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Wildfires have become more frequent and intense due to climate change and outdoor 
wildfire fine particulate matter (PM2.5) concentrations differ from relatively smoothly 
varying total PM2.5. Thus, we introduced a conceptual model for computing long-term 
wildfire PM2.5 and assessed disproportionate exposures among marginalized communi-
ties. We used monitoring data and statistical techniques to characterize annual wildfire 
PM2.5 exposure based on intermittent and extreme daily wildfire PM2.5 concentrations 
in California census tracts (2006 to 2020). Metrics included: 1) weeks with wildfire 
PM2.5 > 5 μg/m3; 2) days with non-zero wildfire PM2.5; 3) mean wildfire PM2.5 during 
peak exposure week; 4) smoke waves ( ≥ 2 consecutive days with > 15 μg/m3 wildfire 
PM2.5); and 5) mean annual wildfire PM2.5 concentration. We classified tracts by 
their racial/ethnic composition and CalEnviroScreen (CES) score, an environmental 
and social vulnerability composite measure. We examined associations of CES and 
racial/ethnic composition with the wildfire PM2.5 metrics using mixed-effects models. 
Averaged 2006 to 2020, we detected little difference in exposure by CES score or racial/
ethnic composition, except for non-Hispanic American Indian and Alaska Native pop-
ulations, where a 1-SD increase was associated with higher exposure for 4/5 metrics. 
CES or racial/ethnic × year interaction term models revealed exposure disparities in 
some years. Compared to their California-wide representation, the exposed populations 
of non-Hispanic American Indian and Alaska Native (1.68×, 95% CI: 1.01 to 2.81), 
white (1.13×, 95% CI: 0.99 to 1.32), and multiracial (1.06×, 95% CI: 0.97 to 1.23) 
people were over-represented from 2006 to 2020. In conclusion, during our study 
period in California, we detected disproportionate long-term wildfire PM2.5 exposure 
for several racial/ethnic groups.

wildfires | particulate matter | environmental justice | American Indian or Alaska Native | California

Wildfires—anticipated to lengthen, strengthen, and expand due to the changing climate 
across the globe, including California (CA) (1–6)—produce extreme short-term fine partic-
ulate matter (PM2.5) concentrations and lead to elevated long-term average exposures. For 
example, Sacramento, CA, logged the planet’s worst 24-h average PM2.5 levels (263 μg/m3)  
during the 2018 Camp Fire (7, 8). Partially driven by wildfire smoke, the 2018 annual 
average PM2.5 concentration in Sacramento, CA (12.7 μg/m3), exceeded the United States 
Environmental Protection Agency’s (US EPA) annual standard of 12 μg/m3. Moreover, 
while most of the United States has experienced steady declines in ambient PM2.5 concen-
trations since 2000, wildfire smoke has reversed this trend in the Western United States (9). 
Wildfire-prone parts of the Western United States have seen average concentrations of 
wildfire PM2.5 increase by > 5 μg/m3 between 2006 to 2010 and 2016 to 2020 (10).

Wildfires have substantial societal impacts. Studies report associations between elevated 
short-term wildfire PM2.5 exposure and higher risk of adverse health outcomes, particularly 
respiratory disease (11–17). Further, >0.5% of all-cause deaths in 749 cities worldwide 
appear attributable to short-term wildfire PM2.5 exposure (15). The epidemiological lit-
erature addressing the health impacts of wildfire smoke has focused on short-term expo-
sures almost exclusively (18–20). Yet, given the increasing frequency and intensity of such 
climate-sensitive exposures, assessing the possible health consequences of long-term inter-
mittent and repeated wildfire exposure has become a pressing issue.

The US EPA describes the relationships of long-term total PM2.5 exposure (from all 
emission sources) with cancer, respiratory outcomes, and nervous system outcomes as 
likely causal, and the relationship with cardiovascular disease and all-cause mortality as 
causal (21). Virtually all epidemiologic studies contributing to the US EPA conclusions 
on the health impacts of long-term PM2.5 estimated exposure based on average long-term 
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PM2.5 concentrations. This may miss spikes in PM2.5 generated 
by episodic, short-lived events, like wildfires. Over the long term, 
wildfire PM2.5 concentrations are zero-inflated with low exposure 
in most months and high peaks of concentrations on some days, 
resulting in an annual average that does not reflect people’s expe-
riences of sporadic wildfire PM2.5 exposure. The nature of con-
temporary wildfire PM2.5 concentrations requires novel metrics 
to accurately capture the exposure pattern.

Researchers lack an agreed-upon framework to measure long- 
term wildfire PM2.5 exposure, hampering exposure and health stud-
ies of this increasingly important PM2.5 source. To date, studies of 
long-term wildfire air pollution often ignore the unique spatiotem-
poral patterning of wildfire PM2.5 concentrations. Many studies 
have defined exposure as a binary yes/no based on whether a par-
ticipant lived near a major fire (22–25). Some have estimated 
wildfire-related air pollution exposure for a single wildfire event or 
season (26–30). To our knowledge, only two studies evaluated the 
relationship between long-term ( ≥   1 y), time-varying wildfire PM2.5 
concentrations and adverse health effects (31, 32). In their study 
on childhood exposure and mortality, Xue et al. estimated average 
wildfire PM2.5 concentration over various time periods (e.g., month 
of health outcome, 12 mo prior, in utero, etc.), and observed no 
association between average 12-mo prior or life-long wildfire PM2.5 
concentrations and risk of infant or child mortality across multiple 
countries (31). Yu et al. reported associations between two-year 
average (lag0-1) wildfire PM2.5 concentrations and risk of all-cause 
and site-specific cancer mortality in Brazil (32).

New models of daily wildfire PM2.5 exposure make it possible to 
calculate alternative metrics that capture intermittent and variable 
wildfire PM2.5 concentrations (10, 33–35). Between 2016 to 2020, 
an annual average of 16.4 million U.S. residents lived in places 
where ambient wildfire PM2.5 exceeded 50 μg/m3 on at least 1 d 
(10). Traditional exposure assessment focuses on three domains: 
frequency, duration, and concentration (36). Similarly, the health 
effects of wildfire exposures depend on a combination of factors, 
including how often (frequency), how long (duration), and at which 
levels (concentration) these exposures occur. Deriving metrics that 
capture these distinct exposure domains is crucial. The health out-
come of interest will dictate the most relevant metric. Cumulative 
exposure may be most appropriate for chronic disease outcomes 
like cancer, surpassed thresholds during sensitive developmental 
windows for birth outcomes, and spikes of exposure for acute res-
piratory effects.

In addition to biologically relevant exposure assignment for 
health studies of long-term wildfire PM2.5 exposure, exposure met-
rics matter for environmental justice (EJ) considerations. The White 
House Environmental Justice Advisory Council (WHEJAC) defines 
EJ communities as locations “with significant representation of per-
sons of color, low-income persons, Indigenous persons, or members 
of Tribal nations, where such persons experience, or are at risk of 
experiencing, higher or more adverse human health or environmen-
tal outcomes” (37). A body of literature finds disproportionate 
exposure to total PM2.5 (38, 39) in EJ communities. These dispar-
ities likely arose due to racial segregation and other forms of systemic 
racism (40). The impact of wildfire exposure on EJ communities, 
however, is mixed. Recent US nationwide studies of wildfire PM2.5 
have reported higher annual average wildfire PM2.5 concentrations 
among higher-income and non-Hispanic (NH) white populations 
(9, 10), while some older studies using threshold-based exposure 
metrics (e.g., annual wildfire PM2.5 > 1.5 μg/m3) identified EJ con-
cerns (41–43). Contradictory findings may be explained by 
year-to-year spatiotemporal variability in wildfire PM2.5 and the  
lack of consensus on best exposure metrics. Communities of color 
may face elevated wildfire PM2.5 concentrations as a result of 

displacement driven by rising urban housing costs (44), leading to 
relocation into suburban wildland-urban interface (WUI) areas, or 
due to historical forced residence on federal Indian Reservations 
(45). In recent decades, population growth in the WUI has far 
outpaced that of other regions (3) and, in California, census tracts 
affected by wildfire burn zones had increasing percentages of people 
of color from 2010 to 2020 (46).

Studies focused on outdoor wildfire PM2.5 concentrations likely 
underestimate actual exposure disparities. Socioeconomic disem-
powerment can constrain housing and personal protective, occu-
pational, and relocation choices. This may result in increased 
wildfire PM2.5 exposure via lower-quality housing with higher 
permeability to outdoor air pollution, inability to purchase and 
maintain air filtration systems, the need to continue work, even 
in unsafe conditions, and reduced ability to evacuate (47, 48). EJ 
communities face higher current total PM2.5 and other pollutant 
exposures and worse projected climate exposures (49) and effects 
(50) due to a confluence of socioeconomic and racialized margin-
alization. Yet the lack of consensus on best metrics of long-term 
wildfire PM2.5 exposure leaves a gap in our understanding of the 
degree to which wildfire PM2.5 disproportionately affects these 
communities over time.

The Present Study. Increasing trends and more ubiquitous wildfire 
PM2.5 exposures necessitate long-term exposure assessment to 
better understand implications for chronic health effects and EJ. 
Here, we introduce a conceptual model (Fig. 1) for measuring 
long-term outdoor wildfire PM2.5 exposure, summarize trends in 
exposure metrics, and apply these metrics in an EJ analysis in CA 
from 2006 to 2020. Our EJ analysis assessed whether certain racial/
ethnic or socioeconomic groups experienced disproportionate 
wildfire PM2.5 exposure during the study period.

Results

In this study, we evaluated five metrics of long-term outdoor wild-
fire PM2.5 exposure from 2006 to 2020 in 7,919 California census 
tracts. Across the study period, census tracts experienced medians 
of 7 wk (IQR: 5, 16; maximum: 76) with average weekly wildfire 
PM2.5 concentrations >   5 μg/m3, 292 d (IQR: 276, 416; maxi-
mum: 1,696) with wildfire PM2.5 concentrations >   0 μg/m3, and 
three smoke waves (IQR: 2, 8; maximum: 42). The median of 

Fig. 1. Conceptual model for how to assess long-term exposure to wildfire 
PM2.5. Our metrics capture aspects of three domains: frequency, duration, and 
intensity and we selected i = 1 (annual). Other researchers can vary certain 
parameters, for example, i could equal 1, 2, 3, etc. years; j, could equal 3, 
5, 10, 25, etc. μg/m3; k could equal 0, 1, 3, 5, etc. μg/m3. aWe defined smoke 
waves as the number of instances of ≥   2 consecutive days with >   15 μg/m3 
wildfire PM2.5, which was close to the study area and period 90th percentile 
of wildfire PM2.5 concentration on days with any wildfire PM2.5, similar to prior 
work by Liu et al. (41).
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mean annual peak week wildfire PM2.5 concentration was 4.5 μg/
m3 (IQR: 3.9, 11; maximum: 31), and the median of mean annual 
wildfire PM2.5 concentration was 0.21 μg/m3 (IQR: 0.18, 0.54; 
maximum: 2.4). Rural tracts (n = 121) had higher wildfire PM2.5 
concentrations compared to urban tracts (n = 7,798) over the 
study period (SI Appendix, Table S1), for example, experiencing 
higher median peak week average concentrations (12 μg/m3 vs. 
4.5 μg/m3) and higher median counts of smoke waves (7 vs. 1). 
Rural tracts that overlapped with federally recognized Tribal Lands 
(SI Appendix, Fig. S1) had the highest wildfire PM2.5 concentra-
tions (0.83 μg/m3 vs. 0.21 μg/m3 annual average in all tracts), 
while urban tracts that overlapped with federally recognized Tribal 
Lands had similar or lower wildfire PM2.5 concentrations than 
their non-Tribal counterparts (SI Appendix, Table S1 and Fig. S2).

Spatiotemporal Trends in Five Metrics of Outdoor Wildfire 
PM2.5 Exposure. We observed geographic, seasonal, and year-to-
year variability in exposure, with generally higher exposures in 
Northern California, summer and fall months, and 2008, 2018, 
and 2020 (Fig. 2 and SI Appendix, Figs. S3 and S4). Interestingly, 
distinct patterns emerged by metric. For example, annual average 
wildfire PM2.5 exposure and mean concentration during the 
annual peak week were consistently higher in Northern California, 
while the number of days annually with non-zero wildfire PM2.5 
concentrations was more evenly distributed across the state. When 
summarized across the study period, the Spearman correlation 
between the five metrics ranged from 0.81 (total days with non-
zero wildfire PM2.5 concentration and mean peak-week wildfire 
PM2.5 concentration) to 0.94 (mean annual wildfire PM2.5 
concentration and weeks with average wildfire PM2.5 > 5 μg/m3) 
(SI Appendix, Fig. S5). When summarized annually, the Spearman 
correlation between metrics ranged from 0 (total weeks with 
average wildfire PM2.5 > 5 μg/m3 and total smoke waves in 2010 
and 2011) to 0.97 (mean annual wildfire PM2.5 concentration 

and mean peak-week wildfire PM2.5 concentration in 2008). In 
the years with the highest mean annual wildfire PM2.5 exposures 
(2008, 2018, and 2020) vs. other years, Spearman correlations 
were higher, ranging from 0.74 to 0.97.

Descriptive Differences in Outdoor Wildfire PM2.5 Exposure by 
CES Score. Higher CES scores predominated in the Central Valley, 
parts of Southeast California, Los Angeles, Riverside, and the East 
Bay in the San Francisco Bay Area (SI Appendix, Fig. S6). When 
summarized over the whole study period, census tracts in the fourth 
quartile (disadvantaged communities) vs. the lower 3 quartiles of 
CES scores had similar long-term wildfire PM2.5 exposure, as 
measured by the five metrics (Fig. 3 and SI Appendix, Fig. S7). 
However, heterogeneities were observed by year of the study 
period. For example, in 2020, disadvantaged vs. non-disadvantaged 
communities (quartile 4 vs. 1 to 3 of CES score) had nearly the 
same 90th percentile peak-week wildfire PM2.5 concentration (56.7 
vs. 56.4 μg/m3) but a higher 90th percentile count of the number 
of weeks with average wildfire PM2.5 >5 μg/m3 (11 wk vs. 9 wk). 
Fig. 3B illustrates the spatiotemporal variability in exposure using 
the mean peak week metric. In 2020, many tracts in Northern 
California and the San Joaquin Valley experienced a dual burden 
of community disadvantage and high mean peak week wildfire 
PM2.5 exposure, while in 2007 such doubly burdened tracts 
were primarily located in Southern California and the South San 
Francisco Bay Area (Fig. 3 and SI Appendix, Fig. S8).

Descriptive Differences in Outdoor Wildfire PM2.5 Concentration 
by Racial/Ethnic Composition. The relationship between census 
tract racial/ethnic composition and wildfire PM2.5 exposure also 
differed over time (Fig.  4 and SI Appendix, Figs.  S9 and S10). 
Fig.  4A depicts the California-wide average census tract racial/
ethnic composition, with 41.6% NH white, 36.4% Hispanic, 
12.5% NH Asian, 5.9% NH Black, 2.6% NH two or more  

Fig. 2. Five metrics of census tract-levela outdoor wildfire PM2.5 concentration summarized from 2006 to 2020. (A) Number of weeks with average wildfire 
PM2.5 >   5 μg/m3; (B) Number of days with non-zero wildfire PM2.5 concentrations; (C) Average of mean daily wildfire PM2.5 concentration during the peak week; 
(D) Number of smoke wavesb; (E) Average of mean annual wildfire PM2.5 concentration. aMaps include 7919 census tracts; gray census tracts indicate missing 
sociodemographic data; these tracts were not included in analyses. bWe defined smoke waves as the number of instances of ≥   2 consecutive days with >   15 μg/
m3 wildfire PM2.5, which was close to the study area and period 90th percentile of wildfire PM2.5 concentration on days with any wildfire PM2.5, similar to prior 
work by Liu et al. (41).
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races, 0.5% NH American Indian or Alaska Native, and 0.6% 
other residents. When averaging from 2006 to 2020, NH white 
and NH American Indian and Alaska Native populations were 
disproportionately exposed as measured by all five metrics 
(SI  Appendix, Fig.  S10). However, different patterns emerged 
on a year-to-year basis and when using absolute vs. relative scales. 
Consider smoke waves in 2018 and 2020. On an absolute scale, 
the most exposed census tracts were predominately NH white 
in 2018 and Hispanic and NH white in 2020 (Fig. 4 D and E). 
On the relative scale, NH American Indian and Alaska Native 
residents were more disproportionately exposed in 2018 and 
2020 compared with other racial/ethnic groups (Fig. 4 H and 
I). In a secondary monthly level analysis restricted to 2020 (the 
year with the highest levels of wildfire PM2.5 exposure in our 
dataset), we observed varying exposure patterns by race/ethnicity 
(SI Appendix, Fig. S11). For example, disproportionate peak week 
wildfire PM2.5 exposure occurred for NH white populations 
in September and NH American Indian or Alaska Native 
populations in October.

In terms of relative exposure to annual mean wildfire PM2.5, NH 
American Indian and Alaska Native populations faced dispropor-
tionately high exposure every year compared to their statewide 
representation [relative risk (RR) ranged from 1.02, 95% CI: 1.00, 
1.04 in 2007 to 2.79, 95% CI: 2.70, 2.94 in 2012; 2006 to 2020 

mean = 1.68, 95% CI: 1.02 to 2.79] (Fig. 5 and SI Appendix, 
Table S2). In most years, NH white populations were also dispro-
portionately exposed (RR ranged from 0.99, 95% CI: 0.99, 1.00 
in 2007 to 1.32, 95% CI: 1.31, 1.32 in 2012, 2006 to 2020 
mean = 1.13, 95% CI: 0.99, 1.32) and multiracial (two or more 
races) populations (RR ranged from 0.97, 95% CI: 0.97, 0.97 in 
2007 to 1.23, 95% CI: 1.23, 1.24 in 2018, 2006 to 2020 mean = 
1.06, 95% CI: 0.97, 1.23). NH Asian, NH Black, and Hispanic 
populations generally had disproportionately low exposure (2006 
to 2020 mean NH Asian RR = 0.87, 95% CI: 0.66, 1.10; NH 
Black RR = 0.91, 95% CI: 0.74, 1.01; Hispanic RR = 0.91,  
95% CI: 0.76, 1.04).

Association between CES Score and Outdoor Wildfire PM2.5 
Exposure, Overall. Using linear and negative binomial regression 
models adjusted for year, population density, and census tract-
centroid latitude and longitude, we observed that averaged across 
2006 to 2020, no difference existed in long-term wildfire PM2.5 
exposure for 4 of 5 metrics comparing disadvantaged communities 
(census tracts that made up the highest quartile of CES score) to 
their non-disadvantaged counterparts (Fig. 6, orange estimates; 
SI  Appendix, Table  S2). Disadvantaged vs. non-disadvantaged 
communities had 0.3 (95% CI: 0.1, 0.4) more days with > 0 μg/m3  
wildfire smoke annually, averaged from 2006 to 2020.

2007

2020

A B

Fig. 3. Annual mean daily outdoor wildfire PM2.5 concentration during the peak week by CalEnviroScreen score in California from 2006 to 2020. (A) Temporal 
distribution of mean daily wildfire PM2.5 concentration during the peak week by CES quartilea; (B) Bivariate spatial distribution of mean peak week wildfire 
PM2.5 concentration and CES quartilea in 2007 and 2020. Higher CES scores indicate greater cumulative environmental and socioeconomic disadvantage. 
aCalEnvironScreen (CES) score data available from the California Office of Environmental Health Hazard Assessment: https://oehha.ca.gov/calenviroscreen was 
used to compute CES quartiles where quartile 4 indicates a disadvantaged community.
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Association between CES Score and Outdoor Wildfire PM2.5 
Concentration, by Year. The direction of the association between 
CES score and PM2.5 concentration varied annually. For annual 
average wildfire PM2.5 concentrations, quartile 4 vs. quartile 
1 to 3 CES scores were associated with higher concentrations 
during 9 of 15 y, lower concentrations during 3 of 15 y, with no 
difference during 3 of 15 y (Fig. 6E and SI Appendix, Table S3E). 
The magnitude of the differences was generally small (<0.1 μg/m3). 
The years 2016 and 2018 illustrate how census tracts with higher 

CES scores can have lower concentrations 1 y and higher during 
another. During 2016, disadvantaged communities (measured 
via CES) had higher exposure as quantified by all five metrics. 
In 2018, the opposite was true, and disadvantaged communities 
had lower exposure on all five metrics. For example, during 2018, 
disadvantaged vs. non-disadvantaged census tracts had 11.6 μg/m3  
(95% CI: −12.1, −11.1) lower wildfire PM2.5 concentrations 
during the peak week of exposure (Fig.  6C and SI  Appendix, 
Table S3C).

Fig. 4. Average absolute and relative census tract racial/ethnic composition by annual average count of smoke wavesa in California. Absolute racial/ethnic 
composition (A) overall in California using 2010 census data; and by annual count of smokes waves (B) on average from 2006 to 2020, (C) in 2016, (D) in 2018, 
and (E) in 2020. Ratio of the average percent of a racial/ethnic group exposed by annual count of smoke waves to the percent of the group in the state overall 
(F) on average from 2006 to 2020, (G) in 2016, (H) in 2018, (I) in 2020. The x-axis breaks are consistent across years with results restricted to the 99.9th percentile 
of annual smoke wave exposure (n = 8). Not all years had census tracts exposed to eight smoke waves, resulting in white space. aWe defined smoke waves as 
the number of instances of ≥   2 consecutive days with >   15 μg/m3 wildfire PM2.5, which was close to the study area and period 90th percentile of wildfire PM2.5 
concentration on days with any wildfire PM2.5, similar to prior work (41).

Fig. 5. Risk ratios and 95% CI for each racial/ethnic group for mean annual wildfire PM2.5 exposure by year, 2006 to 2020. A risk ratio greater than 1 (dashed 
line) indicates that racial/ethnic group j was over-represented among the exposed population, compared to their statewide representation, during year y and 
a risk ratio less than 1 indicates that racial/ethnic group j was under-represented among the exposed population, compared to their statewide representation, 
during year y. Solid colored horizontal lines and boxes represent the 2006 to 2020 mean risk ratio with 95% CI for each racial/ethnic group j. 95% CIs were 
calculated with bootstrapping. NH, non-Hispanic.

http://www.pnas.org/lookup/doi/10.1073/pnas.2306729121#supplementary-materials
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http://www.pnas.org/lookup/doi/10.1073/pnas.2306729121#supplementary-materials


6 of 12   https://doi.org/10.1073/pnas.2306729121� pnas.org

Association between CES Score and Wildfire PM2.5 Concentration, 
by Urban/Rural Status. In our secondary urban/rural stratified 
analysis, on average from 2006 to 2020, the CES score was associated 
with one metric in rural census tracts (weeks with average wildfire 
PM2.5 > 5 μg/m3) and one metric in urban census tracts (days with 
any wildfire PM2.5) (SI Appendix, Figs. S12 and S13). From 2006 
to 2020 in rural tracts, disadvantaged tracts had 0.9 (95% CI: −1.4, 
−0.4) fewer weeks per year during which average wildfire PM2.5 
exceeded 5 μg/m3 compared to their non-disadvantaged counterparts. 
Year by year, we continued to see variability in associations with 
urban tracts closely mirroring the main combined analysis and rural 

tracts following similar patterns but exhibiting higher-magnitude 
differences. For example, in 2020, urban disadvantaged vs. non-
disadvantaged census tracts (CES quartile 4 vs. 1 to 3) experienced 
an average of 4.7 (95% CI: 3.7, 5.7) more days with wildfire PM2.5 
> 0 μg/m3; in rural areas, disadvantaged tracts had an average of 
30.9 (95% CI: 15.9, 45.8) more days.

Association between Racial/Ethnic Composition and Outdoor 
Wildfire PM2.5 Exposure, Overall. In terms of racial/ethnic 
disparities in long-term wildfire PM2.5 exposure, we saw relatively 
limited and small differences in average exposure throughout the 

Fig. 6. Mean difference in long-term outdoor wildfire PM2.5 concentration in CES score quartile 4 (disadvantaged communities) vs. quartiles 1 to 3 averaged 
across 2006 to 2020 (orange) and during each year (black). (A) Number of weeks with average wildfire PM2.5 > 5 μg/m3; (B) Number of days with non-zero wildfire 
PM2.5 concentrations; (C) Average of mean daily wildfire PM2.5 exposure during the peak week; (D) Number of smoke wavesa; (E) Average of mean annual wildfire 
PM2.5 concentration. Points represent the average marginal estimate of the difference in long-term wildfire PM2.5 exposure between census tracts in quartile 
4 vs. quartiles 1 to 3 of CES score with lines (95% CI). The black horizontal dotted line at zero represents no difference in long-term wildfire PM2.5 exposure 
between high and low CES score census tracts. The orange horizontal dashed line represents the 2006 to 2020 mean difference in long-term wildfire PM2.5 
exposure measure. Models were controlled for census tract level population density in 2010 (natural spline with 8 degrees of freedom) and census tract centroid 
latitude/longitude (tensor product with 20 degrees of freedom). aWe defined smoke waves as the number of instances of ≥    2 consecutive days with >    15 μg/m3  
wildfire PM2.5, which was close to the study area and period 90th percentile of wildfire PM2.5 concentration on days with any wildfire PM2.5, similar to prior work 
by Liu et al. (41). CES score, CalEnviroScreen score.

http://www.pnas.org/lookup/doi/10.1073/pnas.2306729121#supplementary-materials
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study period (2006 to 2020) in models that controlled for year, 
population density, and census tract centroid latitude and longitude 
(SI Appendix, Fig. S14). A 1-SD increase (1.4 percentage point 
increase) in the percent NH American Indian or Alaska Native 
population was associated with additional average exposure, for 
example, 0.60 (95% CI: 0.55, 0.64) more days each year where 
with > 0 μg/m3 wildfire PM2.5 and 0.20 μg/m3 (95% CI: 0.13, 
0.26) higher mean peak-week wildfire PM2.5 exposure. Higher 
proportions of other racial and ethnic groups were not associated 
with any wildfire PM2.5 exposure metric.

Association between Racial/Ethnic Composition and Outdoor 
Wildfire PM2.5 Concentration, by Year. Associations between 
racial/ethnic composition and wildfire PM2.5 were inconsistent 
across individual study years. For example, in 2020, a 1-SD 
increase in percent NH multiracial residents was associated 
with 0.53 (95% CI: 0.51, 0.55) more weeks with wildfire PM2.5 
exposure >   5 μg/m3, while in 2019, a 1-SD increase was associated 
with fewer weeks with wildfire PM2.5 exposure >   5 μg/m3 (−0.07, 
95% CI: −0.09, −0.05) (SI Appendix, Fig. S14). The consistent 
relative exposure disparities observed for American Indian and 
Alaska Native populations (with the RR metric) persisted in many 
years of the adjusted analyses. Associations were most consistent 
for weeks with wildfire PM2.5 exposure >   5 μg/m3, non-zero 
wildfire PM2.5 days, and smoke waves for which in 7 to 9 of 
15 y, a 1-SD increase with American Indian and Alaska Native 
populations were associated with higher exposure.

Association between Racial/Ethnic Composition and Outdoor 
Wildfire PM2.5 Concentration, by Urban/Rural Status. Averaged 
across the study period, we observed null or small-in-magnitude 
associations between census tract-level racial/ethnic composition 
and the five wildfire PM2.5 metrics in urban areas (SI Appendix, 
Fig.  S15). For example, the urban NH white population had 
null exposure differences based on 3 metrics (weeks with wildfire 
PM2.5 >   5 μg/m3, peak week exposure, and annual average wildfire 
PM2.5) and lower exposure via non-zero days of wildfire PM2.5 and 
smoke waves. A 1-SD increase in urban NH white population was 
associated with 0.18 fewer days annually (95% CI: −0.24, −0.11) 
with non-zero wildfire PM2.5. In rural areas period-wide (2006 
to 2020), wildfire PM2.5 exposure was elevated for NH American 
Indian or Alaska Native (weeks with wildfire PM2.5 >   5 μg/m3, 
days with non-zero wildfire PM2.5, and smoke waves), Black (days 
with non-zero wildfire PM2.5), and multiracial (weeks with wildfire 
PM2.5 >   5 μg/m3 and annual average wildfire PM2.5) populations 
(SI Appendix, Fig. S16). For example, a 1-SD increase in the NH 
multiracial population was associated with 0.05 μg/m3 (95% CI: 
0, 0.11) higher annual average wildfire PM2.5 exposure. NH white 
populations were not disproportionately exposed on average in 
rural tracts. For two of the five metrics (weeks with wildfire PM2.5 
>   5 μg/m3, days with non-zero wildfire PM2.5), an increase in the 
proportion Hispanic individuals was associated with lower 2006 
to 2020 wildfire PM2.5 in rural areas. For example, a 1-SD increase 
in the Hispanic population was associated with 1.1 (95% CI: 
−2.3, 0.1) fewer days annually with any wildfire PM2.5. Like our 
overall findings, we observed year-to-year variability in estimated 
associations in both urban and rural areas, with higher racial 
composition of every group being associated with more exposure 
in at least 1 y, and larger-in-magnitude differences in rural areas. 
For example, in 2020, a 1-SD increase in NH American Indian or 
Alaska Native population was associated with 2.4 μg/m3 (95% CI: 
2.2, 2.7) higher peak-week wildfire PM2.5 concentration in urban 
areas and 4.4 μg/m3 (95% CI: 2.3, 6.5) higher concentrations in 
rural areas.

Sensitivity Analyses. We completed a sensitivity analysis using 
Childs et al. wildfire PM2.5 estimates (10) to compare with our 
model and to repeat analyses underlying Figs. 2–5. From 2006 
to 2020, we found a high correlation between the two products 
(0.87), with higher correlations in urban areas and the San Joaquin 
Valley (SI  Appendix, Fig.  S17). Overall, we observed similar 
patterns in analyses repeated with the Childs et al. dataset, with 
year-to-year variability in which socioeconomic, racial, and ethnic 
groups were most exposed (SI  Appendix, Figs.  S18–S21). This 
illustrated our conclusions were robust to the use of two distinct 
wildfire PM2.5 products.

Discussion

In this study, we proposed distinct metrics to characterize repeated 
and intermittent exposure to outdoor wildfire PM2.5 that can be 
adapted and modulated to study various health and EJ impacts, 
as wildfires—a climate-sensitive exposure—become omnipresent 
in some locations. We applied these metrics to assess the EJ impli-
cations of long-term exposure to wildfire PM2.5 in California by 
analyzing associations across the 15-y study period and during 
each year using five metrics of wildfire PM2.5 exposure rather than 
relying on a single measure of exposure. We observed no difference 
in exposure averaged over the study period between disadvantaged 
and non-disadvantaged communities (as defined by CES) but, 
within individual years, disadvantaged or non-disadvantaged com-
munities were often more exposed. Our analysis based on race/
ethnicity revealed that NH American Indian and Alaska Native 
populations were consistently 1.0 to 2.8× more likely and NH 
white and NH multiracial populations were 1.0 to 1.3× more 
likely to experience higher annual mean wildfire PM2.5 concen-
trations compared to their statewide representation. Stratifying 
by urban/rural status in regression modeling also showed higher 
exposures for NH American Indian and Alaska Native, multiracial, 
and—for non-zero wildfire PM2.5—Black populations in rural 
areas. Every group faced disproportionate exposure in at least one 
year, exhibiting the spatiotemporal variability of wildfire PM2.5. 
These disparities are relevant for future wildfire studies seeking to 
characterize health effects based on specific timeframes or for 
health endpoints with persistent disparities, particularly among 
communities facing disproportionate cumulative burdens from 
other environmental hazards and social stressors (51) or that lack 
agency or resources to protect themselves from wildfire PM2.5 
exposure (10, 44). It remains unknown which elements of wildfire 
PM2.5 exposure (i.e., frequency, duration, or concentration) most 
substantially impact health. Our results highlight the importance 
of considering multiple exposure elements when characterizing 
intermittent and long-term wildfire-related PM2.5 exposure for 
health and equity studies.

Environmental exposures often follow a social gradient, wherein 
marginalized communities face disproportionately high exposures 
(52, 53). For example, long-term overall PM2.5 concentrations in 
the United States are higher in historically redlined communities, 
communities with lower income levels, and communities of color 
(38, 39, 54). Zoning, disproportionate siting, residential segrega-
tion, gentrification, and other pathways contribute to these 
observed disparities (52). Wildfire-specific PM2.5, while not ran-
domly distributed, is generated by wildfires with somewhat unpre-
dictable sizes and locations, and smoke transport driven by various 
meteorological patterns. These characteristics may explain the less 
consistent evidence of disproportionate exposure to wildfire PM2.5 
among racially or socioeconomically marginalized groups. Indeed, 
our results differed quite dramatically by year, with disadvantaged 

http://www.pnas.org/lookup/doi/10.1073/pnas.2306729121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2306729121#supplementary-materials
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census tracts, as defined by CalEnviroScreen, experiencing mean 
annual wildfire PM2.5 concentrations that were 0.10 μg/m3 higher 
in some years and 0.42 μg/m3 lower in other years compared to 
non-disadvantaged tracts.

Some prior wildfire PM2.5 EJ analyses corroborate our results. 
Nationwide county-level studies using different exposure models 
and conducted during different time periods have reported a 
higher percentage of Black residents in areas exposed to >1.1 μg/
m3 mean annual wildfire PM2.5 (2008 to 2012) (43), poorer coun-
ties experiencing more smoke waves (2004 to 2009) (41), and 
more vulnerable counties having higher mean annual wildfire 
PM2.5 exposure but fewer extremely high ( > 35 μg/m3) wildfire 
PM2.5 days (2008 to 2012) (42). In a nationwide study, Burke 
et al. found that counties with a higher proportion of NH white 
residents had higher wildfire PM2.5 concentrations (2006 to 2018) 
(9). Although this is consistent with our RR estimates, when using 
a regression framework, we did not observe period-wide disparities 
in wildfire PM2.5 concentrations for NH white populations in 
California. In a second nationwide study, Burke et al. observed 
no correlation between county-level wildfire PM2.5 and income 
(47). In the only other census tract-level study, Childs et al. com-
pared two time periods and found limited socioeconomic or racial 
disparities in mean annual wildfire PM2.5 exposure from 2006 to 
2010; however, from 2016 to 2020, this relationship shifted, and 
results showed an association between higher percentages of 
Hispanic and NH white residents and higher per capita income 
with higher exposure (10).

Prior US-based wildfire PM2.5 studies have not assessed dispar-
ities for American Indian and Alaska Native populations or mul-
tiracial (2+ races) people. In the Amazon, Indigenous territories 
experienced 0.64 ± 0.21 μg/m3 greater smoke PM2.5 than the 
whole of South America from 2014 to 2019 (55). The Black 
Summer fires in Australia from 2019 to 2020 disproportionately 
affected areas with large Indigenous and socially disadvantaged 
populations (56). Our analyses also revealed considerable wildfire 
PM2.5 exposure disparities for American Indian and Alaska Native 
residents, especially on the relative scale, where each year this 
group was overrepresented among the exposed population relative 
to their statewide representation. Our results are consistent with 
Masri et al., who observed that California census tracts with higher 
proportions of American Indian and Alaska Native populations 
had more wildfires and burned acres from 2000 to 2020 (57) and 
with Davies et al., who found Native American populations over-
represented in communities high wildfire risk and low adaptative 
capacity (45). In the United States, American Indian, and Alaska 
Native populations tend to live in more rural communities, which 
may result in higher wildfire risk and related PM2.5 exposures. 
Indigenous peoples may also participate in prescribed or cultural 
burning that could increase wildfire PM2.5 exposure in the 
short-term (58). However, until recently, cultural burning activ-
ities carried significant liability, potentially limiting such activities 
until a new California law went into effect in 2022, removing 
liability risk for private citizens and Indigenous peoples who set 
controlled burns (59). Previous suppression of Indigenous land 
management practices in California likely also resulted in increased 
wildfire risks during our study period (60). Further work could 
improve understanding of how historical policies have resulted in 
the observed disparities for American Indian and Alaska Native 
people. Farrell et al. found that, during the processes of illegal land 
dispossession and forced migration, Indigenous peoples were for-
cibly moved to areas that are now more susceptible to climate 
extremes, including higher temperatures and wildfire risks (61).

Data from the Interagency Monitoring of PROtected Visual 
Environments (IMPROVE) network and other deployed monitors, 

generally, but not always (62), suggest that rural areas experience a 
greater burden of wildfire-generated PM2.5 (63). Likewise, we found 
that rural California census tracts often had 2× higher wildfire PM2.5 
exposure measured across the five metrics. Our study did not find 
that disadvantaged rural tracts, as defined by CES, were more 
exposed on average but did identify some exposure disparities, par-
ticularly for American Indian/Alaska Native and multiracial people, 
in rural California tracts. Such analysis is important because fewer 
wildfire studies focused on rural areas or the wildland-urban interface 
have evaluated environmental injustice (44). Evidence also suggests 
that environmental justice considerations are rarely accounted for in 
decisions related to wildfire hazard reduction strategies and activities 
in federal forest lands (64). In addition to higher exposure, rural 
communities—given their economic reliance on tourism, agricul-
ture, and construction, immersion in natural environments, and 
reduced healthcare access—may additionally face heightened risk of 
adverse health outcomes from wildfire smoke exposure (65).

Our California study builds upon the prior wildfire studies by 
centering EJ questions, using daily estimates of wildfire PM2.5 
concentration, and evaluating patterns of long-term exposure 
inequities across the study period and by year. We presented a 
coherent conceptual model for estimating long-term exposure to 
wildfire PM2.5, though other metrics of exposure exist and may 
yield different results in terms of temporal and demographic pat-
terns of exposure burden. We used CES, which consists of approx-
imately 20 indicators, and wildfires contribute to elevated levels 
of two of the environmental exposure indicators (66, 67): average 
total PM2.5 concentrations and summer average daily maximum 
8-h ozone concentrations. This could increase the association 
between exposure and outcome. Our observed EJ findings could 
also underestimate true exposure disparities as persistently mar-
ginalized individuals face constraints to health-protective behav-
iors (47), including lower income and housing quality, less access 
to health messaging, and ability to mitigate work-related expo-
sures, particularly for outdoor workers, for example in construc-
tion (68). In Northern California, members of the Hoopa Valley 
Tribe, who did not evacuate when a large fire affected their land, 
cited occupational (45%) and economic (12%) reasons (69). We 
estimated outdoor wildfire PM2.5 concentrations, not wildfire 
impacts on air quality indoors, where people spend most of their 
time (70). Low-cost air quality sensors (e.g., PurpleAir sensors) 
could help provide part of this information, though they are dis-
proportionately located in wealthier communities (47, 71, 72). 
Evidence suggests that populations in wealthier counties more 
often Google “air filter” and stay fully indoors at home on heavy 
wildfire smoke days compared to populations in lower-income 
counties (47). These differences, as well as other factors like 
pre-existing health conditions, may explain stronger relationships 
observed between wildfire smoke exposure and adverse health 
effects among older adults and persistently marginalized racial/
ethnic groups (41, 73, 74). We did not assess differences in asso-
ciations by, for example, air basins with different air quality and 
meteorological characteristics, though preliminary research sug-
gests EJ-related disparities may be more pronounced in some 
regions (71) and we did observe differences in patterns of exposure 
by urban/rural tract status. While we assessed associations across 
our study period and by each year, we did not consider trends over 
time (e.g., whether disparities are worsening). We observed 
year-to-year fluctuations in associations and given expected 
increases in population exposures to wildfire smoke, future research 
can help identify spatiotemporal trends and communities where 
interventions to mitigate wildfire smoke-related exposures are most 
needed, for example, due to higher rates of underlying chronic 
health conditions and co-exposures to other environmental 
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hazards and social stressors that may enhance vulnerability to the 
adverse health effects of wildfire-related PM2.5 (16, 41, 45). Finally, 
our study was restricted to California. Different exposure patterns 
likely exist elsewhere, which future research could investigate.

While, to date, the vast majority of climate and health studies 
have focused on quantifying the short-term impacts of climate- 
sensitive exposures, including wildfires, extreme heat, or floods, on 
acute outcomes such as emergency department visits or premature 
mortality, little evidence exists regarding the potential impact of 
long-term health impacts of climate-sensitive exposures, which 
mostly focused on mental health outcomes (75, 76). Existing stud-
ies linking long-term exposures such as floods or droughts to men-
tal health have limitations related to exposure assessment (77). As 
climate-sensitive exposures become omnipresent, it is essential to 
better characterize and understand the long-term impacts and 
design robust epidemiological studies considering the unprece-
dented and ever-changing nature of such exposures. In this study, 
we provided a conceptual framework for measuring multiple ele-
ments of long-term exposure to wildfire PM2.5, a key contribution 
to public health research because wildfire-related PM2.5 continues 
to make up a larger portion of total PM2.5 exposure in the Western 
United States (9) and is becoming more common elsewhere (42, 
78). Our framework for quantifying various dimensions of wildfire 
smoke exposure can easily be adapted to other extreme and episodic 
climate-sensitive exposures, which are no longer exceptional or 
rare. These exposure metrics can be integrated into a time-to-event 
framework, that has been used extensively for traditional long-term 
exposure to air pollution for example (79, 80), to analyze the 
long-term effects of time-varying exposure to wildfires or other 
climate-sensitive exposures on various chronic diseases such as 
dementia, cardiovascular diseases, or cancer incidence. Such expo-
sure metrics can support a new generation of epidemiology studies 
to evaluate unique challenges posed by climate change on human 
health and elucidate opportunities to inform public health inter-
ventions with benefits to health equity.

Materials and Methods

Study Design and Conceptual Model. We conducted analyses within 2010 
California census tract boundaries, excluding 33 (0.4%) tracts with no recorded 
population. We identified EJ communities using CalEnviroScreen (CES) 3.0 and 
4.0. These tools do not include data on census tract-level racial/ethnic compo-
sition, so we supplemented with race/ethnicity data from the 2010 Decennial 
US Census (81, 82). We derived daily census tract-level outdoor wildfire PM2.5 
concentrations for 2006 to 2020 (see details below) using satellite imagery, mon-
itored concentrations, and machine learning–based multiple imputation (35).

Building upon principles from exposure science to include measures of fre-
quency, duration, and concentration (36, 83), we developed a conceptual model 
of long-term outdoor wildfire PM2.5 exposure (Fig.  1). Domains included fre-
quency (number of exposures within a time period), duration (how long exposed), 
and intensity (level of exposure). We summarized exposure metrics at the annual 
level, but other researchers could adopt alternative time frames (e.g., month, 5-y 
period) depending on the research question.

Data and Metrics.
Outdoor wildfire PM2.5 exposure metrics. Our team previously developed 
methods to estimate daily outdoor wildfire PM2.5 (35) and applied the same 
methodology for census tract-level concentrations. Briefly, we fit an ensemble 
of machine learning models using monitored PM2.5 concentrations and a wide 
range of predictors for PM2.5, such as aerosol optical depth, land cover, and mete-
orological conditions, to estimate daily concentrations of PM2.5. We then isolated 
daily wildfire smoke PM2.5 from total PM2.5 by using the National Oceanic and 
Atmospheric Administration Hazard Mapping System, fire perimeter data from 
CalFIRE, and spatiotemporal imputation techniques to predict plausible values of 
PM2.5 that would have been observed in the absence of wildfire smoke in a given 
day in a given census tract (64). This model had an R2 of 0.78 using hold-out test 

validation overall (35) and when restricted to lower levels of wildfire PM2.5 (below 
50 μg/m3, SI Appendix, Fig. S22). We used these daily wildfire smoke PM2.5 pre-
dictions to compute the five metrics of long-term wildfire PM2.5 exposure across 
California census tracts from 2006 to 2020:

• � The number of weeks each year for which mean wildfire PM2.5 concentrations 
exceeded 5 μg/m3.

• � The number of days each year for which wildfire PM2.5 concentrations were 
> 0 μg/m3.

• � The mean daily wildfire PM2.5 concentration during the peak week of exposure 
for each year.

• � The number of smoke waves each year.
• � The mean annual wildfire PM2.5 concentration.

We defined smoke waves as the number of instances of ≥   2 consecutive days 
with >   15 μg/m3 wildfire PM2.5, which was close to the study area and period 
90th percentile of wildfire PM2.5 concentration on days with any wildfire PM2.5, 
similar to prior work (84).
Environmental burden and population vulnerability. The California Office of 
Environmental Health Hazard Assessment originally developed CES in 2010 to 
measure the cumulative impact of environmental exposures and social vulner-
ability factors to “support the incorporation of equity and environmental justice 
goals into policymaking” (85). Our study relied on census tract-level scores from 
versions 3.0 and 4.0 of CES. CES 3.0 included 20 indicators based on data from 
2006 to 2015 in two components: Pollution Burden [environmental exposures 
(n = 7 metrics) and effects (n = 5 metrics)] and Population Characteristics [sen-
sitive populations (n = 3 metrics) and socioeconomic factors (n = 5 metrics)] 
(86) (SI Appendix, Supplementary Methods). CES 4.0 added children’s lead risk 
from housing as an additional environmental exposure and otherwise updated 
indicators from CES 3.0 using data from 2009 to 2020 (81). We linked CES 3.0 
data to 2006 to 2012 wildfire PM2.5 estimates and CES 4.0 data to 2013 to 2020 
estimates. The final relative CES ranging from 0 to 100 is calculated as follows:

The CES datasets included information on 8,035 California census tracts (99.7% of 
8,057 total tracts). Our final dataset included the 7,919 census tracts (98.3%) with 
non-missing CES 3.0 and 4.0 scores (we excluded the 93 tracts missing in both data-
sets, the 13 missing in CES 3.0 only, and the 10 missing in CES 4.0 only) (81, 86).

The California Environmental Protection Agency (CalEPA) uses CES to allocate 
proceeds from the state’s cap-and-trade program; other state agencies also target 
funding with this tool (87). We used CES to identify disadvantaged California com-
munities disproportionately burdened by multiple sources of pollution and social 
vulnerability (i.e., both environmentally and socially disadvantaged). California 
state agencies often designate communities with the highest 25% of CES scores 
as disadvantaged. We adopted this threshold in our analyses and compared dis-
advantaged census tracts in the highest CES quartile to those in quartiles 1 to 3. 
Notably, CES does not include a measure of census tract-level racial/ethnic compo-
sition. Studies have, however, shown a correlation between worse CES score and a 
higher percentage of people of color in California census tracts (88), which might 
be expected given underlying structural causes of environmental racism (51, 53).

We additionally considered census tract racial/ethnic composition related to 
wildfire PM2.5 exposure, following prior studies (9, 10, 43). We treat race/ethnicity 
not as a biological but as a social construct and hypothesize that certain racial/
ethnic groups might experience disproportionate wildfire PM2.5 exposure due to 
systemic racism, which might constrain choices about where individuals could 
live. Communities of color may face higher wildfire PM2.5 concentrations due 
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to displacement into suburban wildland-urban interface (WUI) areas related to 
rising urban housing costs (44) or historical forced residence on federal Indian 
Reservations (45). For these analyses, we used the 2010 decennial census tract-
level data on race/ethnicity (82), as these estimates have smaller margins of 
error compared to the American Community Survey data (89). We calculated the 
percent of individuals in each California census tract self-identifying in the fol-
lowing categories: Hispanic, NH white, NH Black, NH Asian, NH American Indian 
or Alaska Native, and NH of two or more races. For analyses, we used continuous 
percentages of each racial/ethnic group within a census tract.

Statistical Analysis. We first computed Spearman correlations between the five 
metrics of long-term wildfire PM2.5 exposure overall and for each year and generated 
univariate maps of the wildfire PM2.5 concentrations, CES scores, and racial/ethnic 
composition of census tracts. Second, we constructed summary maps to highlight 
census tracts with 1) high CES scores, 2) high proportions of people of color, and 3) 
high long-term wildfire PM2.5 exposures. Third, we visualized changes in metrics of 
long-term wildfire exposure by the sociodemographic variables of interest over time. 
Fourth, we generated bivariate maps of annual mean wildfire PM2.5 (quartiles) and 
CES scores (quartiles) to identify locations with a dual burden of wildfire PM2.5 and 
community disadvantage. Fifth, we plotted census tract racial/ethnic composition by 
levels of the five wildfire metrics we proposed. In absolute plots, we showed the aver-
age racial/ethnic composition in percents at different levels of wildfire PM2.5 exposure. 
In relative plots, we showed the ratio of the average census tract level composition for 
a specific racial/ethnic group at a specific wildfire PM2.5 exposure level during a specific 
time period (average across 2006 to 2020 or annual) to the average statewide census 
tract level composition for a specific racial/ethnic group. Sixth, we estimated summary 
statistics of exposure to high annual average wildfire PM2.5 concentrations by racial/
ethnic group for each year in the study period. We estimated exposure risk ratios to 
evaluate whether specific racial/ethnic groups had disproportionately high exposure 
to wildfire PM2.5 using the following equation:

where ωiy is the annual average wildfire PM2.5 in census tract i during year y; pij is 
the population of racial/ethnic group j in census tract i; t is the total population in 
census tract i; and n is the total number of census tracts. A risk ratio greater than 
1 indicates that racial/ethnic group j was over-represented among the exposed 
population, compared to their statewide representation, during year y. A risk ratio 
less than 1 indicates that racial/ethnic group j was under-represented among the 
exposed population, compared to their statewide representation, during year y. 
We estimated CIs for these RRs using 100 bootstrap samples, randomly resa-
mpling with replacement days and census tracts from the full dataset. In each 
bootstrap sample, we estimated annual wildfire PM2.5 and recalculated the RRs. 
We used the 2.5th and 97.5th percentiles of the bootstrap sample race/ethnic 
and annual distributions for the 95% CIs.

We estimated the associations between the binary CES score [with 0 rep-
resenting quartiles 1 to 3 and 1 representing quartile 4 (disadvantaged com-
munity)] as the explanatory variable and the five metrics of long-term wildfire 
PM2.5 as the dependent variable over the study period. We fit linear mixed 
models for number of weeks with mean wildfire PM2.5 >   5 μg/m3, mean peak-
week wildfire PM2.5, number of smoke waves, and mean annual wildfire PM2.5 
and negative binomial models number of non-zero wildfire PM2.5 days. We 
conducted a similar analysis, replacing the CES score with each binary racial/
ethnic composition variable [e.g., 1 = quartile 4 (high percentage of NH Black 
individuals); 0 = quartiles 1 to 3]. Models included a categorical variable for 

year to account for time trends, census tract-level population density in 2010 
(natural spline with 8 degrees of freedom), and each census tract centroid’s 
latitude/longitude (tensor product with 20 degrees of freedom) to account for 
spatial dependence of observations (SI Appendix, Fig. S23). We ran comparable 
models for racial/ethnic composition using six separate models with a term for 
each racial or ethnic group as the explanatory variable. To test for changes in the 
association between CES score or racial/ethnic composition and the five metrics 
of long-term wildfire PM2.5 from 2006 to 2020, we added an interaction term 
between the categorical year variable and the binary CES score variable or the 
racial/ethnic composition variable.

We completed three secondary analyses. First, we categorized census tracts 
as urban or rural based on the US Department of Agriculture Rural-Urban 
Commuting Area Codes [urban = levels 1 to 9 (metropolitan, micropolitan, and 
small town); rural = level 10] (90) and repeated our main analyses. Second, we 
identified tracts that overlapped with federally recognized Tribal Lands using US 
Census data (91) and compared the distribution of our five annual exposure met-
rics across urban, rural, and Tribal (any overlap with Tribal Land) tracts. Third, we 
evaluated within-year racial and ethnic differences in exposure during 2020, the 
year with the highest wildfire PM2.5 concentrations. For this analysis, we replicated 
Fig. 4 at the monthly level. In a sensitivity analysis, we also tested the robustness 
of our results to the use of alternative daily wildfire PM2.5 estimates (10), since 
no wildfire PM2.5 gold standard exists. While the two products aim to isolate the 
amount of daily PM2.5 attributable to wildfire smoke in a given location, they rely 
on distinct methods. We interpolated the Childs et al. product at the census tract 
population-weighted centroids as done in Aguilera et al. 2023 (10). Then, we 
compared our model to that of Childs et al. and repeated our main analysis using 
their estimates. Analyses were conducted using R Statistical Software, version 
4.1.2 (92). Code to run analyses is available at https://github.com/joanacasey/
longterm-wildfire-pm.git.

Data, Materials, and Software Availability. Wildfire PM25 data have been 
deposited in Harvard Dataverse (TBD). Previously published data were used for 
this work [CalEnviroScreen: California Office of Environmental Health Hazard 
Assessment. Uses of CalEnviroScreen. https://oehha.ca.gov/calenviroscreen/how-
use. Published 2022. Accessed 8 November 2022. Census data: (82). https://doi.
org/10.18128/D050.V12.0. Published 2018. Accessed 10 October 2020].
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