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Lymphoid Priming in Human Bone Marrow Begins Prior to CD10 
Expression with Up-Regulation of L-selectin

Lisa A. Kohn1, Qian-Lin Hao2, Rajkumar Sasidharan3, Chintan Parekh4, Shundi Ge1, Yuhua 
Zhu1, Hanna K.A. Mikkola3,5, and Gay M. Crooks1,4,5

1Department of Pathology & Laboratory Medicine, University of California, Los Angeles

2Division of Research Immunology & Bone Marrow Transplantation, Children’s Hospital Los 
Angeles

3epartment of Molecular, Cell and Developmental Biology, University of California, Los Angeles

4Department of Pediatrics, University of California, Los Angeles

5Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of 
California, Los Angeles

Abstract

The expression of CD10 has long been used to define human lymphoid commitment. We report a 

unique lymphoid-primed population in human bone marrow that was generated from 

hematopoietic stem cells (HSCs) before the onset of CD10 expression and B cell commitment. 

This subset was identified by high expression of the homing molecule L-selectin (CD62L). 

CD10−CD62Lhi progenitors possessed full lymphoid and monocytic potential, but lacked 

erythroid potential. Gene expression profiling placed the CD10−CD62Lhi population at an 

intermediate stage of differentiation between HSCs and lineage-negative (Lin−) CD34+CD10+ 

progenitors. L-selectin was expressed on immature thymocytes and its ligands were expressed at 

the cortico-medullary junction, suggesting a possible role in thymic homing. These studies 

identify the earliest stage of lymphoid priming in human bone marrow.

Although much is known about the identity of progenitor stages in murine lymphopoiesis, 

considerably less is understood about the critical stages of lymphoid commitment of human 

hematopoietic cells. Early models developed from murine studies assumed strictly 
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dichotomous pathways of lineage commitment1. These concepts have evolved more recently 

into models of gradual loss of lineage potential that can occur via multiple alternative 

pathways, although the physiological relevance of lineage potential revealed in certain in 

vitro assays continues to be debated2–5. A stage in which murine bone marrow (BM) 

progenitors are “lymphoid primed” prior to complete loss of myeloid potential has been 

defined based on expression of the FLT3 cell surface receptor, and termed the Lymphoid-

primed Multipotent Progenitor (LMPP)2.

Critical species-specific differences create challenges when translating knowledge of 

cellular hierarchies derived from murine studies to the specifics of human hematopoiesis6. In 

addition, the source and stage in ontogeny of human hematopoiesis can influence the 

functional capacity, surface immunophenotype and transcriptional profiles of the cells under 

study6–8. Most studies of the earliest progenitor stages in human hematopoiesis have used 

neonatal umbilical cord blood as the source of hematopoietic cells. However, to understand 

how lymphopoiesis is regulated during steady-state adult hematopoiesis it is necessary to 

directly study hematopoietic stem cells and progenitors from postnatal human BM8,9.

The stepwise process of lymphoid differentiation from multipotent hematopoietic stem cells 

(HSCs) in human BM has been assumed to begin with the expression of the cell surface 

antigen CD10 (aka CALLA, MME) on CD34+ cells10. However, while CD34+lin−CD10+ 

cells can give rise to cells of all lymphoid lineages, subsequent work has shown that CD10 

expression on progenitors is associated with a strong bias toward B cell potential and 

minimal T and natural killer (NK) cell potential11,12. CD34+lin−CD10+ cells that lack 

expression of CD24 are precursors of the CD34+lin− CD10+CD24+ population, but 

nonetheless show molecular evidence of B cell commitment with expression of PAX5, EBF1 

and VPREB12. Therefore, to understand the progenitor hierarchy of human lymphoid 

commitment, we sought to identify a stage of lymphoid priming that precedes B lymphoid 

commitment, either prior to or independent of CD10 expression.

L-selectin (CD62L) is expressed on lymphocytes and mediates homing to peripheral 

lymphoid organs13. Recent studies have reported that up-regulation of CD62L expression on 

c-Kit+lin−Sca1+ murine BM cells correlates with loss of erythroid and megakaryocyte 

potential and efficient thymic engraftment14–16. In this study we have identified a 

CD34+lin−CD10− progenitor subpopulation in human BM that expressed high amounts of 

L-selectin and was devoid of clonogenic myeloid or erythroid potential. In stromal cultures 

these cells were able to generate B, NK and T cells as well as monocytic and dendritic cells, 

similar to the previously described LMPPs in murine BM2. CD34+lin−CD10−CD62Lhi 

(“CD10−CD62Lhi”) cells rapidly engrafted immune-deficient mice, producing B and 

myeloid cells. Despite evidence of lymphoid skewing, comprehensive molecular analysis 

revealed that CD10−CD62Lhi cells not only lacked B cell specific transcripts, but also had 

not initiated DNA recombination based on absent RAG1, RAG2 and minimal DNTT 

expression. Genome-wide expression and functional analysis placed the CD10−CD62Lhi 

progenitor population as a developmental intermediate between the multi-potent 

CD34+lin−CD38− population and the CD34+lin−CD10+ lymphoid progenitor.
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We also find that primitive lymphoid-restricted CD34+CD1a− progenitors in human thymus 

expressed CD62L, and that the vasculature at the cortico-medullary junction of human 

thymus expressed ligands for CD62L, suggesting the possibility that L-selectin may play a 

role human thymic homing. We propose that the CD10−CD62Lhi progenitor in BM 

represents the earliest stage at which adult human progenitors become lymphoid-primed. 

The identification of this progenitor population will facilitate a more complete 

understanding of the regulation of lymphoid commitment from HSCs during normal and 

aberrant human hematopoiesis.

RESULTS

CD7 expression does not define lymphoid commitment

In view of previous studies by our group and others linking CD7 expression to early stages 

of lymphoid commitment in umbilical cord blood17–20, we first investigated if expression of 

CD7 was sufficient to identify human lymphoid commitment in bone marrow, independent 

of CD10 expression. Examination of lineage-depleted cells revealed that the 

CD34+lin−CD38−CD7+ population previously identified in umbilical cord blood17 was not 

detectable in human BM (Supplementary Fig. 1a). However, as previously noted7, low 

expression of CD7 was detected on a small (2.8 ± 0.6%, n = 5) population of 

CD34+lin−CD38+ human BM cells, most of which did not co-express CD10 (Fig. 1a). 

Clonogenic assays demonstrated that CD7 expression alone was insufficient to define 

lymphoid restriction within the CD34+lin−CD10− population of BM; non-lymphoid 

clonogenic cells, particularly erythroid progenitors, were readily detectable in the 

CD34+lin−CD10−CD7+ population by Colony Forming Unit-Cell (CFU-C) assay (Fig. 1b). 

Consistent with previous studies in BM and umbilical cord blood7,10–12,21, 

CD34+lin−CD10+ progenitors were devoid of clonogenic myeloid and erythroid progenitors 

(Fig. 1b).

L-selectinhi progenitors do not possess CFU potential

CD45RA has previously been shown to be expressed on various lymphoid 

progenitors10,17–19 and granulocyte-macrophage progenitors (GMPs)22. Analysis of the 

CD34+lin−CD10− subpopulation demonstrated the presence of both CD45RA− and 

CD45RA+ fractions; in contrast all CD34+lin−CD10+ cells expressed CD45RA (Fig. 1c). 

Erythroid potential was depleted, but clonogenic myeloid progenitors (CFU-GM) were still 

readily detectable, in the CD34+lin−CD10−CD45RA+ population (Fig. 1d). As expected, 

erythroid potential was high in CFU-C from megakarocytic-erythroid progenitors (MEPs) 

and common myeloid progenitors (CMPs) (Fig. 1d), neither of which express CD45RA.

Further refinement of the CD10−CD45RA+ population was necessary to identify those cells 

that lacked clonogenic myeloid potential. L-selectin (CD62L) is a cell surface receptor that 

mediates lymphocyte homing to peripheral nodes13 and which is expressed on certain 

murine BM progenitors that lack erythroid or megakaryocytic potential14. Analysis of the 

CD34+lin−CD10− CD45RA+population demonstrated that although most cells dimly 

expressed CD62L, a distinct subpopulation (9 ± 1.5%, n = 14) of 

CD34+lin−CD10−CD45RA+ cells in normal human BM highly expressed CD62L (Fig. 1c). 
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Functional screening of CD34+lin− fractions in CFU-C assay demonstrated that only the 

CD34+lin−CD10−CD45RA+CD62Lhi (“CD10−CD62Lhi ”) population and the 

CD34+lin−CD10+(“CD10+”) population were devoid of clonogenic myelo-erythroid 

potential (Fig. 1d, Supplementary Table 1). Of note, the CD34+lin−CD10−CD45RA+ 

population that expressed intermediate amounts of CD62L contained low but detectable 

CFU-C potential, suggesting that progressive loss of multi-potency correlates with 

increasing CD62L expression (population B, Supplementary Fig. 1b,c).

CD10+ cells expressed low or undetectable amounts of CD62L, and the CD34+lin−CD38− 

population, which is highly enriched for HSC and multipotent progenitor cells (MPPs), 

showed intermediate expression of CD62L (Fig. 1e, Supplementary Fig. 1b). Notably, 

CD10− CD62Lhi cells did not express CD7 (Fig. 1f). Thus, the progenitor subset with 

highest CD62L expression expressed neither CD10 nor CD7, markers previously relied 

upon for the isolation of human lymphoid progenitors. Analysis of BM from 20 different 

individuals from infancy to adulthood consistently showed the presence of CD10− CD62Lhi 

cells (Supplementary Fig. 2a–c).

Lymphoid and monocyte potential of CD10−CD62Lhi cells

Culture in lymphoid conditions demonstrated that the CD10− CD62Lhi population robustly 

generated both B and NK cells (Fig. 2a). Consistent with previous studies, CD10+ cells (all 

of which were CD19− through lineage depletion) generated mostly B cells with relatively 

weak NK potential11. Cell output under B-NK lymphoid conditions tended to be higher in 

cultures initiated with CD10− CD62Lhi than with CD10+ cells (Fig. 2b). Following in vitro 

culture under T cell conditions, CD10−CD62Lhi cells generated cells with the 

immunophenotype typical of thymocytes (expressing CD1A, CD7, CD4, CD8, CD3, 

TCRαβ)23 (Fig. 2c,d and Supplementary Fig. 3), and expressing the T cell associated genes 

TCF7, GATA3, DNTT and RAG1 (Supplementary Fig. 3) as well as CD56+ NK cells (some 

of which co-expressed CD8). Cell output was significantly higher in T cell cultures initiated 

with CD10−CD62Lhi than with CD10+ cells (P = 0.038) (Fig. 2e).

Although clonogenic myeloid cells were not detected in CFU-C assay, both the CD10+ and 

CD10− CD62Lhi subsets were able to generate relatively low numbers of myeloid cells 

when cultured on stromal layers; however cell output from both progenitor types was 

significantly reduced relative to HSC-MPPs (P < 0.0001) (Fig. 2f). The majority of the non-

lymphoid cells generated in stromal co-culture from the CD10+ and CD10−CD62Lhi 

populations were CD14+CD33+ monocyte-macrophages or CD209+CD1a+ dendritic cells 

(Supplementary Fig. 4); CD66b+ granulocytes were uncommon. Erythroid differentiation 

was rarely seen from CD10+ or CD10−CD62Lhi cultures but was robust in cultures from 

CD38− HSC-MPPs.

Cloning efficiency of CD10−CD62Lhi cells in lymphoid cultures initiated with single cells 

(~11%) and by limiting dilution analysis (1 in 5.3 for B-NK and 1 in 5.6 for T cell cultures) 

(Fig. 3a,b) was similar to that of CD10+ cells (~12% from single cells). However lineage 

analysis of clones demonstrated that the CD10−CD62Lhi population contained bi-potent B-

NK progenitors whereas the CD10+ population contained predominantly unipotent B cell 

progenitors (Fig. 3c). Myeloid cells were detected in 86% of clones that could be assigned 

Kohn et al. Page 4

Nat Immunol. Author manuscript; available in PMC 2013 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lineages in B-NK conditions (Fig. 3d) and 97% of all clones assayed from T cell cultures 

(Fig. 3e).

Consistent with the in vitro assays of lineage potential, intratibial transplantation of 

CD10−CD62Lhi progenitors into immune-deficient (NOD–SCID–IL-2Rγ−/−) mice produced 

rapid marrow engraftment of both myeloid and B lymphoid cells (Fig. 3f,g and 

Supplementary Fig. 5). T lymphoid differentiation from non-self renewing progenitors 

would not be expected in this xenogeneic adult mouse model.

In summary, functional assays showed that the CD10−CD62Lhi population possessed full T, 

B and NK lymphoid potential, was less skewed toward the B lineage than the CD10+ 

population, and had greater T potential than CD10+ population. Although depleted of 

clonogenic myelo-erythroid potential, some myeloid (mostly monocyte-macrophage and 

dendritic cell) differentiation could be induced in stromal co-cultures from the 

CD10−CD62Lhi population, and in short term engraftment assays. However, myeloid 

potential was markedly decreased relative to that of HSC-MPPs and erythroid potential was 

absent.

Differentiation stages of HSCs and lymphoid progenitors

In view of the lineage potential shown in the functional studies, we next explored the 

relative stages of differentiation of the CD10−CD62Lhi and CD10+ populations when 

compared to the most primitive CD34+lin−CD38− (“CD38-”) HSC-MPP population. 

Expression of the differentiation marker CD38 rose progressively from the CD34+CD38− to 

the CD10−CD62Lhi population and was maximal in the CD10+ population (n = 14) (Fig. 

4a). Expression of the stem cell-associated receptors KIT, FLT3, ITGA6 (aka CD49f) and 

PROM1 (aka CD133) was similar in CD38− and CD10−CD62Lhi populations but down-

regulated in CD10+ cells; THY1 (aka CD90) was most highly expressed on CD38− cells. 

HLA-DR was up-regulated in both CD10−CD62Lhi and CD10+ progenitors (Fig. 4a). After 

one week in lymphoid cultures, CD10+ cells differentiated and lost CD34 expression faster 

than CD10−CD62Lhi cells (Fig. 4b). In addition, CD10−CD62Lhi cells were able to generate 

CD34+CD10+ cells in vitro, suggesting that CD10−CD62Lhi cells are precursors to the 

CD10+ population (Fig. 4b).

Principal components analysis performed on global gene expression data from microarrays 

on three different BM samples also placed the CD10−CD62Lhi progenitors in an 

intermediate position between the CD38− HSC-MPPs and the CD10+ progenitors (Fig. 4c). 

Gene expression of CD10−CD62Lhi progenitors clustered hierarchically with CD38− HSC-

MPPs rather than with CD10+ progenitors (Supplemental Fig. 6a). In pairwise comparison 

to HSC-MPPs, similar numbers of genes were up-regulated in CD10−CD62Lhi and CD10+ 

populations; approximately half of these up-regulated genes were common to both 

progenitor types (Supplemental Fig. 6b). More than twice as many genes were down-

regulated in the CD10+ population than were down-regulated in the CD10−CD62Lhi 

population, and most downregulated genes in CD10−CD62Lhi cells were also 

downregulated in CD10+ cells (Supplemental Fig. 6b). Thus differentiation of HSC-MPPs 

involves many shared molecular pathways but additional transcriptional modulation appears 

to occur after the CD10−CD62Lhi stage during the generation of CD10+ cells.
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Downregulation of HSC-associated genes in CD10−CD62Lhi cells

Analysis of expression patterns of genes known to regulate critical hematopoietic stages of 

differentiation was then performed by microarray and quantitative PCR (qPCR) to dissect 

the molecular relationships amongst CD38−, CD10−CD62Lhi, and CD10+ populations. All 

genes included in the heatmaps were at least 2-fold differentially expressed (P <0.05), and 

belonged to one of 6 different expression patterns (clusters 1–6) (Fig. 5a,b). Known HSC-

related transcription factors (TAL1, GATA2, and PRDM16) were significantly down-

regulated in both the CD10−CD62Lhi and CD10+ cells relative to the CD38− population 

(cluster 1, Fig. 5a). HOXB genes were also downregulated during the transition of the 

CD38− HSC-MPP to the CD10−CD62Lhi LMPP stage with no significant further change at 

the CD10+ stage (cluster 1). In contrast, expression of HOXA genes decreased later in 

differentiation at the CD10+ progenitor stage (cluster 2 and 3). Reciprocal patterns of 

expression were seen for members of the polycomb repressive complexes PRC1 (PCGF2, 

PHC2, and SCML4) (cluster 1) and PRC2 (SUZ12, EZH2 and EED) (cluster 5)24. These 

analyses reveal a highly coordinated program of transcriptional regulation as HSC lose 

multipotency, become lymphoid-primed and then commit to B lymphopoiesis.

Lymphoid differentiation stages of CD10-CD62Lhi and CD10+ cells

Analyses of genes up-regulated only in the CD10− CD62Lhi population (Cluster 4) revealed 

a profile consistent with the dual lymphoid and monocyte potential of this population. 

Specifically, early T and NK lineage-associated genes (CD2 and CD3E)14,25–27 and 

lymphoid cytokine receptors (IL2RG, IL10RA, IL10RB, IL17RA, IFNGR1) were up-

regulated, as were myeloid associated genes (MPO, CSF1R, and CSF2R) (Fig 5b, c). 

Consistent with its cell surface expression, FLT3 was expressed in both HSC-MPP and 

CD10− CD62Lhi cells but not CD10+ cells (cluster 3, Fig 5b).

Consistent with the B cell skewed differentiation potential of the CD10+ population, genes 

known to be expressed specifically during B cell commitment (EBF1, PAX5, IL-7R, CD79A, 

CD79B, VPREB1, VPREB3, CD19, CD22, CD24, CD27) were highly expressed in CD10+ 

cells (Cluster 6, Fig. 5a–c). Notably, none of these B cell specific genes were expressed in 

either the CD34+CD38− or CD10− CD62Lhi cells.

A detailed analysis by qPCR showed that although expression of genes essential for 

lymphoid commitment was highest in CD10+ cells, up-regulation of certain early lymphoid 

genes began at the CD10− CD62Lhi stage. TCF3 (aka E2A) expression was 2.1-fold 

increased during the transition from CD38− to CD10− CD62Lhi (P = 0.003) and 4.4-fold 

increased in the transition from CD10− CD62Lhi to CD10+ (P = 0.058) cells (Fig. 5c). 

Similarly DNTT (aka TDT) was 8.0-fold increased in CD10−CD62Lhi (P = 0.002) and 12.0-

fold further increased in CD10+ cells (P = 0.027) (Fig. 5c). In contrast, RAG1 expression 

was limited to CD10+ cells, demonstrating that the mechanisms of DNA rearrangement for 

T cell receptor and immunoglobulin are not fully initiated in the CD10− CD62Lhi population 

(Fig. 5c).

To investigate further the degree of heterogeneity within the three populations, the 

expression of key genes was assayed in single cells (Fig. 5d). These analyses showed that 
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the HSC genes TAL1 (aka SCF) and MPL were expressed exclusively in CD38− cells, and 

RAG1 and PAX5 expression was limited to CD10+ cells. TCF3 was detected at a similar 

frequency in CD10− CD62Lhi and CD10+ cells. Detectable FLT3 expression in single cells 

was limited almost exclusively to the CD10− CD62Lhi population (Fig. 5d). Thus the CD38− 

HSC-MPP, CD10− CD62Lhi and CD10+ populations have distinct molecular profiles, 

consistent with their functional readout in vitro. Whereas the CD10+ population is 

committed to B lymphopoiesis, the CD10− CD62Lhi population contains cells with evidence 

of early lymphoid priming but no expression of B lineage commitment genes (Supplemental 

Fig. 7).

L-selectin and ligand expression in human thymus

Co-expression of receptor-ligand pairs, previously reported in murine studies as important in 

thymic homing and settling, were analyzed by flow cytometry and gene expression. The 

chemokine receptor CXCR4 was expressed at similar abundance in CD10− CD62Lhi and 

CD10+ populations (Fig. 6a). However PSGL-1, the ligand for P-selectin, and CD44, were 

both expressed in CD10− CD62Lhi cells at higher amounts than in CD10+ cells (Fig. 6a). In 

addition, the gene encoding the chemokine receptor CCR7, which is expressed on murine 

early thymic progenitors and mediates migration of early thymocytes28–30, was significantly 

up-regulated in the CD10− CD62Lhi population relative to both CD10+ cells (P< 0.001) and 

CD38− population (P < 0.001) (Fig. 6b). No consistent differences between the populations 

were seen in expression of the chemokine CCR9 (data not shown).

The expression of CD62L in progenitor populations from human thymus was next 

examined. CD62L expression was higher in CD34+ thymic progenitors than the more 

mature CD34− thymocytes (which represent >95% of all thymocytes) (Fig. 6c). Upon 

further dissection of the CD34+ thymocyte population, the majority of CD62L expressing 

cells were within the CD34+CD1a− subset rather than the more mature CD34+CD1a+ subset 

(Fig. 6c). MECA79 detects a carbohydrate epitope that is found on a family of CD62L 

ligands known as peripheral node addressins (PNAds)31. MECA79 staining was detected in 

the thymic vasculature specifically in a subset of P-selectin+ endothelial cells at the cortico-

medullary junction, the site of entry into the thymus of marrow-derived precursors (Fig. 6d–

j), suggesting a possible role for L-selectin in homing to human thymus.

DISCUSSION

The studies presented here demonstrate for the first time that “lymphoid priming” in human 

BM begins prior to the onset of CD10 expression, in a subset of CD34+ progenitors that 

highly express the homing molecule L-selectin. Several pieces of evidence argue strongly 

that the CD10− CD62Lhi population is a precursor of the more B cell-restricted, CD10+ 

stage of lymphopoiesis. First, it is widely assumed that all human B cell differentiation 

passes through a CD10+ progenitor stage, and cultures initiated with CD10− CD62Lhi cells 

were able to generate CD10+ progenitors prior to differentiating into CD19+ B cells. In 

addition, although the CD10− CD62Lhi population contained greater NK potential, the 

number of B cells generated in culture was at least equivalent to those from CD10+ cultures. 
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Patterns of gene and cell surface antigen expression were also consistent with the model that 

positions the CD10− CD62Lhi population prior to CD10 expression.

A recent study described a CD10+ subset within the CD34+CD38−/lo population with 

lymphoid, monocytic and dendritic cell, but no erythroid potential21. However, this CD10+ 

“multi-lymphoid progenitor” (MLP) also expressed the B cell specific gene PAX5. It should 

be noted that the MLP isolation strategy included cells with intermediate expression of 

CD38, similar to those expressed in the CD10− CD62Lhi population, and higher than in the 

most primitive HSC fraction. We propose that lymphoid priming begins with upregulation 

of CD38 (relative to HSCs), and B cell commitment is initiated with the onset of CD10 and 

further upregulation of CD38 expression.

The vast majority of human hematopoietic studies have used umbilical cord blood (UCB), 

largely because this source of human cells is more readily accessible than BM. BM 

progenitors have substantially lower proliferative output than their immunophenotypic 

homologs in UCB7,17,32–34, or than HSC from either source35, making in vivo assessment of 

rare, non-self renewing BM progenitor populations difficult and sometimes unfeasible. 

However, UCB does not represent steady-state postnatal hematopoiesis and substantial 

differences in immunophenotype and function are known to exist between progenitors from 

UCB and BM6. Interestingly, we note that functional and molecular profiles in CD10− 

CD62Lhi BM progenitors (which do not express CD7) are similar to CD34+CD38− CD7+ 

UCB progenitors 20. We also note that the CD10− CD62Lhi immunophenotype described 

here is less reliable for the identification of a pure lymphoid-primed population in UCB than 

in BM; a clear CD62Lhi population is difficult to detect in UCB, and CD34+lin− CD10− 

CD45RA+CD62L+ cells in UCB contain small but readily detectable numbers of CFU (Q-

L.H. & G.M.C., unpublished data). The differences in lineage potentials of cells with similar 

immunophenotypes in UCB and BM, as well as the intrinsic functional differences that 

would be expected between cells that are detected transiently in the postnatal circulation and 

those that are generated throughout life in the BM microenvironment, highlight the critical 

need for studies that focus on human BM.

A large amount of elegant data has been generated in murine studies to argue both for and 

against the classical concept that the lymphoid and the myelo-erythroid pathways emerge 

separately from a multipotent progenitor stage1–4,36. The “lymphoid-primed” LMPP in 

murine BM retain full lymphoid and some myeloid potential but have lost erythro-

megakaryocytic potential, whereas common lymphoid progenitors (CLPs) represent a more 

mature, lymphoid-restricted progenitor population. FLT3 cell surface expression has been 

used to isolate LMPPs from a subpopulation of cKit+Lin−Sca1+ cells in murine BM2 and 

IL-7Rα is used to define murine CLPs within the cKit−Lin−Sca1lo population1. Based on our 

functional and molecular data, the CD10−CD62Lhi human BM progenitor appears most 

similar to the murine LMPPs, and the CD10+ progenitor is more analogous to the murine 

CLPs. However, despite FLT3 upregulation at the transcriptional level, we and others21 have 

not found the cell surface expression of FLT3 to be useful as a marker to discriminate 

between human HSCs and LMPPs. Interestingly, recent studies have reported that up-

regulation of CD62L expression in cKit+Lin−Sca1+ murine BM cells correlates with high 

expression of FLT3 and loss of erythroid and megakaryocyte potential, thus suggesting that 
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CD62L expression might be used as an alternative marker to discriminate between murine 

multipotent progenitors and LMPPs14.

The myeloid potential of the CD10−CD62Lhi population consisted mostly of monocyte-

macrophage and dendritic cells. The absence of clonogenic myeloid-erythroid potential in 

CFU assays suggests strongly that the CD10−CD62Lhi population does not represent a 

precursor to the major myelo-erythroid pathways that are initiated by CMPs and GMPs. 

Rather we favor the concept that the CD10−CD62Lhi cells are “lymphoid-primed” 

progenitors that precede CD10 expression and which are able to generate limited numbers of 

monocyte-macrophage and dendritic cells. This type of residual myeloid and dendritic 

potential has been reported by several groups using even more lymphoid-committed 

progenitors10, 17,21. An earlier paper noted that murine IL-7Rα+ CLPs, despite their 

complete lack of either CFU activity or in vivo myeloid potential, could generate myeloid 

cells in stromal co-cultures, suggesting that myeloid differentiation may be an alternative 

pathway revealed in certain in vitro conditions5. Nonetheless, it is clear that the capacity for 

myeloid differentiation in vitro progressively wanes as lymphoid commitment proceeds and 

that this residual, mostly monocytic, potential is retained after erythroid potential is lost.

We note both differences and similarities in gene expression between the CD10−CD62Lhi 

cells and the previously described murine LMPPs2,36. In both murine LMPPs and human 

CD10−CD62Lhi cells, genes encoding the transcription factor TAL-1 and the cytokine 

receptor MPL are significantly down-regulated relative to HSCs, while KIT expression is 

retained36,37. E2A expression, which is essential for the development of murine LMPPs38, is 

also up-regulated during generation of the CD10−CD62Lhi population from HSC-MPPs, but 

B cell-specific genes such as EBF1 and PAX5 are not. In contrast, the molecular machinery 

required for DNA recombination appears to be highly expressed in murine LMPPs36, but in 

our human studies, RAG1 and RAG2 were expressed at the CD10+ stage and DNTT 

expression in the CD10+ cells was significantly higher than in CD10−CD62Lhi cells.

The identification of a lymphoid primed precursor to the previously described CD10+ 

“CLP”, begs the question of whether the CD10− CD62Lhi cells are recruited to the thymus 

to initiate T cell differentiation. Controversy regarding the identity of precursors that seed 

the murine thymus has continued for over a decade, and it seems likely that more than one 

type of BM progenitor may be able to initiate thymopoiesis. Experimental restrictions make 

it impossible to definitively prove the identity of the BM precursors that normally seed the 

human thymus. The CD10+CD24− population in BM is likely to represent a lymphoid 

progenitor that seeds the human thymus, based on finding a similar immunophenotypic 

subset within human thymocytes12. Thymocyte data presented here provides evidence that 

the CD10−CD62Lhi cells may be an additional or alternative thymic precursor population. It 

should be noted that, although CD62L expression was highest on CD34+CD1a− progenitors, 

CD10−CD62Lhi BM cells are clearly not precursors of the most primitive (CD7−) subset of 

CD34+CD1a− thymocytes. CD34+CD1a−CD7− thymocytes have high myeloid and erythroid 

potential in clonogenic assays39 and do not express CD62L. It is not clear at this stage 

whether CD62L becomes up-regulated as CD34+CD1a−CD7− MPPs differentiate into 

CD34+CD1a−CD7+ thymocytes, or that CD7 is rapidly up-regulated when CD7−CD62Lhi 

LMPPs engage with the thymic microenvironment. PSGL-1–P-selectin interactions are 
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critical mediators of homing to the murine thymus40. As PSGL-1 was abundantly expressed 

on both HSC-MPP and CD10−CD62Lhi BM cells, it is possible that homing to human 

thymus involves the same mechanism. However, the high expression of L-selectin in the 

primitive CD34+CD1a− thymocyte population and the endothelial expression of L-selectin 

ligands in the human thymus, specifically in the cortico-medullary region, raises the 

intriguing possibility that in addition to lymphocyte homing to peripheral lymphoid organs, 

L-selectin may have a role in progenitor homing to human thymus. We have noted that 

CD62L is expressed in a subset of CD34+lin−CD10−cells (but not CD34+CD10+ cells) in 

mobilized peripheral blood (data not shown), but the physiological relevance and lineage 

potential of this mobilized population is as yet unclear. Of note, although L-selectin 

interactions are not described in murine thymus homing, CD62L expression has been used 

to identify a population of murine BM progenitors that efficiently and rapidly reconstitutes 

the murine thymus upon transplantation15,16, and an identical immunophenotypic population 

of cKit+Lin−Sca-1+CD62L+Rag1-deficient progenitors can be detected in the murine 

thymus16.

The reliance on CD10 expression as a marker of lymphoid commitment in previous studies 

of hematopoietic progenitors in human BM has until now meant that states of differentiation 

could only be compared between multipotent progenitors and B committed progenitors. The 

identification of a progenitor in human BM primed for full lymphoid differentiation, and 

prior to B cell commitment, now allows us to dissect the molecular regulation of the first 

stages of lymphoid commitment in human hematopoiesis and to understand how these 

processes are affected during aberrant hematopoiesis in disease states.

METHODS

Bone marrow cell isolation

Normal human BM and thymic cells were obtained from healthy donors via the UCLA 

Pathology Tissue Core, Cincinnati Children’s Hospital, or ALLCELLS according to 

guidelines approved by UCLA Institutional Review Board. CD34+ cells were enriched using 

the magnetic activated cell sorting (MACS) system (Miltenyi Biotec).

CD34+ enriched cells were incubated with combinations of the following anti-human–

specific monoclonal antibodies CD34-APC-Cy7 (581) (Biolegend), or CD45RA-PE-Cy5 

(HI100), CD38-APC (HIT2), CD10-PE-Cy7 (HI10a), CD62L-PE (DREG-56), CD7-PE & 

CD7-Pe-Cy5 (M-T701), and FITC-labeled lineage depletion antibodies: CD3 (SK7), CD14 

(M2E2), CD19 (4G7), CD56 (MY31), and CD235a (GA-R2)(Becton Dickinson [BD]). 4’,6-

diamidino-2-phenylindole (DAPI) was added as a viability dye. A no-antibody control 

defined negative gates. Additional analyses used: CD127-Alexa 647 (HIL-7R-M21), 

CD117-APC (YB5.B8), CD184-APC (aka CXCR4) (12G5), PSGL1-APC (aka CD162, or 

SELPLG) (KPL-1), FLT3-PE (aka CD135) (4G8), CD44-APC (G44-26), CD62L-APC 

(DREG-56), CD90-PECy5 (5E10), HLA-DR-PE (L234) (BD). Cells were isolated on a 

FACSAria (355, 405, 488, 561 and 633 nm lasers) (BD Immunocytometry Systems).
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B-NK Lymphoid Cultures

Flow cytometry isolated cells were plated in bulk on OP9 stroma in 48-well plates, or as 

single cells or limiting dilution on OP9 or MS5 stroma in 96-well plates using the 

Automated Cell Deposition Unit (ACDU). Cells were cultured in lymphoid medium [RPMI 

1640 (Irvine Scientific) with 5% FCS (Biowhittaker), 50 μM 2-mercaptoethanol (Sigma), 

penicillin-streptomycin, L-glutamine (Gemini Bio Products)] with IL-7 (5 ng/mL), 

FLT-3Ligand (FL) (5 ng/mL) and Thrombopoietin (TPO)(5 ng/mL), (+/− IL-3 (5ng/mL) for 

first 3–5 days of culture) (R&D Systems). Clones were recorded as positive if greater than 

100 cells. Cloning efficiency from single cells was defined as (# positive wells/total wells) × 

100. (see Supplementary Table 3 for limiting dilution plating information)

T Lymphoid Cultures

Cells were plated in bulk on 6-well or 96-well plates, or as single cells or in limiting dilution 

(via ACDU) on established OP9-DL1 stroma in lymphoid medium with IL-7 (5 ng/mL), FL 

(5 ng/mL) and Stem Cell Factor (SCF) (1 ng/mL) (R&D)41.

Myelo-Erythroid Cultures and CFUs

Populations were plated on OP9 stroma in DMEM with 10% FBS, with IL-3 (5 ng/mL), FL 

(5 ng/mL), SCF (5 ng/mL), TPO (50 ng/mL), and Erythropoietin (4 U/mL) (R&D). CFU 

assays were performed as described39.

Lineage-specific analysis

Flow cytometry of cultured cells and cells harvested from transplanted mice was performed 

on a Fortessa or LSRII (BD) after staining with human specific monoclonal antibodies: 

CD45 (HI30) (pan-human hematopoietic); HLA-A, B, C (G46-2.6)(pan-human); CD19 

(4G7 and SJ25C1) (B lymphoid); CD56 (MY31)(NK cells); CD209 (DCN46)(dendritic); 

CD1A (HI149), CD3 (SK7), CD4 (RPA-T4), CD7(M-T701), CD8 (RPA-T8), TCR α/β 

(WT31)(T-lymphoid); CD235a (GA-R2) (erythroid), CD14 (M5E2), CD11B (ICRF44)

(monocytic), CD14(M5E2), CD15 (W6D3), CD33 (WM53) (myeloid), CD66B (G10F5) 

(granulocytic) (all antibodies from BD). Data was analyzed using FlowJo software. T cell 

differentiation was assessed by RT-PCR of human CD45+ & mouse CD29− cells isolated at 

4–5 weeks from T lymphoid cultures.

In vivo studies

Adult Nonobese diabetic/severe combined immunodeficiency Interleukin 2 receptor gamma 

chain knock out (NSG) mice (Jackson Laboratories, Bar Harbor, ME), were used for in vivo 

experiments according to protocols approved by the Institutional Animal Care and Use 

Committee of University of California Los Angeles. Adult NSG mice were irradiated (375 

cGy) prior to intra-tibial injection of 3 × 104 CD10−CD62Lhi cells (n = 3) or 2–15 × 104 

CD34+lin− BM cells (n = 3), each with 1 × 105 “carrier” cells [irradiated (3,000 cGy) 

CD34− UCB cells], and euthanized 2 weeks later for flow cytometry analysis. Total human 

engraftment was defined as cells positive for HLA-A, B, C and humanCD45. Negative 

control mice received only irradiated carrier cells.
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Quantitative PCR analysis

After FACSAria isolation, RNA was extracted with the Qiagen RNAEsay Microkit (Qiagen) 

and reverse-transcribed using Omniscript RT, OLIGO DT, and RNAguard (Pharmacia 

Biotech). ABI Viia7 was used for real-time PCR with Taqman Mastermix and TaqMan 

probe based gene expression analysis assays. (List of probes, Supplementary Table 2) 

(Applied Biosystems). Reactions were done in technical and biological triplicates. Nine 

candidate reference genes were analyzed with geNormplus software to determine optimal 

reference genes.42 Using the ΔΔCt method, qPCR expression was normalized to the 

geometric mean of reference targets ACTB and B2M.

Single cell qPCR was performed on the Fluidigm Biomark 48.48 gene expression chip with 

Taqman probes, and analyzed with Fluidigm’s Real-Time Software v3.0.2. β2microglobulin 

was used as a positive control for presence of cDNA.

Microarray Analysis

RNA from BM from 3 different individuals was extracted using Microkit (Qiagenand 

hybridized onto Affymetrix U133 Plus 2.0 Array (Affymetrix).

Robust Multichip Average (RMA)43 method was used to obtain normalized expression 

levels from the three populations. MAS5 algorithm44 was used to make Present, Marginal, 

or Absent calls for all replicates.

Replicate arrays from the three populations were hierarchically clustered using Spearman 

rank correlation (distance metric) and average linkage (agglomeration) method. Only probe 

sets called as "Present" by MAS5 method in all replicates in any of the three populations 

(24067 probes) were used for hierarchical clustering.

The number of differentially expressed genes in Venn diagrams was calculated using the R/

Bioconductor45 package Limma46 at P-value < 0.01 and fold change threshold +/−2. For 

genes with multiple probe sets, the probe set with the lowest P -value was chosen. Probe sets 

not mapped to a gene with official symbol were excluded.

Genes were considered for inclusion to the heatmap only if they were differentially 

expressed at a fold change of +/− 2 and significant at a P -value <0.05 when compared with 

the other population of cells in at least one condition. Gene Set Enrichment Analysis was 

performed as described47.

For drawings, Cluster 3.0 (clustering)48 and Java TreeView (dendrograms, heatmaps)49 

software was used.

Immunohistochemistry

Human thymi were frozen at −80°C and OCT embedded (Tissue-Tek) and 5 μm sections 

were stained with hematoxylin and eosin. For immunohistochemistry (IHC), sections were 

fixed in 10% Neutral Buffered Formalin, then incubated with primary antibody PNad 

(MECA79/sc-19602, 1:83, Santa Cruz Biotechnology, Inc.) and/or VE-cadherin (BV6, 1:83, 

Chemicon International), followed by incubation with secondary antibody anti-rat and/or 
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anti-mouse peroxidase antibody (Vector). For fluorescence IHC, TSA Alexa 594 and/or 

TSA Alexa 488 was applied (Molecular Probes). For chromagen staining, DAB was applied, 

followed by hematoxylin (Jackson Immunoresearch). Sections were viewed with 

Axioimager with Apotome Imagining System (10x); images were captured with Axiocam 

MRm (florescence) or HRc (chromagen) (Zeiss).

Statistical analysis

Prism version 5 (GraphPad Software Inc) was used for statistical analysis. Two-way 

ANOVA compared growth potential. Total CFU output of populations, MFI and q-PCR 

were analyzed for mean, SEM calculation, and one-way ANOVA with a Tukey post-test. 

Limiting Dilution analysis used ELDA software http://bioinf.wehi.edu.au/software/elda/50.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of BM progenitors that lack myeloid and erythroid clonogenic potential
(a) CD7 and CD10 expression on CD34+lin−Bone Marrow (BM) cells (representative of 7 

independent experiments). Error bars represent SEM. * = p<0.050, ** = p<0.010, *** = 

p<0.001 (b) Myeloid and erythroid clonogenic output in methylcellulose assay of the 

CD34+lin− subsets shown. (Total n=4, CD10−CD7− and CD10−CD7+ n=2, CD10+ n=5) (c) 

Flow cytometry isolation strategy of CD34+lin−CD45RA+10+ (“CD10+”) and 

CD34+lin−CD45RA+CD10−CD62Lhi (“CD10−CD62Lhi ”). Over 30 independent BMs 

examined (see also Fig S3). (d) Myeloid and erythroid clonogenic capacity of each subset 

shown. All populations shown, including “total” are CD34+lin−. (p<0.001 comparing 

CD10−CD45RA+ and CD10−CD45RA+CD62Lhi; frequency was also significantly 

decreased in CD10− CD62Lhi and CD10+ relative to all other populations shown, see Table 

S1a, b). IL3Rlo CD45RA−(“CMP”), IL3R−CD45RA−(“MEP”), and IL3Rlo CD45RA+ 

(“GMP”). (e) CD62L expression on CD34+lin−populations shown, representative of over 20 
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independent BMs. (f) Flow cytometry of gated CD34+lin−CD10− cells showing lack of CD7 

expression on CD62Lhi cells, representative of 5 independent BM. [For all phenotypes, lin− 

is defined as negative for CD3, CD14, CD15 (aka FUT4), CD19, CD56 (aka NCAM1), and 

CD235a (aka GYPA)].
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Figure 2. Lympho-myeloid potential of bone marrow progenitors
Analysis of B-NK cultures (a,b) and T cell cultures (c,d,e) initiated with CD10−CD62Lhi or 

CD10+ cells. (a) Flow Cytometry analysis of 4 week B-NK lymphoid cultures (OP9 with 

SCF, FLT-3, TPO); CD19 (B lymphoid) CD56 (NK cells); (one representative of 10 

independent experiments). (b) Cell output (fold increase from Day 0) of CD34+lin− 

populations in B-NK lymphoid conditions. (c,d) Flow Cytometry analysis of T Lymphoid 

cultures (OP9-DL1 stroma with SCF, FLT-3, and IL7.) (e) CD10− CD62Lhi cells generate 

significantly more cells in T cell conditions than do CD10+ cells. Shown is fold increase 

from Day 0 of total cells generated from bulk cultures of CD34+lin−populations shown (* p 
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<0.038, n=6 experiments). (f) Cell growth (fold increase from Day 0) of BM CD34+lin− 

populations in myelo-erythroid co-culture (OP9 stroma with IL-3, TPO, SCF, EPO, and 

FLT-3). HSC (CD34+lin−CD38− cells) generate significantly more cells in myelo-erythroid 

conditions than either CD10−CD62Lhi or CD10+ cells (** p <0.0001 for CD38− vs either 

CD10− CD62Lhi or CD10+. p = 0.49 for CD10− CD62Lhi vs CD10+, n=3 independent 

experiments).
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Figure 3. Lineage potential of CD10− CD62Lhi cells by in vitro clonal analyses and in vivo 
transplantation studies
(a,b) Limiting dilution analysis of CD10− CD62Lhi cells grown in either : (a) B-NK 

conditions (cloning efficiency 1 in 5.3, 95% confidence interval 1 in 4.4–6.4, n=3 

experiments), or (b) T cell conditions (cloning efficiency 1 in 5.6, 95% confidence interval 1 

in 4.6–6.9, n=3 experiments). (c) Lineage analysis of clones from single CD10− CD62Lhi or 

CD10+ cells in B-NK lymphoid co-culture. Shown is percentage of wells with clonal growth 

containing B cells, NK cells or both. (d) FACS analysis of clones generated in B-NK 

conditions from 1–3 CD10− CD62Lhi cells showing NK (CD56+), myeloid (CD14 & CD15) 
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and dendritic (CD1a) potential from one clone (first two panels); B (CD19+) and dendritic 

(CD1a+) (third panel); co-expression of myeloid and dendritic markers from single cell 

clone (panel far right). (e) FACS analysis of a single clone generated in T conditions 

showing T (CD4+CD8+) and myeloid (CD4dimCD14+&CD15+) potential. (f) FACS analysis 

of NSG mouse BM analyzed 2wk post transplant with 30,000 CD34+lin−CD10− CD62Lhi 

cells (center) or 150,000 CD34+lin− cells (right). Negative control mouse (left) received 

100,000 irradiated CD34− carrier cells only. Human engraftment shown top row as 

hCD45+HLA-Class 1+ cells, middle row shows B (CD19+) cells and myeloid (CD14, CD15, 

& CD33+) cells from gated human cells, bottom row shows backgating of B and Myeloid 

cells shown in each panel above. (g) Compiled data from transplant experiments (n=3 mice 

each group).
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Figure 4. CD10−CD62Lhi cells represent an intermediate stage of differentiation between HSC 
and CD10+ progenitors
(a) Flow Cytometry showing co-expression of key cell surface markers on three 

CD34+lin−populations. Bar graph shows Mean Florescent Intensity (MFI) summarized from 

2 or 3 independent samples for each marker, n=14 for CD38. (* = p<0.010, ** = p<0.001) 

(b) Flow Cytometry analysis of one week B-NK lymphoid cultures initiated with CD38−, 

CD10−CD62Lhi or CD10+ cells. (c) Unsupervised whole genome Principal Component 

Analysis of three independent BM samples.
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Figure 5. CD10−CD62Lhi cells represent a distinct progenitor population with a unique 
expression profile that combines hematopoietic stem cell and early lymphoid genes
(a) Gene expression of transcription factors or (b) cytoplasmic and cell surface molecules. 

Genes included in cluster designations of heatmap were all more than 2 fold differentially 

regulated in pair-wise comparisons (p <0.05), and based on statistical analysis (not heatmap 

appearance) defined as Cluster 1: upregulated only in CD38−, and other 2 populations 

equivalent i.e. CD38− > (CD10−CD62Lhi = CD10+); Cluster 2: CD38− >CD62Lhi >CD10+; 

Cluster 3: (CD38− = CD10−CD62Lhi) >CD10+; Cluster 4: CD10−CD62Lhi > (CD38− 

=CD10+); Cluster 5: (CD10−CD62Lhi = CD10+) >CD38−; Cluster 6: CD10+ > 

(CD10−CD62Lhi = CD38−). (c) qPCR for selected genes, each normalized to 
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CD10−CD62Lhi (n= 3 biological replicates, * = p≤0.050, ** = p<0.010, *** = p<0.001) 

mean ± SEM (d) qPCR assay of expression of selected genes in single cells using Fluidigm 

Biomark 48.48 analyzer (bars represent percentage of single cells tested expressing gene 

transcript, n=13 cells analyzed per each gene).
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Figure 6. High CD62L expression and recruitment to human thymus
(a) Relative expression of homing molecules on CD10−CD62Lhi cells (green) and CD10+ 

cells (red) by FACS (gated as CD34+lin−). Unstained (black) (b) RNA expression of CCR7 

in CD38−, CD10−CD62Lhi and CD10+ cells by qPCR (n=3 biological replicates, * = 

p≤0.050, ** = p<0.010, *** p<0.001) mean ± SEM. (c) CD62L expression in human CD34+ 

and CD34− thymocytes (upper) and CD34+CD1A+ and CD34+ CD1A− thymocytes (lower) 

by flow cytometry. (d) Chromagen immunohistochemistry showing MECA-79 staining at 

the cortico-medullary junction. (e, f, g) Fluorescence immunohistochemistry of same region 

as in (d) showing (e) MECA79 co- staining with (f) VE-Cadherin+ blood vessels. (h, i, j) 
Fluorescence immunohistochemistry showing (h) MECA79 co-staining in a subset of (i) P-

Selectin blood vessels at the cortico-medullary junction.
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