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ABSTRACT OF THE DISSERTATION

Improving Data-Dependent Parallelism in GPUs Through Programmer-Transparent
Architectural Support

by

Amir Ali Abdolrashidi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2021
Dr. Daniel Wong, Chairperson

As modern GPU workloads become larger and more complex, there is an ever-
increasing demand for GPU computational power. Traditionally, GPUs have lacked gen-
eralized data-dependent parallelism and synchronization. In recent years, there have been
attempts to introduce a more sophisticated form of synchronization between different ker-
nels in an application to control the flow and ensure the correctness of the outputs. How-
ever, coarse synchronization between such kernels can significantly reduce GPU utilization.
Moreover, with hundreds or thousands of kernels in a workload, the overhead can be con-
sequential. Due to GPU’s massive parallel design, data can be split among thread blocks,
which allows us to manage the data dependencies on a more fine-grained level between the
thread blocks themselves rather than the kernel containing them. In this dissertation, we
propose several methods to improve the performance of data-dependent GPU applications
in this fashion.

In our first method, Wireframe, we propose a hardware-software solution that

enables generalized support for data-dependent parallelism and synchronization. It allows
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dependencies between the thread blocks in the GPU kernel to be expressed through a global
dependency graph, which is then sent by the GPU hardware at kernel launch, which then
enforces the dependencies in the graph through a dependency-aware thread block scheduler.

Our second method, BlockMaestro, is aimed at improving the user transparency in
the process of determining the inter-kernel thread block dependencies through static anal-
ysis of memory access patterns at kernel-launch time. During the runtime, BlockMaestro
enables kernel launch hiding by launching multiple kernels on the GPU and utilizes a thread
block scheduler in hardware to schedule the thread blocks with satisfied dependencies for
execution.

In our third method, SEER, we aim to expand our support for data-dependent
applications to those with non-static memory accesses, which can only be known during
runtime. Seeking a solution to this problem, we use a machine learning model in an effort
to estimate the memory addresses accessed in global load and store instructions in a kernel,
and using that information to predict the inter-kernel dependency pattern among thread

blocks using such accesses in order to improve the performance.
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Chapter 1

Introduction

Graphics Processing Units (GPUs) have come a long way in the past few decades.
Once used merely as display adapters, GPUs are now capable of performing computations on
a massive amount of data through a single-instruction, multiple-thread (SIMT) paradigm,
and with the advent of general-purpose GPUs (GPGPUs) and programming interfaces such
as CUDA [71] and OpenCL [87] in the early 21st century, their uses have only increased
faster. Now, with workloads and their data growing larger, the need for faster and more effi-
cient GPUs are further emphasized. GPUs can execute kernels, i.e., functions programmed
by the user, on many threads grouped into thread blocks (in NVIDIA terminology, which
we will use here) or wavefronts (in AMD GPUs). These thread blocks (TBs) run on the
GPU’s streaming multiprocessors (SMs) and produce outputs when the kernel is finished.

The GPU hardware is designed to run many threads at the same time, which makes
it ideal for simple tasks, and especially, embarrassingly parallel applications, where there is

no notion of data dependency among the threads. GPUs nowadays can also utilize streams



in order to run multiple kernels at the same time. Such kernels are usually called one after
the other in the code, i.e., adjacent kernels, which would constitute a control dependency
between each kernel pair, had the streams not been utilized.

However, workloads are also getting more complex every day, and data dependen-
cies are now very common in various applications, such as deep learning, stencil operations,
and other high-performance computing tasks. Data dependency among threads can occur
either within a kernel or between two kernels, i.e., intra-kernel and inter-kernel dependen-
cies respectively. In both cases, some thread blocks may require the results of other thread
blocks for their work (e.g., heat transfer). In traditional GPUs, this requires synchroniza-
tion of the thread blocks in order to ensure the correctness of the application’s output. This
forces the dependent thread blocks to wait, despite occupying space on the GPU’s execution
unit. This can prevent other ready thread blocks to be scheduled on the GPU, reducing the
GPU’s performance. In addition, as the application grows in size and number of kernels, so
does the amount of overhead from launching the kernels.

In many cases of coarse-grained synchronization, a task’s data dependencies come
from few prior tasks, but it has wait for all the prior tasks to finish to be able to continue.
For example, in a wavefront application [8}/19,20,73//137], a TB may only depend on two TBs
from the previous “wave”. However, it has to wait for that entire wave to finish executing
before being issued. This will get even worse as the number of TBs in the wave grows.

Inter-kernel dependencies can also affect a GPU application using streams. In this
case, if a kernel requires the output of the kernel before it, scheduling TBs from both kernels

at once will no longer be possible, and the two kernels should still synchronize to maintain



correctness. However, ready TBs from the waiting kernel should also be delayed until all
TBs from the running kernel have finished, resulting in dependency stalls. This also results
in GPU under-utilization and decrease in performance.

Ideally, by using a fine-grained data dependency support, we can improve the GPU
utilization, minimize the dependency stalls, and speed up the running application. This
can be achieved using a task-based execution model. Currently, mainstream GPUs lack a
generalized solution to tackle the aforementioned issues. Many works exist in literature,
each utilizing a variation of such a model [12,20,25[[39|46}/54, 56,65, 103, 135,148]. However,
many of them require significant user (programmer) intervention, meaning that, in many
cases, it is up to the user to specify the whole application as a task graph or re-write the
code to fit into the new paradigm, which can be quite burdensome with more complex or
irregular applications. In addition, many works have a large software-based management
overhead, with little to no management tasks offloaded to the hardware.

The work in this dissertation aims to improve the performance of data-dependent
GPU applications by proposing a combination of hardware and software support, stepping
towards a fine-grained generalized data dependency management of thread blocks in a GPU

application. In short, our main goals are to:
e mitigate the overheads, such as kernel launch, management, etc.;
e minimize the amount of programmer intervention; and
e provide a more generalized framework for dependency resolution.

In Chapter [2| we introduce Wireframe [8], a hardware/software solution that en-

ables the user to express the data dependencies of the thread blocks within an application



converted to a single mega-kernel, which will be transferred to the GPU as a dependency
graph. The dependencies will then be used by a dependency-aware thread block scheduler
to schedule the TBs in a way that both ensures correctness and improves the application’s
performance. With a small hardware overhead, Wireframe is able to achieve an average
speedup of 45% in data-dependent applications with a wavefront pattern, which will be
explained. However, the user needs to convert the workload into a single-kernel format to
use it, thereby highlighting the user burden and low flexibility of Wireframe.

In Chapter |3, we propose BlockMaestro [7], another hybrid solution, but focusing
on reducing the user burden and fine-grained inter-kernel dependencies. Through modify-
ing the command queue, BlockMaestro can launch multiple adjacent kernels at once, and
manage the scheduling of their TBs in hardware through the use of a TB scheduler. In addi-
tion to kernel pre-launching aimed at masking kernel launch overheads, BlockMaestro also
tries to minimize user intervention by deducing the static data dependencies through the
analysis of the kernel codes in the intermediate representation (PTX). In addition, unlike in
Wireframe, the user no longer requires to modify the application to run it on BlockMaestro.
Thus, we can use it for applications with multiple kernels and various dependency patterns.
With two kernels, BlockMaestro achieves an average speedup of 51% on data-dependent
benchmarks, with minimal hardware overhead.

Finally, in Chapter [4, we propose SEER, a machine learning-based framework in
an effort to expand BlockMaestro. One of BlockMaestro’s major limitations is that it cannot
be used where the data dependencies are not known before runtime, e.g., if the kernel uses

indirect memory accesses, and the access pattern is related to the memory content rather



than memory address. We seek to mitigate this issue by building a prediction model to
estimate the read and write sets of each TB by analyzing the code on the PTX level,
extracting the necessary data and context regarding each global load and store operation,
and for each, classify each memory index into either the ‘accessed’ or ‘not accessed’ group.
Once the accessed list is produced for adjacent kernels, they can be used to generate a
dependency graph, which would then be used for fine-grained thread block scheduling in

order to improve the performance and utilization of the GPU.



Chapter 2

Wireframe: Supporting
Data-Dependent Parallelism
Through Dependency Graph

Execution in GPUs

2.1 Introduction

GPUs have played a remarkable role in the evolution of scientific computing in the
last decade. The massive parallelism offered by thousands of compute cores has led devel-
opers to redesign traditional CPU applications to run on the massively parallel hardware.
Despite the rapid adaptation of GPGPU computing with an enlarging number of applica-

tion classes, the GPU hardware has failed to evolve fast enough to account for the increasing



complexity of such applications. A major deficiency in the modern CUDA programming
paradigm is a lack of fine-grained support for data-dependent parallelism and synchro-
nization. Typically data dependencies require algorithms to be redesigned and mapped to
intra-SM barriers (using __syncthreads()) or global barriers via implicit synchronization
through consecutive kernel launches. This causes difficulty in programming GPGPUs due
to mapping algorithms to these constraints, and more importantly, is responsible for signifi-
cant inefficiencies in the hardware due to load imbalance and resource under-utilization [31].
Recent studies [19,/144] have shown that, SMs can remain under-utilized and unnecessar-
ily idle as the execution reaches near global barriers, even though there are TBs whose
dependencies are already satisfied.

An intermediate level of inter-block synchronization can ease programmer burden
by granting programmers flexibility to convey data-dependent synchronization at the thread
block (TB) level. Unfortunately, existing GPGPU software and hardware assume that the
TBs (in CUDA), or workgroups (in OpenCL), in a given kernel can be executed in any
order, since there is no native support for synchronization between TBs.

Prior work [51,/141] has shown that it is possible to implement limited inter-TB
synchronization in software via persistent threads (PT). In this approach, the kernels are
redesigned to run with limited number of TBs, whose total count is equal to the number of
SMs. The threads in different TBs synchronize via global memory-based software barriers
as they iterate through the data indices. However, the PT approach may cause deadlocks
due to potentially unscheduled TBs and also may increase global memory access contention

if the inter-TB synchronization is frequent.



In a step towards supporting data-dependent parallelism, CUDA dynamic par-
allelism (CDP) was introduced to support nested parallelism [89]. CDP enables parent
kernels to launch child kernels, and then optionally synchronize on the completion of the
latter. CDP is mainly limited to certain application patterns with recursive nested paral-
lelism and time-varying data-dependent nested parallelism, such as loops [134]. Moreover,
CDP introduces additional kernel launch overhead due to in-memory context switching, and
also significant effort is required for programmers to efficiently map workloads to dynamic
parallelism kernels [40].

Prior work have proposed to avoid the overhead of kernel launches in CDP, by in-
stead launching thread blocks in hardware [123}134,/135|, supporting nested parallelism for
loops through code transformation [145] or consolidating kernel launch overheads [27,/40].
In CUDA 9, Cooperative Threads (CUDA-CT) were introduced to enable explicit syn-
chronization between threads within and across thread blocks, which enables an efficient
implementation for global barriers [3]. Although CUDA-CT will partially remedy the prob-
lems caused by device-level kernel launches, the SM under-utilization problem mentioned
above will remain due to bulk-synchronization mechanisms across multiple TBs still present.

In an attempt to enable true data-dependent parallelism on GPUs, several task-
based software execution schemes have been proposed to enable a producer-consumer model
between tasks (i.e., TBs) and SMs. These schemes resemble dataflow execution models
[42,50], but the main computation units are SMs instead of CPU cores. Tzeng et al. [128]
proposed a scheme where tasks with resolved dependencies are inserted in a centralized first-

come, first-served (FCFS) queue and executed. Belviranli et al. [18] proposed a scheduler-



worker-based solution based on distributed queues, where task dependencies are maintained
by a scheduler thread block via an in-memory dependency matrix and updated on-the-fly
as the tasks are processed by the worker TBs. However, the major drawback for all these
software solutions is their reliance on expensive global memory atomics as well as busy-
waiting to handle task insertion & retrieval operations and inter-SM communication.

Fundamentally, there is a lack of support for conveying generalized data-dependent
parallelism and inter-SM synchronization. While task-based execution schemes rely on long-
latency global memory, others focus on improving CDP-based kernels by compile-time or
runtime optimizations to achieve better thread utilization for a specific class of applications
(i.e., nested parallelism). Yet none of the aforementioned studies provide a generalized
solution for an arbitrary network of inter-block data dependencies. To this end, we propose
Wire fmmdﬂ, a hardware-software approach which provides generalized support for hardware
execution of task-based dependency graphs.

Wireframe is built on the abstraction of Dependency Graph (DG) execution, where
individual thread blocks are represented as tasks. These dependency graphs can be gener-
ated either through programmer API (DepLinks), or compiler profiling [441/47,/48,112.|131].
The dependency graph is then enforced in the hardware through a Dependency-Aware
Thread block Scheduler (DATS).

In this chapter, we show that Wireframe can be utilized to support a generalized
dependency graph-based execution approach to enable programmers to naturally convey

data-dependent parallelism. In addition, we show that Wireframe can be used to sup-

!The name “Wireframe” stems from the similarities between the graphs utilized in our benchmarks with
standard 3D wireframe terrain models used in computer-aided design.



port lightweight barrier and deadlock-free inter-block synchronizations through dependency

graph primitives.

2.2

This chapter makes the following contributions:
In Section [2.2] we present a case for Wireframe and show how the dependency graph
abstraction can be generalized for data-dependent parallelism and efficient synchro-
nization.
In Section [2:3] we present DepLinks to support programming data-dependent paral-
lelism. We also present support for run-time dependency graph generation.
Section demonstrates hardware support for dependency graph execution through
dependency-aware thread block scheduling (DATS). DATS enforces dependencies with
a Dependency Graph Buffer (DGB) and maximizes ready nodes with Level-bounded
thread block scheduling.
Section [2.5| involves evaluation for Wireframe using a range of data-dependent work-

loads, measuring an average of 45% performance boost, with ~2KB area overhead.

Motivation

In this section, we motivate a case for Wireframe. We will make use of various

Code Blocks to motivate and drive this section. We use a basic wavefront pattern, a

common data-dependent parallel pattern [19}/73,/137|, as a running illustrative example

due to its simple structure and clarity in conveying concepts in Wireframe. It should be

stressed that our proposed technique is generic to all data-dependent parallel patterns and

in no way limited to the examples presented here. Figure displays a wavefront pattern.
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Figure 2.1: Wavefront pattern execution of thread blocks in an application kernel (left) and
its equivalent dependency graph (right). The numbers represent the node IDs.

In wavefront parallelism, computation are typically dependent on neighbors, where data
dependencies form diagonal “waves” of computation (shown in blue). We define task as an
abstract unit of computation. In this example, a task can be fine-grained and represent the
computation of a single element in the wavefront, or it can be coarse-grained and represent
a tile consisting of multiple elements. The dependencies between tasks in this workload is
shown on the right, as a directed graph, which we call a dependency graph, with each node

representing a thread block.

2.2.1 Data-dependent Parallelism

We will now demonstrate CUDA’s current support for data-dependent parallelism,

and highlight its limitations and challenges. An implementation of wavefront processing
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using global barriers is shown in Code Block Every wave computation maps to a kernel
call, which processes the computation for that wave. As demonstrated in various prior
works [18,/19,|124], this limitation of global barriers introduces significant overhead due
to multiple kernel launches and requires programmers to map data-dependent parallelism
to this rigid constraint. An alternative option so as to avoid multiple kernel launches is
to enforce synchronization of waves within the thread block. This requires each wave to
be processed entirely within a single thread block, which would severely under-utilize the

GPGPU hardware.

Code Block 2.1: Global Barriers
int main() { 1
for (int i=0; i<nWaves; i++) {

kernel<<<GridSize, BlockSize>>>(args);

cudaDeviceSynchronize() ; |
} 5
} 6

__global__ void kernel(args) { processWave(); } 7

In order to facilitate support for data-dependent nested parallelism, CUDA Dy-
namic Parallelism (CDP) was introduced. CDP enables device-side kernel launches, avoid-
ing the overhead of host-side kernel launches. Every device-side thread has the ability to
spawn a child kernel. CDP typically supports two common implementation methods - re-
cursion and nesting. Code Block shows an implementation of CDP using a recursive
pattern. Here every wave is still processed by a single kernel and subsequent waves are
handled by recursively launching another kernel until every wave has been processed. In
lines 9-12, we have thread 0 spawning a single child kernel and wait for its completion. A

main limitation of the recursive approach is the recursion depth limitation. In CDP, there
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is a maximum nesting depth of 24 [2], i.e 25 waves at most. This pattern works well for

algorithms that can be mapped recursively, but otherwise inflexible.

Code Block 2.2: Dynamic Parallelism — Recursive

int main() { 1
kernel<<<GridSize, BlockSize>>>(0, args); 2
cudaDeviceSynchronize() ; 3

} )

__global__ void kernel(i, args) { 5

if (i == nWaves) return; 6
processWave () ; 7
if (threadIdx == 0) { 8

kernel<<<GridSize,BlockSize>>>(i+1,args); 9

cudaDeviceSynchronize() ; 10
} 11
__syncthreads() ; 12

A more flexible implementation is shown in Code Block where nested par-
allelism is used. In this approach [22], a parent kernel launches a child kernel for every
wave. However, unlike recursive parallelism where the child will also spawn a child kernel
of its own, the child returns, prompting the parent kernel to launch the next child kernel,
which resolves the spawning depth limit issue in the recursive version. This approach is very
similar to the global barriers implementation, but with the overhead of device-side kernel
launch instead of host-side kernel launch.

Although this implementation has less overhead, the device-side kernel launches
still incur non-trivial overhead [134] and there is also the limitation of coarse-grained syn-
chronization across waves. This implicit synchronization introduced by kernel launches
limits potential opportunities for nodes to run ahead and execute when ready. For exam-

ple, during the 4th wave, if nodes 9 and 12 are ready, then node 13 is ready to execute, but
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has to stall until nodes 3 and 6 complete the wave. This limitation is mainly due to the
1-parent-m-child representation of CDP, where child kernels can only have a single parent.
Therefore, the wavefront pattern has to be mapped to coarse-grained synchronization at

wavelront boundaries.

Code Block 2.3: Dynamic Parallelism — Nested

int main() { I
parentKernel<<<GridSize, BlockSize>>>(args); 2
cudaDeviceSynchronize() ; 3

} 4

__global_

for (int i=0; i<nWaves; i++) { 6
if (threadIdx == 0) { 7

void parentKernel(args) { 5

childKernel<<<GridSize, BlockSize>>>(args); 8
cudaDeviceSynchronize() ; 9

} 10
__syncthreads() ; 11

} 12

} 13
__global__ void childKernel(args) { processWave(); } 14

In order to fully express the data-dependent parallelism of the wavefront pattern,
we need a generalized approach to convey n-parent-m-child relationships. In our wavefront
example, in addition to 1-parent-1-child (e.g., node 12), there are parent-child relationships
such as 2-parent-1-child (e.g., node 9), and 1-parent-2-child (e.g., node 0), all of which
need to be expressed properly. To this end, we present DepLinks to support expression of
generalized data-dependent parallelism. DepLinks is built on the abstraction of dependency

graphs between tasks. In our framework, we partition a task as a single thread block (or

CTAEI) in hardware.

2We use thread block and CTA interchangeably
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Code Block 2.4: Wireframe
#define parentl dim3 (blockIdx.x-1, blockIdx.y, blockIdx.z); 1
#define parent2 dim3 (blockIdx.x, blockIdx.y-1, blockIdx.z);
void* DepLink() {
WF: :AddDependency (parentl) ; I

WF: :AddDependency (parent2) ; 5

} 6
int main() { 7
kernel<<<GridSize, BlockSize, DepLink>>>(args); 8
cudaDeviceSynchronize() ; 9
} 10

_WF__ void kermnel(args) { 1

processWave(); 12

Code Block shows how wavefront parallelism can be expressed using DepLinks.
In this scenario, we simply launch a kernel with a sufficient number of thread blocks to
represent the entire dependency graph. One of the kernel launch options is a mapping
function which defines the graph. This function consists of dependency links which are
specified by dim3 structures and its job is to specify the relative thread block on which any
thread block is dependent. The dependency graph will then be generated by running the
mapping function on every available thread block. For instance, in our wavefront example,
every node is dependent on its north and west neighbors. This dependency graph will then
be passed to the GPGPU hardware to enforce data dependency at run-time. In the next
section, we will discuss this process in detail. Due to the fine-grained data-dependency that
we can convey, individual tasks can run ahead and execute when parent tasks are complete.
In this execution pattern, tasks are not constrained to waves. Overall, Wireframe enables

a natural and more flexible way to convey data-dependent parallelism.
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Figure 2.2: Synchronization barrier primitives using dependency graph abstraction: Intra-
block (left), Global (middle) and Inter-block primitives (right).

2.2.2 Barrier Synchronization Primitives

As mentioned before, another major challenge of data-dependent parallelism is
the lack of support for flexible barrier synchronization. Inter-block synchronization can ease
programmer burden by granting programmers flexibility to convey synchronization between
TBs, which has limited support in CUDA 9 with Cooperative Groups. Our synchroniza-
tion primitives have similar support as Cooperative Groups, but we will later showcase
how Wireframe can further eliminate stalls due to barrier synchronization by supporting a
programming paradigm to avoid barriers completely. In this section, we demonstrate how
dependency graphs can be used to form primitives that enable flexible lightweight synchro-
nization across thread blocks. Figure shows the supported synchronization primitives.

Intra-block synchronization: As shown in Figure (left), intra-block syn-
chronization implements a barrier among threads inside of a single thread block. This is

achieved with __syncthreads() in CUDA . In our dependency graph abstraction, intra-
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block synchronization can be conveyed through a 1-parent-1-child relationship between
tasks. Using this dependency graph representation actually imposes greater overhead than
__syncthreads () due to using 2 thread blocks to achieve this task. Therefore, we still rely
on intra-block synchronization using the standard __syncthreads() call.

Global synchronization: In Figure (middle), a scenario is shown where we
assume the kernel consists of 4 thread blocks. Traditionally, in order to globally synchro-
nize all thread blocks, we require implicit synchronization through consecutive kernel calls.
This suffers from significant overhead due to the need for host-side kernel launches. Using
the dependency graph abstraction, we can represent global synchronization using a depen-
dency graph where each individual task after the barrier is dependent on every task before
the barrier. In this example, global synchronization is represented as a 4-parent-1-child
relationship. This lightweight global synchronization primitive completely eliminates the
unnecessary host- and device-side kernel launches.

Inter-block synchronization: In Figure (right), we illustrate inter-block
synchronization with a scenario where thread blocks synchronize in pairs. This is simi-
lar to the global synchronization primitive where each individual task after the barrier is
dependent on every task before the barrier, but constrained to a subset of thread blocks
that are synchronizing. Supporting inter-block synchronization is a key component towards
fully-supported data-dependent parallelism. What is unique about our approach is that this
abstraction is deadlock-free. In prior work [141], a barrier is placed at the end of the thread
block and wait for all other thread blocks to reach it. This results in some thread blocks

staying in the SM, preventing other thread blocks from being scheduled in, and they will
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subsequently cause a deadlock because they never got scheduled to be finished. Unlike [141],
our inter-block synchronization primitive does not result in deadlock because parent thread
blocks are allowed to complete and exit the SM, with barrier dependencies checked before

a new thread block is issued to an SM.

2.3 Wireframe

Figure shows an overview of the Wireframe framework. Wireframe consists
of three main parts: DepLinks extensions to the CUDA programming model, dependency
graph generation, and dependency graph execution in hardware through our dependency-
aware thread block scheduler (DATS). The programmer can express data-dependent par-
allelism and barrier synchronization through CUDA programming model extensions. At
kernel-launch-time, Wireframe would then retrieve the dependencies from the programmer
via the API, create the dependency graph in Compressed Sparse Row (CSR) format and
send it to GPU hardware. Once the CSR is received by the hardware, the GPU will make
use of the dependency graph to enforce data-dependent parallelism when scheduling TBs.

The interface between the software and hardware is simply an abstraction of
task dependencies represented as CSR. Therefore, our framework is not tied to a spe-
cific programming interface. The dependency information between tasks can be in the
order of hundreds of MBs, limiting prior dependency-based task scheduling to software
run-times [18}51,/128l|141] with significant overheads. Wireframe, to the best of our knowl-
edge, is the first efficient hardware solution to support and manage dependency-based task

scheduling with only 2KB hardware overhead.

18



Note that the focus of Wireframe is on efficient hardware support of statically
generated dependency graphs. There are currently many efforts in various compilers and
programming paradigms to convey task dependencies in CPUs [44,/47,48,(112,|131]. For
example, OpenMP [48.|112] contains extensions to define tasks and dependencies using
the depend clause. This information is utilized to create a directed acyclic graph of the
tasks. Till date, there is no software run-time-agnostic API for GPUs to convey task
dependencies. This chapter makes an argument for dependency awareness extensions to
CUDA, and demonstrates the potential benefits.

As the main focus is on hardware support for dependency graph execution, we
propose a simple API in order to convey static task dependencies. It will generate a CSR
dependency graph, which enables easy interpolation with any future task dependency pro-
gramming paradigms. Automatic graph generation is explored as part of BlockMaestro, the

follow-up work presented in Chapter

2.3.1 DepLinks API

In this section, we present our DepLinks API and how it maps the TBs to the
nodes in the dependency graph. Later, we discuss the in/out dependency concept from
OpenMP which could also be used to profile and generate dependencies. DepLinks requires
API calls for scheduling policy assignment, inter-block synchronization, and assignment of
parents for every thread block. In addition, DepLinks supports executing different kernels

with different dependency graphs.
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Figure 2.3: Overview of Wireframe; programmer supplied dependency constraints are trans-
lated into a dependency graph at run-time and conveyed to the GPU, where it is scheduled
for execution through the DATS hardware.

We demonstrate our API in Code Block [2.5] The code block implements a kernel,
kFunction (line 22). The kernel calls are extended with a mapping function, DepLink
(lines 4-11). The kernel maps a wavefront dependency graph similar to Figure For
every thread block in the kernel, it will call the mapping function to identify its parent
dependency. In wavefront dependency, each node is dependent on its west (x-1) and north
(y-1) neighbors. We have defined this in lines 1 and 2. However, the thread blocks do not
always have identical dependency patterns. In that case, conditional statements could be

utilized to differentiate dependencies related to different groups of blocks.

Code Block 2.5: Wireframe API Example

#define nodel dim3 (blockIdx.x-1, blockIdx.y, blockIdx.z); I
#define node2 dim3 (blockIdx.x, blockIdx.y-1, blockIdx.z); 2

void* DepLink() { 4
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//Add dependency for every thread block 5
WF: : AddDependency (nodel) ; 6
WF: : AddDependency (node2) ; 7

//Set the policy for the hardware 9

WF::SetPolicy (WF::LVL,4); 10

WF__ void kFunction(<args>) 13

{ 14
//Do kernel execution 15

} 16
17

void main() 18
{ 19

//Launch kernel kFunction() 20
dim3 dimGrid(4,4,1), dimBlock(16,16,1); 21
kFunction<<<dimGrid, dimBlock, DepLink>>>(<args>); 22

The AddDependency() call will map the dependencies to the thread block. In
addition, in line 10, the thread block scheduling policy is specified as level-bound (LVL)
with a range limit of 4, i.e., running TBs in the graph cannot be more than 4 levels apart.
Overall, it is possible to declare wavefront dependency pattern in less than 10 lines of code.
Similar to OpenMP depend clause, we only need to specify each edge in a dependency graph.
Using this simple, yet flexible, API, we can also easily implement any synchronization barrier
primitives shown in Figure [2.2

Note that our API function implements boundary checking to handle invalid ar-
guments. For example in the DepLink() function, for block ID (1,0,0), nodel will have
negative elements in which the API will correctly handle and ignore. Similarly, block ID

(0,0,0) will have no parent nodes.
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Profiling-based generation: The OpenMP depend clause provides a list of
dependent inputs and outputs for each task. This dataflow information is then utilized to
generate a DAG. Similarly, kernel calls in the global barriers implementation follow a similar
pattern, with input and output data to the kernel managed by cudaMemcpy. Therefore, it is
feasible to extract data dependencies from the global barriers implementation by obtaining
the dataflow between the kernels without programmer intervention. Due to the indexing
nature of TBs in CUDA programming, we can also profile the dataflow between thread
blocks to identify dependencies and generate the dependency graph. In prior work [44]
parallel task-based dependencies were extracted from sequential programs using a similar

technique.

2.3.2 Dependency Graph Generation

At kernel-launch-time, the program creates a static dependency graph based on
the programmer-supplied dependencies. In order to pass this information to the GPU in
a compact manner, we chose to represent the dependency graph in modified compressed
sparse row (CSR) format. The API gives us a list of nodes and edges from which we can
generate the CSR with time complexity of O(|V| + |E]).

Our dependency graph CSR representation is shown in the upper half of Figure
CSR consists of two arrays: a Node Array and an Edge Array. Every Node Array entry
corresponds to a node, with three fields: Edge Start, Parent Count, and Level. How they
are used is explained in the Section [2.4.2

In Figure 2.6 the numbers in the Node Array correspond to the start indices in

the Edge Array. For example, node 0 has child nodes 1 and 2, node 2 has child nodes 3
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and 4, etc. Our customized CSR array contains the number of nodes in the Node Array,
the edge start and edge count for every node (in short, location of child nodes in the edge
array and the number thereof), the number of edges and the nodes to which they lead.

A major challenge of using dependency graphs is their size. The size of the depen-
dency graph is arbitrary and can be very large in the order of MBs. So the full CSR should
be stored in the global memory (or constant memory if size permitting) of the GPU. How-
ever, the thread block scheduler requires dependency information from the CSR in order to
schedule thread blocks, which can be very slow with global memory access. To overcome
this challenge, we will exploit spatial locality behaviors of actively executing nodes and their

immediate child nodes in the dependency graph.

Dependency Graph Execution Properties

We observed that during the execution of data-dependent parallel applications,
there exists spatial locality of actively executing nodes and immediately dependent nodes.
In our dependency graph, there are no explicit or implicit barriers across different levels of
the dependency graph. Due to the fine-grained dependency representation, it is possible for
ready nodes to process ahead even when prior levels of the dependency graph are not fully
processed.

Despite this freedom, we observe that there exists a narrow window of levels in
which active nodes are executing. We demonstrate this in Figure We ran the HEAT2D
application with a dependency graph of 9216 nodes and 191 levels in GPGPU-Sim [16].
During run-time, we measured the level range of active tasks over the course of the ap-

plication run. We observed that even though the dependency graph has 191 levels, the
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level range of the active nodes grows no more than 7. We found this behavior common in
data-dependent parallel workloads.

Using this key observation, we can buffer only a small subset of the dependency
graph in the thread block scheduler to effectively support a dependency graph of any size,
while still enabling the thread block scheduler to quickly keep track of dependency statuses

at run-time. We will discuss this hardware mechanism in detail in Section 2.4]
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Maximum Level Range
N IS

o

Cycle

Figure 2.4: Level range during HEAT2D application.

Dependency Graph Node Renaming

By buffering subsets of the dependency graph, we are exploiting level locality.
However, the current dependency graph and CSR. format may not be amenable to buffering
as CSR stores tasks in sequential node ID order (as defined by thread block IDs). In order
to efficiently buffer the dependency graph, we need sequential ordering of levels and node
IDs. As shown in Figure (left), the dependency graph for the wavefront application

in Figure [2.I] does not exhibit sequential level-by-level numbering. Therefore, access to

24



Actual Node ID Virtual Node ID

Figure 2.5: Illustrative example of node renaming

the CSR will result in non-contiguous global memory access, which also introduces major
complexity issues when fetching nodes to buffer, as well as the management of the buffer.
To overcome this, we perform a sequential level-by-level renaming transformation to the
dependency graph as illustrated in Figure (right).

Rather than changing the actual thread block IDs, we rename the node IDs. The
dependency graph will be analyzed, every node’s parents, children and level will be deter-
mined, and then each node will be assigned a virtual ID (VID), which will be used exclusively
by the thread block scheduler. The original thread block ID remains intact and is used as
normal. The procedure is similar to breadth-first search (BFS), and is performed at run-
time. In the beginning, all nodes with no parents will be considered level 0. We then move
down the graph and assign the child nodes recursively. For every child node with exactly
one parent, the level of the child will be: lwlcpiig = llparent + 1. For a general case where

there are IV parents, the level of the child will be: vlcpiq = 1+ max{lvlpgrent; },1 <7 < N.
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When we move from every parent to a child, it increments the parent counter in the child
node, which represents the number of parents for that node when this process is finished.

This will be used in TB scheduling shown in the following sections.

2.4 Dependency-Aware Thread Block Scheduler (DATS)

In the previous sections, we described the DepLinks programmer interface and how
dependency graphs are generated. In this section, we describe how the GPGPU hardware
enforces dependencies through a dependency-aware thread block scheduler (DATS). As
described in the last section, we use the CSR format to store the nodes and edges of a
dependency graph, which is generated at runtime and transferred to the GPU’s global
memory. The CSR representation of the dependency graph in Figure [2.5] is illustrated in

the global memory section of Figure [2.6

2.4.1 GPGPU Architecture Overview

We target an NVIDIA Fermi-like architecture modeled after GTX480. Our ar-
chitecture comprises of 15 streaming multiprocessors (SM), where every SM in Fermi can
execute up to 1536 threads or 8 thread blocks (CTAs). A thread block scheduler is respon-
sible for issuing any ready thread block to an available SM. The technique that we present
here is agnostic to the GPGPU microarchitecture and is self-contained within the thread
block scheduling mechanism. Kernel parameters are stored in the global memory. There
is already a communication path between the global memory and the kernel management

and distribution unit [134] to allow transfer of the CSR into the thread block scheduler.
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Figure 2.6: Connections between the global memory and local Dependency Graph Buffer

for the graph in Figure

2.4.2 Dependency Graph Buffer

The Dependency Graph is stored in CSR format in the global memory. It is in-
feasible for the TB scheduler to keep track of the graph node states in the global memory.
Therefore, we propose the addition of a Dependency Graph Buffer (DGB) into the TB
scheduler to buffer a subset of the CSR, sized large enough to keep the execution flowing
and prevent it from stalling. In Section [2.3] we observed that there is spatial locality in the
actively executing and immediate dependent nodes of the dependency graph. Therefore, we

can buffer this active window of nodes of the dependency graph in the Dependency Graph

Buffer in order to keep track of dependency states in a low-overhead manner.
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Figure 2.7: Management of Dependency Graph Buffer.

The Dependency Graph Buffer is showcased at the bottom of Figure [2.6, The
Dependency Graph Buffer consists of Local Node Array, Local Edge Array, Pending Update
Buffer, Node Insertion Buffer, and Node State Table (not shown, details in Figure[2.7)). The
Local Node Array and Local Edge Array are implemented as circular buffers. The Node
State Table is tightly coupled with the Local Node Array, where every node entry of the
Local Node Array has a corresponding entry in the Node State Table. The node and edge
values for the relevant dependency graph are stored in the global memory in the format
shown at the top of Figure [2.6]

When moving portions of the global node/edge array into the local node/edge
array, we re-index the global edge start to a local edge start. This is done using a simple

modulus-based mapping function to minimize the size of the local node array entries. The
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local arrays will be loaded from memory in bursts of 128 bytes, the memory request size,

to maximize memory load utilization.

Node State Table

The Node State Table is shown in Figure and contains the following fields:

State: Signifies whether the node is Waiting (W), Ready (R), Processing (P), or
Done executing (D). Initially all nodes are initialized to the Waiting state, except for the
nodes with no dependencies which are set to Ready.

Parent Count: For every node, it shows number of unfinished parent nodes. It is
computed in the host and transferred to and stored in the global CSR memory at run-time.

Level: The maximum distance of every node from a root, i.e., a node with no
dependency. It is also computed at the host, to be used for thread block scheduling as
discussed in Section 2.4.3

Global Node #: The virtual node ID of the dependency graph, which indexes into
a node in the Global Node Array.

Local Edge Start: The address of the first child of the node in the local edge array.
If there were no children, it will be set to —1. The number of children can be determined

by finding the difference of two consecutive edge starts.

Dependency Graph Buffer (DGB) Management

We will now demonstrate the operation of our DGB management mechanism

through the use of the DGB structure shown in Figure
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Transferring Nodes/Edges from Global Memory to DGB: The hardware
fetches chunks of nodes and edges from the global memory into the DGB. A chunk is defined
as the number of the entries of the Local Node array which fit in a single memory request
from the global memory (128B) to the DGB. In our running example, a chunk is 2 node
entries, the Node Array size is 4, and Edge Array size is 12. During the transfer, the edge
start field of the local node array is re-indexed so they point to the local edge array directly.
The Local Edge array, on the other hand, will keep the global node IDs so they can be
used to update the parent counter of children nodes. To illustrate this, let’s look at global
node ID 4. In Figure this refers to index 4 of the Global Node Array, which contains
a Global Edge Start of 7. The neighbor node (ID 5) has a Global Edge Start of 9, which
means node 4 has 2 children. At index 7 of the Global Edge Array we see that node 4 has
node 6 for a child, and at index 8, node 4 has child 7. Once node 4 is transferred to the
DGB, as illustrated at the bottom of Figure ID 4 has a transformed local edge start
of 0, which points to index 0 of the local edge array. Index 0 and 1 of the local edge array
contain the global node ID of children 6 and 7.

Translating Global to Local: The translation of the edge start from the
global memory to the local memory is modulus-based: LES; = (GES;)%|LEA|, where
LES; is the translated Local Edge Start for node ¢, GES; is the Global Edge Starts for
nodes i and |LEA| is the size of the Local Edge array. Let us use Figure as an example,
where |[LEA| = 8. Suppose that nodes 0 to 3 are already inserted in the DGB along
with their edges, so they are both full. Then nodes 0 and 1 finish and, as a result, are

invalidated in the DGB. Since the chunk size is 2, nodes 4 and 5 load into the DGB. As
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the Global Edge starts for nodes 4 and 5 are 7 and 9, their new Local Edge starts will be
LES, =7%8 = 7,LESs = 9%8 = 1 respectively.

The local node address for node i is also modulus-based. At the time of the
node’s insertion from the global memory into the dependency graph buffer, the operation is
performed in the following address: LNID; = i%|LN A|, where LN1D; is the local address
for node 7 at the time of its insertion and |LN A| is the size of the Local Node array. Since
both ¢ and |[LNA| are known before the node’s insertion into the Local Node Array, the
hardware can predict the future location of any node in the said array. In the event of any
new node transfer, the hardware will compare the global node ID of the new node and the
target location to check if the latter is indeed unused. If the location is occupied by a prior
node, it would terminate the memory transfer and put the node in the node insertion buffer
until the space becomes available.

Handling Head Pointer Node Once the nodes are inserted into the graph
buffer, ready nodes can be issued in any order. The only exception is the last node pointed
by the head pointer. When a ready node completes, it decrements the parent counter of
each children. In order to do so, we must know the number of children each node has by
subtracting its local edge start from that of the next node’s local edge start. For the last
node pointed by the head pointer, it cannot determine the number of children due to the
absence of a next node. We handle this scenario by not scheduling the head pointer node,
unless the node is childless, e.g., the last node.

Node Completion Figure illustrates the scenario where a node completes

execution. This running example starts with nodes 0-3 in the DGB, with node 0 executing
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as shown in Figure Since node 0 has no parents, it has level 0 and will be the first to
execute. When node 0 completes, we first fetch the children of node 0 (node 1 and node
2). Each child is accessed and their parent counter is decremented. Once a parent counter
reaches 0, it indicates that all dependencies are met, and its state is updated to ready.

After decrementing the parent counters, the entry associated with the node which
finished is invalidated as shown by the lighter text. Recall that the Local Node/Edge Arrays
are circular buffers. As the tail entries are invalidated, we move the tail to the next valid
entry. In this case, the tails moved to Local Node Array index 1 and Local Edge Array
index 2. In addition, the execution of thread blocks can be completed out of order in the
array as shown in Figure where node 2 has finished executing while node 1 is still
being processed. We only move the tail if the tail’s entry is invalidated.

Pending Update Buffer Insertion: Note that when node 2 finishes, the chil-
dren nodes 4 and 5 are not in the node status table, and thus we cannot decrement their
parent counters. To overcome this overflow, we add a Pending Update Buffer (PUB) to
handle the situation where the child node is not in the Local Node Array. The PUB stores
the global node ID of the child. This is illustrated in Figure where node 2 has finished
executing and attempts to update the parent counters of its children, nodes 4 and 5. Since
neither of those nodes is in the graph buffer yet, it will use the PUB to save the changes
so they can be applied later. Note that if the buffer is full, the hardware cannot mark the
node as complete if it has children. Therefore, it has to wait until there is enough space

before the node’s execution can be finalized.
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Loading Local Node/Edge Array Entries As shown in Figure node 1
will complete, and decrement the parent counter for its children nodes 3 and 4. Node 3’s
parent counter is now at 0 and its state is updated to ready. Node 4 is not in the Node
State Table, and is thus put into the PUB. At this point, the entries for node 1 and 2 are
invalidated and the tail advances to index 3 (node 3). At this point in time, there is enough
empty space in the Local Node Array to load a new chunk of nodes. We can keep track of
the available space using the distance between the head and tail pointers.

A memory request is issued to the global memory and the next chunk is fetched
from it. From the head pointer in the Local Node Array, we can generate a memory access

to load the next node based on its ID:

Global BaseAddress + Nodel D x NodeEntrySize.

The Global Node Array entries contain the global edge start, which points to the Global
Edge Array. Memory requests are iteratively issued to fetch the Global Edge Array entries
with memory address location calculated similar to accessing Global Node Array.

The hardware loads a new chunk from the global memory into the node array
where the head pointer is, followed by the associated data in the edge array, starting from
the edge head pointer. This is depicted in Figure A node’s insertion is only finalized if
there are enough spaces for its edges in the Local Edge Array. Otherwise the node shall be
put in a temporary node insertion buffer to wait and the loading process halts. The next
nodes will not also be loaded until enough space for the node in question and its edges is

available in the Local Edge Array, in which case loading will resume. If the node’s insertion
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into the local memory is successful, the head pointer will then also move. Note that the
edges to which the nodes will be pointing have been translated to their local counterparts
beforehand as described earlier in this section.

Pending Update Buffer Removal: Figure shows the scenario when nodes
4 and 5 are loaded into the Node State Table. At this point in time, the update buffer
contains two updates for node 4 (one each from completion of node 1 and 2), and one
update for node 5 (from node 2). When a node with a registered ID in the update buffer
is loaded into the Node State Table, the parent counter update will be applied and the
entry in the update buffer removed. For example, in Figure the two pending node 4
entries decrement the parent counter of node 4 to 0, changing the state of node 4 to ready.

Similarly, the update to node 5 will also be applied, marking it as ready (Figure [2.7g]).

2.4.3 Level-bound Thread Block Scheduling

Up until now, we have described how dependencies between thread blocks are
enforced and managed in hardware. We will now discuss how ready thread blocks are
scheduled to SMs. We first present the baseline thread block scheduling policy, and then
motivate the need for a thread block scheduling policy for dependency graphs.

The baseline default policy is Loose Round-robin (LRR). Tt first selects a ready
node with the smallest ID, and cycles among all the SMs, selecting the next SM to issue to.
If the intended SM is already full, the policy will move to the next available SM. This policy
attempts to evenly distribute the workload among the available resources. However, this
scheduler is very simplistic and does not account for dependency graph execution dynamics,

which leads to performance hindrance.
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We will again borrow the wavefront example from Section to illustrate de-
pendency graph execution dynamics. In coarse-grained synchronization scenarios (global
barrier, CDP), each level of the dependency graph is executed until completion, one after
another. As a result, nodes ready in subsequent levels cannot be scheduled and must wait
until the preceding level is complete, limiting performance. Dependency graph execution
allows any ready node to run ahead and execute without having to wait until the prior level
is completed.

However, we observed that if nodes run too far ahead, it can end up hampering
the performance. This is illustrated in Figure Here 8 nodes (marked with ‘D’) have
completed execution. On the left, we depict a potential scenario with the baseline LRR
policy where nodes can run ahead unbounded. There is significant run-ahead, with ready
nodes (‘R’) spanning a level range of 4 (in levels 3, 4, and 7). Due to a single path running
ahead, it can potentially limit the number of ready nodes. In the case of wavefront, there
are significant data-dependencies with most nodes dependent on 2 parents from the previous
level. If a dependency graph observes a high level range, it means that neighboring nodes
may have more dependencies pending. For example, in Figure the numerical values
within the immediate neighboring nodes of completed and processing nodes represent the
levels of dependencies that must be resolved before that node can run. Due to the run-
ahead, neighboring nodes have a longer chain of dependencies with less nodes ready in the
near future (only 3 nodes have 1-level dependency).

To this end, we propose Level-bounded (LVL) thread block scheduling, which ex-

tends the LRR thread block scheduler by bounding the level range to satisfy dependencies
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Unbounded

Figure 2.8: Effect of thread block scheduling on Dependency Graph node availability.

quicker. This results in greater ready node availability as shown in the figure. Under level
bounding, we have 5 nodes with 1-level of dependency, and also 4 ready nodes. Intuitively
this scheduler operates in the following manner: If a path runs ahead too far (reaches a level
range limit), the Level-bounded scheduler will prevent that path from proceeding further
and favor scheduling nodes from slower paths to allow the level range to narrow. Bounding
the level range promotes completion of node dependencies, resulting in more ready nodes

than the baseline unbounded scenario.

2.5 Evaluation

2.5.1 Methodology

We evaluate Wireframe on GPGPU-Sim v3.2 [16]. We use the default NVIDIA
GTX480 configuration with 15 SMs, each having 8 CTAs, 128KB register file and 16KB L1
cache size. The shared L2 cache size is T86KB. The warp scheduling policy follows a greedy-
then-oldest (GTO) policy . Our thread block scheduling technique can be run with

any warp scheduler, but we find GTO to provide the best performance. We modeled the
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device-side kernel launch overheads by implementing the latency model proposed in [134].
We measured empirically and used the host-side kernel launch time of 30us. The baseline
machine runs at a core clock of 700MHz, where each SM consists of 2 shader processors
(SP), each containing 32 CUDA cores, 16 LDST units and 4 SFUs.

We utilize a selection of data-dependent heavy workloads. For each workload, we
implement four versions: Global Barriers (Global), CUDA Dynamic Parallelism (CDP),
DepLinks synchronization primitives (DepLinks), and Wireframe with the LRR scheduler
(LRR) and Level-bound scheduler (LVL). For the level-bound scheduler, we use a level
bound of 3. Note that DepLinks enables barrier synchronization primitive support through
task graph representation and does not change the way TBs are assigned to SMs. LRR
and LVL, on the other hand, do not enforce any barrier behaviors, but rather control the
TB assignments, allowing nodes with satisfied dependencies to execute, enabling them to
run-ahead instead of waiting for other nodes at their level to finish first.

We verified the output of each workload implementation against the original to en-
sure output correctness and that dependencies are satisfied safely. Unless otherwise stated,
we partition the workload with up to 4K nodes in the dependency graph. We will later
explore the impact of the size of dependency graph on performance. In addition, we used
a Local Node Array size of 128 entries and a Local Edge Array size of 512 entries for LVL
scheduler, and 512 entries and 2K entries for LRR scheduler, respectively. We set the size

of the Pending Update Buffer to 64 entries.
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2.5.2 Benchmarks

The benchmarks used are DTW (Dynamic Time Warping) [86], HEAT2D [110],
HIST (Histogram) [101], INT_IMG (Integral Image) [23], SOR (Successive Over-Relaxation)
[38] and SW (Smith Waterman) [111]. DTW is a common algorithm in time series analysis
for measuring similarity between two time series with varying speeds. DTW takes in two
time series, one of size 12K and one of size 8K. HEAT2D is a common solver for heat
equations in two dimensions. At every iteration, the temperature of each point is dependent
on neighboring points. We use a 2D grid of size 12K x 12K. HIST calculates the integral
histogram over a 13MP bitmap image. INT_IMG is an image processing technique that
generates the sum of values in a rectangular subset of a grid. We similarly use INT_IMG
with a 13MP bitmap image. SOR is a linear system solver which is implemented using a
generic 5-way stencil pattern. We use a random 2D matrix with 144M entries as input. SW
is a common local sequence alignment algorithm. We input two 8K strings. We verified
that the size of the data is sufficient to utilize the entire GPU (maximize hardware CTAs,

cache, etc.) with each workload’s data set size in the order of hundreds of MBs.

2.5.3 Evaluation Results

Performance: Figure illustrates the speedup for all implementations with
respect to Global Barriers. Speedup is the ratio of the total execution time and kernel
launch overhead for a given technique, with respect to the baseline global implementation.
It shows how much every technique addition, up to LVL, is responsible in improving the

performance. In all scenarios, CDP and our proposed techniques outperform global barriers
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by removing costly host- and device-side kernel launches. CDP has an average speedup of
6.87%. DepLinks further remove device-side kernel launches and improve average speedup
by 25.07%. Wireframe further enables task run-ahead. On average for Wireframe, LVL
outperforms LRR (31.81% vs 29.81%). In certain scenarios, such as HIST, LVL performs

slightly worse due to limited improvement to level range properties.

BLVL OLRR @DeplLinks @CDP o Global

| [EEEEER

- B

B
w s

|
|
I

=
'_\

Speedup vs Global
=Y

©
©

DTW HEAT2D HIST INT_IMG SOR SW Average

Figure 2.9: Normalized Speedup w.r.t. Global Barriers.

Memory Overhead: Figure (left) shows the memory request overhead
introduced by DATS. At most, DATS introduce 0.16% memory request overhead, with an
average overhead of 0.12%. Despite making use of the global memory, Wireframe does not
have a substantial negative impact to L2 cache performance as shown in Figure In
addition, the miss rate is consistent regardless of the programming model of Wireframe
used (DepLinks vs LRR/LVL).

Level Range: Figure (right) shows the impact of the LVL scheduler, with
level bound of 3, on the maximum observed level range. We utilize a dependency graph

of 9K as the benefits of level-bounding is more apparent with larger graphs. The observed
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Figure 2.10: Memory request overhead (left) and maximum level range (right).

level range can actually be less than the bound. For example, GTO warp scheduler focus on
the warps of thread blocks on the lower levels (older TBs) so they can finish faster, resulting
in a lower range than anticipated. In certain scenarios, the level range reduced drastically
from 7 to 2 (DTW) and 6 to 2 (SOR).
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Figure 2.11: L2 miss rate in Wireframe.

Dependency Graph Size: Figure (left) shows the effect of dependency
graph size on overall speedup for the level-bound scheduler normalized to the global barriers

implementation. As the size of the graph increases, there is generally more levels, and
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greater opportunity for run-ahead. In addition, this is associated with removal of more
global barriers. This can be observed as the average speedup increases as the graph size
grows: 14.11% for 1K, 31.81% for 4K, and 45.07% for 9K dependency graph size, with a
maximum speedup of 65.20%. Furthermore, Figure[2.12] (right) shows the computation time
to kernel launch time ratio with a constant data size. Therefore, the ratio decreases as the
graph grows. Notwithstanding, on average, we have significantly more computational time
than kernel launch time, with an average of 8x, 5x, and 3x more compute with graph size
1K, 4K, and 9K, respectively. It can be seen that Wireframe does best with many smaller

tasks rather than fewer larger ones.
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Figure 2.12: Overall speedup for same input size, but different graph sizes (left) and
compute-to-kernel-launch ratio (right).

2.5.4 Overheads

Sensitivity to Local Node/Edge Array Size: Figure (left) shows the
maximum pending update buffer usage (solid line) and the IPC (dotted line) with respect

to varying the Local Node Array size for LRR and LVL using the SOR benchmark. We
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present SOR as it utilizes PUB the most. The LVL scheduler requires a notably smaller
update buffer than the regular LRR scheduler. We use a node array size of 128 entries as it
provides a high level of IPC for LVL, with a manageable PUB usage of almost 32 entries,
which we pick as the best size for PUB. For a PUB usage of equal size, LRR scheduler
requires Local Node Array size of 512.

Figure (right) shows how the maximum pending update buffer usage changes
as we decrease the Local Edge Array size. We set the Local Node Array size as before. For
LRR, IPC falls as we use less than 512 entries. Thus, we select 512 as the best edge array
size. LRR meanwhile requires over 1K entries. LVL scheduler can significantly reduce the
size of the Local Node/Edge Array needed.

Dependency Graph Buffer Size: The DGB requires very little space. Each
local node array entry needs 2 bits for state, 16 bits for the global node ID, 16 bits for the
parent counter, 16 bits for the level and 9 bits to address the local edge array, i.e., 58 bits
in total, which rounds up to 8 bytes for each node in the Node State Table and Local Node
Array. As for the Local Edge Array, it only needs 16 bits per element to store the target’s
global node ID, for a total of 1KB. In addition, we have a Pending Update Buffer of 32
entries of 2 bytes each and a single Node Insertion Buffer of 128B, for a total of 256B. In
total, the DGB has a size of 2304 bytes, which is negligible in comparison to the size of
register file per SM (128KB).

DGB Access Overheads: We can access and update the DGB quickly due to
the small size. Any timing overheads would occur due to fetching chunks from memory.

However, this operation is off the critical path as fetching of memory chunks can occur as
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TBs are executing on SMs. The only time there may be timing penalties due to our DGB
mechanism is if there are no ready nodes due to nodes still being loaded from memory. Due
to having a Local Node Array size of 128 entries, we observed that this scenario is rare as
there are always plenty of other nodes to schedule. We observed the timing overheads of

DGB to be less than 1%.
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Figure 2.13: Effect of the local node size (left) and local edge array size (right) on the
maximum update buffer size.

2.6 Related Work

Synchronization: Existing GPGPU programming models have been designed with sup-
port for coarse granular synchronization primitives (commands and streams in CUDA,
events and pipes in OpenCL, and pipelines in OpenACC) to enable flow control across mul-
tiple kernel launches and data transfers. However, these primitives are at the device level
and only able to provide coarse granular dependency management between host-initiated
calls. Such constructs fail to address the data-dependency requirements across the threads

within the execution of a kernel.
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A finer granular in-GPU synchronization across the TBs of a kernel enables better
utilization of SMs by allowing the dependencies to be resolved locally. One of the major
issues which is often encountered in in-GPU synchronization is the deadlock problem [141].
Consider a case where there are many thread blocks with a global barrier, all parenting a
single child kernel, as shown in Figure (middle). If the number of thread blocks exceed
the total number of CTAs that can run concurrently on all the SMs, at a point some thread
blocks could be running on the SMs and hit the global barrier, whereas the others have
never been dispatched, and, therefore, cannot context switch, causing the GPU to enter a
deadlock state. In [141], the deadlock is handled by using atomic operations and memory
flags. However, this situation will not occur in Wireframe due to the absence of global
barriers. A similar method is to transform algorithms to remove global barriers, such as
PeerWave [19]. However, this requires significant programming effort and is not general
purpose. However, all of these techniques are software-based and result in significant run-
time overhead.

Reducing Kernel Launch Overhead: In [135], authors proposed a locality-aware thread
block scheduler to schedule child nodes to maximize cache locality within dynamic paral-
lelism (CDP). However, the maximum recursion depth it can reach in any workload is
limited to 24 [89]. Wireframe, however, support more complex parent-child relationships
which are configurable by the user. This makes the whole execution flow more manageable
and efficient. In [141], Xiao proposed an improvement of the subkernel launch using GPU
lock-based and lock-free synchronizations. In [27], G. Chen et al. emphasize on re-using

parent thread to operate on the data to be processed by the child kernel. In [123], Tang et al.
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coordinates dynamically-generated child kernels to reduce launch overheads and schedules
both parent and child kernels to improve launch overhead hiding. In our Wireframe work,
we represent data dependencies through DepLinks rather than implicitly through kernels
or barriers, and therefore, completely avoid kernel launch overheads.

Dataflow Scheduling: In addition to the GPU-related work mentioned above, the prob-
lem that Wireframe targets has generally been addressed in the architecture literature as
“dataflow scheduling”. Etsion et al. [42] have developed a superscalar, out-of-order task
pipeline to execute dataflow programming models. Gupta et al. [50] utilized run-times to
exploit parallel dataflow execution out of serial programs on multicores. Wang et al. [132]
have implemented a task-level dataflow execution engine on FPGAs. More recently, Avron
et al. |14] studied hardware task scheduling performance on Plural many-core-architecture.
All these works present state-of-the-art examples for supporting dataflow based task exe-
cution on various platforms; however, none of them addresses the problem for GPUs.
Thread Block Scheduling: One of the works considering the CTA behavior for the
scheduling decisions is OWL [60], in which the authors tackle the hardware under-utilization
issue by prioritizing certain thread block groups and improving the cache hit rates. To the

best of our knowledge, our scheduler is the first to target data-dependent parallelism.

2.7 Conclusion

In this chapter, we propose Wireframe, a general-purpose data-dependent paral-
lelism paradigm which dramatically improves the performance on GPGPU by eliminating

the need for global barriers and careful assignment of thread blocks as per the scheduling
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policy. Wireframe has shown an average speedup of up to about 45% across multiple bench-
marks, and, with the same input size, is seen to perform better if the dependency graph
represents many smaller tasks rather than fewer larger ones.

However, Wireframe also has significant limitations. As mentioned before, it is
upon the user to re-write the code to convert the application into a single-kernel format.
That means ingraining an application’s tasks into one kernel and providing the GPU with
the dependency graph of the kernel’s TBs, which requires significant effort for more complex
and irregular applications, showcasing the low flexibility in Wireframe.

In the next chapter, we propose BlockMaestro, which mainly aims to minimize
the user’s burden through the use of code analysis, and allowing a fine-grained multi-kernel

execution in the GPU.
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Chapter 3

BlockMaestro: Enabling
Programmer-Transparent

Task-Based Execution in GPU

Systems

3.1 Introduction

GPUs today are computationally powerful, power-hungry, and massively parallel
devices, capable of processing applications using thousands of threads at once, taking ad-
vantage of its single-instruction, multiple-thread (SIMT) paradigm [5,6,(13}/41},59,68. 6994,
127,|138,|146,{147]. As modern workloads grow in size and complexity, GPUs are stressed

more than ever before [62,63,83]. For example, they are one of the main accelerators behind
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modern machine learning frameworks [4,32,/99] where typically every layer is encapsulated
in a GPU kernel, and the main accelerator behind future exascale computers [35,|36}120]
where scientific computing applications make heavy use of iterative structured grid compu-
tations exhibiting wavefront parallelism [19,20/57], with multiple GPUs working together
through specialized interconnects [76,(107].

These emerging workloads place significant burden on GPUs. By launching hun-
dreds of kernels over the course of an application’s execution, kernel launch overheads can
become significant [28,40,[55,/74]. These kernels also typically exhibit significant data de-
pendencies between them [8,20,54,58]. For example, layers in CNNs produce data that
is consumed in the next layer. In stencil computations, which are common in scientific
computing, operations performed on elements are dependent on the state of neighboring
elements. These inter-kernel data dependencies are typically enforced in a coarse-grained
manner through implicit barrier synchronizations in the form of kernel launches, which can
result in stalling of computation that already have satisfied dependencies.

To circumvent these issues, many task-based execution models and runtimes have
been proposed [8}/12}20,25,|39,46|, |54} 56, 65,/103,/135,/148]. These frameworks require pro-
grammers to decompose the application into tasks, and express task dependencies through
proprietary programming models (such as AMD ATMI [12], CUDA Graphs [93], OpenMP
Tasks |15], etc.), which will then be enforced by the runtime. The main benefit of task-based
execution is that: (1) kernel launch overhead can be significantly reduced by collectively
launching groups of kernels as a whole [12,93] or by launching a persistent kernel which

process tasks that enter its work queue [20]; and (2) dependent tasks can begin executing

48



as soon as their data dependencies are met. However, to gain these benefits, existing GPU
applications must be refactored into these proprietary task-based programming models.

In this chapter, we propose BlockMaestro, which provide the benefits of task-based
execution using existing SIMT programming models (such as CUDA or AMD HIP) and
avoids the need for heavy code modification. The key insight behind BlockMaestro, is that
kernel pre-launching and fine-grained inter-kernel data dependency resolution achieves the
benefits of task-based execution models. By pre-launching dependent kernels, we are able to
mask kernel launch overheads. To enforce correctness, thread blocks (TBs) of pre-launched
dependent kernels are not executed until thread block-level data dependencies are resolved.
Inter-kernel thread block data dependencies between neighboring kernels (which we denote
as parent and child kernels, K, and K., respectively) can be represented as bipartite graphs
as illustrated in Figure[3.1] The entire GPU application can then be represented as a series
of these bipartite graphs, collectively representing a task graph. We present a “Thread
Blocks as Tasks” tasking paradigm that leverages the SIMT programming model’s property
where grids of thread blocks are inherently tasks with explicit input/output through global
memory as defined in kernel launch parameters.

Therefore, the key to achieving the benefits of task-based execution is to automat-
ically extract and enforce these bipartite dependency graphs while pre-launching dependent

kernels. In short, this chapter makes the following contributions:

e We propose kernel pre-launching in order to mask kernel launch overheads of depen-
dent kernels. In addition, we introduce command queue reordering to increase the

opportunity for kernel pre-launching.
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Figure 3.1: Data shared by the kernels constitutes dependencies among their TBs, shown
as a series of bipartite graphs.

e We leverage compiler support to extract inter-kernel data dependency of existing
GPU applications without the need for programmer intervention. The well-defined
structure of GPU applications provided by the SIMT programming model allows us

to extract data dependencies in the form of bipartite dependency graphs.

e We propose solutions to resolve fine-grained data dependencies between inter-kernel
thread blocks. This ensures the correctness of pre-launched kernels and enables depen-

dent thread blocks to start executing as soon as their data dependencies are satisfied.

In Section 3.2} we will provide background and motivate BlockMaestro. Next,
we will explain the implementationd details of BlockMaestro in Section We will then

present the results of our evaluation in Section [3.4
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3.2 Background

3.2.1 GPU Execution

API calls and command queue: In GPU applications, the host calls a series of API
functions to interact with the GPU. Common API calls include kernel launch, memory
transfer to/from the host, synchronization, etc. All API calls are sent to a command queue
(also known as Stream in CUDA and HIP terminology) for processing. The API calls (also
known as Fuvents) are serialized in the command queue with only one event being processed
at a time. Therefore, only a single kernel may be executing from a single command queue.
To support concurrent execution of independent kernels, kernels can be issued to multiple
command queues and it is possible to synchronize kernels across command queues through
complex synchronization events.

From the host’s point-of-view, not all API calls are blocking. By default, memory
operations, such as memory allocation and transfer to/from the GPU, are synchronous
(blocking), and kernel launches are asynchronous (non-blocking). Therefore, when the
host launches a GPU kernel, the host can continue to execute code, but it must explicitly
synchronize and wait until the GPU kernel has completed before using the kernel’s output.
Therefore, the programmer should be aware of any dependencies between the host and the
GPU, including read-after-write (RAW), and ensure proper synchronization.

Compiling GPU programs to assembly: GPU programs are typically written in high-
level languages, such as CUDA, OpenCL, or HIP. During the compilation process, these
programs are translated into assembly. For example, HIP is compiled into GCN assembly

and CUDA is compiled into PTX, a form of intermediate language (IR), which is then just-

o1



in-time (JIT) compiled at kernel-launch-time into SASS assembly. Depending on the target
GPU and the language used, there is an offline compilation stage (HIP to GCN, CUDA to
PTX) and potentially a second just-in-time compilation stage (PTX to SASS). The just-
in-time compilation stage enables further optimization because additional parameters at
kernel-launch-time, such as thread block size and grid size, are known and can be further
optimized.
Kernel launch overheads: Due to the complexity in launching a computation kernel
on the GPU, kernel launch overhead is not negligible. Prior works have found that each
kernel launch can incur an overhead of 5 —30us [8,55]. To make matters worse, many GPU
applications are also scaling in complexity and size. For example, modern machine learning
frameworks that utilizes GPUs for compute-heavy operations (such as convolution) can
incur hundreds of kernel calls as ML models grow. Many workloads also require significant
synchronization which are implemented implicitly as kernel calls. Towards this end, many
prior works have explored how to reduce kernel launch overheads [28]/40./55}/74]. (See Section
for details of prior works.)

Another common approach to reduce kernel launch overheads is to port programs
in the SIMT programming model into a task-based programming model. Task-based run-
times can avoid kernel launch overheads and dynamically resolve data dependencies between

tasks, for example, by using persistent kernels to process tasks in the work queue.

3.2.2 Task-based execution model paradigms

Many task-based programming models allow programmers to specify series of op-

erations (tasks) and the dependencies between them. Existing task-based programming
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models can be categorized broadly as following a “Tasks as Kernels” or “Tasks as Thread
Blocks” paradigm. We will detail each paradigm and discuss the strength and weaknesses
of each, and propose a new “Thread Blocks as Tasks” approach.
“Tasks as Kernels”: In this paradigm, tasks in a task graph are mapped to kernels.
For example, AMD ATMI [12] and CUDA Graphs [93] allow users to define kernels and
the dependencies between them. To alleviate the effects of kernel launch overheads, these
frameworks aim to identify common static operation graphs consisting of many kernels and
consolidate the kernel launch into a single task graph launch. While these frameworks can
lower the overhead from kernel launches, they fail to take advantage of fine-grained data
dependencies that exist between kernels. For example, thread blocks in a dependent kernel
may be ready to execute due to satisfied dependencies from thread blocks from the kernel
before it, but cannot begin execution until their kernel is launched. Therefore, to handle
these dependency-stalled thread blocks, finer-grained tasking paradigms are warranted.
“Tasks as Thread Blocks”: A finer-grained approach to task-based execution is to map
and execute tasks in a task graph as thread blocks. These task graphs can be defined by
the programmer using a variety of task-based programming models [8,20}25],46,148] which
defines tasks and their dependencies. At a high-level, these GPU task-based runtimes
resolve dependencies between the tasks and then send ready tasks to a job queue, where
they are processed by a persistent kernel. By using a persistent kernel approach, kernel
launch overheads are avoided.

This fine-grained dynamic dependency resolution, along with persistent kernel,

can reduce the amount of dependency-stalled tasks waiting for execution. However, there
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are runtime overheads with task management and require significant programmer effort
to map algorithms into new task-based programming models. Specifically, it requires the
programmer to have domain-specific knowledge of the algorithm and be able to decompose
the steps and express it in the form of a task graph.
“Thread Blocks as Tasks”: The goal of BlockMaestro is to enable the benefits of task-
based execution models with minimal programmer intervention. At the core of every task-
based programming model is the ability to define a task graph for execution. Towards
this end, we propose a “Thread Blocks as Tasks” paradigm where, instead of programmers
defining tasks which are mapped and executed as thread blocks, we extract and derive
tasks and task graphs from the existing thread blocks in the SIMT programming model.
We take the view that grids of thread blocks are essentially tasks with explicit input/output
through global memory as specified in kernel launch parameters. We leverage the properties
of multi-kernel GPU applications in order to build a task graph from a series of bipartite
dependency graphs (essentially, a decomposed task graph). To alleviate the overhead of
kernel launch overheads, we propose pre-launching kernels before their dependencies are met
and relying on dynamic data dependency resolution in hardware to enforce dependencies.
This effectively removes the kernel launch overhead from the critical path by masking the
kernel launch.

Towards this goal, our main challenges in achieving this new tasking paradigm are:
(1) How to identify and extract inter-kernel thread block-level data dependency to derive
task graphs? (2) How to reduce kernel launch overheads? and (3) How to dynamically

resolve task data dependencies in a lightweight manner?
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Task partitioning limitations: In order to re-map applications into task-based
execution, the problem space must be partitioned into tasks. The tasks can be partitioned
either statically based on the algorithmic properties of the workload (for example, pipeline
stages in image rendering) or dynamically based on the input data. For example, CUDA
Graph can record and capture a static task graph of kernels executing across streams. This
operation is time-intensive and, in essence, profiles the workload to create a static graph
which executes repeatedly. Static task graphs are not well-suited for workloads which are
input-dependent. For example, a sparse solver might require an input sparse matrix that
changes with each kernel call, rendering a static task graph from the previous run obsolete.

Typically, input-dependent task graphs require run-time information in order to
partition tasks. Due to this, it is difficult to extract task graphs from existing applications
in our proposed framework. Thus, the goal of BlockMaestro is to demonstrate the ability
to extract static fine-grained task graphs, similar to CUDA Graph, in order to provide
programmer-transparent task-based execution. We explore the ability to handle input-

dependent task graphs in Chapter [4]

3.3 BlockMaestro

3.3.1 Overview

In this section, we present BlockMaestro, which enables programmer-transparent
support for the “Thread blocks as Tasks” tasking paradigm on GPUs. BlockMaestro consists

of three main components: (1) extracting fine-grained inter-kernel data dependencies from
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Figure 3.2: Baseline execution model suffers from high kernel launch overheads, dependency
stalls and resource under-utilization. BlockMaestro’s key insight is that kernel launch hiding
and inter-kernel data dependency resolution can enable the benefits of task-based runtimes
without the programmer burden. Kernel launch overhead is displayed as a vertical bar.

existing GPU applications; (2) kernel pre-launching to mask kernel launch overheads; and
(3) dynamic inter-kernel data dependency resolution to ensure correctness of pre-launched
kernels. Combined, these techniques allow GPU programs written in existing SIMT pro-
gramming models to gain the benefits of task-based execution without the overhead of
proprietary task-based programming models.

Figure illustrates the operation of BlockMaestro. In this illustrative figure,
we show the launching of four kernels, K1 to K4, along with their corresponding thread

blocks (labeled 0-2 for K1, 3-6 for K2, 7-8 for K3; blocks omitted for K4). The vertical bars
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Figure 3.3: Overview of BlockMaestro.

represents each kernel’s launch overhead. Figure shows the execution timeline of the
baseline GPU where kernel execution are serialized. In the baseline scenario, inefficiencies
exist due to kernel launch overheads and dependency-stalled thread blocks resulting in GPU
under-utilization. For example, even if K2:5 and K2:6 have already completed, K3:8 cannot
start until all of K2 has completed.

To alleviate these issues, task-based runtimes allow programmers to express task
execution by dynamically creating tasks and specifying their dependencies. This allows
blocks to begin executing whenever dependencies are satisfied and can avoid kernel launch
overheads with persistent kernels. In task-based runtimes, K3:8 would be able to execute
immediately once K2:5 and K2:6 have completed. To achieve the same goals, BlockMaestro
introduces kernel pre-launching and inter-kernel data dependency resolution to eliminate
kernel launch overheads and to enable overlapped execution of thread blocks from dependent
kernels, respectively.

Figure [3.2b] illustrates kernel pre-launching in order to hide the overhead of kernel

launches. After kernel K1 launches, BlockMaestro will pre-launch kernel K2. In order
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to enforce correctness and resolve data dependencies between K1 and K2, the thread block
scheduler conservatively blocks K2’s execution until all blocks from K1 has completed. While
kernel launch overheads are eliminated, dependency stalls and under-utilization of resources
can still exist.

To fully achieve the benefits of task-based execution, we further identify thread
block-level data dependencies that exist between pairs of dependent kernel (annotated with
arrows in the figure) at kernel-launch-time where just-in-time compilation occurs from PTX
to SASS. Figure illustrates inter-kernel data dependency resolution which utilizes the
thread block-level data dependency information between dependent kernel pairs. These data
dependencies are enforced by the thread block scheduler at run-time and are dynamically
resolved. This enables any ready thread blocks to begin execution, regardless of which
kernel they are running in.

Figure |3.3] shows the system overview of BlockMaestro. Data dependencies be-
tween inter-kernel thread blocks are acquired from just-in-time analysis at kernel launch
time when PTX code is compiled to SASS assembly. These dependency graphs are then
passed in the the hardware, where the dependencies are dynamically resolved. BlockMae-
stro further eliminates kernel launch overhead by enabling the application to pre-launch
dependent kernels at the same time, without the need for synchronization. Once the data
dependencies of any thread block from the dependent kernel are met, that TB will also be
eligible to be issued to the execution units.

In the remainder of this section, we will discuss how BlockMaestro will enable

kernel pre-launching and identify, represent, and enforce inter-kernel data dependencies.
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3.3.2 Identifying Inter-kernel Dependencies

In many task-based runtimes, task dependencies are specified directly by the pro-
grammer. Dependencies can be conveyed at high-level task-based programming models
such as CUDA Graph [93] or AMD ATMI [12], where programmers define a graph of opera-
tions. The key to BlockMaestro providing programmer-transparent support for the “Thread

blocks as Task” paradigm is to identify inter-kernel thread block-level data dependencies.

1) Identifying kernel-kernel dependencies:

Data dependencies between kernels occur in data residing in global memory. Due
to the SIMT programming model, the inputs and outputs of kernels are well-defined. Every
region in global memory used by kernels are allocated with API calls, such as cudaMalloc
in CUDA or hipMalloc in HIP. Load and store addresses can be identified through static
analysis of the kernel’s PTX or SASS code during the just-in-time compilation phase at
kernel launch time.

If a kernel is to read from or write to a region of allocated global memory, the base
pointer of the memory allocation must be passed to the kernel launch API. For memory
APIs, base pointers are similarly passed. Writes are cudaMemcpy host-to-device operations
and reads are device-to-host operations. Therefore, data dependencies between kernels and

API calls can be identified within the command queue in a fairly straightforward manner.

Handling arbitrary inter-kernel dependencies: BlockMaestro can support both linear and
non-linear patterns; examples of which are shown in Figure [3.4a)-(b). When issued, these
kernel launch commands would be serialized in the command queue. For example, for the

application in Figure [3.4(b), the kernel launch order would be K1 to K4. With multiple
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Figure 3.4: Example types of inter-kernel dependencies and dependency tracking required
for correctness. By enforcing in-order kernel completion we significantly reduce the amount
of dependency tracking required (solid lines) due to implicit dependencies (dashed lines).

kernels being able to run at a time, it is possible that kernels can complete out of order.
For example, K2 and K3 can execute concurrently but K3 can be shorter and finish before
K2. Therefore, to ensure correctness for K4 we would need to keep track of dependency
information for both K2 and X3 (Figure [3.4(c)(top)). This would require each dependent
child kernel to keep track of dependencies for arbitrary number of parent kernels. Clearly,
this is not scalable to arbitrary inter-kernel dependency patterns.

To simplify the amount of dependency tracking required, we enforce in-order kernel
completion. As shown in Figure [3.4fc)(bottom), even if K3 finishes, we do not mark it as
complete yet or else K4 will be incorrect. Instead, K3 will only be marked complete if K2 is
complete. This way, any dependencies of K4 on kernels prior to K3 are implicit (dashed lines)
and are guaranteed to be satisfied when K3 is complete. This greatly reduces the amount
of dependency tracking required (solid lines) and limits dependency tracking to consecutive

kernels.
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In addition, let us hypothetically assume K2 completes before K1, in-order kernel
completion would implicitly enforce the dependency between K3 and K1. Note that if K1
completes before K2, K3 can begin execution since there’s no explicit dependency between
K2 and K3, and K1 is implicitly satisfied if we only allow 2 kernels to concurrently execute.
Essentially, BlockMaestro allows out-of-order execution of kernels, while enforcing in-order
completion of kernels. While we trade-off some potential kernel overlapping opportunities
here, we gain the benefit of being able to scalably represent inter-kernel dependency using

a series of bipartite graphs between all kernel pairs.

2) Identifying thread block-level dependencies:

While kernel-level data dependency can enable kernel pre-launching (as shown
in Figure , it does not realize the full potential of task-based runtimes (as shown in
Figure . In order to achieve task-based runtime benefits, BlockMaestro needs to avoid
dependency-stalled thread blocks by enforcing thread block-level data dependency. By
enforcing inter-kernel data dependency at the granularity of thread blocks, we can overlap
the execution of thread blocks from dependent kernels.

BlockMaestro performs just-in-time compiler static analysis (at kernel-launch-
time) to identify read-after-write (RAW) dependencies in global memory. These RAW
dependencies are enforced at runtime by the thread block scheduler. The key to identifying
RAW dependencies at thread block granularity is to identify the array indexing that each
thread block touches.

In the CUDA programming model, programmers already specify the mapping of

threads to data by calculating indices deriving from indexing variables such as threadIdx,
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blockIdx, blockDim, etc. Using a simple vector add as an example, kernel maps threads to
an index in the array using int i = threadIdx.x + blockDim.x * blockIdx.x. Then,
each thread reads in an element in the arrays A[i] and B[i], and store the sum into C[i].
Arrays A[], B[], and C[] are passed into the kernel function after being allocated with
cudaMalloc. Based on the application’s data-flow graph, we can identify all loads and
stores in the program to identify the read and write sets, respectively.

To identify thread block-level read and write sets, we identify the indexing used
to access the loads and stores by extracting the index representation as a function of
parameters known at kernel-launch-time, e.g., A + 4 * (threadIdx.x + blockDim.x *
blockIdx.x). Each of these variables are known at kernel-launch-time, along with their
possible values. Therefore, we can perform wvalue range analysis to identify the range of

array indices that each TB will access and create a read and write set per TB.

Value range analysis: We implement and perform this value range analysis for indices in
load and store instructions per thread using the built-in PTX parser in GPGPU-Sim [16]
as shown in Algorithm Note that this algorithm is general enough that it can also be
performed on any compiler frameworks that supports PTX, such as GPUOcelot [43].

We perform a backward pass on the CFG representation of the kernel and identify
all global load and stores and track the origins of their source operands (lines 2-22). If
we encounter a source operand that originates from the result of another load (an indirect
memory access), we terminate and conservatively assume the entire kernel is dependent on
the previous kernel (lines 7-9). Otherwise, we know that all load/store source operands are

derived from known kernel-launch-time variables. Then given the kernel launch parameters,
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Algorithm 1 Pseudo-code of PTX static analysis

1: Find all global loads/store instructions in kernel K
2: for all I € instructions do

S = {sre(I)}

4 while S is not empty do

5: Go to the previous instruction j

6: if dst(j) € S then
7.

8

if j is a global load then
: END (Possible non-static dependency)
9: end if

10: Remove dst(j) from S

11: if sre(j) is in local register (e.g. not immediate) then
12: Add sre(j) to S

13: end if

14: end if

15: if j is first instruction then

16: Break

17: end if

18:  end while
{Value range analysis}
19:  for all t € Threads do

20: Add address(I) to load and store sets, Lx and Sk
21: end for

22: end for

23: Intersect Lx with Sx_1 to find TB RAW dependencies
24: ...

such as block and grid sizes, we perform the value range analysis to identify the read and
write sets of each thread block in the kernel (lines 19-21) and identify dependencies with
the intersect of the read and write sets (line 23) of neighboring kernels.

To identify the inter-kernel thread block-level data dependency, every kernel call
in the command queue is analyzed to obtain a read and write set. This kernel-launch time
analysis overhead is performed off the critical path and is masked by the proposed kernel
pre-launching technique. By comparing the read set of later kernels to the write set of earlier
kernels, the intersection of the sets will determine where the RAW data dependencies exist.
We create a dependency graph to represent data dependency where each node is a thread
block and an edge represents a dependency. Since the nodes can be divided into two disjoint

and independent sets (each belonging to a separate kernel), our dependency graph can be
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mov rl, ctaid.x mov rl, [B]

mul rl, rl, blk.x ld.global r2, [rl]
add rl, rl, tid.x add r2, r2, [A]
add rl, rl, [A] 1d.global r3, [r2]

ld.global r2, [rl]

Figure 3.5: Value range analysis can only be performed on static memory indexing derived
from variables known at kernel-launch-time (left). It is not possible to identify index ranges
with non-static accesses before runtime (right).

classified as a bipartite graph. Therefore, the dependency graph for the whole application

can be illustrated as a set of bipartite graphs, similar to Figure (3.1

Why JIT analysis and not compile-time? This analysis can only be done at kernel-
launch-time during just-in-time compilation from PTX to SASS as certain parameters are
only known at kernel-launch time. For example, the grid size is dependent on the input
data set. Similarly, blockDim (the number of threads in a thread block) and the range
of blockIdx (range determined by the grid size) are also known at kernel-launch-time.
The value range of these variables are unknown at compile-time (from CUDA to PTX)
and, therefore, value range analysis cannot be performed to identify thread block-level data
dependency. Furthermore, conducting this at kernel-launch-time from kernel API calls in
the command queue allows us to dynamically create bipartite dependency graphs which can

allow us to represent larger task graphs in a decomposed manner.

Limitations and other considerations: In this chapter, we focus on static memory analysis,
i.e., analysis of memory locations that are known before runtime. They can include device
variable addresses, immediate values, and kernel parameters. However, we cannot process

global accesses that derive from another memory value (such as A[B[i]]), pointer chasing,
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etc. Such instances are only known at runtime and would require runtime analysis, which is
out of scope of this chapter. Figure shows an example of static and non-static memory
locations for the global load instruction.

Note that even if the application makes use of Unified Memory, we can still iden-
tify read and write sets through value range analysis. Unified Memory are allocated with
cudaMallocManaged, so we know which global memory address range needs to be moni-
tored for RAW dependencies. Within the CUDA kernel, memory access occurs in the same

manner as non-Unified Memory.

3.3.3 Enabling Kernel Pre-launching

In this section, we will discuss the changes necessary to enable kernel pre-launching.
Overlapping is achieved by having future kernels launching before the completion of the
previous kernel. In order to accomplish this, we need to: (1) enable multiple kernels to be
simultaneously executed from a command queue; and (2) prevent certain CUDA API calls
from blocking the command queue or from blocking the issue of future CUDA APIs in order
to allow the command queue to fill.

To highlight the challenges in enabling kernel launch hiding, we will refer to Fig-
ure In Figure we show an example trace of CUDA API calls. When the host
executes the code and reaches a CUDA API call, it sends the call along with the necessary
data to a command queue (the default CUDA Stream[l). Common CUDA API calls are

to allocate memory, transfer data to/from GPU global memory and host memory, launch

!Note that we may use stream and command queue interchangeably. CUDA Streams is equivalent to
OpenCL command queue and AMD HIP Streams.
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Figure 3.6: Effect of API ordering in command queue on kernel launch hiding.

kernels, and device synchronize. Kernel calls are asynchronous (non-blocking) by default.
However, CUDA memory API calls are synchronous (i.e., host is blocked until the functions

return) and can cause limited opportunities for kernel launch hiding.

Handling blocking APIs: In order to maximize opportunities for kernel pre-launching, we
need to be able to have multiple kernel commands in the command queue. However, this
scenario can be prevented due to the blocking behavior of certain API calls. In the example
shown in Figure memory operations such as cudaMalloc and cudaMemcpy are blocking
the host. So as kernel K1 is executing, cudaMalloc(B) can be processed in parallel (CUDA
commands which use different hardware engines can be executed in parallel), blocking the
host until it completes. The host will have to wait until cudaMalloc(B) returns before
being able to issue cudaMemcpy(B) to the command queue. Depending on the length of

K1, this would prevent the opportunity for K1 and K2 to overlap, as K2 may not be called
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by the host until after K1 completes. Therefore, we need to be able to fill multiple kernel
commands in the command queues to maximize kernel pre-launching opportunities.

We can overcome this issue by treating certain blocking operations as non-blocking.
Since BlockMaestro can resolve dependencies in the hardware, we can shift the burden of
implicit synchronization to the hardware. The only API call requiring implicit synchroniza-
tion to be enforced is when there is a RAW hazard with the host, e.g., a cudaMemcpy call
from device to host. Explicit synchronization API calls, such as cudaDeviceSynchronize,
can also be bypassed as long as no call after it incurs RAW hazard with the host. As long
as data is not modified on the host, but only in the GPU, we can enforce correctness of
implicit synchronization in the GPU.

Note that asynchronous memory APIs are used by programmers when program-
ming with CUDA Streams. If the target application already utilizes CUDA Streams, then
the command queue is already filled and is not an issue. BlockMaestro can also seamlessly
support pre-launching in CUDA Stream-based application by overlapping kernel launches
within the same stream. The only other consideration is to handle cudaStreamSynchronize
in a similar manner to cudaDeviceSynchronize for API commands within the same stream.
While BlockMaestro can generalize to support CUDA Streams, the remainder of the paper
focuses on single default stream applications which experience worse kernel launch overheads

and under-utilization issues.

Programmer-transparent API command reordering:  Figure shows the state of the
command queue after all the CUDA APIs are called. Commands in the queue are implicitly

ordered which can cause orderings that limit the amount of kernel launch hiding. For
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example, as K1 is launched and executing, we cannot proactively pre-launch K2 as the
cudaMalloc and cudaMemcpy commands must complete first. One potential solution to
maximize kernel launch hiding is to identify the true data dependencies between APIs in
the command queue and reorder the commands to maximize kernel launch hiding. This is
achieved by moving the kernel launches as close as possible. Figure shows such an order
that still satisfies the data dependencies between API calls. Kernels can then be launched
if memory could be allocated to them. Otherwise, they will have to wait until resource

becomes available.

Enabling multiple kernels to execute from the same command queue: In the baseline,
kernel commands are blocking in the command queue. That is, only a single kernel from
a command queue can be running at a time. Therefore, one modification that we require
is to let the command queue process multiple kernel commands at once. This feature
is already available in NVIDIA Hyper-Q which enables multiple kernel commands from
different streams (with our modification, from the same stream). In our experience, we
find that enabling the execution of only 2-3 kernels per command queue is sufficient to
completely overlap kernel launches.

To enforce correctness and resolve data dependency between two running kernels
in the same command queue, we rely on the thread block scheduler to enforce the second
dependent kernel to only begin executing after it has detected that the first kernel has
completed execution. This way, the second kernel’s launch overhead overlaps with the first
kernel’s execution. If the kernels are independent (no data dependency exist between them),

then the independent kernel can begin executing right away. Otherwise, data dependencies
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are enforced by the hardware. Later in this section, we will discuss in detail how the thread
block scheduler can enforce inter-kernel data dependencies. Note that all thread blocks
in the current kernel can be executed in an out-of-order fashion. However, BlockMaestro

enforces the completion of the parent TBs before starting their child TBs from the next

kernel.
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its dependency list is read
from the memory.

Figure 3.7: TB scheduling example in BlockMaestro. Inter-kernel thread block-level depen-
dencies are maintained using a dependency list and parent counter.

3.3.4 Enforcing Inter-kernel Dependencies

Inter-kernel dependency is enforced using a dependency list representing the bi-
partite dependency graph. In BlockMaestro, the dependent kernel owns the dependency
list. We use this information in the hardware to enforce inter-kernel dependency through
the use of a Dependency List Buffer and a Parent Counter Buffer. We will first illustrate in

Figure how BlockMaestro uses these structures to enforce dependencies and then detail
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Figure 3.8: Examples of common dependency patterns between TBs from adjacent kernels

architectural support. Recall that we only need to keep track of dependencies between
consecutive launched kernels. Thus, we illustrate using two kernels and then will discuss
how to generalize to support multiple pre-launched kernels.

Let us assume we have a GPU that can execute 4 TBs at once. The dependency
list stores the bipartite dependency graph which is indexed by the thread block ID of a
parent kernel (K1) and contains a list of dependent child kernel (K2). For example in (a),
TBO of K1 is a dependee of TB0O and TB1 of K2. The parent count table keeps track of how
many pending dependencies are outstanding for the child kernel. For example, TB1 of K2
is dependent on two thread blocks in the parent kernel.

The initial state of the example is shown in (a) with K1 launched and K2 pre-
launched. K1 is the first kernel, and so it has no dependencies. Thus, the device can start
scheduling TBs 0-3 as shown in (b). After TBO finishes, the remaining TB from K1 starts.
At the same time, children of TBO are read from the dependency list (TBO and TB1 from
K2), and their respective parent counter decrements, making TBO from K2 ready to execute
once there are available resources in the SM. Soon after, TBs 1-3 from K1 also finish, allow-

ing TBs 1 and 2 from K2 to be ready for scheduling (c).
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When TB 4 from K1 finishes (d), K1 is marked as complete, K2 is now the des-
ignated parent kernel, and we shift our attention to the next pre-launched kernel K3. In
(e), we now show the dependency list of K3 which specifies the dependencies in K2 and the
parent counts of pending dependencies for K3. As the TBs of K2 continue executing, we

follow the same scheme as in parts (b)-(d) where K3 will begin executing (f).
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Figure 3.9: Supporting TB scheduler architecture.

1) Architectural Support:

Figure depicts the proposed supporting hardware for the TB scheduler. When
the device receives a kernel from the host, the dependency list and initial parent counters are
stored in global memory. Thus, for every (pre-)launched kernel the GPU needs to keep track

of the dependency list base address and parent counters base address in global memory. To
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minimize the amount of global memory access, we include a Dependency List Buffer and
Parent Counter Buffer in the thread block scheduler. The dependency list buffer keeps
track of dependencies of actively executing thread blocks and the parent counter buffer
keeps track of child thread blocks’ pending unresolved dependencies.

When a thread block is scheduled for execution the thread block’s entry in the
dependency list is buffered in the dependency list buffer. Then the entry is read to identify
the child thread blocks. If an entry does not already exist in the parent counter buffer,
we allocate an entry and fetch the child thread block’s parent counter value. Since the
information in this dependency list and parent counter entry is not needed until the thread
block finishes execution, this buffering process is off the critical path.

When a TB completes, we identify every child TB ID with the dependency list
buffer and index into the parent counter buffer to decrement the parent counts. When a
parent count hits 0, the corresponding child TB is now ready for execution. We deallocate
an entry in the dependency list buffer when a parent TB completes and we delallocate an

entry in the parent counter buffer when that child TB is selected for execution.

Resolving dependencies of multiple kernels: 'This design is easily scalable to support resolv-
ing dependencies of multiple running (pre-)launched kernel execution by simply appending
bits to the thread block ID to represent the relative kernel IDs. For example, in order to
resolve the dependency of 4 kernels, we can append 2 bits to the thread block ID as a kernel
identifier. This kernel identifier is incremented whenever a new kernel is launched and wraps
around to 0 when saturated. Since we only need to track dependencies between neighboring

kernels, the kernel identifier is essentially the least significant 2 bits of the kernel ID.
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Scheduling policies: BlockMaestro can support several scheduling policies across kernel
TBs. By default, BlockMaestro gives more priority to the TBs in the producing kernel.
TBs in the consuming kernel will not be scheduled until all producing kernel’s TBs has
been scheduled. It is also possible to give priority to the TBs from the consuming kernel.
This will enable more opportunity to concurrently execute dependent kernels and improve
utilization by essentially allowing more TBs to run ahead.

Note that these policies does not face any deadlock issues for any producer kernels
under synchronization events. For example, the producing kernel can be deadlocked if some
TBs are waiting on a barrier but other TBs cannot be scheduled since the consuming kernel
is taking up resources and starving the producer kernel. This scenario does not occur since
we will never fully starve a producer kernel to the point of deadlock. In the worse case
scenario, eventually the consumer kernel TBs will face unmet dependencies which will allow

the producer kernel to schedule, thus, avoiding any permanent deadlock.

3.3.5 Representing and Storing Inter-kernel Dependencies

We utilize a buffer in the TB scheduler to store the dependency list of the parent
kernel. To reduce the amount of storage, we can take advantage of the dependency patterns
among the kernels themselves to encode them. These patterns are rarely arbitrary, since the
code is usually written to globally load and store the data using a large number of threads,
e.g., each thread loading a block. Therefore, by analyzing the pattern, the graph can be

stored on the device in an encoded fashion, which can greatly reduce the memory usage.
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’ P# ‘ Pattern ‘ Overhead ‘
(1) Fully connected O(1) (O(MN) without encoding)
(2) | n-group fully connected O(M + N)

3) 1to-1 (M = V) O(N)

(4) 1-to-n O(M + N)

(5) n-to-1 O(N)

(6) Overlapped O(N + M.degmaz)
(7) Independent O(1)

Table 3.1: Hardware overhead w.r.t. dependency pattern between K1 of size N and K2 of
size M thread blocks.

Table displays the additional memory overhead that BlockMaestro would uti-
lize for a graph with N parent TBs and M child TBs on the hardware. Even though it can
be more difficult for a random dependency graph, the overhead can be drastically reduced
by detecting specific patterns that can usually occur among the kernels (some shown in
Figure and using encoding to reduce the requirements.

For example, for a fully connected pattern, a single bit is enough to signal the
GPU to simply prevent the consuming kernel from running until the producing kernel is
finished. For the n-group case, TBs parenting the same child TBs could be encoded to
be grouped together in the memory as well, all TBs in the same group referring to one
location containing the child TB group, hence O(M + N). For 1-to-n, every TB from K2
(with M TBs) is mapped to a single parent TB, hence O(M). In 1-to-n, each parent TB
has exclusive child TBs, i.e., no child TB is shared between two parents. In the overlapped
pattern, parent TBs can share multiple child TBs. Therefore, the overhead will be O(N)
plus O(M) times the maximum degree of a child TB.

In addition, if the dependency resolution yields little benefits for the execution

speedup, e.g., too large a dependency degree, the device can ignore the fine-grained depen-
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dency resolution and treat the kernels as if they are fully connected, as it is shown in Figure

[3.13] (it will be discussed further in Section [3.4)).

’ Name ‘ Description ‘ # Kernels ‘ P# ‘
3MM [49] 3 Matrix Multiplications 3 (2,7)
AlexNet [64] AlexNet network 22 (1,3,4)

BiCG Sub Kernel of
BICG [49) BiCGStab Linear Solver 2 (7)
2D Finite Different
FDTD-2D {49 Time Domain 24 (5,7)
FFT [37] Fast Fourier Transform 60 (3,5,7)
GAUSSIAN |[26] Gaussian Elimination 510 (4,5)
Gram-Schmidt
GRAMSCHM 9] Decomposition 192 (1,4,5)
HS [26] Hotspot 10 (6)
LUD |[26] LU Decomposition 46 (3,4,5)
Matrix Vector
MVT {9) Product and Transpose 2 (7)
NW [26] Needleman-Wunsch 255 (4,5)
PATH [26] Path Finder 5 6)

Table 3.2: List of benchmarks used, number of kernels, and type of dependency pattern

exhibited (See Table [3.1).

3.4 Evaluation

3.4.1 Methodology and benchmarks

We use a modified version of GPGPU-Sim v3.2.2 [16] as our baseline, with a Titan
X Pascal-like configuration with 28 SMs, each able to run up to 32 TBs at once, though
BlockMaestro should generalize to any SIMT architecture. Greedy-then-oldest (GTO) warp
scheduling policy is used [108]. For kernel launch overhead calculations, we have used the
average baseline launch overhead of 5us from [55]. As shown in Table we evaluate

against various applications from Rodinia [26], PolyBench [49], SHOC [37], and Tango
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Figure 3.10: Normalized speedup w.r.t. baseline.

benchmark suites, which cover a wide-range of multi-kernel applications from different

domains.

3.4.2 Results

Speedup:  Figure [3.10] shows the amount of speedup achieved by BlockMaestro with
respect to the baseline. For reference, we have included the ideal baseline case with no
kernel launch overheads (bar on right of each stacked bar). Kernel Pre-launching uses no
synchronization APIs, but enforces the dependency by not allowing any consumer kernel
TBs to schedule until all producer kernel TBs have completed. In addition, there is Producer
Priority, which adds the fine-grained dependency resolution and gives scheduling priority to
producer kernel’s TBs. We have also included Consumer Priority which allows 2, 3, and 4
concurrently running kernels corresponding to 1, 2, and 3 pre-launched kernels, respectively.

This consumer priority scheme prioritizes the consumer kernel’s TB for scheduling.
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We see an average speedup of 51.76% using producer priority. With consumer
priority, it can be seen that increasing the number of pre-launched kernels can increase the
mean speedup to 80.28%. However, we observe diminishing returns with more than 3 pre-
launched kernels. This behavior can be best explained by the degree of TB data dependen-
cies that exist between kernels. Workloads that most benefit from more pre-launched kernels
require significant number of kernels in an application and with less connected data depen-
dencies. For example, AlexNet has significant fully-connected dependencies while LUD has
only 1-to-1/1-to-n/n-to-1 dependencies which are amenable to TBs running ahead.

Certain applications, such as GAUSSIAN and GRAMSCHM, experience signifi-
cant speedup from just kernel pre-launching (and no thread block-level dependency resolu-
tion). These workloads tend to have large number of kernels, each of which finishes fast.
Therefore, kernel launch overhead is the major bottleneck alleviated.

Other benchmarks, such as 3MM, BICG and FDTD, gained most of their benefit
from fine-grained dependency resolution with simple producer priority scheduling. These
workloads tend to have data dependencies that are easier to satisfy and captures more
benefit with only two kernels active. Sometimes their kernels are independent and able to
run in parallel. Thus, more TBs can be ready to run and advance the application’s progress.
Utilization: This increase in utilization can also be seen in Figure which displays
the increase in normalized average TB concurrency with respect to the baseline. Workloads
which are more compute-intensive with kernels consisting of hundreds or thousands of thread
blocks, such as AlexNet, tend to suffer less from the overheads of kernel launches. Therefore,

these workloads benefit less from kernel pre-launching alone but still sees an increase in TB

77



W Baseline BProd. Priority BCons. Priority

w

no
3

N

Normalized Avg TB Concurrency
=
ol

05 o) = Py H
5 oS F
QY’ QQ}’

Figure 3.11: Normalized average TB concurrency w.r.t. baseline.

concurrency due to fine-grained TB dependency resolution. We still observe that AlexNet
achieve speedup of 6.9%. It can be seen that more number of kernels along with simpler
dependency patterns can produce more opportunities for overlapped kernel execution and
utilizing the resources on the device more efficiently.

Figure[3.8| showcases various examples of basic patterns in data dependency of TBs
from the child kernel K. on those from its parent kernel K, which can be extracted from
the PTX code. As the dependency pattern gets more complicated, it becomes more difficult
to take advantage of. The fully connected pattern in Figure is the worst-case scenario
and is functionally the same as a synchronization barrier between the kernels. Therefore,
the opportunity to speed up the application via execution overlapping ends with kernel
launch overhead hiding. However, simpler patterns offer a greater opportunity, since after
the execution of each TB in the producing kernel, TBs from the consuming kernel become

ready for execution faster, which means more utilization of the resources on the GPU.
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Figure 3.12: Dependency stall distribution normalized to TB execution time.

Dependency Stall Distribution: Figure [3.12] displays a distribution of the amount of
dependency stalling each TB in an application is going through during the execution. Recall
that dependency stalled thread blocks are dependent thread blocks that has dependencies
that are satisfied but cannot execute yet due to its kernel not yet started. The box plot
borders designate the first and third quartiles of the distribution, with the line in the box
representing the median. In addition, the values are normalized to each TB’s execution
time. For example, a value of 2 for a TB means that that TB has waited for double the
amount of time it would spend executing on the GPU.

As we can see, BlockMaestro can visibly decrease the amount of dependency
stalling for most of the TBs in the applications. However, in some cases where the GPU
capacity for TB execution is full, some of the remaining TBs in a dependent kernel will have
to wait more than their peers to be run, increasing their stalling, as is shown in the case of
AlexNet. Also, note that the two kernels in BICG and MVT can run in parallel in Block-
Maestro, hence their dramatic stall reduction. These workloads are also reflective of CUDA
Sterams benefits since independent kernels that can concurrently execute exists. However,
CUDA Streams will not be able to be used with concurrently executing non-independent

kernels. These results demonstrate that BlockMaestro can gain the benefit of executing
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independent concurrent kernels across streams automatically, while also extracting benefits

for more complex dependency patterns.

3.4.3 Overheads

Inter-connectivity Analysis: In Figure [3.13] we demonstrate the effect of the degree of
dependency that exist between inter-kernel thread blocks and kernel size on the speedup
of a microbenchmark based on VectorAdd with two equal-size kernels. In this application,
there is a simple 1-to-1 dependency pattern between the two kernels by default. Each
line represents the workload size (number of TBs in one kernel). During each workload,
we increase each TB’s dependency degree by artificially introducing dependencies between
the kernels in the form of an n-group fully connected pattern. For example, a degree of
4 signifies that the first 4 TBs from K1 are dependent on the first 4 TBs from K2, etc.,

resulting in a 4-to-1 dependency pattern.

—><1024 TBs -<¢-512TBs -—a—256TBs -8-128TBs —o—64 TBs

13

Speedup

L ﬁ—/
1 2 4 8 16 32 64 128 256 512 1024
Degree of dependency per TB

Figure 3.13: Interconnectivity analysis for BlockMaestro. The x-axis shows the size of each
TB’s dependency group.

80



It can be seen that the benefits we can get from dependency resolution begin to
quickly deteriorate once the average dependency degree passes a certain threshold, in our
case deqg = 32. After this point, the speedup benefits reflect that of a fully-connected
dependency graph.

In addition, the speedup we get even before this threshold decreases as the number

of TBs in the kernels grow and ceases to exist by the time the workload size is 2048.
With more TBs running in a kernel, the most resources a kernel require and limits the
opportunity for pre-launched kernels to run-ahead. We leverage our insights on how the
inter-connectivity of the dependency graph to minimize hardware overheads.
Area overhead: BlockMaestro mainly introduces a dependency list buffer and a parent
counter buffer. Since the dependency list buffers actively running TBs, we require 28 x 32 =
896 entries. We similarly set the number of parent count buffer entries to the same. For
each dependency list buffer entry, we choose to store 4 child TBs per entry. We aggressively
choose a narrower entry since most workloads can be described by a dependency pattern.
Thus, the encoding can derive child TB IDs. For the rarer scenario where we cannot encode,
we will utilize the 4 child TBs per entry. If we require a wider entry (as it exist in global
memory) we can simply split the wider entry across multiple entries in the dependency list
buffer.

Each index into the dependency list buffer and parent counter buffer (representing
the TB ID) is 32 bits + 2 bits for kernel identification. Each child TB ID in the dependency
list buffer is 32 bits since kernel identification can be computed. Since we see diminishing

return with greater levels of inter-connectivity (greater than 64-to-1), we use 6 bits for the
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parent counter. Anything higher and we conservatively encode to fully connected without
much loss to speedup. In total, we require a storage overhead of about 22KB, in addition
to control logic.

Memory Request Overhead: Figure shows the impact of BlockMaestro on the
memory requests. Buffering the dependent list information from the memory can incur
a request overhead in the order of O(V). As it is seen, BlockMaestro’s average memory

request overhead is only about 1.36%.
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Figure 3.14: Memory request overhead for BlockMaestro.

Bipartite Dependency Graph Storage Overhead: Table displays the amount of
storage used for the entire run of each application normalized with respect to the case where
no encoding is used, i.e., plain storage. As it is observed, the average storage is reduced by
34.7%. (Note that BICG and MVT are excluded here since their kernels are independent

and, therefore, there is no memory storage used for them even without encoding.)
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’ ‘ Storage H ‘ Storage

3MM 0.210 AlexNet 0.012
BICG - FDTD-2D 1
FFT 1 GAUSSIAN | 1.77E-04
GRAMSCHM 0.375 HS 1
LUD 0.938 MVT -
NW 1 PATH 1
’ Average ‘ 0.653 H ‘

Table 3.3: Normalized total storage of bipartite dependency graphs for the entire application
run w.r.t. plain storage.

3.4.4 Comparative Results

Comparison to Task-based Execution Models and Dynamic Parallelism: Figure
showcases a comparison with CUDA Dynamic Parallelism (CDP) [89], a “Tasks as
Kernels” execution model, and Wireframe [§], a “Tasks as TBs” execution model. Wire-
frame requires the programmer to specify task dependencies using a proprietary API and
relies on hardware dependency resolution. Essentially, Wireframe represents multi-kernel
workloads into a single mega-kernel with tasks mapped to a TB. CDP represents each task
as a device-side kernel launch, avoiding much of the overhead of host-side kernel launches.
For a direct comparison with prior works, we have used the benchmarks in [§]; six appli-
cations with wavefront dependency pattern of 4K tasks. In other words, each kernel has
an overlapped dependency pattern with its predecessor, and the number of TBs gradually
grows until the middle of the dependency graph, where it starts to decline.

The widely used CDP kernel launch latency model [134] is based on Kepler and
estimates a CDP kernel launch overhead of 20us, significantly greater than modern host-

side kernel launch times (5us) [55]. Therefore, we model CDP’s kernel launch latency as
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Figure 3.15: Comparison with existing “Task as Kernel” (CDP) and “Task as TBs” (Wire-
frame @ task-based execution models.

3us by removing the kernel launch API call overhead (2us) from the host-side kernel
launch time.

Figure shows the normalized speedup of our comparison normalized to CDP.
BlockMaestro with producer priority achieves only 5.8% speedup. Wireframe achieves a
geomean speedup of 36.8% due to its ability for tasks to run-ahead up to three waves (levels
of dependencies). This enables more tasks to run and utilize the GPU. To that end, we
evaluate BlockMaestro with consumer priority to enable tasks to run-ahead. With this, we
observe speedup of 2x.

We found that Wireframe’s reliance on size-constrained hardware task manage-
ment buffers (i.e., pending update buffers) can actually limit the amount of tasks that can
run. Since BlockMaestro’s dependency resolution can update task states stored in global
memory, our execution is not constrained to increase GPU utilization, but at the cost of

slightly higher memory traffic as shown in Figure This successfully demonstrates the
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benefits that BlockMaestro is able to achieve the benefits of task-based execution models

without programmer intervention.

3.5 Related Work

Task Dependency: CUDA Dynamic Parallelism [89] enables device-side kernel launches
to support dynamic kernel launches. This amortizes kernel launch overheads and allows
tasks to dynamically spawn on the GPU. However, there are significant drawbacks such as
limited levels of recursion [§]. Since CUDA 10, CUDA Graphs 93] allows the user to define
a dependency graph between different kernels, perform optimizations on the whole graph
during its instantiation, and execute it many times. It also lets the user capture a series of
multi-stream operations and convert it into such a graph. CUDA Graphs can reduce the
kernel launch overhead, since the kernel initializations are done together. However, it still
does not address the GPU under-utilization during the execution of dependent kernels.
AMD has also added support the expression of dependencies among GPU “task
groups” for years |12]. The authors in |[103] use an asynchronous task-based paradigm to
express three well-known applications as directed acyclic graphs (DAG) [34] on the Het-
erogeneous System Architecture (HSA) [45]. In [104], the same authors note the problem
of queue oversubscription from parallel tasks, and propose a mechanism to prioritize the
critical path in the task graph. In BlockMaestro, the priority is to finish the TBs from the
producer kernel first in a step to potentially add more consumer kernel TBs to the ready TB
pool. Kaushik et al [65] target hyperplane sweep kernels, which have a wavefront-like depen-

dency pattern and are essential in solving some partial differential equations. To improve
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the kernel’s performance, it is fine-grained into smaller tasks. To improve the throughput,
dependent tasks communicate through special packets, thereby resolving the dependencies
within the GPU. Adaptive Task Aggregation (ATA) [54] has been proposed as a software
solution to reduce the overhead of irregular applications, specifically sparse solvers, through
fine-grained task scheduling. The tasks can be assigned to a compute unit even before their
parent tasks are complete, hence avoiding the launch overhead.

Task Scheduling: There have been various works on GPU task scheduling. Juggler [20]
employs a software-based runtime using persistent threads (PT) for single-kernel GPU work-
loads with data dependencies, trading synchronizations with scheduling through a DAG.
The authors in [17] also target irregular algorithms and propose a framework to predict
and set the TB resources dynamically through the use of a hardware-based table to track
the used resources by all TBs. The authors in [70] propose overlapped kernel execution
through a modified host code paradigm, obtaining the memory access information using
compiler-generated profiler kernels and storing them on the GPU’s reference count table a
TB scheduler with the goal of maximizing parallelism. In [58], the authors seek to overcome
the memory bottleneck in GPU applications by proposing a reuse-aware thread block sched-
uler to exploit data reuse between the kernels with producer-consumer data dependencies
in mind, the majority being dependencies between TBs with the same ID from the two
kernels (“self-dependencies”), as well as using work stealing to minimize load imbalance.
PAVER [125] presents a hybrid TB scheduling method by measuring data locality among
each kernel’s TBs, scheduling them based on a heuristic method to reduce cache thrash-

ing, and performing task stealing to reduce load imbalance towards the end of each kernel.
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LocalityGuru [126] uses JIT analysis to improve the data locality during the execution of
GPU kernels, and aims to add support for non-static memory loads as well. Note that
BlockMaestro does not target load imbalance directly. However, by enabling and managing
the scheduling of TBs from an additional kernel, the SMs have more TBs to run, reducing
under-utilization.

There have also been works focused on optimizing the CPU-GPU pipeline. Ver-
sapipe |148| offers a flexible framework for the user to write GPU applications whose execu-
tions are more pipeline-oriented. Unlike in our proposal, here the programmer would write
the operations for each stage, and Versapipe would assemble the stages together to improve
the computation performance on the GPU. GOPipe [96] builds on VersaPipe and introduces
a system to automatically determine the granularity of a task in a stencil program’s pipeline
without user intervention and dynamically schedule them on the device. HiWayLib [149]
targets CPU-GPU pipeline communications for heterogeneous applications by identifying
and remedying prominent problems in the communication, such as the slow data movement

between the devices and contention among the GPU threads.

3.6 Conclusion

In many applications today, there are a large number of kernels, which can in-
cur high launch overheads. In addition, a significant part of the GPU’s resources could
remain unused due to data dependencies between the kernels, which can also lead to under-
utilization. Solutions have been proposed in prior works to solve such problems, but they

also require significant programmer intervention.
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In this chapter, we have proposed BlockMaestro, a software-hardware solution
in order to hide the effect of kernel launch overheads as much as possible and manage the
execution of thread blocks in a more fine-grained manner by tracking their data dependencies
in hardware in order to enforce correctness. Our solution also increases GPU utilization
during a GPU kernel execution while incurring a small memory overhead. By using this
paradigm, we have observed an average speedup of 51.76% with producer priority scheduling
policy (up to 2.92x) in various applications.

However, as it was seen, BlockMaestro is unable to process kernels with non-static
accesses and when encountering them, reverts to the default coarse-grained synchronization
to ensure output correctness. Such accesses in an application are not uncommon, prompting
us to look for a more generalized alternative.

In the next chapter, we propose SEER, an ML-based framework in an effort to
estimate a kernel’s memory read /write addresses, so they can be used to create a dependency

graph usable for fine-grained dependency management frameworks such as BlockMaestro.
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Chapter 4

SEER: Estimating Runtime Data

Dependencies in GPU Applications

4.1 Introduction

Since their inception, GPGPUs have been the best choice in massively parallel
computations. Therefore, the greatest focus in GPGPU design is usually on improving
the computational power, and more recently, the energy consumption, especially for mobile
devices. However, it is also imperative to pay attention to other aspects of the GPU workflow
as well in order to maximize the benefits.

As mentioned before, GPU applications are getting more complex, requiring the
user of a fine-grained task scheduling paradigm to have an increasing knowledge of the
algorithms used in the kernels, and even the dependency patterns between them if necessary.

However, it is possible to alleviate this burden through compiler and just-in-time (JIT)

89



analysis of the code used in the kernels. In the previous chapter, BlockMaestro was proposed
to reduce programmer intervention via JIT analysis of static memory accesses in the code
at kernel-launch-time, using read/write memory addresses accessed in adjacent kernels to
derive inter-kernel dependency graphs for fine-grained thread block (TB) scheduling, leading
to performance improvement while maintaining the correctness of the output.

However, it is impossible to merely use the kernel codes to derive the entire set
of memory accesses when some of them depend on runtime values, i.e., non-static accesses.
Sometimes, the kernel contains indirect memory accesses, which use indices related to an-
other memory load, i.e., memory data which can only be resolved at runtime. In some cases,
the load instruction could be on a branch with a condition derived from in-memory data. In
some works, the user feeds the required data to the analyzer before running a kernel [102].
However, due to the way GPUs are structured and programmed, there is a possibility that
some of these memory addresses could be estimated.

Inspired by prior works in load prediction value (LVP) techniques [78,79,/100,/113,
117] and related machine learning (ML) works [21,/53], we have developed SEER, an ML
framework seeking to determine the read and write sets of a specific GPU kernel by analyzing
each global load and store instruction, the pattern of all the instructions leading to them,
and other factors. To motivate the problem, we will first explore if a relationship could
possibly exist between known and unknown values in kernel code. Then, we implement
and train SEER on various kernels of different sizes in order to learn in-kernel instruction
patterns and estimate the read and write sets related to each global memory operation. Its

outputs could then be used to create dependency graphs of adjacent kernels which could be
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fed to a fine-grained TB scheduling paradigm, such as BlockMaestro, in order to improve
the GPU performance and utilization for various GPU applications, including those with

non-static memory accesses.

4.2 Background

4.2.1 PTX Analysis

As mentioned before, in order for the GPU code to run on the device, the code has
to be compiled into an intermediate representation (IR) format, which is independent of the
GPU architecture, and then further compiled at kernel-launch-time into SASS, an assembly-
like language, into an architecture-specific code which the GPU can execute. SEER uses
PTX (parallel thread execution) [95] as the IR code.

If needed, TBs across kernels can only use global load and store instructions in
their kernel to pass data to each other through the global memory. Therefore, to find
the dependency graph between adjacent kernels, we need to find such instructions in both
kernels and their access pattern according to each TB. Global load and stores usually use

the generalized format below (data types are left out):

1ld.global out_data reg, [ld addr+offset]

st.global [st_addr+offset], in_data reg

where offset is a constant, 1d_addr and st_addr are the load/store addresses, and in_data_reg

and out_data_reg are the destination and source operand values for the global load and
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store instructions respectively. Each address is made of a base address, which can be given
to the GPU as a kernel argument, and an index, which could be a function of kernel param-
eters, such as thread ID, block ID, and /or memory data. Kernel parameters and arguments
are transferred to the GPU at kernel-launch-time. Therefore, the base address can be de-
termined before runtime. On the other hand, the index can potentially be unknown before
runtime, since in-memory data cannot be known for certain until the kernel start executing
the code. This is why BlockMaestro is unable to determine the read/write sets of the ker-
nels using non-static memory accesses. However, it could be possible to estimate some of
the accesses by observing the code structure and prior executions, and predicting the next
likely addresses accordingly, especially if a correlation can be observed between a non-static

memory access and other code elements.

4.2.2 Challenge

In order to estimate read and write sets for a kernel, we have to know if there
could be a relationship between known variables (prime variables) and unknown variables
(indirect variables) in the first place. To show this possibility, we will use one of the kernels
from breadth-first search (BFS), one of the well-known applications from Rodinia [26] where
the access patterns are irregular and indirect memory accesses exist in its kernels.

Figure shows the code in the first of the two kernels used in BFS. In this
application, two kernels are called in every iteration in order to traverse the input graph.
Most of the load and store instructions used in this kernel are shown to the right of the

figure. The dependencies among these instructions are displayed in Figure |4.2]in the form
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Figure 4.1: Code of the first kernel in BFS, which contains indirect memory accesses (left)
and its most relevant load (orange) and store instructions (blue) in the PTX representation
along with information such as PC (right). (Numbers used for easier referral.)

of a tree. It can be seen that tid, a prime variable, is used to determine array elements,
which are then used as indices themselves, namely i and id, which are indirect values. The
main challenge here is to see if there could be a relationship between them and the prime
values so they could be speculated.

In order to see a correlation, we used GPGPU-Sim [16] to extract the addresses
and values from each global load and store in the aforementioned BFS kernel during a run.
The extracted data are then converted into a correlation matrix, which is comprised of
values between —1 and 1. The further an element is from 0, the more correlation exists
between the PCs in the row and column intersecting in that location.

Figure indicates the correlation matrix of the addresses and values from differ-
ent instructions in the kernel (indicated by their PC values). It can be seen that there might
be a significant correlation between values and/or addresses that seemingly share little con-

nection (marked on the figure). For example, it shows that there is a very strong correlation
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Figure 4.2: Dependency tree of load and store instructions in the BFS kernel.

between the addresses in 0x50 (Instruction (1)) and 0xFO (Instruction (5)), which use tid
and i respectively. Based on the code itself, i is derived from g_graph nodes[tid], which
does not necessarily correlate with tid itself. However, based on the correlation matrix,
such a connection could be assumed, and possibly, even be predicted to some extent.

Now that we see that such a relationship could be possible, we will now seek a
more generalized method to speculate non-static, as well as static, memory accesses. In
SEER, we use machine learning with the end goal of predicting read and write addresses
per thread block in a kernel in order to estimate inter-kernel data dependencies among the
application TBs. This way, we can additionally estimate runtime dependencies in order to

improve the performance and better utilize GPU resources.
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Figure 4.3: Correlation matrix of global load and store values and addresses in different
PCs in the second BFS iteration. (The suffixes _v and _a after each PC represent the
instruction’s value and address respectively.)

4.3 SEER

One of the most important objectives in SEER is obtaining a good estimation of
the read and write sets of each kernel by TB. This allows us to extract the dependency
graph between adjacent kernels with more certainty. The base addresses in a GPU code are
known at kernel-launch-time and can be extracted from the kernel code and its parameters

at launch. Therefore, the focus of the address extraction will be the indices in the code.

4.3.1 Framework

Using Python, We have developed a framework in order to be able to analyze PTX
code in order to extract the context for a certain operation and the necessary instruction-,
basic block- and kernel-level information that can be used in training. Inspired by GPGPU-
Sim , the framework is able to perform symbolic execution on various GPU kernels in
order to extract their expected read and write sets on the TB level, which can be used to

train the SEER model. The instruction lookup table can also be easily modified for future

95



opcodes both for symbolic execution and the ML model. For the latter, there is an entry
reserved for unknown instructions so the model can continue the prediction until the opcode

table is updated. As for the indirect memory accesses, input memory traces can be used.

4.3.2 Model archtecture

In order to extract the address offsets, we used PyTorch [99] to develop the ML
network shown in Figure[4.4] As it can be seen, there are two main parts in our network: the
embedding layer, and the fully-connected (FC) layers. In the beginning, the PTX code from
the kernel is analyzed, and its global load (LD) and store (ST) operations are extracted.
Provided to the network are also the kernel parameters, thread block ID, and other related

information. Each global LD/ST is processed individually by SEER.

Opcode
Representation
Input PTX
o
Code + . = - o c
Oplist [ & Closest context ops to 3 3 3 - g offset
Context Info Val b=} target LD/ST op + Values S 5 = = 5
T M o Shlo Shfo 2o 2 a Access
= = aff= arl® et ap 5 Probability
7 a N
uEJ 3] ° 5 £ List
< < < IS
y Target .
Extract > Global #T + -
Information LD/STop | Kernel & TB T3
+Context | Information
Accessed
Address

Set

Figure 4.4: Network architecture for SEER.

4.3.3 Code representation

First, the target LD/ST is fed to the embedding layer, along with a list of opcodes
which, along with the target instruction, constitute a chain of dependency (also context

instructions). The embedding layer acts as a look-up table, and is responsible for converting
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a set of IDs into a corresponding set of vectors. The aforementioned indices represent
opcodes used in the PTX representation. An example of context instructions is shown in
Figure[d.5] Here, the address for the global load instruction (1d.global) comes from an add
instruction, which in turn has two arguments, each coming from a separate instruction, etc.
This goes on until the entire chain of dependency is constructed for the target 1d.global.
Then the target instruction and all its context ops are put in a list and mapped to a unique
1D, reserved for that opcode, which will be used by the embedding layer. For the uses of
the SEER network, the list fed to the embedding layer is capped at 30 instructions, with

nop (opcode for no operation) filling the remaining spots.

add 1

m Extract opCOde
Id.param to ID 23
_>

Context Ops

add 1

movtid 24

@ | mov | | mov | mov 12

Figure 4.5: Example of context operations for a global load instruction.

Note that for special cases, a dummy opcode is used to distinguish it from the
other use cases of the same opcode (the dummy is not part of the actual instruction set).
For example, in the figure, there is a move instruction (mov) which uses thread ID (tid) as
input. Since this operand might be consequential in determining TB read/write sets, the
opcode is represented with a dummy opcode movtid in the embedding table to separate
it from the other mov that uses an immediate value (0), which would not include as much

useful information.
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4.3.4 Fully-connected layers and output

The embedding layer outputs a matrix made of vector representations of all context
opcodes (zero vector for nop). The matrix is then concatenated with each op’s related
information from the PTX, e.g., the immediate values they use, offsets, etc. After that, the
output is flattened, concatenated with the kernel and TB information, normalized, and fed
to a series of fully-connected layers. In order to mitigate the effect of overfitting (following
the training data too much), a dropout feature is added to all FC layers except the output
layer. An activation function has also been used by each layer to be able to learn more non-
linear patterns; T'anh for the first three layers, and sigmoid for the final layer. Currently,
the output layer uses a width of 26 = 65536.

In order to obtain the set of accessed memory addresses, we use the network for
a multi-label classification problem: classifying each of the address offsets as one of either
‘accessed’ and ‘not accessed’ group. The sigmoid function maps all its inputs to values
between 0 and 1, which can show the probability of each offset being accessed. In addition,
binary cross-entropy (BCE) loss has been used for the training process, which evaluates
how close the predicted output values are to the expected output (in our case, an array of
0’s and 1’s). During the evaluation of the model, the peaks in the output are selected as 1’s
and the rest as 0’s. The list would then be added to the base address associated with the

target LD /ST instruction to produce the final read/write set for each TB in the kernel.
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Figure 4.6: Recall of LD address prediction.

4.4 FEvaluation
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from the Rodinia [26] and PolyBench [49] benchmark suites in order to train our model.
To evaluate our model’s read/write set accuracy, we use recall and precision as metrics.
Recall shows how much of the positives in the ground truth have been correctly identified
(true positive vs. false negative), while precision shows the percentage of the correct iden-
tifications in the model’s output itself (true positive vs. false positive). In our evaluation,
being classified as ‘accessed’ is treated as a positive output. It is also noteworthy to discuss
the impact of each metric in this evaluation. Having a low precision means that a large

percentage of the output is not actually accessed by the TB, which, if used for fine-grained
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Figure 4.7: Precision of LD address prediction.

TB scheduling, can potentially lead to extra edges in the dependency graph and a lower
speedup. On the other hand, having a low recall means that a great portion of the accessed
addressed have not been detected, and this, in the dependency graph scenario, can result
in some edges being removed erroneously, affecting the very correctness of the application’s
output. Therefore, for our purpose, even though precision is important, recall is considered
a greater priority.

Figure and Figure [£.7) display box chart distributions of the global load recall
and precision of each TB from various kernels obtained from our trained model. It can
be seen that the model is predicting the load addresses to some extent based on the PTX

codes of each kernel, its parameters, and the global load’s context. However, there are also
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Figure 4.8: Recall of ST address prediction.

many mispredicted addresses, as signified by the much lower precision. Similarly, Figure
and Figure [£.9] show the same box chart distributions for global store instructions.
It can be seen that the numbers are much lower compared to global loads, which could
stem from less training due to less global store operations compared to global load ops.
The wider variety we have in the kernels in our training set, the harder it becomes for
our network to learn all the patterns for each of them. Better results could entail with
more training data, hyperparameter fine-tuning, more training epochs, improvements to
the network architecture and code representation, using LSTM or attention layers, etc.
We also used some of the read/write sets obtained by SEER to generate depen-

dency graphs between kernel pairs, and compared them with the baseline, as shown in
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Figure 4.9: Precision of ST address prediction.

Table [.1] It can be seen that, for the most part, the model is constructing fully connected

dependency graphs.

4.5 Related Work

Load Value Prediction: Load value prediction has been used in CPU-related literature
for decades. Before the rise of ML in modern computing, hardware tables were one of
the methods used to predict values. In [79], the authors used an LVP table to keep track
of load operations and update their status for each of them continuously depending on
the prediction’s success and based on previously seen values, with categories including

unpredictable, predictable and constant. It also used a verification table to replace loads
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Kernel Pair ‘ Total Nominal Edges | Missed Edges | Redundant Edges

3MM, (1 < 2) 0 0 23400
3MM, (2 <+ 3) 2601 0 20808
MVT, (1 < 2) 0 0 256
VectorAdd, (1 <> 2) 8 0 56
FDTD2D, (1 < 2) 0 0 0
FDTD2D, (2 < 3) 480 0 65056
Hotspot, (1 < 2) 16512 16512 0

Table 4.1: SEER dependency graph statistics comparison vs. baseline

with constants if it met the requirement, invalidate the data in the table with a store
operation, and demote a load value to predictable if its prediction failed. Its operation
required the some bandwidth from the memory. In [78], they describe a method to run data-
dependent serial programs in parallel through prediction of register values. Theoretically,
it is possible to attempt load value prediction through machine learning, combined with
symbolic execution, to estimate the read and write sets of a kernel. However, with GPUs
consisting of numerous threads to keep track of, the amount of data used in comparison
to CPUs, and the notion that we would be trying to learn the memory values rather than
potential memory addresses, we decided to take the multi-label classification approach.

ML & Code Representation: In order to process code using machine learning for various
tasks, our model must understand the code to some extent. Therefore, an embedding
layer is used to differentiate between different syntactic structures, such as opcodes. There
have been a variety of code-to-vector representations used in literature [10,11}33,121}/129].
Sometimes the code is transformed into IR and then into a graph so as to retain control flow
and/or data flow information. Some works also use the source code for extra benefit [52].

NCC [21] uses the code in the form of a contextual flow graph (XFG), a mix of control flow
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graph (CFG) and data flow graph (DFG), for a number of classification tasks. Sometimes,
the embedded information is fed into an RNN/LSTM network to learn sequences. This can
be used to classify specific patterns in a code, such as malicious code detection [524(80,/143].

Machine learning has also been used for memory pre-fetching [53,116]. In [53], in
order to address the memory bottleneck in program execution, the authors propose a model
to predict what addresses to pre-fetch and load into the cache. They offer two models to
this end: an embedding LSTM model to predict and pre-fetch the top 10 predictions; and
an LSTM with clustering, where they create a vocabulary of common addresses during the
training, model local context, cluster the address space and use k-means to determine the
output. However, SEER targets GPUs and aims to work on the TB level rather than the

kernel.

4.6 Conclusion

In this chapter, we propose SEER, an machine learning-based framework towards
the end goal of predicting global load and store addresses accessed by a thread block in a
GPU kernel using its PTX code representation and kernel parameters. The resulting read
and write sets can then be used to detect a fine-grained dependency graph between two
kernels in an effort to run them more efficiently using existing state-of-the-art fine-grained
task scheduling paradigms, such as BlockMaestro.

Our results indicate that it is possible to detect the addresses to a certain extent.
However, more work is required in order to improve the results and minimize false positives

in our read and write sets, such as fine-tuning hyperparameters, more efficient network
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architecture, better code representation and training on more data. The resulting framework
could then be confidently used in order to minimize user intervention in determining fine-
grained data dependencies among different kernels, even those containing non-static memory

accesses.
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Chapter 5

Conclusions

There is a growing trend for execution efficiency of data-dependent workloads on
GPUs. Despite great support for massive data parallelism, traditional GPU architectures
lack a decent support for handling data-dependent applications. Unnecessary coarse-grained
inter-kernel synchronizations and numerous kernel launch overheads in GPU applications
can further take away from a GPU’s potential for a better performance. This dissertation of-
fers several related methods in an effort to take advantage of an application’s data-dependent
design and, through a combination of fine-grained dependency support on the hardware and
increased programmer transparency on the software, provide a greater speedup and more
GPU utilization for a multitude of applications and dependency patterns.

In Chapter 2, we proposed Wireframe, a hardware-software solution which enables
the expression of data dependencies in an application through conversion to a single-kernel
format utilizing a dependency graph defined by the user, combined with a specialized level-

bound TB scheduler, in order to increase the speedup of several GPU applications with a
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wavefront dependency pattern. However, it had several disadvantages, such as a significant
user burden to have knowledge of an application’s algorithm, re-write the code in a special
format, and provide it with a dependency graph, which can become tiresome with more
complex, irregular, and larger workloads.

In Chapter[3] we proposed BlockMaestro, which utilizes static JIT analysis in order
to extract data dependencies between adjacent kernels at kernel-launch-time, minimizing
the user’s intervention in the process. In addition, by pre-launching multiple adjacent
kernels, it masks the kernel launch overhead within the execution of the previous kernels.
Finally, using a fine-grained TB scheduler, it is able to keep track of the said kernels and
execute TBs as soon as their dependency requirements are met. However, it was only able
to process kernels with only static dependencies, i.e., dependencies that are known before
runtime. Therefore, in the case of a kernel with non-static memory accesses, it would revert
to the traditional coarse-grained dependencies for that kernel.

In Chapter [d we proposed SEER, an ML framework trained in an effort to predict-
ing a kernel’s read and write address sets by the TB by analyzing a kernel’s code structure,
allowing it to estimate its access pattern even if it includes non-static memory accesses. It
detects each global load and store instruction in a kernel, extracts their related information
and context, including other instructions and parameters, and finally uses a deep neural
network to estimate the kernel’s address sets, which can then be used to construct the

dependency graph between adjacent kernels.
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Future work

There are numerous ways to improve the work done in this dissertation. For
example, the SEER model can be improved both by fine-tuning hyperparameters and tuning
the model’s architecture. Furthermore, when the model is accurate enough for a significant
number of applications, it can be included on the hardware to perform prediction on-chip,
making it faster. However, such a change would also require a failsafe mechanism in the
case a prediction was incorrect, leading to a TB being issued prematurely. The solution
should be able to rollback a running TB’s execution and re-run it once its requirement are
found to be met. New challenges will be introduced with the passage of time. However,
by continuously presenting novel and efficient upgrades and solutions on both the hardware
side and the software side, it is possible to keep improving data-dependent parallelism in

GPUs.
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