirectionally influence avoidance expression (Diehl et al., 2018 and 2020). Thus, PL function 

may be integral to the adaptive performance of threat avoidance.  

PL bidirectionally controls threat avoidance behavior through divergent outputs to the 

basolateral amygdala (BLA) and the ventral striatum (VS), both of which are necessary for 

avoidance expression (Darvas et al., 2011; Ramirez et al., 2015; Hormigo et al., 2016). 

Activating PL-BLA projections enhances threat avoidance while activating PL-VS projections 

reduces avoidance levels (Diehl et al., 2020). Given that there are PL neurons that uniquely 

project to each region (Gao et al., 2022), these findings suggest that distinct ensembles of 

neurons enable PL to bidirectionally influence avoidance behavior depending on the situation. 
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While PL plays a key role in threat avoidance, the emergent PL activity patterns that 

allow animals to rapidly associate predictive cues with adaptive actions remain poorly 

understood. Sustained excitatory responses in this region are correlated with fear behavior and 

likely arise from an integration of synaptic input from relevant brain regions (Burgos-Robles et 

al., 2009). Local PL interneurons are also important for coordinating fear expression and are 

responsible for controlling disinhibition and synchrony of PL circuits (Courtin et al., 2014). It has 

become increasingly apparent that PL uses multiple overlapping encoding mechanisms, with 

information encoded in both the spike frequency of cells as well as the alignment to local neural 

oscillations (Dejean et al., 2016).  

In line with its complex encoding mechanisms, this region also encodes more abstract 

representations of threat and safety. Recently, activity in this region has been shown to encode 

both the overall level of danger and specific representations of potential threats (Martin-

Fernandez et al., 2023). In avoidance paradigms, PL activity is important for the expression of 

avoidance behavior, which may be primarily mediated through inhibitory signaling (Diehl et al., 

2018). Though PL populations encode representations of threat, we are only beginning to 

understand how PL activity links representations of threat-predicting cues with motor programs 

associated with avoidance (Jercog et al., 2021).  

Most studies have focused on the mechanisms that encode freezing behavior during 

conditioned fear, or on the mechanisms of threat avoidance behavior after learning has 

occurred, usually following many days of training. But to survive in the wild, animals must rapidly 

and reliably learn to avoid threats. To understand the mechanisms underlying more naturalistic 

forms of behavior, we need new studies that examine the evolution of PL activity patterns during 

rapid acquisition of learned threat avoidance. 

 

 

 



9 

High-throughput Analysis of Freely Moving Behaviors 

 Advances in neural recording technology have made it easier than ever to collect large, 

detailed datasets of neural activity and simultaneously record freely moving behavior in rodents 

(Aharoni & Hoogland, 2019; Guo et al., 2023). However, these powerful tools come with new 

logistical challenges associated with their use. Aligning neural data to behavior is difficult and 

becomes more complicated when considering freely moving behaviors that are spatially and 

temporally defined but do not always strictly adhere to a trial structure. 

Many software solutions exist to track and analyze rodent behavior; however, each tool 

is typically designed to fit a particular need (e.g. to mark instances of freezing behavior) and 

usually reports when the animal behaved, but not where it was located when the behavior 

occurred. The performance of these tools is also limited by the experimental setup. Visually 

complex areas (e.g. high contrast bars versus solid flooring) as well as the appearance of the 

animal (e.g. inclusion of implants and associated wires) can impede accurate scoring of 

behavior. Lastly, many of these software programs are prohibitively expensive, limiting their 

access to groups that cannot afford a costly fee or subscription. 

Determining the neural correlates of PMA necessitates an integrative analysis of 

different behaviors at the intersection of spatial (platform) and temporal (tone) features. Free, 

open-source software for animal pose estimation, such as DeepLabCut, leverage deep learning 

to allow custom tracking of subjects in a variety of arenas and with invariance to head-mounted 

hardware and cabling (Mathis et al., 2018). However, these tools do not extend to the 

classification of behavior and fail to provide a means to account for spatiotemporal variables. 

To fill this gap, I set out to develop a new behavioral analysis pipeline that could utilize 

pose estimation algorithms to integrate flexible behavior classification (of freezing and threat 

avoidance) with spatiotemporally defined environmental features. Though the early intentions of 

the software I developed, BehaviorDEPOT, were to create an automated pipeline for analyzing 

complex rodent behaviors during PMA, interest in additional capabilities led us to expand the 
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software. I added analysis packages for commonly used behavioral assays including novel 

object exploration, elevated plus maze, and open field test. To reach the greatest number of 

users, I built free and easy to use software that is accessible to researchers with little or no 

coding experience. 

An additional benefit of having highly detailed readouts of behavior is the ability to then 

pair the behavior profiles of animals with simultaneous neural recordings. Analyzing neural data 

relies on obtaining an accurate account of each behavioral variable to be examined. With the 

ability to obtain accurate labels for multiple behaviors and intersect them with relevant 

spatiotemporal information, BehaviorDEPOT enables a deeper understanding of both neural 

activity and behavior. 

I used BehaviorDEPOT’s detailed descriptions of behavior to investigate the neural 

correlates of rapid threat avoidance learning. Detailed descriptions of movement and freezing 

combined with precisely aligned descriptions of the animal’s location in threatening or safe 

zones allowed extensive investigation into the single cell responses during learning, including 

functional analyses across time. Because BehaviorDEPOT can easily and automatically identify 

the intersection between different behaviors and salient task features, it greatly facilitated my 

investigation of the neural changes that occur as animals learn to avoid signaled threats. 
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Chapter 2: BehaviorDEPOT is a simple, flexible tool for automated behavioral detection 

based on markerless pose tracking 

 

ABSTRACT 

Quantitative descriptions of animal behavior are essential to study the neural substrates 

of cognitive and emotional processes. Analyses of naturalistic behaviors are often performed by 

hand or with expensive, inflexible commercial software. Recently, machine learning methods for 

markerless pose estimation enabled automated tracking of freely moving animals, including in 

labs with limited coding expertise. However, classifying specific behaviors based on pose data 

requires additional computational analyses and remains a significant challenge for many 

groups. We developed BehaviorDEPOT (DEcoding behavior based on POsitional Tracking), a 

simple, flexible software program that can classify behavior from video timeseries and can 

analyze the results of experimental assays. BehaviorDEPOT calculates kinematic and postural 

statistics from keypoint tracking data and creates heuristics that reliably detect behaviors. It 

requires no programming experience and is applicable to a wide range of behaviors and 

experimental designs. We provide several hard-coded heuristics. Our freezing detection 

heuristic achieves above 90% accuracy in videos of mice and rats, including those wearing 

tethered head-mounts. BehaviorDEPOT also helps researchers develop their own heuristics 

and incorporate them into the software’s graphical interface. Behavioral data is stored 

framewise for easy alignment with neural data. We demonstrate the immediate utility and 

flexibility of BehaviorDEPOT using popular assays including fear conditioning, decision making 

in a T-maze, open field, elevated plus maze, and novel object exploration. 
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INTRODUCTION 

A central goal of neuroscience is to discover relationships between neural activity and 

behavior. Discrete behaviors represent outward manifestations of cognitive and emotional 

processes. Popular laboratory assays for memory, decision making, anxiety and novelty 

exploration typically require examination of behaviors occurring in particular locations in space 

or instances in time. However, it remains a major challenge to quantify naturalistic behaviors in 

the laboratory in a rapid, reliable, and spatiotemporally precise manner. In most labs, this work 

is done manually, a time-consuming process that is rife with inconsistency.  

Automated detection of freely moving animal behaviors is faster, expands the parameter 

space that can be explored, and can eliminate errors associated with manual annotation such 

as inter-rater inconsistency due to insufficient rater training and rater fatigue. The 

standardization promised by such methods also enhances the rigor and reproducibility of results 

across research groups, which is a major concern in behavioral neuroscience. Commercially 

available software for automated behavior analysis is expensive and the underlying algorithms 

are hidden which prevents customization or interrogation to determine why a particular result is 

reported. Moreover, commercially available behavior detectors are prone to failure when 

animals are wearing head-mounted hardware for manipulating or recording brain activity. As 

open-source hardware for recording and manipulating neural activity become increasingly 

available (Luo et al., 2018), more labs are integrating optogenetics, miniscopes, fiber 

photometry and electrophysiological recordings into their behavioral experiments. This 

expansion of the research space includes labs without established computational expertise to 

quantify complex behaviors or align them with precisely timed manipulations or biological 

signals. Flexible, easy-to-use, open-source software is needed to automate analysis of freely-

moving behaviors and facilitate subsequent analyses.  

To label behaviors automatically, animals must first be segmented from their 

environment and tracked through space and time. Previously established methods use 
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techniques including background subtraction and pattern classifiers to estimate animal positions 

in video timeseries and then abstract animal movement to a center of mass or an ellipse for 

analysis (Ohayon et al., 2013; Branson et al., 2009; Noldus et al., 2001; Geuther et al., 2021). 

After segmentation and tracking, the challenge then is to use data about animal movements to 

classify discrete behaviors that represent useful information about the cognitive or emotional 

state of the animal. JAABA (Kabra et al., 2013) uses machine learning to classify behaviors 

based on the outputs of tracking systems such as MotionTracker (MoTr) (Ohayon et al., 2013) 

and Ctrax (Branson et al., 2009), which fit ellipses to track animal movements. JAABA requires 

no coding expertise and has been widely used in the fly community to report complex behaviors 

including social interactions and various kinds of locomotion. However, only a few rodent 

studies have employed JAABA (Sangiamo et al., 2020; Neunuebel et al., 2015; Phillips et al., 

2019; Nomoto et al., 2015; van den Boom et al., 2017). One limitation is that ellipses cannot 

resolve the detailed spatiotemporal relationships between individual body parts that characterize 

many complex behaviors. Moreover, many methods that rely on background subtraction or 

similar approaches are not robust to environmental complexity and require behavioral assays 

that can be performed in an empty arena (Geuther et al., 2019). 

Newer pose estimation algorithms that are based on machine learning can accurately 

track individual ‘keypoints’ on an animal’s body (e.g. nose, ears, joints) (Mathis et al., 2018; 

Pereira et al., 2019; Graving et al., 2019). Keypoint tracking is robust to environmental changes 

in behavioral arenas and the relationships between the locations of keypoints allow researchers 

to resolve temporal pose sequences with fine detail. Recently developed open-source software 

packages such as MARS (Segalin et al., 2021) and SimBA (Nilsson et al., 2020) use supervised 

machine learning to classify behaviors based on the positions of keypoints on an animals’ body. 

These methods are excellent solutions for classifying complex behaviors that are challenging for 

humans to label reliably, including multi-animal social behaviors or self-grooming. However, 

additional rounds of machine learning are computationally-intensive and require significant 
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amounts of human-labeled video data. This level of complexity is unnecessary to classify many 

widely studied behaviors and implementing these approaches may present an insurmountable 

challenge for labs with limited expertise in coding and machine learning.   

Here we describe BehaviorDEPOT, which provides an easy way convert keypoint 

tracking into meaningful behavioral data in a wide variety of experimental configurations. 

BehaviorDEPOT not only detects behaviors in video timeseries but can analyze the results of 

widely used assays such as fear conditioning, open field test, elevated plus maze, novel object 

exploration, and T-mazes, and can accommodate varied designs including optogenetic 

manipulations. In these assays, behaviors of interest are typically defined based on criteria set 

by individual researchers. Definitions often include both the pose of the animal and a physical 

location in the behavioral arena. For example, in novel object exploration, bouts of exploration 

are typically defined as times when the animal’s head is oriented towards the object and the 

animal is within 2 centimeters of the object. Keypoint tracking is ideally suited for these types of 

behaviors because it can track the spatial location of animals while also resolving fine-scale 

movements. 

BehaviorDEPOT detects behaviors using heuristics – simple, efficient rules – that are 

based on human definitions. These heuristics operate by applying thresholds to metrics 

calculated from keypoint tracking data (e.g. velocity, angular velocity), and can also incorporate 

spatial and temporal cues of the experimenters choosing. BehaviorDEPOT heuristics have low 

error rates and, in contrast to classifiers built through additional rounds machine learning, can 

be developed based on small amounts of manually annotated video frames and can be easily 

tweaked to fit out-of-sample videos. Our freezing heuristic has excellent performance even in 

animals wearing tethered patch cords for optogenetics or Ca2+ imaging, thereby overcoming a 

major point of failure in commercially available freezing algorithms. BehaviorDEPOT organizes 

and saves behavioral data in structures that facilitate subsequent analyses, including alignment 

with neural recordings. It also helps users develop their own heuristics and incorporate them 
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into the graphical interface. The automated, intuitive, and flexible way in which BehaviorDEPOT 

quantifies behavior will propel new discoveries by allowing even inexperienced coders to 

capitalize on the richness of their data. 

 

RESULTS 

BehaviorDEPOT comprises six independent modules that form a flexible, multifunctional 

pipeline that can run experiments, detect behaviors in video timeseries, and analyze behavioral 

data (Fig. 1). Its graphical interface accommodates users with no prior coding experience. The 

Analysis Module imports keypoint tracking data, calculates postural and kinematic metrics (e.g. 

body length, head velocity) and uses these data as the basis of heuristic behavior detectors and 

analyzes the results of experiments (e.g. report the effects of an optogenetic manipulation 

during cued fear conditioning). We provide hard-coded heuristics for detecting freezing, 

jumping, rearing, escape, locomotion, and novel object exploration. We also provide analysis 

functions for the open field test, elevated plus maze, T-maze, and three chamber assays. The 

Analysis Module generates rich data structures containing spatial tracking data, postural and 

kinematic data, behavioral timeseries, and experimental parameters. All data is stored 

framewise for easy alignment with neural signals. We developed the Experiment Module as a 

companion to our heuristic for detecting freezing. The Experiment Module can run fear 

conditioning experiments by using Arduinos to control shockers, arenas, and lasers for 

optogenetics. Finally, to maximize the utility and flexibility of BehaviorDEPOT, we created the 

Inter-Rater, Data Exploration, Optimization and Validation Modules to guide users through 

developing their own heuristics and integrating them into the Analysis Module (Fig. 1). Here we 

describe how each module works and demonstrate BehaviorDEPOT’s utility in fear conditioning, 

learned avoidance, open field, elevated plus maze, novel object exploration assays and in an 

effort-based decision task in a T-maze. 
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The Analysis Module 

The main functions of the Analysis Module are to automatically detect behaviors and 

analyze the results of experiments. The Analysis Module imports videos and accompanying 

keypoint tracking data and smooths the tracking data. It can accommodate previously recorded 

videos since keypoint tracking models can be trained posthoc. Users can track any keypoints 

they choose. We used DeepLabCut (DLC) (Matthis et al., 2018) for keypoint tracking, which 

produces a list of comma-separated values that contains framewise estimates of the X-Y 

coordinates for designated body parts as well as a likelihood statistic for each estimated point. 

The Analysis Module applies a threshold based on DLC likelihood and performs a Hampel 

transformation (Hampel et al., 1974) to remove outliers. Then, a LOWESS, local regression 

smoothing method is applied to the data (Cleveland et al., 1981), and sub-threshold tracking 

values are estimated using surrounding data and spline interpolation (Fig. 2A). The module then 

performs a feature expansion step, calculating additional keypoint positions based on the 

originally tracked set (Supplementary File 1). We designed a set of postural and kinematic 

metrics that are calculated automatically for each keypoint (Supplementary File 2). These 

metrics serve as the inputs for BehaviorDEPOT’s heuristics. 

We created a set of heuristics to detect several human-defined behaviors including 

freezing, rearing, escape, locomotion, and novel object investigation. From the graphical 

interface of the Analysis Module, users can select a heuristic and indicate if they want to 

analyze behaviors during particular time windows or within regions of interest (ROI) and whether 

they plan to do batched analyses. The Analysis Module also includes spatial functions for 

analyzing the open field test, elevated plus maze, T-maze and three chamber assays. By 

allowing users to perform integrated spatial-temporal-behavioral analyses, BehaviorDEPOT’s 

utility extends beyond existing open-source behavioral classification software, which typically 

just report which behaviors occur in each video frame. Later in the manuscript, we describe how 

users can create their own heuristics and incorporate them into the graphical interface. 
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The Analysis Module exports all relevant data in a set of MATLAB structures 

(Supplementary File 3) so that users can easily perform additional analyses if needs arise (Fig. 

2A). For instance, users may want to align the data to neural signals, a process we discuss in 

upcoming sections. A structure called ‘Tracking’ stores raw and smoothed keypoint tracking 

data. ‘Params’ stores the parameters of video recordings, smoothing functions, heuristics used 

and arena metrics (e.g., ROI size and location). ‘Metrics’ stores kinematic and postural statistics 

calculated from keypoint positions (Supplementary File 2). ‘Behavior’ stores bout-wise and 

vectorized representations of identified behaviors across the entire video, or with respect to 

user-defined spatiotemporal filters.  

The Analysis Module also generates a series of graphical data representations 

(Supplementary File 3). For instance, trajectory maps show when an animal was in a particular 

location and where behaviors occurred. Bout maps indicate when behaviors occurred and for 

how long. These visual representations help users understand behavioral phenotypes in great 

spatiotemporal detail and can inform further custom analyses using the data structures that the 

Analysis Module generates. In the following sections, we describe the development and 

validation of BehaviorDEPOT’s heuristics and demonstrate its utility in numerous behavioral 

assays. 

 

Development and Validation of the BehaviorDEPOT Freezing Detection Heuristics 

Freezing behavior, defined as the absence of movement except for respiration (Grossen 

et al., 1972; Fanselow et al., 1979; Fanselow et al., 1984), is widely studied as a proxy for both 

learned and innate fear (Anagnostaras et al., 1999; Anagnostaras et al., 2010; Perusini, J.N. & 

Fanselow, M.S., 2015). In many laboratory assays, rodents freeze in response to perceived 

environmental threats including conditioned cues, predator odor, or looming disks that mimic a 

predator approaching from above (Perusini, J.N. & Fanselow, M.S., 2015). Despite the heavy 

study of freezing behavior, most labs still score freezing manually or using expensive 
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commercially available software programs that often fail when animals have tethered 

headmounts. Here we describe the development and validation of the BehaviorDEPOT freezing 

detection heuristic and demonstrate its accurate performance across a range of experimental 

setups, including in mice wearing head-mounts for optogenetics and miniscopes.  

The BehaviorDEPOT freezing detection heuristic combines a convolution-based 

smoothing operation with a low-pass velocity filter and then applies a minimum duration 

threshold to identify periods of freezing. To develop the freezing heuristic, we began by training 

a deep neural network in DLC on videos recorded with a high resolution and high frame-rate 

camera (Chameleon3 USB3, FLIR) at 50 frames per second (fps). The network tracks 8 points 

on the body and smooths the raw tracking data (Fig. 2B,C). An expert rater annotated freezing 

in 3 randomly selected videos (27,000 total frames). This served as a reference set for heuristic 

development. We reasoned that freezing could be reliably detected based on periods of low 

keypoint velocity. After exploring the predictive value of different keypoints using the Data 

Exploration Module (described below), we determined that thresholding the velocity of a 

midpoint on the back and the angular velocity of the head produced the most accurate freezing 

detection heuristic (Fig. 2D). We smoothed the heuristic output by applying a sliding window to 

produce a convolved freezing vector in which each value represented the number of freezing 

frames visible when the window is centered at a given frame. We then applied an adjustable 

count threshold to convert the convolved freezing vector into the final binary freezing vector 

(Fig. 2E). 

To validate heuristic performance, we manually annotated a different, randomly selected 

set of videos that were never referenced while setting the parameters (Supplementary File 4). 

These videos were recorded in several different behavioral chambers under varied lighting 

conditions. BehaviorDEPOT freezing detection was highly consistent with human annotations 

(Fig. 2F). Accuracy of the freezing heuristic was estimated based on precision, recall, F1 and 

specificity. Precision and recall quantify the positive predictive value against the tendency to 



28 

produce false positive or false negative errors, respectively. The F1 score, the harmonic mean 

of the precision and recall, is useful as a summary statistic of overall performance. Specificity 

quantifies the ability to accurately label true negative values and helps ensure that the heuristic 

is capturing data from only a single annotated behavior. Our heuristic had very low error rates 

(Fig. 2F). 

We also assessed how good the DLC tracking needed to be for the freezing heuristic to 

work well. We trained ten different DLC networks with mean tracking errors ranging from 1–8 

pixels. We used each network to analyze a set of six videos and then used BehaviorDEPOT to 

automatically detect freezing in each video. A linear regression analysis revealed that tracking 

error had a significant effect on precision and on the F1 score without effecting recall or 

specificity (Fig. 2-figure supplement 1; Supplementary File 5), with tracking errors <4 pixels 

producing the highest F1 scores in our analysis. 

To ensure that our heuristic would generalize to other camera types and DLC networks, 

we trained a second network based on videos recorded with a standard webcam at 30fps. On 

the webcam, lower sensor quality and lower frame rate produces more blur in the recorded 

images, so we tracked 4 body parts that are easy to see (nose, ears, tail base; Fig. 2G). When 

compared to human annotations (Supplementary File 4), the webcam videos also scored highly 

for precision, recall, F1 and specificity (Fig. 2G), indicating that our freezing heuristic can indeed 

generalize across camera types and DLC networks.  

Since the same rules may not necessarily generalize to all settings, we developed a 

second freezing heuristic that uses a changepoint function to find frames at which the mean 

velocity changes most significantly and then separates frames into groups that minimize the 

sum of the residual error from the local mean. Binarized freezing vectors are then processed 

using a convolution algorithm and minimum duration threshold (Fig. 2E). This heuristic was also 

highly accurate, performing similarly to the velocity-based heuristic on videos recorded with a 

webcam (Fig. 2– figure supplement 2). Users can tune the heuristic by adjusting a minimum 
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residual threshold for the changepoint function. We termed this the ‘jitter’ heuristic since the 

minimum residual threshold will be determined by the pixel error in keypoint position estimates. 

In other words, the threshold will be determined by how much frame-to-frame ‘jitter’ there is in 

DLC’s estimate of the keypoint location. Keypoint tracking ‘jitter’ may arise as a function of video 

resolution, framerate, and number of frames used to train a keypoint tracking model. As such, 

the ‘jitter’ heuristic may accommodate a wider range of video qualities and keypoint tracking 

models. Also, in videos recorded from the side, the velocity-based freezing heuristic may be 

slightly affected by distortions in velocity calculations caused by the angle (e.g. when the mouse 

is moving towards/away from the camera). 

 

The Experiment Module  

As a companion to the heuristic for freezing, we also developed the ‘Experiment 

Module’, a MATLAB app that allows users to design and run fear conditioning experiments. This 

extends the utility of BehaviorDEPOT by providing a fully open-source software pipeline that 

takes users from data collection to data analysis. The Experiment Module controls commercially 

available shockers, lasers for optogenetics and sound generators via a set of Arduinos (Fig. 1–

figure supplement 1). Users can download the ‘Fear Conditioning Experiment Designer’ app 

from our Github repository and install it with a single button click. From a graphical interface, 

users can design experimental protocols for contextual or cued fear conditioning, with or without 

optogenetics. All experimental parameters (e.g. timestamps for laser, tones, shocks) are saved 

in MATLAB structures that can be referenced by the BehaviorDEPOT analysis pipeline (Fig. 1). 

 

Use Case 1: Optogenetics 

In commercial freezing detection software, algorithms often fail when a rodent is wearing 

a patch cord for routine optogenetics experiments. To ensure that BehaviorDEPOT’s freezing 

heuristic maintains high levels of accuracy under these conditions, we tested its performance in 
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an optogenetics experiment. mPFC plays a well-established role in fear memory retrieval 

(Corcoran et al., 2007; Ledoux, J.E., 2000), extinction (Giustino, T.F. & Maren, S., 2015), and 

generalization (Giustino, T.F. & Maren, S., 2015; Xu et al., 2013; Pollack et al., 2018). While 

silencing mPFC subregions can promote fear memory generalization in remote memory (Xu et 

al., 2013; Frankland et al. 2004), less is known about its role in recent memory generalization. 

We used an adeno-associated virus (AAV) to express the soma-targeted neuronal silencer 

stGtACR2 (Mahn et al., 2018) bilaterally in the mPFC and implanted optogenetic cannula 

directly above the AAV injection sites (Fig. 3A, Fig. 3–figure supplement 1). We performed 

contextual fear conditioning (CFC) in context A. The next day, we measured freezing levels in 

the conditioned context (context A) as well as a novel context (context B) that was never paired 

with shocks. During these retrieval sessions, two-minute laser-on periods were separated by 

two minute laser-off intervals (Fig. 3B).  

We first tested the accuracy of the freezing heuristic for animals wearing tethered head 

mounts. We trained an optogenetics-specific DLC network that tracks 9 points on the animal, 

including the fiber-optic cannula (Fig. 3C). Our rationale for creating a separate keypoint 

tracking network was two-fold. First, while you can train one ‘master’ DLC network that can track 

mice in many different arenas, we find that DLC tracking errors are lowest when you have 

dedicated networks for particular camera heights, arenas, and types of head-mounted 

hardware. DLC networks are easy to train and to make it even easier for new users, we provide 

links to download our DLC models in our GitHub repository 

(https://github.com/DeNardoLab/BehaviorDEPOT/wiki/Pretrained-DLC-Models). Second, this 

was another opportunity to test how well the BehaviorDEPOT freezing heuristic generalizes to a 

different DLC network with a different number of keypoints. For a randomly selected set of 

videos with different floors and lighting conditions, we compared heuristic performance to expert 

human raters (Supplementary File 4). Even with the patch cord attached, the freezing heuristic 

had excellent scores for precision, recall, F1 and specificity (Fig. 3D).  
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Having confirmed the accuracy of the freezing heuristic, we then used BehaviorDEPOT 

to quantify freezing behavior and compared the results to the annotations of an expert human 

rater. As expected, fear conditioned mice readily froze following shocks during CFC, while non-

shocked controls did not (Fig. 3E). During retrieval sessions, silencing mPFC in previously 

shocked animals significantly enhanced freezing in the novel context but did not affect freezing 

in the fear conditioned context (Fig. 3F,G). mPFC silencing thereby produced a significant 

decrease in the discrimination index in fear conditioned mice (Fig. 3H), indicating that mPFC 

plays a key role in the specificity of recent fear memories. In all analyses, BehaviorDEPOT 

freezing estimates were comparable to a highly trained human rater (Fig. 3F–H). By maintaining 

performance levels even in videos with visual distractors like a patch cord, the BehaviorDEPOT 

freezing heuristic overcomes a major point of failure in commercially available freezing detection 

software. 

 

Use Case 2: Ca2+ imaging with miniscopes during signaled avoidance 

As new open-source tools for neurophysiology become available, more labs are 

performing simultaneous neurophysiological and behavioral recordings. Miniature head-

mounted microscopes now allow us to image the activity of hundreds of neurons simultaneously 

in freely moving animals (Ghosh et al., 2011; Cai et al., 2016; Shuman et al. 2020). These 

miniscopes pair with genetically encoded Ca2+ indicators (Dana et al., 2019) that can be 

targeted to specific neuronal populations and GRIN lenses (Barretto et al., 2009) that can be 

targeted to many regions in the brain. With these tools in hand, we can discover how the 

encoding of complex cognitive and emotional behaviors maps onto specific cell types across the 

brain. By recording the activity of hundreds of neurons simultaneously, we can also study the 

population codes that produce complex behaviors (Jercog et al., 2021; Stout et al. 2020). To do 

so, however, we need improved open-source methods that allow us to quantify freely moving 
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behaviors with reference to salient environmental stimuli and to align these detailed behavioral 

measurements with neurophysiological recordings.  

Here we demonstrate the utility of BehaviorDEPOT for aligning behavioral 

measurements with Ca2+ signals during a platform mediated avoidance (PMA) task that has 

temporally and spatially salient features. PMA (Grossen & Kelley, 1972; Bravo-Rivera et al., 

2015) is an mPFC-dependent task in which a fear conditioned tone prompts mice to move to a 

safety platform that protects them from receiving a footshock (Diehl et al. 2020). We recorded 

the activity of hundreds of mPFC neurons in freely behaving animals using head-mounted 

microendoscopes (UCLA Miniscopes: Cai et al., 2016; Shuman et al., 2019) while 

simultaneously recording behavior using a new open-source USB camera, the UCLA MiniCAM.  

Together with BehaviorDEPOT and the UCLA miniscopes, the MiniCAM provides a fully 

open-source data acquisition and analysis pipeline for in vivo Ca2+ imaging during freely 

moving behavior. The MiniCAM is an open-source behavioral imaging platform that natively 

integrates and synchronizes with open-source UCLA miniscope hardware and software (Fig. 

4A). It is composed of an M12 optical lens mount, a custom printed circuit board housing a 

CMOS image senor and supporting electronics, an LED illumination ring, and a 3D printed case. 

The MiniCAM is powered and communicates over a single coaxial cable that can be up to 15 

meters long. The coaxial cable connects to a miniscope data acquisition board (DAQ) which 

then connects over USB3 to a host computer. A range of commercial M12 lenses can be used 

to select the view angle of the camera system. The image sensor used is a 5MP CMOS image 

sensor (MT9P031I12STM-DP, ON Semiconductor) with 2592 x 1944 pixel resolution and a full 

resolution frame rate of approximately 14FPS. For this application, the MiniCAM’s pixels were 

binned and cropped to achieve 1024x768 pixels at approximately 50FPS. The optional LED 

illumination ring uses 16 adjustable red LEDs (LTST-C190KRKT, Lite-On Inc., 639nm peak 

wavelength) for illumination in dark environments (Fig. 4A). We trained a separate DLC network 

for videos of animals wearing miniscopes recorded with MiniCAMs. Our network tracked 9 
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keypoints on the body (ears, nose, midback, hips, tailbase, and tail) and the miniscope itself 

(Fig. 4B). For these videos, BehaviorDEPOT freezing ratings were highly consistent with expert 

human annotations (Fig. 4C).  

We used BehaviorDEPOT to analyze behavior during PMA so we could align it to the 

underlying neural activity. In this task, animals are placed in a fear conditioning chamber in 

which an acrylic safety platform occupies 25% of the electrified grid floor. Three baseline tones 

are followed by nine tones that co-terminate with a mild foot shock. The following day, we 

measure avoidance and freezing behaviors during six unreinforced tones (Fig. 4D). The 

Analysis Module automatically produces trajectory maps that make it quick and easy to assess 

the spatiotemporal characteristics of rodent behavior. In our representative example, the color-

coded trajectory and freezing locations (denoted as black squares) converge on the platform at 

the end of the session, indicating the mouse indeed learned to avoid shocks by entering the 

platform (Fig. 4E). We used BehaviorDEPOT to produce summary data, showing that mice 

readily learned the cue-avoidance association during training (Fig. 4F) and remembered it the 

next day (Fig. 4G). 

During a retrieval session, we recorded neural activity using a UCLA miniscope and 

behavior using a UCLA MiniCAM (Fig. 4H). Using MIN1PIPE43, we extracted and processed 

neural signals from 513 mPFC neurons across 3 mice. We then determined whether individual 

neurons encoded specific behaviors that we had quantified using BehaviorDEPOT (Fig. 4I). We 

computed a receiver operating characteristic (ROC) curve that measures a neuron’s stimulus 

detection strength over a range of thresholds (Fig. 4J). We identified numerous neurons that 

were modulated by freezing and avoidance on the safety platform. These neurons were 

organized in a salt and pepper manner in mPFC (Fig. 4K). Nearly half of all neurons that 

exhibited task relevant behavior and were specific for either freezing or threat avoidance, or 

their combination (Fig. 4L). These experiments demonstrate that the BehaviorDEPOT heuristic 

for detecting freezing is robust across a wide variety of experimental setups with different 
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camera types, keypoint tracking networks, arenas and headmounts. Further, this suite of open-

source hardware and software will enable a broader user base to combine Ca2+ imaging with 

high resolution behavioral analysis. 

 

Use Cases 3–6: Open Field, Elevated Plus Maze, Novel Object Exploration, and Decision-

Making 

BehaviorDEPOT also supports behavioral analyses beyond the realm of conditioned 

fear. In a number of commonly used assays, behaviors are defined based on animal location or 

the intersection of location and specific movements (e.g. head turns in a choice zone, described 

below). Such assays, including elevated plus maze (EPM), open field test (OFT), novel object 

exploration (NOE), object location memory, social preference/memory, decision making assays 

(T-maze), and working memory assays (Y-mazes), examine a broad swath of cognitive and 

emotional processes including anxiety, memory and decision making and are published in tens 

of thousands of studies each year. To extend the utility of BehaviorDEPOT to this broad user 

base, the Analysis Module includes functions that quantify time spent in user defined ROIs. We 

demonstrate the utility of these functions in four representative assays, EPM, OFT, NOE and a 

T-maze. However, the same functions could be used to analyze numerous assays including Y-

mazes, real-time or conditioned place preference, as well as social preference and social 

memory tests. 

 

Elevated Plus Maze, Open Field Test, and Novel Objection Exploration 

EPM and OFT are used to measure anxiety-related behaviors in the laboratory (La-Vu et 

al., 2020), but these assays are often scored manually or with expensive software such as 

Ethovision (Noldus et al., 2001). In the EPM, rodents navigate through an elevated (~1 foot off 

the ground) plus-shaped maze consisting of two open arms without walls and two enclosed 

arms with walls. Animals that spend more time in the closed arms are interpreted to have higher 
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anxiety (La-Vu et al., 2020). In the OFT, rodents are placed in an empty arena without a ceiling 

for 10–15 minutes. Experimenters measure the fraction of time spent in the perimeter of the box 

vs. the center. Increased time in the perimeter zone is interpreted as higher anxiety. OFT is also 

commonly used to measure locomotion in rodents. We trained a DLC network to track animals 

in an EPM or OFT. We used the BehaviorDEPOT functions to indicate the closed arms, open 

arms, and center zone for EPM (Fig. 5A) and the center zone for OFT (Fig. 5B). 

BehaviorDEPOT uses the midback keypoint to track the animal as it traverses the zones, 

reporting time spent in each zone. BehaviorDEPOT annotations were highly consistent with an 

expert human rater (Fig. 5D). 

NOE assays can be used to assess exploration and novelty preference (Ennaceur et al., 

1988; Leger et al., 2013; Vogel-Ciernia, A. & Wood. M.A., 2014; Zeidler et al., 2020). An object 

is placed in the center of an open field and investigation time is measured. NOE is typically 

defined as instances when the animal’s head is within 2 centimeters (cm) of the object and 

oriented towards the object (Leger et al., 2013; Vogel-Ciernia, A. & Wood. M.A., 2014). After 

importing DLC tracking data, BehaviorDEPOT allows users to draw an ROI at a set radius 

around the object (Fig. 5C). The NOE heuristic uses a combination of head angle and distance 

with respect to the ROI to label ‘investigation’ frames. BehaviorDEPOT quantified NOE at levels 

that were highly consistent with expert human raters (Fig. 5F). 

 

Automated Quantification of Decision-Making Behaviors 

Decision making is a widely studied area of neuroscience. Many labs study contingency-

based, cost-benefit decision-making in mazes that involve choice points. For example, effort-

based decision-making involves weighing whether it is worth exerting greater effort for a more 

valuable outcome. A common rodent assay for effort-based decision-making is the barrier T-

maze task in which animals choose whether to climb over a barrier for a large reward (high 

effort, high value reward; HE/HVR) vs. taking an unimpeded path for a smaller reward (low 
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effort, low value reward; LE/LVR) (Bailey et al., 2016). Well trained animals typically prefer 

HE/HVR choices, taking a direct route over the barrier with stereotyped trajectories. However, 

when reward or effort contingencies are adjusted animals demonstrate vicarious trial and error 

(VTE), thought to be a marker of deliberative (rather than habitual) decision-making. During VTE 

trials, animals may pause, look back-and-forth, or reverse an initial choice50. Several groups 

have identified neural signatures of VTE in hippocampus, striatum, and prefrontal cortex 

suggesting that animals may be playing out potential choices (i.e. vicariously) based on an 

internal model of maze contingencies (Redish et al., 2016). Simple, flexible, and automated 

analysis tools for detecting VTE and aligning this behavior with neural data would significantly 

enhance our understanding of deliberative decision-making.  

We used BehaviorDEPOT to automatically detect VTE in a barrier T-maze task and to 

report the ultimate choice animals made during each effort-based decision-making trial. First, 

we trained a new DLC network to track mice as they navigated the T-maze. In one version of 

the task, mice decided whether to turn left to collect a small reward or to turn right and climb a 

wire mesh barrier for a large reward. We then changed the effort contingency by adding a 

second barrier to equalize effort across choices. We used the BehaviorDEPOT Analysis Module 

to perform automated analysis of the task. We defined 8 regions of interest (Approach, Choice, 

Left Effort, Left Reward, Left Food Cup, Right Effort, Right Reward, and Right Food Cup, Fig. 

6A). We then used the stored tracking data to automatically detect trials, which we defined as 

the first frame when the animal entered the approach zone until the first frame when the animal 

entered the reward zone, and to report the outcome of each trial (left choice or right choice) 

(Fig. 6B–D).  

To develop a VTE heuristic, we used the head angle data stored in the BehaviorDEPOT 

‘Metrics’ data structure. For each trial, we analyzed the head angles when the mouse was in the 

choice zone and used these values to determine the number of head turns per trial. Manually 

annotated VTE trials tended to have 1 or more head turns, while non-VTE trials tended to have 
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0 head turns, so we defined VTE trials as having 1 or more head turns in the choice zone (Fig. 

6E). We then used our BehaviorDEPOT VTE heuristic to detect the fraction of trials with VTE in 

T-maze sessions with 1 vs. 2 barriers, finding a significant increase in the occurrence of VTE 

trials when a second barrier was added. Importantly, the BehaviorDEPOT performance was 

highly consistent with a human rater (Fig. 6F).  

Together, these analyses showcase the many functions of the Analysis Module and 

highlight the utility of the repository of postural and kinematic statistics that is automatically 

generated in BehaviorDEPOT. By calculating and storing information including velocity, angular 

velocity, head angle, and acceleration in a framewise manner, BehaviorDEPOT allows users to 

design automated analysis pipelines for a wide range of commonly studied cognitive tasks. 

Indeed, BehaviorDEPOT can be tailored to meet individual needs. In the following sections, we 

describe additional modules that help users develop custom heuristics and integrate them into 

the Analysis Module.  

 

Developing and Optimizing Heuristics for Behavior Detection 

To broaden the utility of BehaviorDEPOT, we created four additional modules that guide 

users through the process of developing their own heuristics. The Inter-Rater, Data Exploration, 

Optimization and Validation modules help researchers identify and validate the combinations of 

metrics that track best with their behaviors of interest. Reference annotations can come from 

human raters or other heuristics software. 

 

The Inter-Rater Module 

A major hurdle in developing classifiers or heuristics using supervised approaches is 

settling on a ground truth definition of the behavior of interest. The Inter-Rater Module compares 

annotations from multiple human raters and identified points of overlap and disagreement (Fig. 

7A). In response to the initial output of the Inter-Rater Module, human raters can discuss the 
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points of disagreement and modify their manual ratings until they converge maximally. The 

resulting ‘ground truth’ definitions of behavior can be used to benchmark the performance of 

newly developed heuristics or to optimize existing ones.  

Here we demonstrate the outputs of the Inter-Rater module using freezing and novel 

object exploration as examples. This module imports multiple human annotations and users can 

select a reference dataset (e.g. the most highly trained expert rater, Fig. 7B1,C1). The module 

compares each set of annotations to the reference, scoring the annotations frame-by-frame as 

true positive, true negative, false positive, or false negative for each rater. These values are first 

used to calculate percent overlap and percent error between all raters. Precision, recall, 

specificity, and F1 score are calculated and reported for each rater relative to the chosen 

reference (Fig. 7B2,C2). Additionally, visualizations of frame-by-frame percent agreement (Fig. 

7B3,C3) and user-by-user disagreement (Fig. 7B4,C4) are automatically generated to assist 

identifying areas of conflict between users. The automated features of the Inter-Rater Module 

make it fast and easy to perform iterative comparisons of manual annotations, interleaved with 

human updates, until a satisfactory level of agreement is achieved. The Inter-Rater Module can 

function as an independent unit and can thus support heuristic development with any 

application. 

 

The Data Exploration Module 

For users who want to develop new heuristics, the Data Exploration Module helps to 

identify combinations of keypoint metrics that have high predictive value for behaviors of 

interest. Users can choose between two different exploration modes: broad or focused. In 

focused mode, researchers use their intuition about behaviors to select the metrics to examine. 

The user chooses two metrics at a time and the Data Exploration Module compares values 

between frames where behavior is present or absent and provides summary data. A 

generalized linear model (GLM) also estimates the likelihood that the behavior is present in a 
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frame across a range of threshold values for the two selected metrics (Fig. 8A), allowing users 

to optimize parameters in combination. Focused mode is fast and easy to use and users can 

iteratively test as many combinations of metrics as they like.  

In broad mode, the module uses all available keypoint metrics to generate a GLM that 

can predict behavior as well as a rank-order list of metrics based on their predictive weights. 

Poorly predictive metrics are removed from the model if their weight is sufficiently small. Users 

also have the option to manually remove individual metrics from the model. Once suitable 

metrics and thresholds have been identified using either mode, users can plug any number and 

combination of metrics into a heuristics template script that we provide and incorporate their 

new heuristics into the Analysis Module. Detailed instructions for integrating new heuristics are 

available in our GitHub repository 

(https://github.com/DeNardoLab/BehaviorDEPOT/wiki/Customizing-BehaviorDEPOT). 

We used focused mode to create our freezing heuristic. First, the Data Exploration 

Module imports the ‘Metrics’ and ‘Behavior’ data structures we produced using the Analysis 

Module along with reference annotations for the same videos. We used the annotations of an 

expert human rater for reference. In focused mode, users iteratively select combinations of two 

keypoint metrics (e.g., head velocity, tail angular velocity, etc.) and a behavior label from the 

human annotations file (e.g. ‘Freezing’).  We reasoned that low velocity of certain bodyparts 

would correlate with freezing and thus examined the predictive value of several keypoint 

velocities. The module creates two data distributions: one containing video frames labeled with 

the chosen behavior and a second containing the remaining video frames. The larger set is 

randomly downsampled to ensure that each distribution contains equal numbers of frames and 

then a series of analyses quantify how reliably chosen metrics align with the behavior of 

interest. Boxplots (Fig. 8B) and histograms (Fig. 8C) identify features that reliably segregate 

with frames containing a behavior of interest. Indeed, we discovered that the linear velocity of 
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the back and angular velocity of the head tracked particularly well with freezing (Fig. 8B,C). The 

GLM revealed the combinations of threshold values that best predicted freezing (Fig. 8D).  

In general, we found that metrics that are well-suited for behavior detection contrast with 

metrics on frames that do not contain the behavior and have a low standard deviation within the 

behavior set. Distributions of useful metrics also tend to differ substantially from the total set of 

frames, especially when compared to frames that do not contain the behavior. The GLM 

predictions are useful for determining which of the selected metrics best predict the behavior 

and whether they enhance the predictive value when combined. This module will broaden the 

utility of BehaviorDEPOT, allowing researchers to tailor its automated functions to fit their 

needs. 

 

The Optimization Module  

A major advantage of using heuristics to detect behaviors is that parameters can be 

quickly and easily tuned to optimize behavioral detection in out-of-sample data. Some users of 

the Optimization Module may have just developed a new heuristic in the Data Exploration 

Module. Others may want to optimize an existing heuristic for their experimental setup since 

camera position, framerate and resolution and lighting conditions may influence behavior 

detection thresholds. To use the module, researchers provide reference annotations and the 

outputs from the Analysis Module (‘Params’, ‘Behavior’ and ‘Metrics’). By sweeping through the 

parameter space for chosen metrics, the Optimization Module identifies the set of thresholds 

that maximize detection accuracy (Fig. 9A). Through the graphical interface, users can then 

update the heuristic threshold values and save the settings for future use. Commercially 

available freezing classifiers also allow users to adjust the thresholds for freezing detection to 

ensure that accurate classification can be achieved in a variety of experimental conditions. 

However, their algorithms are hidden and there is no way to precisely measure error rates. Our 
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Optimization Module adds a level of rigor to the optimization step by reporting heuristic 

performance as F1, precision, recall and specificity values.  

We used the Optimization Module to tune our freezing heuristic for videos recorded in 

other laboratories. Two research groups provided videos of rats and mice, respectively, 

recorded using their own acquisition hardware and software. For each dataset, we trained 

keypoint tracking networks (Fig. 9B1,2) and manually annotated freezing in a subset of the 

videos. We then analyzed behavior using the Analysis Module with the default settings of our 

freezing heuristic. Using the ‘Parameters’, ‘Behavior’, and ‘Metrics’ files produced by the 

Analysis Module, the Optimization Module iteratively swept through a range of threshold values 

for the four metrics that define the freezing heuristic: back velocity, head angular velocity (Fig. 

9C1,2), window width and count threshold in the convolution algorithm and reports performance 

for different combinations of values (Fig. 9D1,2). 

 

The Validation Module 

The Validation Module can assess a heuristic’s predictive quality by comparing 

automated behavioral detection to human annotations. The user must first generate a reference 

set of annotations (either manual or otherwise) and analyze the video using the heuristic of 

interest in the Analysis Module. In the validation module, the user is prompted to indicate which 

heuristic to evaluate and select a directory containing behavior videos and the output files from 

the Analysis Module (Metrics, Behavior, etc). For each video, the module will categorize each 

frame as true positive, false positive, true negative, or false negative, using the human data as a 

reference. Precision, recall, specificity, and F1 score are then calculated and visualized for each 

video. These statistics are also reported for the total video set by concatenating all data and 

recalculating performance (Fig. 9E). We validated the performance of the BehaviorDEPOT 

freezing heuristic on the rat (Fig. 9F) and mouse (Fig. 9G) videos acquired in external 

laboratories which we had optimized using the Optimization Module. In both cases, the optimal 
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combination of thresholds for (Fig. 9C,D) each video set achieved high F1 scores (>0.9), 

indicating that our chosen features for freezing detection are robust across a range of camera, 

keypoint tracking networks, experimental conditions, and rodent species. 

 

Comparison of BehaviorDEPOT and JAABA 

Finally, we benchmarked BehaviorDEPOT’s performance against JAABA (Kabra et al., 

2013). Like BehaviorDEPOT, JAABA is geared toward a non-coding audience, and its 

classifiers are based on an intuitive understanding of what defines behaviors. JAABA uses 

supervised machine learning to detect behaviors and has been widely adopted by the 

drosophila community with great success. However, fewer studies have used JAABA to study 

rodents, suggesting there may be some challenges associated with using JAABA for rodent 

behavioral assays. The rodent studies that used JAABA typically examined social behaviors or 

gross locomotion, usually in an open field or homecage (Sangiomo et al., 2020; Neunuebel et 

al., 2015; Phillips et al., 2019; Nomoto et al., 2015; van der Boom et al., 2017).  

As the basis for its classifiers, JAABA uses a large feature set that it calculates based on 

animal poses. JAABA is built around trackers like MoTr (Ohayon et al., 2013) and Ctrax 

(Branson et al., 2009), which model animal position and orientation by fitting ellipses. We used 

MoTr and Ctrax to track animals in fear conditioning videos we had recorded previously. The 

segmentation algorithms performed poorly when rodents were in fear conditioning chambers 

which have high contrast bars on the floor but could fit ellipses to mice in an open field, in which 

the mouse is small relative to the environment and runs against a clean white background (Fig. 

10A–B). Poor tracking in visually complex environments such as a fear conditioning chamber 

may explain, at least in part, why relatively few rodent studies have employed JAABA.  

To circumvent these issues, we fit ellipses to the mice based on DLC keypoints (Fig. 

10C). Briefly, we used the nose-to-tail distance to calculate the long axis and the hip-to-hip 

distance to calculate the short axis and used a MATLAB function to generate well-fit ellipses for 
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each video frame. We then imported the ellipse features (animal position (centroid), semi-axis 

lengths, and orientation) into JAABA. We first trained a freezing classifier using JAABA. Even 

when we gave JAABA more training data than we used to develop BehaviorDEPOT heuristics 

(6 videos vs. 3 videos), the BehaviorDEPOT heuristic for freezing had significantly higher recall 

and F1 scores when tested on a separate set of videos (Fig. 10D). We also trained a VTE 

classifier with JAABA. When we tested its performance on a separate set of videos, JAABA 

could not distinguish VTE vs. non-VTE trials. It labeled every trial as containing VTE (Fig. 10E), 

suggesting a well-fit ellipse is not sufficient to detect these fine angular head movements. 

Another strength of BehaviorDEPOT relative to JAABA is that BehaviorDEPOT can 

quantify behaviors with reference to spatial or temporal cues of interest. JAABA does allow 

users to draw spatial ROIs but uses this information as the basis of behavioral classification in 

ways that cannot be detected or controlled by the user. These direct comparisons highlight the 

need for new behavioral analysis software targeted towards a noncoding audience, particularly 

in the rodent domain. BehaviorDEPOT can now fill this role. 

 

DISCUSSION 

Keypoint tracking algorithms and in vivo methods including optogenetics, fiber 

photometry, and miniscope recordings have become increasingly accessible and widely 

adopted. Because many labs with limited programming expertise want to employ these 

methods, we need user-friendly software programs that can automate analysis of naturalistic 

behaviors and facilitate precise alignment of neural and behavioral data.  

BehaviorDEPOT is a general utility behavioral analysis software package based on 

keypoint tracking. Its graphical interface allows even inexperienced coders to run experiments, 

automatically detect behaviors, and analyze the results of popular assays including those run in 

operant chambers (e.g., fear conditioning) or spatial mazes (e.g., T-mazes or elevated plus 

mazes). Our built-in heuristic freezing detector has low error rates across a range of video 
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recording setups, including videos of both mice and rats wearing tethered headmounts. 

BehaviorDEPOT’s flexible interface accommodates varied experimental designs including 

conditioned tones, optogenetics, and spatial ROIs. It also builds rich data structures that 

facilitate alignment of neural and behavioral data and we provide additional code in our GitHub 

repository for this purpose. The experiment module and the UCLA MiniCAM extend the utility of 

BehaviorDEPOT, together forming a fully open-source pipeline from data collection to analysis. 

While the Analysis Module supports many behavioral analyses ‘out of the box’, we created four 

independent modules so that researchers can create, test, and optimize new behavioral 

detection heuristics and then integrate them into the Analysis Module.  

BehaviorDEPOT employs heuristics to measure human-defined behaviors based on 

keypoint tracking data. Keypoints can be used to simultaneously track location and classify fine-

scale behaviors. As such, keypoint tracking is well suited for analysis of widely-used assays in 

which researchers have carefully defined behaviors based on the pose of the animal and its 

location in an arena. Assays including fear conditioning, avoidance, T-mazes, elevated plus 

maze are published in tens of thousands of studies each year. Yet most still rely on laborious 

manual annotation, expensive commercial software packages, or open-source software 

packages that can fail to detect fine movements and are error prone, especially in visually 

complex arenas. With BehaviorDEPOT, we were able to quickly and intuitively design heuristics 

that combine spatial tracking with detection of fine movements.  

In contrast to methods that use supervised machine learning (Nilsson et al., 2020; 

Segalin et al., 2020; Hong et al., 2015; Bohnslav et al., 2021), BehaviorDEPOT’s heuristics are 

easier to interpret and they can be easily tweaked to fit out-of-sample videos. Like any 

supervised method, BehaviorDEPOT heuristics are based on human definitions, so human bias 

is not completely absent from the analyses. However, the automation serves to standardize 

human-expert definitions and can enhance rigor and reproducibility. Moreover, when behaviors 

are clearly defined, developing reliable BehaviorDEPOT heuristics may require less human-
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labeled data compared to a supervised machine learning approach. Other methods use 

unsupervised approaches to classify behavior based on keypoint tracking. While relatively free 

of human biases, programs like B-SOiD (Hsu et al., 2021) and MotionMapper 

(https://github.com/DeepLabCut/DLCutils/tree/master/DLC_2_MotionMapper) are geared 

toward analysis of even more subtle behaviors that are more challenging for humans to reliably 

label and may be out of reach technically for researchers that lack computational expertise. The 

graphical interface and intuitive design of BehaviorDEPOT heuristics ensure it will serve a broad 

audience. 

BehaviorDEPOT does require users to first train keypoint tracking models. However, the 

accuracy, precision and flexibility achieved by these methods will make BehaviorDEPOT more 

broadly useful than classifiers based on more coarse detection methods (e.g. background 

subtraction) that are not robust to environmental complexity or subject appearance. Some 

freezing detectors use pixel change functions to detect periods of no movement and can 

operate in complex arenas like fear conditioning chambers. However, they often fail to detect 

freezing when animals are wearing head-mounts for optogenetics or neural recordings because 

tethered patch cords can move even when the animal is immobile. To circumvent this problem, 

ezTrack (Pennington et al., 2019), VideoFreeze (Anagnostaras et al., 2010), and ANYmaze 

allow researchers to crop the tether out of the video, but this requires side-view videos and 

thereby constrains concurrent spatial analyses. In contrast, keypoint tracking algorithms can be 

trained to detect animals in any experimental condition, so users can analyze videos they have 

already recorded. With keypoint tracking, researchers can track body parts that best fit their 

experimental design and can detect fine movements of individual body parts, allowing 

researchers to detect a wider array of behaviors and discover subtle phenotypes arising from 

manipulations.  

To enhance the utility of BehaviorDEPOT, the Inter-Rater, Data Exploration, 

Optimization and Validation Modules help users develop new heuristics or optimize existing 
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ones for their experimental setups. An important step in supervised behavior classification is 

establishing a ground truth definition of behavior. This is typically achieved by training multiple 

human raters and through discussion, refining their annotations until they converge maximally. 

These reference annotations are then used to create classifiers. MARS includes a large dataset 

of human annotations for social behaviors and provides detailed quantitative descriptions of 

similarity and divergence between human raters (Segalin et al., 2021). While the MARS BENTO 

feature can import human annotations for visualization alongside behavior videos or automated 

annotations, our Inter-Rater Module has added functions to automatically calculate performance 

statistics with the click of a button. This makes it fast and easy to train novice manual raters or 

establish new ground truth definitions. Human annotations or ratings from another classifier 

program can be imported into the Data Exploration, Optimization, and Validation Modules and 

are compared to BehaviorDEPOT metrics or heuristic outputs for development and evaluation of 

heuristic performance.  

Our heuristic for freezing detection operate on similar principles as commercial software 

that apply a motion threshold and a minimum duration threshold to detect bouts of freezing. 

However, BehaviorDEPOT has added functionality in that freezing detection can be integrated 

with spatial analyses so researchers can determine not only when an animal is freezing, but 

also where it is freezing. Another major limitation of commercial algorithms is that they are not 

well validated (Anagnostaras et al., 2000). Researchers typically use their intuition to set 

thresholds for freezing. BehaviorDEPOT’s Optimization module allows users to adjust 

parameters and determine the combination of thresholds that produce the lowest error rates. 

We envision that new users will manually annotate a set of videos from their lab, analyze them 

with BehaviorDEPOT using the default heuristic settings, and then test the error rates using the 

Validation Module. If error rates are high, they can adjust threshold values with the Optimization 

Module. This process can be done for any behavior of interest. By making the optimization and 

validation process easy – it can be done with a few button clicks in the graphical interface – 
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BehaviorDEPOT will enhance the rigor of behavior classification and increase reproducibility 

across labs. 
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Figure 1. BehaviorDEPOT is a general-purpose behavioral analysis software comprising six 
modules.  
The Experiment Module is a MATLAB application with a graphical interface that allows users to design 
and run fear conditioning experiments. The software uses Arduinos to interface with commercially 
available hardware (e.g., shockers and lasers) to control stimuli. The Analysis Module imports keypoint 
tracking data, calculates postural and kinematic metrics, detects behaviors, and analyzes the results of 
behavior experiments. Four additional modules help users develop custom heuristics. The Inter-Rater 
Module compares human annotations, helping researchers settle on ‘ground truth’ definitions of behavior. 
These human definitions serve as reference data for behavioral detection heuristics. The data exploration 
module identifies features of movement with the highest predictive value for specific behaviors. The 
optimization module identifies combinations of feature thresholds that maximize behavioral detection. The 
validation module reports the accuracy of heuristics.  



49 

 
 
Figure 1-S1. Example arrangement of Arduino interface between computer, fear conditioning, and 
optogenetics hardware.  
The Experiment Module controls two Arduinos that control delivery of the scrambled shocker, and a light 
(for use as a conditioned cue), and the laser for optogenetics, respectively. MATLAB software triggers the 
conditioned tone. 
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Figure 2. The Analysis Module.  
A) The Analysis Module workflow. Videos and accompanying pose tracking data are the inputs. Pose 
tracking and behavioral data is vectorized and saved in MATLAB structures to facilitate subsequent 
analyses. 
B) Metrics based on individual tracked points and weighted averages are calculated and stored in 
BehaviorDEPOT data matrices.  
C) Visualization of the effects of the LOWESS smoothing and interpolation algorithms for the weighted 
average of head and rear back (left) and for all tracked points in a representative example frame (right).  
D) Visualization of metrics that form the basis of the BehaviorDEPOT freezing heuristic. Colored lines 
represent framewise calculated values for each metric. Yellow bars indicate freezing epochs.  
E) Visualization of the convolution algorithm employed by the BehaviorDEPOT freezing heuristic. A 
sliding window of a specified width produces a convolved freezing vector in which each value represents 
the number of freezing frames visible in the window at a given frame. An adjustable count threshold 
converts the convolved freezing vector into the final binary freezing vector.  
F) Evaluation of freezing heuristic performance on videos recorded at 50 fps with a high resolution, high 
framerate camera (P=0.95, paired t-test, N=6; Precision: 0.86, Recall: 0.92, F1: 0.89, Specificity: 0.97).  
G) Evaluation of freezing heuristic performance on videos recorded at 30fps with a standard webcam 
(P=0.10, paired t-test, N=6; Precision: 0.98, Recall: 0.88, F1: 0.93, Specificity: 0.99).  
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Figure 2-S1. Performance of the freezing heuristic based on DLC mean tracking error. 
Heuristic performance statistics plotted against root mean squared error (RMSE) of the DLC model. N=6 
videos were tested to generate average heuristic performance for each model. Error bars, S.E.M. R and 
P values indicate summary statistics for simple linear regression. 
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Figure 2-S2. Performance of the ‘Jitter’ Freezing Heuristic on Webcam videos.  
(A) Human vs. velocity vs. jitter freezing annotations (F(1.4,4.2)=0.32, P=0.67, RM one-way ANOVA). 
(B) Evaluation of freezing heuristic performance on videos recorded at 30fps with a standard webcam 
(Precision: 0.95, Recall: 0.88, F1: 0.97, Specificity: 0.91). 
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Figure 3. Use Case 1: Optogenetics.  
A) AAV1-CamKII-GtACR2-FusionRed was injected bilaterally into medial prefrontal cortex (mPFC). 
B) Behavioral protocol. Mice underwent contextual fear conditioning on day 1. On day 2, mice were 
returned to the conditioned context or a novel context in a counterbalanced fashion and received 2x2 min 
473nm laser stimulation separated by 2 min laser off intervals.  
C) Example DLC tracking of mice attached to patch cords in different contexts.  
D) Performance of freezing heuristic (Precision: 0.94, Recall: 0.87, F1: 0.91, Specificity: 0.98).  
E) Quantification of contextual freezing during training analyzed with BehaviorDEPOT.  
F–G. Comparing human annotations to BehaviorDEPOT freezing heuristic.  
F) Shocked mice: freezing in context A (left) and context B (right) with and without mPFC silencing (CtxA: 
Flaser(1,10)=0.42, P=0.53; Frater(1,10)=0.35, P=0.57; Off vs. On: PBD=0.91, PManual=0.86; CtxB: 
Flaser(1,10)=26.51, P=0.0004; Frater(1,10)=0.08, P=0.78; Off vs. On: PBD=0.008, PMan=0.02; Two-way 
repeated measures ANOVA and Sidak’s test, N=6 mice per group).  
G) Non-shocked controls: freezing in context A (left) and context B (right) with and without mPFC 
silencing (Ctx A: Flaser(1,10)=3.60, P=0.09; Frater(1,10)=0.79, P=0.39; Off vs. On: PBD=0.30, PManual=0.76; 
CtxB: Flaser(1,10)=1.486, P=0.25; Frater(1,10)=1.59, P=0.24; Off vs. On: PBD=0.52, PManual=0.54; Two-way 
repeated measures ANOVA, N=6 mice per group).  
H)  Discrimination index = (FreezeA - FreezeB) / (FreezeA + FreezeB) for shocked mice 
(Flaser(1,10)=17.54, P=0.002; Frater(1,8)=0.09, P=0.77; Mixed-effects analysis, On vs. Off: PBD=0.02, 
PManual=0.004, Sidak’s test, N=5–6 per group) and non-shocked controls (Flaser(1,10)=0.07, P=0.80; 
Frater(1,8)=0.02, P=0.90; Two-way ANOVA; On vs. Off: PBD=,0.99 PManual=0.87, Sidak’s test, N=6 per 
group). Error bars represent S.E.M. 
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Figure 3-S1. Histology for optogenetics viral injections and fiber implants.  
(A) Optic fiber cannula placements for experiment described in Figure 3.  
(B) StGtACR2 -FusionRed expression and bilateral fiber placement for representative shocked and non-
shocked mice. Scale bar, 500 µm. 
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Figure 4. Use Case 2: Mice wearing miniscopes.  
A) Design for MiniCAM, an open-source camera designed to interface with miniscopes and pose tracking.  
B) Still frame from MiniCAM recording of mouse wearing a V4 miniscope. DLC tracked points are labeled 
with rainbow dots.  
C) Performance of freezing heuristic on videos of mouse wearing miniscope recorded with MiniCAM 
(Precision: 0.85; Recall: 0.93; F1 Score: 0.89; Specificity: 0.84).  
D) Task design.  
E) Sample BehaviorDEPOT output for mouse wearing miniscope during PMA. Map displays animal 
position over time as well as freezing locations (black squares).  
F) Temporal alignment of time on the platform (blue), time freezing (black), and tones.  
G) Summary data for training and retrieval.  
H) GCaMP7-exressing mPFC neurons imaged through a V4 miniscope.  
I) Example Ca2+ traces from platform (top) and tone (bottom) modulated cells during time on the platform 
(blue) or time freezing (pink).   
J) Receiver operating characteristic (ROC) curves that were calculated for platform-modulated cells 
(excited cell: auc=0.71; suppressed cell: auc=0.35, unmodulated cell: auc=0.45) and freezing-modulated 
cells (excited cell: auc=0.81; suppressed cell: auc=0.32; unmodulated cell: auc=0.42).  
K) Example field of view showing locations of freezing- and platform-modulated mPFC neurons.  
L) Proportion of modulated cells of each functional type from 513 cells recorded across 3 mice. Scale 
bars, 100um. Error bars represent S.E.M. 
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Figure 5. Use cases 3–5: EPM, OFT, NOE 
A-C) Screens shot from Analysis Module showing user-defined ROIs in the EPM, OFT and NOE 
D) Statistical comparison of human vs. BehaviorDEPOT ratings for time in each arm (FRater (1, 4) = 2.260, 
P=0.21, FArm(2,8)=12.69, P=0.003, Two-way ANOVA; Human vs BD: POpen=0.15, PClosed=0.66, 
PCenter=0.99, Sidak post-hoc test, N=5 mice). 
E) Statistical comparison of human vs. BehaviorDEPOT ratings for time in center (P=0.50, paired t-test, 
N=6 mice) 
F) Statistical comparison of human vs. BehaviorDEPOT ratings for time in center P=0.66, paired t-test, 
N=4 mice) 
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Figure 6. Use Case 6: Automated analysis of an effort-based decision-making T-maze task 
A) Screen shots showing DLC tracking in a 1-barrier (top) and 2-barrier (bottom) T-maze and ROIs used 
for analysis in BehaviorDEPOT.  
B) Sample mouse trajectories in a 1-barrier (left) and 2-barrier (right) T-maze. Lines represent individual 
trials for 1 mouse. Blue lines represent right choices, orange lines represent left choices, and thick lines 
indicate vicarious trial and error (VTE).  
C) Illustration of automated trial definitions.  
D) Automated choice detection using BehaviorDEPOT. BehaviorDEPOT indicated choice with 100% 
accuracy (FRater(1,6)=6.84, P>0.99, FBarriers(1,7)=4.02, P=0.09; FSubject(6,7)=0.42, P=0.84, 2-way ANOVA 
with Sidak post-hoc comparisons, 84 trials, N=4 mice).  
E) Top: Polar plots show representative head angle trajectories when the mouse was in the choice zone 
during a trial without VTE (left) and with VTE (right). Bottom: Histogram of head turns per trial for trials 
without VTE (blue) and with VTE (orange). Red dotted line indicates selected threshold.  
F) Fraction of trials with VTE during 1-barrier and 2-barrier sessions, comparing manual annotations to 
BehaviorDEPOT classification (FRaterxBarriers(1,6)=0.04, P=0.85, FRater(1,7)=0.03, P=0.85; FBarriers(1,6)=22.9, 
P=0.003, 2-way ANOVA with Sidak post-hoc comparisons, 102 trials, N=4 mice). Error bars represent 
S.E.M. 
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Figure 7. Sample Outputs of the Inter-Rater Module.  
A) The Inter-Rater Module imports reference annotations, converts them to a BehaviorDEPOT friendly 
format, aligns annotations and reports statistics about agreement between raters.  
B1) Alignment of freezing annotations from four raters with different levels of annotation experience. 
B2) Summary report of inter-rater error rates for freezing.  
B3) Visualizations of framewise agreement levels for multiple raters for freezing.  
B4) Visualizations of framewise disagreements for multiple raters for freezing.  
C1) Alignment of NOE annotations from four raters with different levels of annotation experience. 
C2) Summary report of inter-rater error rates for NOE.  
C3) Visualizations of framewise agreement levels for multiple raters for NOE.  
C4) Visualizations of framewise disagreements for multiple raters for NOE.  
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Figure 8. The Data Exploration Module.  
A) The Data Exploration Module takes in tracked metrics from the Analysis Module along with reference 
annotations. It sorts the data, separating frames containing the behavior of interest from those without 
and then visualizes and compares the distribution of values for metrics of interest.  
B) Distributions of Z-scored values for head velocity (left) and change in head angle (right) are distinct for 
freezing vs. not freezing frames. Box plots represent median, 25th, and 75th percentile. Error bars extend 
to the most extreme point that is not an outlier  
C) Histograms showing distribution of values for back velocity (top) and head angular velocity (bottom) for 
freezing (red) vs. not-freezing (grey) frames.  
D) A generalized linear model (GLM) computes the predictive power of given metrics for frames 
containing the behavior of interest.  
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Figure 9. Analysis of External Data using Optimization and Validation Modules.  
A) Optimization Module workflow. This module sweeps through a range of thresholds for statistics 
calculated based on tracked points and then compares the resulting behavior detection to human 
annotations.  
B1,2) DLC tracking in rat and mouse freezing in videos obtained from other laboratories.  
C1,2) Heatmaps showing F1 scores following iterative sweeps through a range of thresholds for two 
metrics: back velocity and angular velocity of the head. Red box marks highest F1 score. 
D1,2) F1 scores from a subsequent sweep through two additional value ranges for window width and count 
threshold from the smoothing algorithm. Red box marks highest F1 score.  
E) Validation Module workflow.  
F) The BehaviorDEPOT heuristic performed robustly on videos of rats recorded in a different lab 
(Precision = 0.93; Recall = 0.88; F1=0.91; Specificity = 0.96). BehaviorDEPOT freezing detection was 
comparable to highly trained human raters (N=4 videos, P=0.89, Mann-Whitney U).  
G) The BehaviorDEPOT heuristic performed robustly on videos of mice recorded in a different lab 
(Precision = 0.98; Recall = 0.92; F1=0.95; Specificity = 0.95). BehaviorDEPOT freezing detection was 
comparable to highly trained human raters (N=4 videos, P=0.49, Mann-Whitney U). 
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Figure 10. Comparisons with JAABA 
A) MoTr tracking in a standard fear conditioning chamber and an open field. 
B) Ctrax tracking in a standard fear conditioning chamber and an open field. 
C) DLC raw tracking (left) and ellipse calculated based on keypoints (right) in a standard fear conditioning 
chamber. 
D) Quantification of freezing detection errors for BehaviorDEPOT and JAABA (Precision: 
FClassifier(1,12)=0.58, P=0.46; Recall: FClassifier(1,11)=51.27, P<0.001; F1: FClassifier(1,11)=51.27, P<0.001, 2-
way ANOVA with Sidak’s multiple comparison test, N=4–6 per group).  
E) Comparison of VTE detection by human, BehaviorDEPOT and JAABA (FClassifier(1.072,2.143)=340.2, 
P=0.0021, Repeated measures one-way ANOVA with Tukey multiple comparison’s test, N=3). 
  



62 

METHODS 

Animals 

Female and male C57B1/6J mice (JAX Stock No. 000664) aged 10–16 weeks were group 

housed (2–5 per cage) and kept on a 12hr light cycle. Following behavior conditioning, animals 

were individually housed until the memory retrieval sessions. All animal procedures followed 

animal care guidelines approved by the University of California, Los Angeles Chancellor’s 

Animal Research Committee.  

 

Contextual fear conditioning 

Mice were handled for 5 days preceding the behavioral testing procedure. The conditioning 

chamber consisted of an 18cm x 18cm x 30cm cage with a grid floor wired to a scrambled shock 

generator (Lafayette Instruments) surrounded by a custom-built acoustic chamber. The 

chamber was scented with 50% Windex. Mice were placed in the chamber and then after a 2-

minute baseline period, received 5 0.75mA footshocks spaced 1 minute apart. Mice were 

removed 1 minute after the last shock. Non-shocked control animals freely explored the 

conditioning chamber but never received any shocks. The following day, mice were returned to 

the conditioning chamber and a novel context (different metal floor, scented with 1% acetic 

acid), separated by a 1-hour interval. Context presentation order on day 2 was counterbalanced 

across mice.  

 

Platform-mediated avoidance 

PMA used the fear conditioning chamber described above, except 25% of the floor was covered 

with a thin acrylic platform (3.5x4x0.5 inches). During training, mice were presented with 3 

baseline 30s 4kHz tones (CS), followed by 9 presentations of the CS that co-terminated with a 

2s footshock (0.13mA). The following day, mice were presented with 6 CS in the absence of 

shocks.  
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Viruses 

AAV1-syn-jGCaMP7f.WPRE (ItemID: 104488-AAV1) were purchased from Addgene and diluted 

to a working titer of 8.5x1012 GC/ml, and AAV1-CamKIIa-stGtACR2-FusionRed (ItemID: 

105669-AAV1) were purchased from Addgene and diluted to a working titer of 9.5x1011 GC/ml. 

 

AAV injection with Optogenetic Cannula Implant  

Adult wildtype C57/Bl6 mice were anesthetized with isoflurane and secured to a stereotaxic 

frame. Mice were placed on a heating blanket and artificial tears kept their eyes moist 

throughout the surgery. After exposing the skull, we drilled a burr hole above mPFC in both 

hemispheres (AP+1.8, ML+/-0.3 from bregma). A Hamilton syringe containing AAV-CaMKIIa-

stGtACR2-WPRE was lowered into the burr hole and 400nL of AAV was pressure injected into 

each site (DV -2.25mm and -2.50mm from bregma) at 100nL/min using a microinjector (Kopf, 

693A). The syringe was left in place for 10 minutes to ensure the AAV did not spill out of the 

target region. After injecting the AAV, chronic fiber-optic cannula (0.37NA, length = 2mm, 

diameter = 200um) were implanted bilaterally above the injection site and secured to the skull 

with Metabond (Parkell, S371, S396, S398). After recovery, animals were housed in a regular 

12hr light/dark cycle with food and water ad libitum. Carprofen (5mg/kg) was administered both 

during surgery and for 2d after surgery together with amoxicillin (0.25 mg/mL) in the drinking 

water for 7d after surgery.  

 

Optogenetics 

Animals were habituated to the patch-cord for 3 days in advance of optogenetic stimulation. A 

patch-cord was connected to the fiber-optic cannula and animals were allowed to explore a 

clean cage for 5 minutes. On the testing day, optical stimulation through the fiber-optic 

connector was administered by delivering light through a patch-cord connected to a 473-nm 
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laser (SLOC, BL473T8-100FC). Stimulation was delivered continuously with 2.5mW power at 

the fiber tip.  

 

Miniscope Surgery and Baseplating 

For miniscope recordings, all mice underwent two stereotaxic surgeries (Cai et al., 2016; Dana 

et al., 2019). First, adult WT mice were anesthetized with isoflurane and secured to a 

stereotaxic frame. Mice were placed on a heating blanket and artificial tears kept their eyes 

moist throughout the surgery. After exposing the skull, a burr hole was drilled above PL in the 

left hemisphere (+1.85, -0.4, -2.3 mm from bregma). A Hamilton syringe containing AAV1-Syn-

jGCaMP7f-WPRE was lowered into the burr hole and 400nL of AAV was pressure injected 

using a microinjector (Kopf, 693A). The syringe was left in place for 10 minutes to ensure the 

AAV did not spill out of the target region and then the skin was sutured. After recovery, animals 

were housed in a regular 12hr light/dark cycle with food and water ad libitum. Carprofen 

(5mg/kg) was administered both during surgery and for 2d after surgery together with amoxicillin 

(0.25 mg/mL) for 7d after surgery. Two weeks later, mice underwent a GRIN lens implantation 

surgery. After anesthetizing the animals with isoflurane (1–3%) and securing them to the 

stereotaxic frame, the cortical tissue above the targeted implant site was carefully aspirated 

using 27-gauge and 30-gauge blunt needles. Buffered ACSF was constantly applied throughout 

the aspiration to prevent tissue desiccation. The aspiration ceased after full termination of 

bleeding, at which point a GRIN lens (1mm diameter, 4mm length, Inscopix 1050-002176) was 

stereotaxically lowered to the targeted implant site (-2.0 mm dorsoventral from skull surface 

relative to bregma). Cyanoacrylate glue was used to affix the lens to the skull. Then, dental 

cement sealed and covered the exposed skull, and Kwik-Sil covered the exposed GRIN lens. 

Carprofen (5 mg/kg) and dexamethasone (0.2 mg/kg) were administered during surgery and for 

7d after surgery together with amoxicillin (0.25 mg/mL) in the drinking water. 2 weeks after 

implantation, animals were anesthetized again with isoflurane (1–3%) and a miniscope attached 
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to an aluminum baseplate was placed on top of the GRIN lens. After searching the field of view 

for in-focus cells, the baseplate was cemented into place, and the miniscope was detached from 

the baseplate. A plastic cap was locked into the baseplate to protect the implant from debris. 

 

Miniscope Recordings 

Mice were handled and habituated to the weight of the microscope for 4 days before behavioral 

acquisition. On the recording day, a V4 miniscope was secured to the baseplate with a set 

screw and the mice were allowed to acclimate in their home cage for 5 minutes. Imaging 

through the miniscope took place throughout the entire PMA training (~30 min) and retrieval 

session the following day. Behavior was simultaneously recorded with a UCLA MiniCAM.  

 

Miniscope data processing and analysis 

Frames in which animals were freezing and/or on the safety platform were determined using 

BehaviorDEPOT. Cell footprints and Ca2+ fluorescence timeseries were extracted from 

miniscope recordings using MIN1PIPE. We identified 513 neurons across 3 mice. Custom 

MATLAB software was used to align data from the behavior camera and the miniscope camera. 

To identify neurons that were active during freezing or when the animal was on the safety 

platform, we plotted receiver operating characteristic curves (ROC) for individual neurons and 

measured the area under the curve (AUC). ROCs plot the true positive rate (true positive/(true 

positive + false negative)) against the false positive rate (false positive/(false positive + true 

negative)) over a range of probability thresholds. Neurons with high AUC values therefore 

predict the behavioral variable of interest with a high true positive rate and low false positive 

rates over a large range of thresholds. To determine if a neuron significantly encoded a 

particular behavioral event, we generated a null distribution of AUCs by circularly shuffling event 

timing and recalculating the AUC over 1000 permutations. Neurons were considered 

significantly activated during a behavior if their AUC was greater than 97.5% of AUCs in the null 



66 

distributions and significantly suppressed if their AUC value was in the lowest 2.5% of all AUCs 

in the null distribution.  

 

Histology 

Mice were transcardially perfused with phosphate-buffered saline (PBS) followed by 4% 

paraformaldehyde (PFA) in PBS. Brains were dissected, post-fixed in 4% PFA for 12–24h and 

placed in 30% sucrose for 24–48 hours. They were then embedded in Optimum Cutting 

Temperature (OCT, Tissue Tek) and stored at -80°C until sectioning. 60um floating sections 

were collected into PBS. Sections were washed 3x10min in PBS and then blocked in 0.3% 

PBST containing 10% normal donkey serum (JacksonImmunoresearch, 17-000-121) for 2h. 

Sections were then stained with rabbit anti-RFP (Rockland 600-41-379 at 1:2000) in 0.3% PBST 

containing 3% donkey serum overnight at 4°C. The following day, sections were washed 3x5min 

in PBS and then stained with secondary antibody (JacksonImmunoresearch Cy3 donkey anti-

rabbit IgG(H+L) 711-165-152, 1:1000) in 0.3% PBST containing 5% donkey serum for 2 hours 

at room temperature. Sections were then washed 5 min with PBS, 15 min with PBS+DAPI 

(Thermofisher Scientific, D1306, 1:4000), and then 5 min with PBS. Sections were mounted on 

glass slides using FluoroMount-G (ThermoFisher, 00-4958-02) and then imaged at 10x with a 

Leica slide scanning microscope (VT1200S).  

 

Open Field Test 

For the open field test, a 50 cm x 50 cm arena with 38 cm high walls was used. The total area of 

the arena was 2,500 cm2 and the center was determined to be one fourth of this, 625 cm2 or a 

25 cm x 25 cm square. Mice were placed into the room 20 minutes prior to test for habituation. 

At the beginning of the test mice were placed in the arena facing the wall and allowed to explore 

for 10 minutes. Arena was cleaned with 70% ethanol between animals. The total time spent in 
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the center was determined using the OFT heuristic in BehaviorDEPOT and a 2-minute epoch 

was compared to human annotations. 

 

Elevated Plus Maze  

The EPM consisted of a cross-shaped platform 38 cm off the ground with four arms, two that 

are enclosed by walls 20 cm in height. Mice were placed into the room 20 minutes prior to test 

for habituation. For the test, mice were placed in the center of the platform (5 cm x 5cm) facing 

a closed arm and allowed to explore for 8 minutes. The EPM was cleaned in between animals 

with 70% ethanol. The number of entries into the open arms and the time spent in the open 

arms were determined using the EPM heuristic in BehaviorDEPOT and compared to human 

annotations for six full-length videos. 

 

Novel Object Exploration 

The NOE used the same arena as OF and mice were placed into the room 20 minutes before 

testing took place. The objects used were an empty isoflurane bottle (6.5 cm x 6.5 cm x 10 cm) 

and an ice pack (6 cm x 6.5 cm x 15 cm).  At the beginning of each session the object, cleaned 

with 70% ethanol, was placed into the center of the arena. The mouse was placed facing a wall 

into the arena and allowed to explore for 10 min. The arena and objects were cleaned in 

between animals. The time spent exploring the novel object was defined by a human annotator 

as when the mouse’s head was oriented toward the object with the nose within 2 cm of the  

object. If the mouse was on top of the object this was not included. These human annotations 

were compared to the output of BehaviorDEPOT using the NOE heuristic. 

 

Effort-based decision-making 

For T-maze experiments, mice were food deprived to ~85% of the ad libitum initial weight (3–4 

days) and habituated to handling and maze exploration. Reward pellters were chopped Reese’s 
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peanut butter chips (~0.01g each). One arm of the maze was designated as high value reward 

(‘HVR’, 3 pellets), the other low value reward (‘LVR’, 1 pellet). Mice were trained to perform 

effort-reward decision-making via a sequential process. Once mice learned to choose the HVR 

arm (>80%), a 10cm wire-mesh barrier was inserted to block that arm. Training was complete 

when mice achieved >70% success high effort/HVR choices on 2 consecutive days. Forced 

trials were used to encourage sampling of the barrier arm during training. Once mice achieved 

stable performance, a second barrier was interested in the LVR arm to equalize effort between 

choices. 

 

Behavior Video Recordings  

Behavioral videos were acquired using one of the following 3 setups:  

1)    50fps using a Chameleon3 3.2 megapixel monochrome USB camera fitted with a Sony 

1/1.8 sensor (FLIR systems, CM3-U3-31S4M-CS) and a 1/1.8 lens with a 4.0-13mm variable 

focal length (Tamron, M118VM413IRCS). We recorded 8-bit videos with a 75% M-JPEG 

compression.  

2)    30fps using a ELP 2.8-12mm Lens Varifocal Mini Box 1.3 megapixel USB Camera.  

3)    50fps using a UCLA MiniCAM 5 megapixel CMOS sensor (MT9P031I12STM-DP, ON 

Semiconductor)  

 

Manual annotation of behavior 

Two-minute samples of each video recording were manually annotated by 1–3 highly trained 

individuals for freezing behavior using QuickTime7, FIJI (FFMPEG plugin), or MATLAB. One-

minute intervals were chosen from the beginning and end of the video recordings to capture 

diverse behaviors. In some cases, the entire video was annotated. Freezing was defined as the 

absence of movement except for respiration. Novel object exploration was defined as when the 

mouse’s head was oriented toward the object with the nose within 2 cm of the object. If the 
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mouse was on top of the object this was not included. Time in zones of the EPM and OFT was 

defined by when the middle of the back crossed the threshold between zones. VTE was defined 

as when the animal was in the choice zone and swept its head back and forth across ~180°. 

Annotations were iteratively refined after discussion between users until they converged 

maximally and then each heuristic was developed based on the annotations of one human 

expert.  

 

Design of behavior detection heuristics development and test sets  

To develop heuristics, videos were randomly assigned to heuristic development and test sets. 

Dividing up the dataset by video rather than by frame ensures that highly correlated temporally 

adjacent frames are not sorted into training and test sets, which can cause overestimation of 

accuracy. Since the videos in the test set were separate from those used to develop the 

heuristics, our validation data reflects the accuracy levels users can expect from 

BehaviorDEPOT. Heuristic performance was assessed using precision (true positive frames / 

true positive frames+false positive frames), recall (true positive frames / true positive frames + 

false negative frames), F1 score (2*(precision*recall / precision + recall)) and specificity (true 

negative frames / true negative frames + false positive frames). 

 

Heuristic development 

Heuristic parameters for freezing, NOE and VTE were chosen based on human definitions of 

these behaviors and examined in held-out videos. For freezing, we explored linear and angular 

velocity metrics for various keypoints, finding that angular velocity of the head and linear velocity 

of a back point tracked best with freezing. Common errors in our heuristics were identified as 

short sequences of frames at the beginning or end of a behavior bout. This may reflect failures 

in human detection. Other common errors were sequences of false positive or false negative 

frames that were shorter than a typical behavior bout. We included the convolution algorithm to 
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correct these short error sequences, finding empirically that window widths that are the length of 

the smallest bout of ‘real’ behavior and count thresholds approximately one third of the window 

width yielded the best results.  

 

Statistical analyses 

Statistical analyses were performed in MATLAB or GraphPad Prism 

 

The BehaviorDEPOT Pipeline 

Overview of Functions 

The Analysis Module imports video recordings of behavior and accompanying DLC keypoint 

tracking data and exports four data structures (Tracking, Params, Metrics, Behavior) as well as 

trajectory maps. If using the spatial functions to analyze EPM, OFT, etc., the Analysis Module 

also outputs a data summary file that reports time spent in each zone as well as entries and 

exits. The four heuristic development modules import these data structures along with reference 

annotations for a video of interest and reports performance metrics (precision, recall, F1, 

specificity) in graphical and text formats. Reference annotations can come from human raters or 

another classifier software. A list of the inputs and outputs of each module can be found in 

Supplementary File 3.  

 

Computer workstation specs 

We trained networks in DLC and analyzed videos using two different custom-built workstations 

(Intel Core i9-9900K processor (8x 3.60GHz/16MB L3 Cache), 2x16GB DDR4-3000 RAM, 

NVIDIA GeForce RTX 2070 SUPER - 8GB GDDR6; AMD RYZEN 9 3950x processor 

(16x3.5GHz/64MB L3 Cache), 16GB DDR4 RAM, Gigabyte GeForce RTX 2060 SUPER 8GB 

WINDFORCE OC). BehaviorDEPOT can run on any personal computer and does not require a 

GPU. 
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Installation of BehaviorDEPOT 

Detailed instructions on BehaviorDEPOT installation can be found on GitHub: 

https://github.com/DeNardoLab/BehaviorDEPOT. Briefly, after installing a recent version of 

MATLAB (2018+), BehaviorDEPOT can be downloaded from GitHub and installed with a single 

click as either a MATLAB application or as a standalone EXE file. The app can be found in the 

‘APPS’ tab of MATLAB. If users would like to read or modify the underlying code, they can 

hover their computer mouse over the app and then click the link to the file location in the 

resulting pop-up window.  Updates to the application will be added to the GitHub repository as 

they come available. We welcome feedback and bug reports on the BehaviorDEPOT GitHub 

page and encourage users to watch the page to be aware of any new releases. 

 

DeepLabCut Training and Model Availability 

For pose estimation, we found that dedicated models for a given video recording setup 

produced the lowest error rates for keypoint estimations. It is easy to train keypoint tracking 

models and worth the initial time investment. To expedite this process for others, our models are 

available for download from GitHub via a link embedded in the BehaviorDEPOT Wiki page 

(https://github.com/DeNardoLab/BehaviorDEPOT/wiki/Pretrained-DLC-Models). Depending on 

the users’ setup, our models may be used ‘out of the box’ or may require some additional 

training. For high resolution, high framerate cameras (Chameleon-3 camera or MiniCAM) we 

trained models to track 8 or 9 keypoints (nose, ears, hips, midback, tailbase, mid-tail, and head 

implant when present). Our webcam videos and the videos we acquired from outside labs had 

lower resolution, lower framerates and therefore more blur in the images, so we trained models 

to detect 4 or 5 keypoints that were easiest to detect by eye (nose, ears, tailbase and head 

implant when present). We trained models in DeepLabCut for 1–1.65 million iterations on sets of 

~400 video frames. In our DLC training sets, frame rates ranged from 30–75fps, resolution 
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ranged from 7-32pixels/cm. DLC training errors ranged from 0.74–2.76 pixels and DLC test 

error rates ranged from 1.44–5.93 pixels (Supplementary File 4). While we do not know the 

upper limit for DLC tracking errors that can be tolerated by our freezing detection heuristic, our 

data indicate that heuristic performance is robust to a large range of camera types and DLC 

models. 

 

DLC Post-processing  

BehaviorDEPOT imports keypoint tracking data in the form of a csv or h5 file containing 

framewise estimates of X-Y coordinates and confidence level for each estimate. After importing 

the tracking data, BehaviorDEPOT rejects points that were tracked with low confidence (p<0.1), 

removes outliers using a hampel transformation, smooths the remaining points using a 

LOWESS (or other user selected) algorithm, and then fills in missing points using spline 

interpolation. Users can update the confidence threshold in the GUI and the source code can be 

found in smoothTracking_custom.m. Raw and smoothed tracking data is stored in the data 

structure ‘Tracking’ for future reference.  

 

Metric Calculations  

To increase the diversity of metrics that can be used to build heuristics, BehaviorDEPOT also 

calculates additional keypoints defined as the weighted averages of multiple body parts. The 

raw and smoothed tracking data for calculated points are included in the ‘Tracking’ structure 

generated by BehaviorDEPOT (Supplementary File 1). For each keypoint, BehaviorDEPOT 

calculates the linear (cm/s) and angular (deg/s) velocity, acceleration cm/s2), and linear (cm) 

and angular (deg) distance moved since the previous frames. All of these data, along with 

distance travelled throughout the entire section are stored in the ‘Metrics’ MATLAB structure 

(Supplementary File 2) that is saved automatically for future reference. Metrics and Tracking are 

then imported by heuristics and spatial tracking functions. 
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Behavior Analysis Functions 

Velocity-based freezing heuristic  

This heuristic imports the Metrics structure and identifies frames in which the linear velocity of 

the back is below a specified threshold value (default is 0.59cm/sec) and angular velocity of the 

head is below a specified threshold value (15deg/sec). If it meets these requirements, a frame 

will be labeled as ‘freezing’. To smooth over falsely non-contiguous freezing bouts, a sliding 

window of a specified width produces a convolved freezing vector in which each value 

represents the number of freezing frames visible in the window at a given frame. An adjustable 

count threshold then converts the convolved freezing vector into the final binary freezing vector. 

Finally, the heuristic rejects freezing bouts that are shorter than a user-defined minimum 

duration. The default value is 0.9 seconds, a definition that draws on published literature56 and 

was tested empirically to give the most cohesiveness with human raters. Freezing data is saved 

framewise as a binarized vector that is the length of the video (Behavior.Freezing.Vector) and 

boutwise, indicating the start and stop frames of each freezing bout (Behavior.Freezing.Bouts), 

the length of each bout (Behavior.Freezing.Length) as well as the total number of bouts 

(Behavior.Freezing.Count). 

 

Jitter-based freezing detection Heuristic 

To ensure that BehaviorDEPOT will be able to detect freezing for a wide variety of videos and 

DLC networks, we generated a second freezing heuristic with a different design. As an 

alternative to the heuristic based on velocity thresholds, we generated a second freezing 

heuristic that uses a MATLAB changepoint function to find frames at which the mean of the data 

changes most significantly and then separate frames into groups that minimize the sum of the 

residual (squared) error from the local mean. The heuristic imports the velocities of the head, 

nose and tail from the Metrics structure. Users set the error term, which is calculated based on 
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the estimated max linear velocity for freezing. This minimum residual threshold is ultimately 

determined by the DLC tracking error, or the ‘jitter’ of keypoint estimates.  

 

Novel Object Exploration Heuristic 

The object exploration heuristic was developed to automate quantification of object 

investigation. Animal pose and behavior criteria corresponding to object investigation were 

developed from multiple sources (Ennaceur et al.,1988; Leger et al., 2013; Vogel-Ciernia, A. & 

Wood. M.A., 2014; Zeidler et al., 2020). Key features of behavioral criteria were replicated in the 

heuristic: A) nose within an extended boundary from the object (customizable but tested with 

2cm radius), B) head oriented directly toward the object (as determined by a line from between 

the ears extending out past the nose), C) an exclusionary criteria for climbing on or over the 

object, created by establishing a smaller boundary within the original object perimeter 

(customizable but tested at 2cm from object edge) that rejects any instance in which the nose, 

ears, or tailbase is within the boundary. To achieve these features, tracking of ears, nose, and 

tailbase is required. The object exploration heuristic was manually fit to two different exploration 

sessions using two different objects: a rectangular, blue, plastic object with a flat top that 

encouraged climbing (6.5 x 5.5 x 8.5 cm) and a round, dark, glass bottle with a curved top that 

discouraged climbing (5.5 cm diameter, 13 cm height). The heuristic was validated using 

BehaviorDEPOT Inter-Rater and Validation modules, comparing the precision, recall, specificity, 

and F1 scores between heuristic output to an expert human rater across four new videos that 

were not used to develop the heuristic. 

 

EPM Analysis Function 

The Elevated Plus Maze analysis function prompts users to define task-relevant ROIs (open 

arms, closed arms, and center), then calculates the number of entries, total time spent, and 

percentage time spent in each ROI. The heuristic outputs boutwise and framewise information 
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about when the subject was in each ROI, as well as a report summarizing the results of the 

session. 

 

Open Field Test Analysis Function  

This function prompts the user to define the arena perimeter and the center region. It then 

calculates the number of entries, total time spent, and percentage time spent in each ROI along 

with a summary report. 

 

T-Maze Analysis Function 

To analyze T-maze data, we first analyzed the behavior videos using the Analysis Module, 

drawing 8 ROIs (approach, choice, effortR, effortL, rewardR, rewardL, foodCupL and 

foodCupR). The VTE heuristic imports data structures produced by the Analysis Module 

(Params, Metrics, Behavior) and extracts trials. Trial start is defined as when the midback point 

enters the approach zone and trial end is defined as when the midback point enters the reward 

zone. For each trial, the heuristic determines the choice the animal made based whether it 

entered the left reward or the right reward zone. 

 

VTE Heuristic 

Instances of vicarious trial and error are characterized by sweeps of the head and longer times 

in the choice zone. The VTE heuristic identifies sequences of frames in the choice zone when 

the head angles span 180 degrees. It imports outputs from the Analysis Module (Metrics, 

Params, and Behavior) and uses the intersection of Metrics.degHeadAngle and the Choice 

zone ROI to and detect ranges of head angles when the animal was in the choice zone. If the 

opposing head angles are detected within the choice zone in a single trial, this is counted as a 

head turn. Trials in which the animal spends at least 0.6s in the choice zone and has at least 1 

head turn aligned best with human annotations of VTE so the heuristic uses those values and 
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the minimum criterion for VTE detection. This code is available for download from our GitHub 

repository. 

 

Heuristic Development Modules 

The Inter-Rater Module 

This module compares annotations from any number of raters. Human annotations can be 

generated using any software of the experimenters choosing and organized in a 3-column csv 

file (column 1: bout start, column 2: bout stop, column 3: behavior label). The csv file can be 

converted to a BehaviorDEPOT-friendly MATLAB table using the helper function ‘Convert 

Human Annotations’ which is accessible via BehaviorDEPOT’s graphical interface. The Inter-

Rater Module imports the resulting ‘hBehavior.mat’ files and provides visual summaries of rater 

agreement and disagreement, and reports precision, recall, F1 and specificity in both heatmap 

and tabular (iR_Results.mat) formats. 

 

The Data Exploration Module 

The data exploration module imports the data structures produced by the Analysis Module 

(Tracking, Params, Metrics, Behavior) and accompanying references annotations as a 

‘hBehavior.mat’ table, which can be generated using the helper function from the graphical 

interface. Although this function is called ‘convertHumanAnnotations’, it can be used to convert 

boutwise annotations from any source into a MATLAB table that can be imported by 

BehaviorDEPOT. In focused mode, researchers can use their intuition or established definitions 

of behavior to select pairs of metrics to explore. The module reports metric values in behavior 

containing and behavior-lacking frames in the form of histograms and box plots and a text file 

(Results.txt) containing descriptive statistics for the plots. A GLM model is also produced which 

reports the predictive value of combinations of threshold levels for the two metrics. Users can 

iteratively examine as many metrics as they please. Once they have settled on features and 
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threshold values, users can use our template script to incorporate the new heuristic into the 

analysis module. 

The broad exploration mode allows researchers to explore the predictive quality of different 

metrics in an unbiased way. It incorporates all metrics into a GLM and then rejects those with 

very low predictive value. The resulting refined GLM can be incorporated into the Analysis 

Module using our heuristic template file. 

 

Optimization and Validation Modules 

The optimization and validation modules import the data structures produced by the Analysis 

Module and reference annotations in ‘hBehavior.mat’ format. They output heatmaps and results 

tables reporting precision, recall, F1 and specificity values.  

 

The Experiment Module 

The Fear Conditioning Experiment Designer is a MATLAB-based GUI to design and execute 

cued fear conditioning experiments. It uses an Arduino interface to control commercially 

available, transistor-transistor logic (TTL)-based equipment. Stimuli are designed to be either 

auditory or visual. Auditory stimuli can be pure tones or frequency modulated (FM) sweeps. The 

FM sweeps can be customized for start frequency, end frequency, and sweep duration. Both 

pure tones and FM sweeps are generated via sine waves in MATLAB, then played through the 

computer or attached speaker using the sound function. Visual stimuli are generated by sending 

a timed TTL pulse corresponding to the light pattern. Pure light turns on the TTL for length of the 

stimulus; pulsed light turns on and off the TTL at a user specific frequency with a user specified 

duty cycle. 

The user builds an experiment in event blocks. Each event can include any permutation of the 

conditioned stimuli (CS+ or CS-), the shock, and the laser. If a shock is triggered, it is designed 

to co-terminate with the conditioned stimulus (CS). If a laser is triggered, it occurs for the 
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duration of the CS. Inter-block intervals are randomly chosen between the minimum and 

maximum values input by the user.  

Once the user sets up the event blocks and launches the experiment, a baseline period prior to 

starting the events begins (if instructed). Afterward, the first event is implemented. This is 

handled by cycling through a matrix of the events. Each event combination is given a unique 

identifier, and each identifier has its own implementation function. Within each function, the 

event is triggered (sound generation or TTL-adjusting), and the timestamp is logged. 

Timestamps record the system block to the millisecond. For blocks with multiple events (e.g. 

laser-TTL plus tone plus shock), these are handled sequentially.  The pause function is used to 

time the period between event-on and event-off times.  

A countdown of events is shown on screen as each event is being done and completed. Once 

all events have completed, a file is saved (as ‘NAME_YYYY-MM-DD-HH-MM-SS’) containing 

the complete set of experimental information, including identities and parameters of the stimuli, 

the events and their associated timestamps, and a log of the events delivered in that session. 

 

MiniCAM Instructions and Installation  

Descriptions of fabrication and use of MinCAMs can be found on GitHub: 

https://github.com/Aharoni-Lab/MiniCAM. 
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Chapter 3: Transformations in prefrontal ensemble activity underlying rapid threat 

avoidance learning 

 

ABSTRACT 

Learning to respond adaptively to threatening cues is critical to survival. The medial 

prefrontal cortex (mPFC) is important for adaptive decision making, including about whether to 

approach or avoid stimuli in the environment. One subregion of mPFC, the prelimbic cortex 

(PL), is associated with integration of threatening cues and their aversive outcomes. Most 

studies have examined relationships between mPFC activity and avoidance behavior after 

learning has occurred, but little is known about when these changes emerge and how they 

contribute to learning at the behavioral level. In this study, we recorded from ensembles of PL 

neurons using calcium imaging via head-mounted miniscopes. We examined single neuron 

dynamics and population activity states that are associated with the emergence of rapidly 

learned threat avoidance. Over the course of learning, we observed enhanced modulation of PL 

activity that represented the intersections between threatening cues and a safe location. These 

changes were apparent in individual neurons and in PL population dynamics. We also 

discovered a learning-related divergence in PL population activity surrounding conditioned tones 

that is linked to the learning rate of individual animals. Together our findings revealed that 

representations of safe and threatening locations are amongst the first to emerge in PL during 

learning. 
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INTRODUCTION 

To thrive in a dynamic environment, individuals must rapidly learn new associations 

between threatening cues and behaviors required to prevent aversive outcomes. Once 

individuals learn these associations, they must then carefully balance avoiding threats with 

seeking beneficial outcomes. Aversive learning must occur rapidly to ensure animals survive. 

But the neural computations that allow individuals to rapidly and flexibly associate 

environmental cues with behaviors that prevent aversive outcomes are poorly understood. 

The medial prefrontal cortex (mPFC) plays a key role in emotional regulation and 

decision-making, including about whether to approach or avoid potentially threatening stimuli 

(Euston et al., 2012; Giustino & Maren, 2015; Mack et al., 2024). Activity in the prelimbic 

subregion of mPFC (PL) encodes threatening cues and threat-induced behaviors including 

freezing and threat avoidance (Burgos-Robles et al., 2009; Courtin et al., 2014; Moscarello & 

LeDoux, 2013; Jiao et al., 2015; Diehl et al., 2018; Cummings et al., 2020). Even after a single 

aversive stimulus, PL can integrate emotional and contextual information regardless of the 

resulting behavior (Zelikowsky et al., 2014). PL bidirectionally influences approach and 

avoidance behaviors through divergent outputs to the ventral striatum and basolateral 

amygdala, respectively (Diehl et al., 2020).  

In well-trained mice, threat avoidance behavior is associated with inhibition of PL firing 

(Diehl et al., 2018), including in PL neurons that project to the basolateral amygdala (Kajs et. al., 

2022). Population decoding approaches revealed that PL activity before avoidance actions 

accurately predicted whether mice would successfully avoid aversive outcomes (Jercog et al., 

2021). While these studies show that PL is a key player in learned threat avoidance, how the 

necessary ensemble dynamics arise during learning is poorly understood.    

We used miniscopes (Ghosh, et al. 2011; Cai et al., 2016) to record Ca2+ activity 

simultaneously from hundreds of PL neurons as mice successfully learned platform mediated 

avoidance (PMA), in which a conditioned tone prompts mice to navigate to a safety platform. 
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We compared PL ensemble activity across PMA training with PL activity in non-shocked control 

mice. During learning, we observed emergent changes in the encoding of the safety platform 

location. PL neurons that encoded avoidance actions were increasingly modulated by the 

presence of the threatening tone. By the first day of PMA training, a support vector machine 

trained on PL activity during conditioned tones could accurately decode trial outcomes. By 

combining a Rescorla-Wagner model of PMA behavior with analysis of PL population activity, 

we discovered that the distance between population vectors on successful vs. unsuccessful 

trials was highly correlated with the learning rates. These changes were not observed in non-

shocked controls, indicating that avoidance learning generates novel PL representations of 

whether mice had taken avoidance vs. exploratory actions, and novel links between cues and 

actions.  

 
RESULTS 

Mice rapidly learn PMA 

To examine neural correlates of avoidance learning, we used miniscopes to record Ca2+ activity 

from ensembles of PL neurons as animals learned PMA. We injected PL with an AAV vector 

encoding GCaMP7f under the control of the human synapsin promoter (Dana et al., 2019). We 

then implanted a GRIN lens above PL and installed a miniscope baseplate. Mice underwent an 

extensive habituation protocol before beginning PMA training (Figure 1A). All mice were trained 

for 2 days in PMA (Figure 1B). On day 1, animals were given 12 tone presentations. The first 3 

tones were presented without co-terminating shocks to assess baseline tone responses from 

the recorded cells. The remaining 9 tones co-terminated with a mild 2-second foot shock. On 

day 2, all 12 tones were paired with shock. To determine whether observed changes in neural 

dynamics were due to learning vs. the passage of time or exposure to novel tones, we 

compared PL activity to non-shock control mice that underwent the same procedures without 

receiving any foot shocks.  
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We tracked mouse behavior using automated approaches (Figure 1C,D; Mathis et al., 

2018; Gabriel et al., 2022) and quantified several behavioral metrics across days. We defined 

successful trials as those when mice entered the platform before the beginning of the shock and 

remained on the platform for the duration of the shock period (i.e., until the end of the tone). 

Experimental mice exhibited a steady increase in the proportion of successful trials on day 1 

and exhibited significantly higher proportion of successful trials compared to non-shocked 

controls by the end of day 1 and for all of day 2 (Figure 1E). On day 1, during presentations of 

the tone, experimental and control mice spent a similar proportion of time on platform during the 

tone and a similar proportion of time freezing, with differences emerging by the end of day 1 

(Figure 1F,G). Mice in both groups had a comparable latency to enter the platform (Figure 1S). 

To assess how learning impacted PL activity, we performed in vivo microendoscopic calcium 

imaging of PL neurons during both sessions (Figure 1H-J). After imaging, we extracted calcium 

signals associated with individual neurons using a constrained non-negative matrix factorization 

algorithm (Dong et al., 2022) and analyzed single neuron and population level activity patterns. 

We recorded a total of 1394 PL neurons across 9 shocked animals, and 967 PL neurons across 

7 non-shocked animals. 

 

Avoidance learning-dependent changes in single neuron encoding properties in PL 

To determine whether and when individual PL neurons selectively encode features of 

PMA (tone, platform, freezing), we computed a receiver operating characteristic (ROC) curve for 

each neuron’s response to each feature (Figure 2A,B; Li et al., 2017; Kingsbury et al., 2019) 

during three epochs: baseline period of day 1 (tones 1-3), end of day 1 (tones 9-12), and end of 

day 2 (tones 9-12). In both shocked and non-shocked mice, we observed neurons that were 

tuned to each feature we examined, with both excited cells exhibiting increased activity and 

inhibited cells exhibiting decreased activity during features of interest (Figure 2C).  
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To determine to what extent PL activity changes across learning, we calculated the 

mean activity levels for all cells in each category and compared across days in shocked vs. non-

shocked control mice (Figure 2D). There were no significant differences in the amplitude of 

responses to tone onset or offset during either day of training for shocked or non-shocked mice 

(Figure 2D1). While we observed few differences in the cell activity during freezing onset, we 

observed a learning-dependent sharpening of freezing offset-related activity across days. In 

shocked mice, activity returned to baseline faster following freezing offset by the second day of 

PMA (Figure 2D2). While we observed no differences in activity during platform entries, we 

observed a large learning-dependent increase in activity during platform exits. On day 1 of PMA, 

in shocked mice, a subset of PL neurons (‘platform exit’ neurons) exhibited persistently elevated 

activity that lasted ~4 seconds following platform exits. In contrast, activity in the corresponding 

population of neurons in non-shocked mice rapidly decayed following platform exits (Figure 

2D3). By day 2, shocked mice had significant ramping activity that preceded platform exits and 

reached a significantly higher peak compared to day 1 and to non-shocked controls (Figure 

2D3). These data suggest that representations of spatial threat levels quickly emerge in the 

encoding properties of individual PL neurons during learning.  

We next investigated whether the proportion of neurons encoding different features of 

PMA may change across learning. In each stage of learning, the fraction of behaviorally 

modulated cells in PL was similar between groups. In shocked animals, we observed a modest 

increase from 32 to 39% significantly modulated PL neurons. Non-shocked mice were similar, 

also showing a modest increase from 34 to 36% modulated PL neurons across days (black and 

grey circles, Figure 2E). However, we observed a large learning-dependent increase in the 

proportion of PL neurons that exhibited mixed selectivity, encoding multiple behavioral relevant 

features including the tone, the safety platform, and freezing behavior. By day 2 of PMA training, 

PL neurons that exhibited mixed selectivity represented 51% of the significantly modulated PL 

cells in shocked mice (i.e., ~20% of the overall recorded neurons) but only 25% of the 
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significantly modulated PL neurons in non-shocked mice (~9% overall recorded cells) (Figure 

2E). Examining these mixed cells more closely, we determined that these differences were 

driven by cells tuned to both platform and freezing as well as cells responding to all three event 

types (Figure 2F). 

 

PMA drives enhanced modulation of tone and platform responses 

The increase in PL neurons exhibiting mixed-selectivity suggested to us that learning 

results in enhanced tuning of cells to threatening cues and the behavioral features of PMA. To 

test this, we quantified how strongly cells were modulated based on the intersection of 

avoidance actions and conditioned stimuli (Figure 3A,B). Cumulative frequency histograms of 

area under the ROC curve (auROC) values were constructed from responsive neurons for each 

animal and used to extract a measurement of overall modulation levels. These analyses include 

cells that significantly increased and decreased their activity – highly modulated cells exhibited 

larger increases or decreases in activity, respectively, during presentations of the tone. The 

modulation score is derived from the absolute value of the auROC, so neurons modulated in 

either direction will have a higher value. 

On day 1, neurons encoding platform entries and exits had significantly increased 

modulation during tone periods compared to inter-trial intervals (ITIs) (Figure 3C,D). But this 

effect was evident in both shocked and non-shocked mice, suggesting it was not a feature of 

learning. During tone periods on day 2, activity during platform entries (towards safety) and 

especially during platform exits (towards threat) was more strongly modulated in shocked 

animals compared to controls (Figure 3C,D). 

In a complementary set of analyses, we examined how strongly tone-evoked activity was 

modulated based on the animal’s location. We separated tone onset and offset responses 

based on whether the animal was on or off the platform during the event. Non-shocked mice did 

not exhibit location-dependent modulation of tone-onset activity on either day. Shocked mice 
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exhibited no spatial modulation of the tone onset responses on day 1. But a difference emerged 

on day 2 wherein tone onset responses were more highly modulated when the animal was off 

the platform when threat levels were high (Figure 3E). In shocked mice, tone offset responses 

were significantly enhanced when animals were off the platform, which corresponded to failed 

trials in which the animal received a foot shock (Figure 3F). 

 

Enhanced trial outcome decoding is facilitated by PMA modulated cells 

As mice learn to avoid the shock, the tone becomes both a predictor of shock and a 

signal to avoid. Recent work showed that in well-trained mice, PL activity immediately preceding 

the avoidance movement in a shuttle box could predict whether animals would successfully 

avoid the foot shock (Jercog et al., 2021). Thus, we wondered if neural activity during the tone 

could be used to predict the outcome of that trial in the early stages of learning and if so, which 

neurons contributed to the predictive power. To assess the encoding of activity patterns related 

to learning, we trained support vector machines (SVMs; Awad & Khanna, 2015) to decode the 

activity from neurons for each animal. We first assessed the performance when all recorded 

cells were used for decoding using the F1 score, which reports the harmonic mean of precision 

and recall. We found significant improvements in outcome decoding as the tone progressed in 

shocked animals and this effect was absent in control animals (Figure 4A). Decoding 

performance during the pre-shock period (23-28s after tone onset) and during the shock period 

(27-32s after tone onset) was significantly enhanced for shocked mice. 

We asked if behaviorally modulated cells identified by ROC analysis were major 

contributors to decoding performance. To assess the contribution of these cell groups, we 

repeated the decoding analysis again, using only cells that were significantly modulated by 

features of PMA in the ROC analyses (Figure 2). When we performed decoding using only 

these behaviorally modulated cells, we saw lower variance in decoder performance and more 

reliable differences between shocked and control groups (Figure 4B). Using the behaviorally 
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modulated subset of cells, the activity during the pre-shock period (23-28s after tone onset), the 

shock period (27-32s after tone onset), and the post-shock period (33-38s after tone onset) was 

significantly better able to decode the trial outcome compared to non-shocked controls (Figure 

4B). 

We also wondered if cells that were not behaviorally modulated would contribute less to 

decoding performance. We repeated the decoding a third time and only included the non-

modulated cells in the decoding. Though there were trend-level differences between shocked 

and control group performance, there were no significant differences during any of the periods 

examined (Figure 4C).  

 

Tone Onset Response is Enhanced in the Population Activity of Shocked Mice 

In PL, aspects of cues and behaviors can be distinctly encoded in the activity of 

individual neurons vs. in the larger population. We investigated how PL population codes evolve 

across learning and how changes in population activity relate to learning rates. To do so, we 

used a dimensionality reduction algorithm, calcium imaging linear dynamical system (CILDS, 

Koh et al., 2023), to extract latent variables of population activity across learning and examined 

their relationships with learning rates that we estimated using a Rescorla-Wagner model of PMA 

behavior. 

Using CILDS, we extracted 3 latent variables for each day of training and quantified the 

average framewise Euclidean distance for trial trajectories across time (Figure 5A,C). We 

hypothesized that patterns of activity would shift following salient behavioral events. We 

examined how population activity changed after the first foot shock of each session, after the 

first successful trial of each session, and after the trial that marked the beginning of a pattern of 

successful avoidance. To assess how much each event modified PL activity, we computed the 

distance between the population vector for the event trial and the previous trial (Vn-Vn-1) and 

compared it to the distance between the event trial and the subsequent trial (Vn-Vn+1). We 
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focused on activity during two key epochs: at the onset of the tone and in the pre-shock period 

(23-28s after tone onset) when we observed a significant increase in trial outcome decoding 

(Figure 4).  

On the first day of PMA training, we analyzed population activity aligned to the onset of 

the conditioned tone. We observed no significant changes in population vectors after foot 

shocks or at the onset of a reliable avoidance strategy (Figure 5B1,2). On the other hand, when 

trials were anchored to the first shock received on day 2, we saw a pattern emerge in which 

similar pre-event activity gave way to a shift in population activity on the following trial (Figure 

5B3). Tone-evoked population vectors in non-shocked control mice had no reliable differences at 

any point examined. This suggests that once an avoidance strategy is learned, but not before, 

experiencing a foot shock drives significant reorganization of cue-evoked population activity in 

PL. 

During the pre-shock epoch (23-28s after tone onset), we observed no shifts in 

population activity following the foot shocks on either day of PMA (Figure 5D1,3). However, once 

the animal adopted a consistent avoidance strategy, the trial-to-trial Euclidean distances in the 

same epoch were lower than in non-shocked mice (Figure 5D2). On Day 2, most mice had 

higher inter-trial Euclidean distances around the trial when they experienced a foot shock, which 

represented a deviation from their previously learned behavioral strategy. This suggests that in 

the seconds preceding the foot shock, a reliable pattern of PL population activity arises as a 

function of learning and is associated with a reliable pattern of threat avoidance behavior.  

 

Aspects of PL population activity during conditioned tones are correlated with individual 

learning rates 

Our CILDS-based analyses suggested that changes in population activity during specific 

epochs of the conditioned tone are associated with different aspects of learning. When animals 

had learned the predictive relationships between cues, shocks, and avoidance actions and then 
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experienced a foot shock, we observed significant changes in PL population activity at the onset 

of the cue. On the other hand, we observed the most stable patterns of PL population activity 

during the pre-shock epoch when mice established a reliable avoidance strategy on the first day 

of PMA. We hypothesized that learning-driven changes in population activity may relate to 

learning rates in individual mice.   

To investigate this, we developed a Rescorla-Wagner (RW) model (Rescorla & Wagner, 

1972) of mouse behavior during PMA (Figure 6A) and used it to estimate individual learning 

rates. After model fitting, we realized that PMA learning was better modeled by a 

complementary set of learning rates, which modeled improvements due to received foot shocks 

versus avoided foot shocks (Figure 6B). We then calculated the Euclidean distance between the 

PL population vectors in different epochs of the tone on averaged shock vs. successful trials 

(Figure 6C). We examined the correlations between these Euclidean distances and the learning 

rate extracted from the RW model for each mouse. The Euclidean distance between shocked 

vs. successful trials was positively correlated with learning rates for the tone onset and shock 

epochs but not for the pre-shock epoch (Figure 6D1–3). These patterns held true on both days of 

PMA for shocked mice and were absent in non-shocked mice. This suggests that the ability of 

PL population activity at cue onset to distinguish between successful vs. shock trials is a 

signature of learning that persists to support the learned behavioral strategy.  

 

DISCUSSION 

Learning to connect predictive cues with adaptive actions is critical for survival, 

especially when cues predict threats. Most research on aversive learning has focused on 

conditioned fear or threat avoidance in well-trained animals. These studies revealed that PL 

neurons encode threat-predictive cues and threat avoidance behaviors and that PL activity is 

required to actively avoid signaled threats (Giustino & Maren, 2015; Diehl et al., 2020; Jercog et 

al., 2021). But how the underlying neural computations emerge during associative 
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learning remains poorly understood. What are the first changes to emerge in PL as animals 

begin learning to avoid signaled threats? Which changes in PL activity are related to learning vs. 

the implementation of new behavioral strategies?  

Here we combined the PMA behavioral assay with miniscope recordings to identify the 

transformations in PL activity as animals learn to preemptively avoid signaled threats (Figure 1). 

We discovered distinct changes in PL single neuron and population activity patterns that 

emerged early in learning vs. later, once behavioral performance stabilized. We then uncovered 

how changes in PL population activity correspond to individual learning rates that we estimated 

using a Rescorla-Wagner model of PMA behavior.  

 

Models of learned threat avoidance behaviors 

Many previous studies of threat avoidance used two-way active avoidance, in which 

animals can avoid experiencing a signaled foot shock by shuttling to the opposite side of a 

chamber (Mowrer & Lamoreaux, 1946; Moscarello & LeDoux, 2013; Krypotos et al., 2015). 

While studies using this assay have revealed key neural mechanisms that drive cued threat 

avoidance behaviors, there is no consistently safe location in two-way active avoidance. In 

many versions of the assay, shuttling terminates the conditioned tone and the shock, though 

modifications to the task have been adapted to mitigate this issue (Bolles, Stokes, & Younger, 

1966; Smith et al., 2002; Carmona et al., 2014). The ability to terminate the threat-predicting cue 

enables an unrealistic level of control over the environment.  

Here we used PMA – in which there is a safe location and entering the safety platform 

does not terminate the conditioned tone or shock – to overcome some of these limitations and 

study threat avoidance under more naturalistic conditions. In PMA, mice rapidly learned the 

association between the tone and the shock, the location of the safety platform, and the 

association between conditioned cues and adaptive actions. They then improved their 

performance across 2 days of training (Figure 1). In PMA, mice can freely access the safety 
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platform during tones and ITIs, creating a unique opportunity to study how PL encodes the 

intersections of conditioned cues, safe locations, and threat-induced behaviors. 

 

Learning-induced changes in PL single neuron encoding properties    

Consistent with previous studies in well-trained animals (Giustino & Maren, 2015; Diehl 

et al., 2018; Jercog et al., 2021), we identified individual PL neurons that encoded the tone, the 

location of the safety platform, and freezing behavior events (Figure 2A,B). The overall 

proportion of significantly modulated neurons was similar in mice that learned PMA vs. non-

shocked controls, indicating that changes in the number of behaviorally modulated PL neurons 

is not required for learning to avoid threats. On the other hand, we observed learning-induced 

changes in how PL encoded the intersection of cues and actions. Early in learning, on Day 1, a 

subset of PL neurons displayed an emergent, persistent increase in activity as animals exited 

the safety platform (Figure 2D3). These changes were absent in non-shocked mice, suggesting 

that representations of the spatial locations of threat and safety are some of the first to emerge 

in PL neurons as animals learn PMA.  

We also found that learning increases the modulation of behavioral signals by 

conditioned cues. Our ROC analyses revealed a learning-dependent increase in the proportion 

of mixed selectivity PL neurons that encoded multiple features of PMA including the tone, the 

location of the platform, and freezing (Figure 2E,F). In line with this, as mice learned PMA, PL 

neurons encoding avoidance actions were increasingly modulated by the presence of 

conditioned cues and that tone-related activity was modulated by the location of the animal on 

or off the safety platform (Figure 3C-E). These changes were absent in non-shocked control 

mice, indicating that in PL, emergent modulation of the neural activity associated with avoidance 

behaviors by salient stimuli may be a key neural mechanism underlying the rapid linking of 

novel predictive cues with adaptive actions. As these changes did not emerge until the second 

day of PMA, these are likely a product of learning rather than a substrate for learning.  



98 

Learning-induced changes in PL population activity 

Recent studies have revealed that some neural mechanisms underlying the defensive 

behavior system and other cognitive processes operate beyond the scale of single neurons, 

using activity patterns only present in latent activity of populations of neurons (Herry & Jercog, 

2022; Sylte et al., 2024). In our data, the ability to decode the trial outcome from PL population 

activity during conditioned tones was already present on day 1. Consistent with previous studies 

(Jercog et al., 2021), we found that the activity at the onset of the conditioned tones was not an 

accurate predictor of trial outcome. Instead, activity immediately preceding the time of shock 

was a highly accurate predictor of trial outcome (Figure 4). Even though changes in individual 

neuron encoding properties largely emerged on day 2, decoding performance on day 1 was 

enhanced by using only the behaviorally modulated cells found by ROC analysis (Figures 2 and 

4). This suggests that PL population activity reflects learned associations between cues, 

outcomes, and avoidance behaviors before learning-related changes are evident in the 

encoding properties of individual neurons.   

Using dimensionality reduction, we identified latent variables that encode population-

level activity. Using the distance between trials in latent space, we observed activity patterns 

that aligned with learning-relevant events. When we studied activity during the tone onset 

epoch, we observed that foot shocks only elicited large shifts in the population activity of 

subsequent trials on day 2, after mice had learned the relationships between tones, shocks, and 

avoidance actions (Figure 5B). This shift in tone-evoked activity may therefore reflect updating 

of predictive relationships between cues, actions, and outcomes following an aversive outcome. 

During the pre-shock epoch, we did not observe rapid shifts in population activity driven by 

salient events. Instead, we observed a transient stabilization of activity during pre-shock epoch 

on day 1 that was associated with the emergence of a reliable avoidance strategy (Figure 5D).  

These findings indicate that PL population activity during different epochs has unique 

relationships to learning. Rapid shifts in population activity during the tone onset epoch may be 
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more associated with updating learned predictions after an aversive event. In contrast, PL 

activity during the pre-shock epochs may be more tightly tied to initial action-outcome learning. 

Consistent with this interpretation, studies in well trained mice also found epoch-specific 

functions of mPFC activity. For instance, inhibiting mPFC activity during the tone onset delayed 

avoidance while inhibition later in the tone decreased the probability of avoiding (Herry & 

Jercog, 2023).  

Using R-W models of mouse behavior, we found significant positive correlations 

between the learning rates of individual mice and the extent to which PL population activity in 

the tone onset epoch distinguished between avoidance vs shock trials on both days of training 

(Figure 6D1). This was somewhat surprising as we could not decode the trial outcome from PL 

population activity in the same epoch (Figure 4).  Nonetheless, our findings suggest that distinct 

patterns of cue-evoked PL population activity are associated with preemptive avoidance of 

predicted shocks. Further, during the pre-shock and shock periods, when decoding performance 

is high, we found only a significant positive correlation between the shock period of day 1 and 

learning rates (Figure 6D2-3). That we found few correlations during these periods where 

decoding performance is high is puzzling. This suggests that outcome-relevant activity during 

pre-shock and shock periods is relevant to learning, yet is not directly altered by it. During the 

tone onset, PL seems to encode associations between tones, shocks, and avoidance that are 

directly related to overall learning yet emerge before behavioral changes in learning. 

 

PL subcircuits underlying aversive learning 

While we recorded from the overall PL population, PL contains heterogenous neuronal 

classes with distinct connectivity and distinct functions (Gabbott et al., 2005; Collins et al., 2018; 

Anastasiades et al., 2019; Anastasiades & Carter, 2021). Previous studies have established that 

synchronization of firing patterns in mPFC and the basolateral amygdala (BLA) are associated 

with successful discrimination of threatening versus safe cues (Likhtik et al., 2014; Burgos-
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Robles, et al., 2017). Bottom-up projections from BLA to mPFC provide threat representations 

to this region, which mPFC is thought to link with the initiation of avoidance strategies (Jercog et 

al., 2021). Top-down projections from mPFC to BLA enhance avoidance responses during 

threatening cues (Diehl et al., 2020). Using fiber photometry, previous studies showed that PL-

BLA projection neurons exhibit learning-dependent increases in activity during conditioned 

tones and a small peak in activity that precedes avoidance actions and then rapidly declines 

(Kajs et al., 2022). Studies from our lab showed that in classes of PL neurons that project to 

contralateral PL or to the nucleus accumbens (NAc), the extent to which those neurons send 

collateral axons to BLA is positively correlated with the amplitude of the response to conditioned 

cues (Gongwer et al., 2023). Top down mPFC-BLA projection neurons exhibit preferential 

synaptic connectivity with bottom up BLA-mPFC neurons, forming reciprocal loops (Little & 

Carter, 2013; McGarry & Carter, 2017). Taken together with our studies, these data suggest that 

the learning-related evolution we observed in cue-evoked activity may represent an activity 

pattern that integrates bottom-up tone-shock representations from the amygdala with top-down 

signals in PL-BLA projection neurons that promote avoidance actions.  

PL neurons that project to other brain regions have also been implicated in learning 

active avoidance strategies and may be important contributors to PL encoding patterns that we 

observed. One major target is the NAc, which is implicated in bidirectional control of PMA (Diehl 

et al., 2020). Activation of PL-NAc projections increases reward seeking behavior and reduces 

threat avoidance behavior during PMA (Diehl et al., 2020). But these projections contain 

functionally heterogeneous subpopulations. For instance, PL-NAc projection neurons that are 

active during aversive stimuli can suppress reward seeking in threatening situations (Kim et al., 

2017). PL projections to contralateral PL (cPL) encode representations of threatening cues and 

threat avoidance behaviors, and projections to the ventral tegmental area (VTA) encode 

aversive stimuli as well as learned (but not innate) avoidance actions (Gongwer et al., 2023). 

mPFC projections to the dorsomedial striatum have learning-related increases in activity during 
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conditioned cues and avoidance actions during two-way active avoidance (Kajs et al, 2022). 

These studies suggest potential contributions of each of these projection types to PMA. PL-NAc 

neurons could contribute to modulation we observed during platform exits on day 2, either 

promoting risky exploration during the tone or reporting the impending danger indicated by the 

tone while off the safety platform (Figure 3D). PL-cPL projections may help synchronize PL 

activity across hemispheres or facilitate lateralized learning functions. Projections to the VTA 

could support activation of the DA system in response to aversive shocks and the tones that 

predict them. PL projections to dorsomedial striatum may facilitate activation of motor programs 

that lead to successful threat avoidance and could be contributing to enhanced modulation seen 

during platform entries that occur during the tone.  

While previous studies used optogenetics and fiber photometry to identify unique 

functions of projection-defined PL populations, there is extensive heterogeneity within PL 

neurons that project to a given target (Gao et al., 2022). The question of which projection types 

are important to learning is complicated by the extensive collateralization of PL projections, with 

individual PL neurons projecting to distinct but overlapping subsets of 5–10 target regions. 

Future research should use miniscopes to record from projection-defined populations to better 

align functional and anatomical heterogeneity during aversive learning. 

 

Potential mechanisms that drive learning 

Dopamine (DA) is a neuromodulator that is strongly implicated in learning processes 

(Puig et al., 2014). Though DA has been well studied in the context of reward learning (Wise, 

2004; Schultz, 2016), recent attention has been given to its role in aversive processing (Vander 

Weele et al., 2019). In fear conditioning, reductions in DA are associated with impaired fear 

learning (Fadok et al., 2009). Manipulation of DA neuron firing was sufficient to disrupt aversive 

learning (Zweifel et al, 2011). The main source of DA in cortical regions comes from afferent 

neurons located in the VTA, though other sources have been identified (Devoto et al., 2020). 
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Distinct circuits in the VTA are used for rewarding versus aversive processing, with neurons that 

project to mPFC more heavily associated with aversive processing (Lammel et al., 2011, 2012). 

DA may therefore be a critical substrate for aversive learning during PMA. 

While DA release in mPFC has been linked to experience of rewarding, novel, and 

aversive stimuli (Bassareo et al., 2002), prefrontal DA appears to be distinctly sensitive to 

aversive stimuli and is important for maintenance of aversive memories (Abercrombie et al., 

1989, Mantz et al., 1989; Lammel et al., 2011; Gonzalez et al., 2014). However, what 

contribution mPFC DA makes to aversive learning remains unclear. DA release has been found 

to enhance representations of aversive stimuli in mPFC-PAG projection neurons by altering the 

signal-to-noise in mPFC population activity (Vander Weele et al., 2018). Given mPFC DA can 

be released to both rewarding and aversive events, DA may preferentially target aversion-

relevant projection neurons in PL and drive plasticity to enhance adaptive behavioral responses. 

Based on the sensitivity of mPFC DA to aversive events, we expect PL DA release is enhanced 

during foot shock delivery and may also be released during conditioned tones that predict 

shock. DA release may facilitate plasticity within mPFC subcircuits that enables the emergence 

of the activity states we observed that effectively link aversive cues to avoidance actions 

(Figures 3–6). 

Responses to DA are mediated by 2 broad classes of receptors, D1-like (D1, D5) and 

D2-like (D2, D3, D4). In the prefrontal cortex, D1 receptors (D1Rs) are more frequently 

expressed than D2 receptors (D2Rs) in interneurons while pyramidal neurons can express 

either D1 or D2Rs (Santana et al., 2009). Within pyramidal neurons, D1Rs are primarily 

expressed in intratelencephalic (IT) mPFC neurons that project to the contralateral cortex, 

claustrum, striatum, and BLA with low expression in corticothalamic or pyramidal tract neurons 

(Anastasiades et al., 2019). Other studies have revealed potential links between anatomical 

projections and DA receptor subtypes. For instance, D4 receptor signaling in mPFC neurons 

that receive direct input from the BLA is critical for fear learning (Laviolette et al., 2005).  
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Overall, our findings and those from previous studies suggest that some signatures of 

learning we observed in PL are likely mediated by IT neurons, especially those involved in 

reciprocal communication with the amygdala. Furthermore, DA activity may drive mPFC circuit 

plasticity necessary to link predictive cues with avoidance actions. Future studies can examine 

the contributions of these anatomically and genetically defined cell populations and 

neuromodulatory signaling to the learning-related changes in PL activity patterns we describe 

here. 

 

Altered mPFC activity and the balance of approach-avoidance in psychiatric disorders 

We revealed how the relationships between cues, aversive outcomes, and the actions 

necessary to avoid them are encoded within patterns of mPFC activity, and how these patterns 

emerge with learning. Our study builds an important foundation for understanding how altered 

patterns of mPFC activity may give rise to maladaptive learning as well as understanding how 

current treatments for mental health disorders may influence mPFC activity. Thriving in a 

complex environment requires that individuals precisely balance avoiding threats with seeking 

beneficial outcomes. Disruptions in this balance are a feature of numerous psychiatric disorders. 

mPFC dysfunction is linked to anxiety and depression, which are characterized by excessive or 

inappropriate threat avoidance (Papaleo et al., 2012; Clauss et al., 2016; Wang et al, 2021; 

Mack et al., 2022). Dysfunction accompanying these disorders is frequently characterized by 

reductions in mPFC gray matter volume and hypoactivity during emotional processing (Ball et 

al., 2012; Zhao et al., 2014; Mochcovitch et al. 2014; Bittar & Labonté, 2021). 

Elevated avoidance behaviors are also common in other disorders associated with 

mPFC dysfunction, such as schizophrenia and autism spectrum disorder (de la Asuncion, et al., 

2015; Montaser et al., 2023). In contrast, bipolar and substance use disorders are associated 

with excessive reward seeking and risk-taking behaviors (Ball et al., 1994; Alloy et al., 2008; 

Chandler et al., 2009; Preuss et al., 2021). These disorders are also associated with changes in 
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mPFC: In addiction, mPFC activation is associated with cocaine craving and heroin relapse 

(Maas et al., 1998; Bossert et al., 2011). In bipolar patients, mPFC hypofunction was associated 

with global deficits in emotional cognition (Kjærstad et al., 2024). 

Though avoidance studies often focus on encoding of danger, encoding of safety is also 

highly relevant to psychiatric disease. For instance, behaviors promoting safety can complicate 

treatment for anxiety and are often discouraged when they prevent interaction with threatening 

stimuli (Blakey & Abramowitz, 2016; Goetz et al., 2016). Here we find that representations of 

safe vs. threatening locations are some of the first to emerge during aversive learning. 

Understanding how mPFC representations of aversive cues, avoidance actions and safe 

locations emerge during learning can inform how imbalance in approach-avoidance conflicts 

arises in mPFC and how excessive safety seeking may influence the development and 

treatment of multiple psychiatric disorders. 
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Figure 1: Experimental Design & PMA Behavior 
A. Experimental timeline for miniscope surgeries and platform-mediated avoidance. 
B. Design for PMA assay. Mice were presented with 3 baseline (no shock) tones and 9 tone-shock 

pairings on Day 1. On Day 2, all 12 tones are paired with footshocks. 
C. Example maps of animal trajectory during training days 1 (left) and 2 (right). Trajectories (Shock: red; 

NonShock: gray) show each animal’s location during tone periods for all trials across each session. 
Black triangles show the location of animal freezing. 

D. Example frame from PMA showing custom DeepLabCut-based pose estimation of 8 points on a 
mouse wearing UCLA miniscope. Points tracked: nose, ears, mid-back, legs/hips, tailbase, and mid-
tail. 

(E-G) Line plots of behavior from PMA training Day 1 (left) and Day 2 (right) across Shock and NonShock 
groups for each tone block. Error bars show SEM. (Day 1: Shk: N=11, NS: N=9; Day 2: Shk: N=8, 
NS: N=8). 



106 

E. Successful trials (animal on platform during last 2s of tone). Day 1: Ftime(1.883, 33.90)=8.814, 
P=0.0010; Fgroup(1, 18)=7.372, P=0.0142. Day 2: Ftime(2.311, 34.67)=0.7388, P=0.5034; Fgroup(1 
,15)=29.41, P<0.0001. 

F. Fraction of time spent on platform during each tone block. Day 1: Ftime(2.473, 44.51)=14.07, 
P<0.0001; Fgroup1, 18)=2.429, P=0.1365. Day 2: Ftime(2.375, 35.62)=0.6540, P=0.5514; Fgroup(1, 
15)=35.87, P<0.0001. 

G. Overall freezing during each tone block. Day 1: Ftime(2.346, 42.22)=15.02, P<0.0001; Fgroup(1, 
18)=0.02244, P=0.8826. Day 2: Ftime(2.174, 32.60)=0.5929, P=0.5720; Fgroup(1, 15)=13.98, P=0.0020. 

H. (Upper left) Miniscope experiment diagram showing virus and imaging targeting mPFC. (Right) 
Example image showing cell bodies, GCaMP7f expression, and GRIN lens placement. Approximate 
region boundaries show site of recording (scale bar: 500um). (Bottom left) Magnified recording region 
showing DAPI and GCaMP stained cell bodies (scale bar: 100um). 

I. (Top) Maximum intensity projection of example miniscope window showing recorded neurons. 
(Bottom) Plot of extracted cell spatial footprints from the same miniscope window. 

J. Example neural traces recorded from mPFC. Signal for each neuron is displayed in ΔF/Fo. Full traces 
show 10 minutes of recording. 
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Figure 1S: Latency to Enter Platform Across Training 
Line plots of latency to enter platform during Day 1 (left) and Day 2 (right) across Shock and NonShock 
groups. Day 1: Ftime(2.674, 48.12)=3.567, P=0.0247; Fgroup(1, 18)=0.7463, P=0.3990. Day 2: Ftime(2.574, 
38.61)=0.2622, P=0.8230; Fgroup(1, 15)=19.25, P=0.0005. Error bars show SEM. (Shock: N=11, NS: N=9).  
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Figure 2: mPFC Modulation to PMA across Learning 
A. Examples of excited (blue), suppressed (red), and neutral (gray) cells determined by ROC analysis 

for platform, tone, and freezing events. 
B. Example traces from cells identified by ROC overlaid with behavior labels. Data are presented in 

ΔF/Fo. Full traces show 3 min of recording. 
C. Groups of modulated cells for tone, freezing, and platform event transitions separated by excited or 

inhibited response type. Heatmaps show responsive cells pooled across shock animals and are 
normalized to the period before each event. All heatmaps range from -10 to +10 z-scores.  

D. Mean responses of modulated cells. Line plots show mean response to each feature pooled across 
groups and separated by response type (excited or inhibited). Each set of plots have y-axis limits 
labeled by min/max z-score. Error bars show SEM. Asterisks indicate significant difference in AUC by 
t-test. (*P=0.05, **P<0.01, ***P<0.001, ****P<0.0001). 

E. Overall modulation responses for Shock and NonShock animals across PMA days 1 and 2. 
Black/gray pie charts show percent of recorded cells that were active at each time point. Multi-colored 
pie charts show modulated responses for tone, platform, and freezing cells. Time periods: BL (day 1, 
tones 1-3); D1 (day 1, tones 9-12); and D2 (day 2, tones 9-12). Cells analyzed: Shock (BL/D1: 1394, 
D2: 1031); NonShock (BL/D1: 847, D2: 967). 

F. Breakdown of responses for mixed response cells. Bars show the behavior composition of mixed 
cells shown in E. 
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Figure 3: Enhanced mPFC Modulation During Tone and Platform Activity 
A. Depiction of platform entries during tone and inter-tone intervals. 
B. Depiction of platform exits during tone and inter-tone intervals. 
(C-F) Cumulative frequency histograms of modulated cells identified by ROC analysis. Top plots depict 

mean group histogram with shaded SEM error. Bottom plots show quantification of modulation score 
and associated results from 2-way ANOVA. Multiple comparisons were corrected with Fisher’s LSD. 
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C. Analysis of platform entries during tone or inter-trial interval (ITI) periods. D1: Fshock(1,24)=1.534, 
P=0.2274; Ftone(1,24)=45.23, P<0.0001; Finteraction(1,24)=2.339, P=0.1392; D2: Fshock(1,22)=5.355, 
P=0.0304; Ftone(1,22)=35.87, P<0.0001; Finteraction(1,22)=0.7200, P=0.4053. (Day 1: Shk: N=9; NS: 
N=7; Day 2: Shk: N=7, NS: N=7). 

D. Analysis of platform exits during tone or ITI periods. D1: Fshock(1,24)=0.05099, P=0.8233; 
Ftone(1,24)=78.37, P<0.0001; Finteraction(1,24)=0.2518, P=0.6204; D2: Fshock(1,20)=10.27, P=0.0044; 
Ftone(1,20)=72.03, P<0.0001; Finteraction(1,20)=8.404, P=0.0089. (Day 1: Shk: N=9; NS: N=7; Day 2: 
Shk: N=6, NS: N=7). 

E. Analysis of tone onset responses while on/off the platform. D1: Fshock(1,24)=1.538, P=0.2269; 
Fplatform(1,24)=0.1350, P=0.7165; Finteraction(1,24)=1.566, P=0.2228; D2: Fshock(1,18)=0.08758, 
P=0.7707; Fplatform(1,18)=0.9529, P=3419; Finteraction(1,18)=6.751, P=0.0182. (Day 1: Shk: N=8; NS: 
N=7; Day 2: Shk: N=7, NS: N=7). 

F. Analysis of tone offset responses while on/off the platform. D1: Fshock(1,25)=0.2890, P=0.5956; 
Fplatform(1,25)=0.08148, P=0.7777; Finteraction(1,25)=12.93, P=0.0014; D2: Fshock(1,13)=0.6236, 
P=0.4439; Fplatform(1,13)=6.513, P=0.0241; Finteraction(1,13)=13.98, P=0.0025. (Day 1: Shk: N=9; NS: 
N=7; Day 2: Shk: N=5, NS: N=6). 
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Figure 4: Population Decoding 
A. (Left) Average performance for decoding of trial outcome analyzed per animal. Line plot shows the 

change in average decoding performance across the tone for Shock and NonShock animals with 
shaded SEM error bars. (Right) Performance for various tone periods and associated p-values from 



112 

2-way ANOVA. Fperiod(2.313, 27.76)=1.302, P=0.2908; Fgroup(1, 12)=16.99, P=0.0014; Fsubject(12, 
36)=5.075, P<0.0001. (Shk: N=7, NS: N=7). 

B. Repeated decoding analysis using only cells identified by ROC as behaviorally-modulated (platform, 
tone, or freezing) during that session. Fperiod(2.278, 27.33)=2.179, P=0.1267; Fgroup(1, 12)=20.46, 
P=0.0007; Fsubject(12, 36)=11.21, P<0.0001; Fperiod x group(3, 36)=4.440, P=0.0094. 

C. Repeated decoding analysis using only cells identified by ROC as non-responsive to behavioral 
features. Fperiod(1.913, 22.95)=0.9164, P=0.4101; Fgroup(1, 12)=5.988, P=0.0308; Fsubject(12, 
36)=12.14, P<0.0001. 
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Figure 5: CILDS Population Analysis 
A. Example trajectories of tone onset population response from trials before, during, and after the first 

shock received of days 1 and 2. Colored circle indicates the start of the trial. Arrow markers show the 
end of each trial. Each trajectory spans 5s. 

B. Trial-by-trial latent distance measurements anchored to first shock received on days 1 and 2. 
B1) Day 1, 1st Shock: Ftime(1, 9)=1.766, P=0.2166; Fgroup(1, 9)=2.858, P=0.1252; Fsubject(9, 9)=3.827, 
P=0.0292. (Shk: N=6, NS: N=5). 
B2) Day 1, Persistent Avoid: Ftime(1, 9)=1.260, P=0.2907; Fgroup(1, 9)=0.4188, P=0.5337; Fsubject(9, 
9)=8.325, P=0.0021. (Shk: N=6, NS: N=5). 
B3) Day 2, 1st Shock: Ftime(1, 9)=10.35, P=0.0105; Fgroup(1, 9)=10.73, P=0.0096; Fsubject(9, 9)=1.774, 
P=0.2029. (Shk: N=6, NS: N=5). 

C. Example trajectories of tone onset population response from trials before, during, and after a pattern 
of avoidance emerged on days 1 and 2. Colored circle indicates the start of the trial. Arrow markers 
show the end of each trial. Each trajectory spans 5s. 

D. Trial-by-trial latent distance measurements anchored to trial of persistent avoidance (no further 
shocks received that day). 
D1) Day 1, 1st Shock: Ftime(1, 10)=0.001046, P=0.9748; Fgroup(1, 10)=0.3049, P=0.5930; Fsubject(10, 
10)=2.618, P=0.0725. (Shk: N=7, NS: N=5). 
D2) Day 1, Persistent Avoid: Ftime(1, 10)=0.9987, P=0.3412; Fgroup(1, 10)=4.661, P=0.0562; Fsubject(10, 
10)=6.700, P=0.0030. (Shk: N=7, NS: N=5). 
D3) Day 2, 1st Shock: Ftime(1, 9)=1.706e-5, P=0.9968; Fgroup(1, 9)=0.6565, P=0.4387; Fsubject(9, 
9)=7.034, P=0.0039. (Shk: N=5, NS: N=6). 
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Figure 6: PMA Learning Rate Correlates with PL Population Responses 
A. Schematic of Rescorla-Wagner model of PMA learning. 
B. Line plot of observed behavior (red) and predictions from shock-based model (yellow), avoid-based 

model (blue), and hybrid model (black) during all trials across both days of learning for shocked 
animals. Error bars show SEM. N=9. 

C. Example 3D trajectories of average shock (red) and average avoid (blue) responses to tone onset 
(left), pre-shock (center), and shock (right) periods across days in latent space. 

D. Plots showing correlation between model learning rate and Euclidean distance between trial-
averaged CILDS latent variable during tone onset, pre-shock, and shock periods for days 1 and 2 for 
shock and nonshock animals. R values and corresponding P values are reported on each plot. (Day 
1, Shk: N=7, NS: N=6; Day 2: Shk: N=6, NS: N=6). 
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Data Table 1. Expanded ANOVA Results.  

Figure 1 Day Ftrial DFn, DFd p-value Fgroup
DFn,
DFd

p-value Finteraction
DFn,
DFd

p-value

1E: Success ful Trials 1 8.814 1.883 , 33.90 0.0010 7.372 1, 18 0.0142 2.173 3, 54 0.1019

2 0.7388 2.311 , 34.67 0.5034 29.41 1, 15 <0.0001 1.798 3, 45 0.1611

1F: Time on Platform 1 14.07 2.473 , 44.51 <0.0001 2.429 1, 18 0.1365 1.089 3, 54 0.3617

2 0.654 2.375 , 35.62 0.5514 35.87 1, 15 <0.0001 1.970 3, 45 0.1320

1G: O verall Freez ing 1 15.02 2.346 , 42.22 <0.0001 0.02244 1, 18 0.8826 1.960 3, 54 0.1309

2 0.5929 2.174 , 32.60 0.5720 13.98 1, 15 0.0020 1.000 3, 45 0.4014

S1: Latency 1 3.567 2.674 , 48.12 0.0247 0.7463 1, 18 0.399 1.320 3, 54 0.2773

2 0.2622 2.574 , 38.61 0.8230 19.25 1, 15 0.0005 2.503 3, 45 0.0713

Figure 3 Day Ftone/platform DFn, DFd p-value Fgroup
DFn,
DFd

p-value Finteraction
DFn,
DFd

p-value

3C: Platform Entries 1 45.23 1, 24 <0.0001 1.534 1, 24 0.2274 2.339 1, 24 0.1392

2 35.87 1, 22 <0.0001 5.355 1, 22 0.0304 0.7200 1, 22 0.4053

3D: Platform Exits 1 78.37 1, 24 <0.0001 0.05099 1, 24 0.8233 0.2518 1, 24 0.6204

2 72.03 1, 20 <0.0001 10.27 1, 20 0.0044 8.404 1, 20 0.0089

3E: Tone  Onset 1 0.1350 1, 24 0.7165 1.538 1, 24 0.2269 1.566 1, 24 0.2228

2 0.9529 1, 18 0.3419 0.08758 1, 18 0.7707 6.751 1, 18 0.0182

3F: Tone  Offset 1 0.08148 1, 25 0.7777 0.2890 1, 25 0.5956 12.93 1, 25 0.0014

2 6.513 1, 13 0.0241 0.6236 1, 13 0.4439 13.98 1, 13 0.0025

Figure 4 Day Fperiod DFn, DFd p-value Fgroup
DFn,
DFd

p-value Finteraction
DFn,
DFd

p-value

4A: All Cells 1 1.302 2.313 , 27.76 0.2908 16.99 1, 12 0.0014 1.375 3, 36 0.2660

4B: BM Cells 1 2.179 2.278 , 27.33 0.1267 20.46 1, 12 0.0007 4.440 3, 36 0.0094

4C: Non Modu lated Cells 1 0.9164 1.913 , 22.95 0.4101 5.988 1, 12 0.0308 0.6529 3, 36 0.5864

Figure 5 Day Fperiod DFn, DFd p-value Fgroup
DFn,
DFd

p-value Finteraction
DFn,
DFd

p-value

5B 1: Tone  Onse t, 1st Shock 1 1.766 1, 9 0.2166 2.858 1, 9 0.1252 0.7370 1, 9 0.4129

5B 2: Tone  Onse t, Per Avoid 1 1.260 1, 9 0.2907 0.4188 1, 9 0.5337 0.7176 1, 9 0.4189

5B 3: Tone  Onse t, 1st Shock 2 10.35 1, 9 0.0105 10.73 1, 9 0.0096 1.451 1, 9 0.2590

5C 1: Pre-shock , 1st Shock 1 0.001046 1, 10 0.9748 0.3049 1, 10 0.5930 0.3306 1, 10 0.5780

5C 2: Pre-shock , Per Avoid 1 0.9987 1, 10 0.3412 4.661 1, 10 0.0562 1.265 1, 10 0.2870

5C 3: Pre-shock , 1st Shock 2 1.706e -5 1, 9 0.9968 0.6565 1, 9 0.4387 2.808 1, 9 0.1281

Figure 7 Day Ftrial block DFn, DFd p-value Fgroup
DFn,
DFd

p-value Finteraction
DFn,
DFd

p-value

7A: Preshock 1 1.157 1.937 , 27.12 0.3279 5.031 1, 14 0.0416 0.8794 3, 42 0.4595

7B: Preshock 2 0.7300 3, 36 0.5409 0.3317 1, 12 0.5753 0.6181 3, 36 0.6078

Data Table 1. Expanded ANOVA Results.

Two-way repea ted measu res ANOVA  with Geisser-Greenhouse  correction and  pos t hoc  Šídák 's multiple comparisons  test

Ordinary two-way ANOVA  and  Fishe rs LSD

Two-way repea ted measu res ANOVA  with Geisser-Greenhouse  correction and  pos t hoc  Šídák 's multiple comparisons  test
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METHODS 

Animals 

Female and male C57B1/6 J mice (JAX Stock No. 000664) aged 10–16 weeks were group 

housed (2–5 per cage) and kept on a 12 hr light cycle. After GRIN lens implantation, all animals 

were single housed until the end of behavioral testing. Following the baseplate surgery, all 

animals were handled daily and habituated to the weight and feel of wearing the miniscope for 

10 days. All animal procedures followed animal care guidelines approved by the University of 

California, Los Angeles Chancellor’s Animal Research Committee. 

 

Behavior video recordings 

Behavioral videos were acquired at 30fps using a ELP 2.8–12 mm Lens Varifocal Mini Box 1.3 

megapixel USB Camera. 

 

Platform-mediated avoidance 

For all PMA sessions, a conditioning chamber was used consisting of an 18cm x 18cm x 30 cm 

cage with a grid floor wired to a scrambled shock generator (Lafayette Instruments) surrounded 

by a custom-built acoustic chamber. The chamber was scented with 50% Windex. One corner 

was covered with a thin acrylic platform (3.5in x 4in x 0.5in), amounting to 25% of the chamber 

floor. During the first day of training, mice were presented with three baseline 30s 4 kHz tones 

(CS), followed by nine presentations of the CS that co-terminated with a 2s footshock (0.14mA). 

The following day, mice were presented with twelve CS that coterminated with a shock. For the 

remaining 3 sessions, mice were presented with nine CS in the absence of shock. During the no 

platform session (day 4), the acrylic platform was removed. 
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Viruses 

AAV1-syn-jGCaMP7f.WPRE (ItemID: 104488-AAV1) was purchased from Addgene and diluted 

to a working titer of 8.5x1012 GC/ml. 

 

Miniscope surgery and baseplating 

For miniscope recordings, all mice underwent two stereotaxic surgeries (Cai et al., 2016). First, 

adult WT mice were anesthetized with isoflurane and secured to a stereotaxic frame (Kopf, 

963). Mice were placed on a heating blanket and artificial tears kept their eyes moist throughout 

the surgery. After exposing the skull, a burr hole was drilled above PL in the left hemisphere 

(+1.85, –0.4, –2.1 mm from bregma). A Hamilton syringe containing AAV1-Syn-jGCaMP7f-

WPRE was lowered into the burr hole and 600 nL of AAV was pressure injected using a 

microinjector (WPI, UMP3T-1). The syringe was left in place for 10 min to ensure the AAV did 

not spill out of the target region and then the skin was sutured. After recovery, animals were 

housed in a regular 12 hr light/dark cycle with food and water ad libitum. Carprofen (5 mg/kg) 

was administered both during surgery and for 2 days after surgery together with amoxicillin 

(0.25 mg/mL) for 7 days after surgery. One week later, mice underwent a GRIN lens 

implantation surgery. After anesthetizing the animals with isoflurane (1–3%) and securing them 

to the stereotaxic frame, a 1mm craniotomy was made above the virus site, and the cortical 

tissue above the targeted implant site was carefully aspirated using 27-gauge and 30-gauge 

blunt needles. Buffered ACSF was constantly applied throughout the aspiration to prevent tissue 

desiccation. The aspiration ceased after full termination of bleeding, at which point a GRIN lens 

(1 mm diameter, 4 mm length, Inscopix 1050–002176) was stereotaxically lowered to the 

targeted implant site (–2.0 mm dorsoventral from skull surface relative to bregma). 

Cyanoacrylate glue was used to affix the lens to the skull. Then, dental cement sealed and 

covered the exposed skull, and Kwik-Sil covered the exposed GRIN lens. Carprofen (5 mg/kg) 

https://elifesciences.org/articles/74314#bib10
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and dexamethasone (0.2 mg/kg) were administered during surgery and for 7 days after surgery 

together with amoxicillin (0.25 mg/mL) in the drinking water. Two weeks after implantation, 

animals were anesthetized again with isoflurane (1–3%), and a miniscope attached to an 

aluminum baseplate was placed on top of the GRIN lens. After searching the field of view for in-

focus cells, the baseplate was cemented into place, and the miniscope was detached from the 

baseplate. A plastic cap was locked into the baseplate to protect the implant from debris and 

allow the baseplate to set. 

 

Miniscope recordings 

Mice were handled and habituated to the weight of the microscope for 10 days before 

behavioral acquisition. On the recording day, a V4 miniscope was secured to the baseplate with 

a set screw and the mice were allowed to acclimate in their home cage for 5 min. Imaging 

through the miniscope took place throughout the entire PMA training (~30 min) and retrieval 

(~18 min) sessions on following days. Behavior was simultaneously recorded using miniscope 

recording software to synchronize the data streams (https://github.com/Aharoni-Lab/Miniscope-

DAQ-QT-Software). 

 

Miniscope data processing 

Frames in which animals were freezing and/or on the safety platform were determined using 

BehaviorDEPOT. Cell footprints and Ca2+ fluorescence timeseries were extracted from 

miniscope recordings using Minian (https://github.com/denisecailab/minian). We identified 1394 

neurons across 9 mice in Shock animals and 847 neurons across 7 mice in NonShock animals. 

Custom MATLAB software was used to align data from the behavior camera and the miniscope 

camera.  

 

 

https://github.com/Aharoni-Lab/Miniscope-DAQ-QT-Software
https://github.com/Aharoni-Lab/Miniscope-DAQ-QT-Software
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ROC Analysis 

To identify neurons that were active during freezing or when the animal was on the safety 

platform, we plotted receiver operating characteristic curves (ROC) for individual neurons and 

measured the area under the curve (AUC). ROCs plot the true positive rate (true positive/(true 

positive +false negative)) against the false positive rate (false positive/(false positive +true 

negative)) over a range of probability thresholds. Neurons with high AUC values therefore 

predict the behavioral variable of interest with a high true positive rate and low false positive 

rates over a large range of thresholds. To determine if a neuron significantly encoded a 

particular behavioral event, we generated a null distribution of AUCs by circularly shuffling event 

timing and recalculating the AUC over 1000 permutations. Neurons were considered 

significantly activated during a behavior if their AUC was greater than 97.5% of AUCs in the null 

distributions and significantly suppressed if their AUC value was in the lowest 2.5% of all AUCs 

in the null distribution. 

 

Frequency Distributions of auROC Values 

To identify differences in response modulation to intersections of tone and platform activity, Per 

animal, auROC values for all cells responding to a particular feature were collected and 

inhibited values (AUC=0-0.5) were converted into a fixed range using the formula: 1-AUC. 

These auROC values were then used to construct cumulative frequency histograms for each 

analysis. To measure modulation strength, we derived a modulation score from the AUC of 

each frequency histogram using the formula: Modulation Score = 1 – AUC.  

 

Decoding Analysis 

To determine how well the PL activity predicts avoidance in response to shock, we employed a 

radial basis function-kernel support vector machine (SVM) classifiers (Chang and Lin, 2002). 

We used the outcome of each trial successful avoidance (1) or no avoidance behavior (0) as 
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labels, excluding the first three trials on day one due to the absence of shock. We utilized the 

pattern of activity of the units in each trial as features. The activity of single units in each trial 

was binned in 0.2 seconds windows. To ascertain whether the activity from the PL cortex 

predicts avoidance behavior better before, during, or after the shock, we trained SVM and 

tested it in a free trial to predict the avoidance label using leave-one-trial-out cross-validation, 

with each time bin window stepping by 0.2 seconds. To maximize the decoder performance, we 

optimized the SVM parameters (C, γ) via grid search using five fold cross-validation for each 

time bin and each animal. We averaged the SVM performance over four epochs per mouse to 

compare the decoding performance between epochs and between groups (Shock, Non-shock): 

"Cue-onset" (0 - 5 s), "Pre-shock" (22 - 27 s), "Shock" (28 - 33 s), and "Post-shock" (34 - 38 s). 

SVM performance was calculated for each bin using the F1 score [F1 = 2(precision × recall) / 

(precision + recall)], where precision is calculated as the ratio of True positives to the sum of 

False positives and True positives; and recall is calculated as the ratio of True positives to the 

sum of False negatives and True positives. 

 

Dimensionality Reduction of Recorded Neural Data 

We used a dimensionality reduction pipeline for calcium imaging data, CILDS 

(https://github.com/kohth/cilds), to extract 3 latent variables from each session that were trained 

using neural data during 5s windows of the tone. Extracted latent variables were averaged by 

trial outcome or aligned trial-by-trial. Distance was assessed using the mean framewise 

Euclidean distance between each point in a set of compared trajectories for each animal. 

 

Rescorla-Wagner Modeling 

To correlate neural dynamics during PMA to mechanistic changes in subjects’ behavior across 

learning, a Rescorla-Wagner learning model was fit to the proportion of trial time spent on the 

platform for each mouse across trials. The proportion of total trial time spent on the safety 
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platform during conditioned tones was modeled using a Rescorla-Wagner model (Rescorla & 

Wagner, 1972). We seeded the model with the proportion amount of baseline time animals 

spent on the platform prior to shock. Because mice in this task experience from a mixture of 

punishment (shock trials) and negative reinforcement (successful escapes to the platform), we 

used a version of model with two complimentary learning rates, αfailure, which weights the rate of 

change in the platform value following an unsuccessful trial, and αsuccess, which weights the rate of 

change in the platform value following a successful avoid. It is assumed that the subjects’ 

behavioral expression of platform value is the proportion of trial time spent on the platform. 

Models were fit to individual subject data in Python using maximum likelihood estimation. The 

trial-by-trial change in the value of the platform was calculated as: 

Δvₜ = { 
           αsuccess * (Rₜ - vₜ)  if trial outcome was a success, 
           αfailure  * (Rₜ - vₜ)  if trial outcome was a failure 
} 
Where: 
-          αsuccess = 1 - αfailure 
-          Δvₜ is the change in associative strength of the platform at trial t 
-          α is the learning rate (free parameter) 
-          Rₜ is the outcome at trial t 
-          vₜ is associative strength at time t (initially the baseline probability of being on platform) 
 
This is fit by minimizing a loss function MSE = (1 / N) * Σᵢ (vᵢ - dataᵢ)², where: 
-          MSE is the mean squared error 
-          N is the # of data points 
-          vᵢ is the model’s predicted value at trial i 
-          dataᵢ is the observed data at trial i. 
 

Histology 

Mice were transcardially perfused with phosphate-buffered saline (PBS) followed by 4% 

paraformaldehyde (PFA) in PBS. Brains were dissected, post-fixed in 4% PFA for 12–24 hr and 

placed in 30% sucrose for 24–48 hr. They were then embedded in Optimum Cutting 

Temperature (OCT, Tissue Tek) and stored at –80 °C until sectioning. 60 µm floating sections 

were collected into PBS. Sections were washed 3x10 min in PBS and then blocked in 0.3% 

PBST containing 10% normal donkey serum (Jackson Immunoresearch, 17-000-121) for 2 hr. 
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Sections were then stained with chicken anti-GFP primary antibody (Aves 1020) in 0.3% PBST 

containing 3% donkey serum overnight at 4 °C. The following day, sections were washed 3x5 

min in PBS and then stained with secondary antibody (goat anti-chicken 488) in 0.3% PBST 

containing 5% donkey serum for 2 hr at room temperature. Sections were then washed 5 min 

with PBS, 15 min with PBS + DAPI (Thermofisher Scientific, D1306, 1:4000), and then 5 min 

with PBS. Sections were mounted on glass slides using FluoroMount-G (ThermoFisher, 00-

4958-02) and then imaged at 10x with a Leica slide scanning microscope (VT1200S). 

 

Statistical analyses 

Statistical analyses were performed in MATLAB or GraphPad Prism. 
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Chapter 4: Discussion 

 

Integrated summary of the thesis 

The ability to study complex behaviors is limited by the tools available to record and 

analyze the behavior of animals, especially when definitions of behavior go beyond mere motor 

patterns and intersect with spatiotemporal cues. Automating analysis of animal behaviors from 

video recordings has greatly enhanced our ability to understand the neural signals that give rise 

to complex behaviors. But many existing analysis programs specialize in analysis of a single 

behavior, cannot report where the animal was located during behavior, and fail when used with 

head-mounted implants that include visible cables.  

To study PMA in mPFC, I needed the ability to analyze multiple behaviors with respect 

to threat-predicting tones and a safe location. Further, I needed to do this analysis in animals 

that included head-attached cables and implants that partially obstructed the view of a top-down 

camera. When using DeepLabCut, a deep learning-based approach to track animal position 

across space and time, I identified a need for a tool that could convert pose tracking into 

behavioral data. Ideally such a tool could help me analyze behavioral data during PMA while 

flexibly meeting the needs of other behavioral neuroscientists.  

In Chapter 2, I reported a new software program that I created and published for 

automated analysis of animal behavior. BehaviorDEPOT uses heuristics to convert key point 

tracking data into discrete behaviors. BehaviorDEPOT is a user-friendly MATLAB app designed 

for analyzing data in commonly used experimental assays including fear conditioning, open field 

test, and novel object exploration. It is highly flexible and guides users through the creation of 

custom analysis pipelines. This tool provides a new way of studying animal behavior that is 

accessible and easy-to-use for users with limited programming experience. Importantly, 

BehaviorDEPOT was critical for the analysis of data presented in Chapter 3. By allowing 

detailed, framewise analysis of mouse behavior during PMA, I was able to easily synchronize 
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behavioral analysis with miniscope recordings. In doing so, I expanded our knowledge of how 

aversive learning drives rapid emergence of representations of danger-predicting cues, safe 

locations, and avoidance actions in mPFC. 

 

BehaviorDEPOT: a pipeline for heuristic-based classification of behavior 

The advent of computer vision and machine learning have opened new doors to link 

neural activity to observed behavior. The growth of computer vision has provided new ways to 

robustly extract meaningful data from video recordings of behavior. Using tools such as 

DeepLabCut, experimenters can robustly track keypoints of animals in great detail, reducing the 

need for human annotation and the variability it can produce. Machine learning has made 

impossible problems trivial to solve and have enabled deeper exploration of detailed animal 

poses during behaviors of interest. Supervised algorithms can replace human raters, using 

samples of annotation to make observations and predictions about complex neural datasets. 

Unsupervised machine learning can reveal patterns in activity that are difficult for humans to 

observe and without the need for any human bias.  

A major limitation to the rapidly advancing machine learning tools for animal tracking are 

that they generate estimates of animal position but not descriptions of discrete behaviors. In 

Chapter 2, I present BehaviorDEPOT – an open source software program I developed to 

capitalize on the capabilities of deep learning-based keypoint tracking and generating highly 

detailed reports of animal behaviors that can easily be aligned with streams of neural data. 

BehaviorDEPOT is a user-friendly behavioral analysis software package that utilizes 

keypoint tracking to produce robust readouts of naturalistic behavior, BehaviorDEPOT allows 

users to analyze specific behaviors with respect to spatiotemporal cues. By providing framewise 

behavioral readouts, BehaviorDEPOT also facilitates alignment of neural and behavioral data 

streams.  
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Established automated methods for quantifying animal behavior rely on techniques that 

do not track the location of the animal, rely on centroids to approximate position, and fail when 

animals have obstructive implants and headgear. Using established algorithms to track 

locations across the animal’s body (Mathis et al., 2018; Pereira et al., 2019), BehaviorDEPOT 

leverages the high fidelity of keypoint tracking to establish a framework for easy quantification of 

many different behaviors. Users can employ existing classifiers for commonly studied behaviors 

and spatially-defined tasks (e.g. open field test, elevated plus maze). This pipeline can be 

customized for the needs of each user and includes support modules that assist with 

identification, optimization, and validation of new classifiers. 

Existing software pipelines for behavior classification are subject to constraints that limit 

their usefulness in critical situations. An increasingly common feature of behavioral 

neuroscience experiments is the inclusion of attached headwear and cables used for observing 

or manipulating neural activity. Some existing software packages can circumvent this issue by 

cropping out cables; however, these options require side-view cameras, which constrains 

analysis of movement and spatial features (Anagnostaras et al., 2010; Pennington et al., 2019). 

BehaviorDEPOT’s use of keypoint tracking eliminates this constraint by allowing users to detect 

animals regardless of experimental condition, even permitting analysis of previously recorded 

videos. Other software approaches to behavior classification involve use of machine learning. 

Compared to methods using supervised machine learning (Nilsson et al., 2020; Segalin et al., 

2021; Bohnslav et al., 2021), BehaviorDEPOT’s heuristics are easier to interpret and can be 

easily modified for out-of-sample videos. Unsupervised machine learning methods have been 

successful at unbiased annotation of behavior but are aimed at subtle behaviors that cannot be 

reliably labeled by humans and may be challenging to use without computational expertise. 

BehaviorDEPOT is free and open source, focuses on ease-of-use and customization, and is 

robust in any experimental condition. 
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Though BehaviorDEPOT represents an improvement on the currently available slate of 

classification tools for behavioral neuroscience, it has some limitations. Importantly, the 

accuracy of keypoint tracking is critical for accurate labeling of behavior. Though keypoint 

tracking software attempts to minimize the need for computational experience, its use, including 

setting up the software-hardware interface, may still prove challenging for inexperienced users. 

BehaviorDEPOT attempts to control the impact of human bias on behavior, but it does not 

eliminate it entirely. Instead, our heuristic classifiers attempt to capture and standardize biased 

human definitions for behavior across users, using the provided support modules to compare 

inter-rater agreement levels and reach consensus. Other pipelines are more successful at 

mitigating bias in behavior through use of machine learning methods, though at a cost to the 

interpretability and ease-of-use of these methods. Supervised machine learning methods are 

subject to similar biases in human annotations of behavior but provide an unbiased approach to 

parameter tuning that could produce more rigorous labeling of behavior. Unsupervised 

algorithms eliminate the need for human annotations and thus the bias introduced by using 

them but can require computational experience to use and may result in more granular 

assessments of behavior than can be reasonably interpreted. 

Since its release, BehaviorDEPOT has been used in several research projects within 

and outside the lab. As of May 2024, BehaviorDEPOT has been cited in 20 publications and has 

been included in the OpenBehavior Project – a public and widely accessed repository of cutting-

edge, open-source tools for advancing behavioral neuroscience research. Since its initial 

release, BehaviorDEPOT has been iteratively improved based on feedback from the 

community. Support for additional behaviors such as jumping, rearing, and escape have been 

added, bringing the total number of ready-to-use classifiers to 12. I also added compatibility for 

new keypoint tracking algorithms (such as LEAP). In addition to minor improvements in 

performance and additional customization features, I added support for parallel processing that 

can double or triple the speed of analysis. After the request of users, I expanded 
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BehaviorDEPOT to function without any classifiers, simply generating detailed reports of animal 

position and kinematics that can be used with downstream analyses. 

In the future, to help BehaviorDEPOT reach more users and become truly open source, I 

would recreate the software in Python, an open-source programming language that is 

universally accessible. Though its classifiers are powerful and easy to understand, 

BehaviorDEPOT would also benefit from a module that helps users apply machine learning 

algorithms to new or existing classifiers. BehaviorDEPOT’s current heuristic classifiers are only 

useful for behaviors that humans can reliably view and annotate. Machine learning approaches 

to behavior classification can find consistent ‘micro’ behaviors that are not detectable with 

current classifiers and could potentially be used to enhance the performance of existing 

classifiers. 

 

Dynamics of mPFC activity during PMA learning 

Learning to use predictive cues to avoid danger is critical for survival and has relevance 

to psychiatric disease states. In Chapter 3, I used miniscope imaging and BehaviorDEPOT to 

analyze the neural activity and behavior of mice as they learned PMA. I aimed to elucidate how 

encoding of threatening cues, safe locations, and adaptive actions emerge in mPFC during 

rapid aversive learning. I focused on the PL subregion of mPFC, a region that is required for 

active avoidance and encodes threat-predictive cues and avoidance behaviors (Giustino & 

Maren, 2015; Diehl et al., 2020; Jercog et al., 2021). I discovered changes in individual neuron 

and population activity patterns that emerged across learning, some of which correlated with 

estimated learning rates from a behavioral model of PMA. This work demonstrated the 

existence of distinct population activity patterns that evolve with learning, precede changes in 

behavior, and are not visible on the single cell level. 

Many previous studies of active avoidance used an assay called two-way active 

avoidance (or shuttle box), that has limited relevance to clinical avoidance. I chose to use PMA 
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because of 2 major advantages. In versions of the shuttle box assay, the avoidance action 

terminates the threat-predicting tone, providing unrealistic control of the environment. On the 

other hand, in PMA the conditioned tone continues to play regardless of whether an animal 

enters the safety platform. PMA also features a safe location (the platform) that is always 

accessible, allowing investigation of neural correlates of both danger and safety. 

I first investigated single cell responses to behaviorally relevant features as mice rapidly 

learned PMA. One of the first changes to emerge during learning was a population of PL 

neurons that increased their activity when animals exited the safety platform. Because this 

change emerged on the first day of training, it may be necessary to establish a new behavioral 

strategy required to preemptively avoid foot shocks. On the other hand, the proportion of 

neurons that encoded the tone did not evolve across learning or differ from non-shocked 

controls. We did observe a learning-dependent increase in the population neurons that encoded 

combinations of the tone, the safety platform and freezing behavior. We also discovered that 

conditioned tones significantly modulate activity associated with platform entries and exits. 

However, these patterns were only evident on the second day of PMA when mice reliably 

performed PMA. This suggests that integrated coding of cues and actions is a product of 

learning that reflects the newly adopted behavioral strategy.  

I also revealed dynamic changes in PL population activity that were associated with 

learning. Decoding the trial outcomes was possible on day 1, before behavioral performance 

reached its peak, and cells that were significantly modulated by conditioned cues and avoidance 

actions were more informative for decoding than cells that did not. I used dimensionality 

reduction to reveal how salient events alter trial-by-trial population dynamics in PL. On the first 

day of training, highly stable patterns of activity in the epoch immediately preceding the foot 

shock period emerged in shocked mice but not non-shocked controls. This stabilization may be 

necessary for learning and may be related to increased representation of impending threat or 

could reflect increasingly stereotyped behavior during the tone (e.g. waiting on the platform until 
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the end of the tone). On the first day, the ability of cue-evoked population activity to distinguish 

between successful vs. shocked trials was correlated with learning rates estimated with the R-W 

model. On the second day of PMA, population activity during the tone onset epoch dramatically 

shifted if the animal received a shock. Since animals already exhibited a consistent avoidance 

strategy at this point, this shift in activity may reflect an update of the predictive relationships 

between cues, outcomes, and actions.  

Together these data reveal how and when changes encoded in individual neurons and in 

the overall population emerge in PL as animals learn PMA. My findings suggest that during 

aversive learning, PL first establishes new representations of safe and threatening locations and 

establishes reliable patterns of activity (e.g. during the pre-shock period) that promote threat 

avoidance. Establishing a reliable avoidance strategy is associated with the eventual formation 

of integrated representations of danger-predicting cues, avoidance actions, and locations 

associated with safety. Though representations of threat are clearly important for aversive 

learning, representations of safety also impact response to threat. The value of overcoming 

threat is linked to the perception of safety, and ‘safe’ behaviors can interfere with treatment of 

psychiatric disease, especially anxiety disorders (Blakey & Abramowitz, 2016; Goetz et al., 

2016). Maladaptive safety seeking could drive disease just as maladaptive perception of threats 

does. 

 

Limitations and Future Directions 

We chose to study PMA because animals learn within just a few trials, as they do in the 

natural world. However, analyzing neural activity during a low number of trials poses challenges. 

Many techniques for analyzing neural activity rely on observing activity across hundreds of 

trials. With sufficient trial averaging, it is possible to discover small but reliable changes in neural 

activity. In our assay, such changes are harder to observe because we had few trials and 

behavior changed rapidly throughout the assay. We are partly able to overcome these 
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limitations by recording from hundreds of neurons at once. In the future, we can lengthen the 

learning process by adding a competing reward to amplify the approach-avoidance conflict and 

increase the cost of staying on the platform and encourage additional exploration. This would 

allow us study how PL activity evolves over more trials.  

While neuronal recordings are critical to reveal the specific patterns of neural activity 

associated with new behavioral strategies, they cannot tell us which aspects of activity are 

causally related to behavioral changes. In future we can design optogenetic studies in which we 

test specific predictions informed by our studies presented in Chapter 3. For instance, we can 

precisely manipulate PL activity during particular epochs of the conditioned tone and at different 

stages of learning. Silencing PL during the tone onset or pre-shock periods could reveal the 

importance of population activity identified in my study to learning and allow important 

comparison to similar experiments done using the shuttle box (Jercog et al., 2021). Manipulation 

of PL-VTA projections would help us understand how top-down communication with the VTA 

contributes to aversive learning and could be important for understanding the dynamics of the 

VTA’s role in activating the DA system. 

Miniscope imaging allows the simultaneous recording of hundreds of neurons in freely 

moving animals. However, use of miniscopes requires a lens to be implanted just above the 

region of interest. In the case of PL, this requires aspiration of some tissue from the adjacent 

anterior cingulate cortex (ACC), which is also implicated in learning processes of the mPFC 

(Monosov et al., 2020). In our study, this issue is mitigated by our use of non-shock controls that 

undergo identical aspirations to the experimental animals. Although unilateral lesions in this 

region typically do not cause large changes in behavior performance, there is evidence 

suggesting such lesions could impact decision making (Croxson et al., 2014). It remains 

possible that aspirating a portion of ACC could alter natural behaviorally-relevant patterns of PL 

activity. 
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Another limitation of our imaging approach lies in the temporal resolution of our calcium 

indicator. Miniscopes rely on the use of calcium indicator proteins as a proxy for observed 

neural activity. Though frequently used to study the activity of neurons, the dynamics of the 

fastest calcium indicators are currently orders of magnitude slower than the neural events that 

underlie their activity. Thus, the reported calcium activity will always be disconnected from the 

temporal structure of the neural activity it reports. GCaMP proteins have undergone iterative 

improvement to increase sensitivity and speed, but future studies could compare the Ca2+ 

activity patterns we observed with neuronal spikes measured with extracellular electrodes or 

genetically encoded voltage sensors.  

Though temporal resolution may be limited, miniscopes offer distinct benefits over 

alternative imaging techniques that can be utilized in future research. One such benefit is the 

ability to easily record from genetically-, activity- or projection-defined subsets of mPFC cells. 

We speculated that many of the cells underlying dynamic responses to the tone were projection 

neurons from PL to the amygdala. Future studies could answer this definitively by using 

miniscope recordings to compare the neuronal activity patterns among PL-BLA and other 

anatomically defined populations. 

Future studies can address the specific mechanisms that drive plasticity in mPFC activity 

patterns during learning. Recent research has implicated dopamine as an important substrate of 

aversive learning in cortical regions, and dopamine in mPFC has been shown to enhance 

signal-to-noise ratio in neurons encoding aversive stimuli (Vander Weele et al., 2018). The 

primary source of dopamine for cortical regions is from neurons of the ventral tegmental area 

(VTA). Recent work from our lab has implicated this region directly in PMA, showing that PL-

VTA projection neurons are active when animals enter the safety platform (Gongwer et al., 

2023). Unpublished data from our lab has also suggested that PL dopamine release is important 

for PMA learning, with significant release during shock and, after learning, during the tone 

period. It is possible that dopamine release during shocks drives the lasting changes in PL 
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activity that are important for linking predictive cues with avoidance actions. Future studies 

could record from genetically encoded dopamine sensors in PL or manipulate the activity of 

DAergic projections from the VTA to assess how DA signaling contributes to the evolution of PL 

activity during learning. 

Previous studies identified sex differences during threat avoidance behaviors. Male 

rodents acquire active avoidance strategies more rapidly than females (Beck et al., 2011, 

Yokota et al., 2017). Additionally, when a safety cue is included in the avoidance task, female 

rodents extinguish learned avoidance faster than males (Beck et al., 2011; Radell et al. 2015). 

This sex difference has also been observed in humans (Sheynin et al. 2014). Though my study 

included both male and female animals, it was under powered to rigorously examine sex 

differences. Future experiments could specifically examine these differences and compare how 

patterns of mPFC activity differ between sexes who undergo avoidance learning.  

Dysfunction within mPFC is closely linked to a variety of psychiatric diseases –including 

anxiety disorders, depression, phobias, schizophrenia, substance use disorder, and bipolar 

disorder – that arise with different frequency in males and females (Buxhoeveden et al., 2006; 

Maner & Schmidt, 2006; Papaleo et al., 2012; Xu et al., 2019; Ironside et al., 2020). In 

depression and anxiety, excessive avoidance of perceived threats interferes with productive 

behaviors (Stein & Stein, 2008; DiMartini et al., 2019). Anxiety disorders are the largest 

category of diagnosed psychiatric disorders and are linked to increased activity in mPFC after 

presentation of ambiguous stimuli in humans (Nitschke et al., 2009; Mack et al., 2023). Our PL 

recordings during PMA build a foundation for understanding how disease risk factors like 

chronic stress may alter mPFC activity and lead to inappropriate levels of threat avoidance. 

Such research, especially when combined with circuit-specific imaging and manipulations, can 

ultimately inform better therapeutic interventions. 
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