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Meaning Guides Attention during 
Real-World Scene Description
John M. Henderson1,2, Taylor R. Hayes1, Gwendolyn Rehrig  2 & Fernanda Ferreira2

Intelligent analysis of a visual scene requires that important regions be prioritized and attentionally 
selected for preferential processing. What is the basis for this selection? Here we compared the 
influence of meaning and image salience on attentional guidance in real-world scenes during two 
free-viewing scene description tasks. Meaning was represented by meaning maps capturing the 
spatial distribution of semantic features. Image salience was represented by saliency maps capturing 
the spatial distribution of image features. Both types of maps were coded in a format that could be 
directly compared to maps of the spatial distribution of attention derived from viewers’ eye fixations 
in the scene description tasks. The results showed that both meaning and salience predicted the 
spatial distribution of attention in these tasks, but that when the correlation between meaning and 
salience was statistically controlled, only meaning accounted for unique variance in attention. The 
results support theories in which cognitive relevance plays the dominant functional role in controlling 
human attentional guidance in scenes. The results also have practical implications for current artificial 
intelligence approaches to labeling real-world images.

The visual world presents us with far more information than we can process at any given moment. Intelligent 
analysis of a scene therefore requires selection of relevant scene regions for prioritized processing. How does 
the brain select those aspects of the world that should receive priority for visual and cognitive analysis? A key 
mechanism of selection in natural vision is overt visual attention via saccadic eye movements1–8. What we see, 
comprehend, and remember about the visual world is a direct result of this prioritization and selection. A central 
topic in visual cognition, therefore, is understanding how overt attention is guided through scenes.

Visual saliency theory has provided an influential approach to attentional guidance in real world scenes. The 
theory proposes that attention is strongly controlled by contrasts in low-level image features such as luminance, 
color, and edge orientation9,10. In visual saliency theory, saliency maps are generated by pooling contrasts in these 
semantically uninterpreted features, and attention is then assumed to be captured or “pulled” to visually salient 
scene regions11–16. In this view, the scene image in a sense prioritizes its own regions for attentional selection. 
The appeal of image guidance theory is that visual salience is both neurobiologically inspired in that the visual 
system is known to compute these features, and computationally tractable in that working models have been 
implemented that can generate saliency from these known neurobiological processes4.

In contrast to saliency theory, cognitive guidance theory emphasizes the strong role of meaning in directing 
attention in scenes. In this view, attention is “pushed” by the cognitive system to scene regions that are semanti-
cally informative and cognitively relevant in the current situation17. Cognitive guidance theory places explanatory 
primacy on scene semantics interacting with viewer goals6,18–25. For example, in the cognitive relevance model26,27, 
the priority of a scene entity or region for attention is determined by its meaning in the context of the scene and 
the current goals of the viewer. In this view, meaning determines attentional priority, with image properties used 
only to generate the set of potential attentional targets but not their priority for selection. Attentional priority is 
then assigned to those potential targets based on knowledge representations generated from scene analysis and 
memory. The visual stimulus remains important in that it is used to parse the scene into a map of potential targets, 
and processes related to image differences (i.e., those captured by saliency models) likely play a role in which 
targets are encoded in the map. But the critical hypothesis is that this parse generates a flat (that is, unranked) 
landscape of potential attentional targets and not a landscape ranked by salience. Knowledge representations then 
provide the attentional priority ranking for attentional targets based on their meaning3,26,27.

To investigate and directly compare the influences of image salience and meaning on attention, it is necessary 
to represent both in a manner that can generate comparable quantitative predictions. Contrasting predictions can 
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then be tested against attention. Implemented computational saliency models output a spatial map of saliency 
values over a scene, providing such quantitative predictions11,12,28–30. How can we similarly generate a spatial 
distribution of meaning over a scene for comparison to saliency? Unfortunately, it is far more difficult to create a 
computational model of meaning than it is to create a computational model of image salience, a likely reason that 
saliency models have been so popular4.

To address this issue, we have recently developed a meaning map representation of the spatial distribution of 
meaning across scenes31. The key idea of a meaning map is that it captures the spatial distribution of semantic 
content in the same format that a saliency map captures the spatial distribution of image salience. To create 
meaning maps, we used crowd-sourced responses given by naïve subjects who rated the meaningfulness of a 
large number of context-free scene patches. Photographs of real-world scenes were divided into dense arrays of 
objectively defined circular overlapping patches at two spatial scales. These patches were then presented to raters 
on Mechanical Turk independently of the scenes from which they were taken. The raters indicated how mean-
ingful they judged each patch to be. We constructed smoothed maps for each scene by interpolating these ratings 
over a large number of patches and raters for each scene. Like image salience, meaning is spatially distributed 
non-uniformly across scenes, with some scene regions relatively rich in semantic content and others relatively 
sparse (see Fig. 1).

A meaning map provides the conceptual analog of a saliency map by representing the spatial distribution of 
semantic features (rather than image features) across a scene. Meaning maps therefore provide a basis for directly 
comparing the influences of meaning and salience on attentional guidance, using the same methods that have 
been used to test the goodness of fit of predictions from saliency theory31.

In our first study comparing the roles of meaning and image salience, subjects were engaged in a viewing task 
in which they freely viewed scenes to prepare for a task (memory or aesthetic judgement) that was presented 
after the scene was removed from view31. It could be that under such conditions, viewers do not guide attention 
as quickly or in as controlled a manner as they might in an on-line task requiring responses in real time during 
viewing. Here we set out to determine how well meaning and image salience predict attentional guidance in free 
viewing of scenes when the viewer is actively engaged with and responding to each scene on-line, and attention 
is directly relevant to the on-line task.

We report the results of two experiments using two different free-viewing scene description tasks. Most the-
ories of language production assume that production is at least moderately incremental32,33, so that speakers 
dynamically interleave planning and speaking rather than preparing the entire description in advance of any 
articulation. Because production is incremental, small phrasal-sized units of speech are planned in response to 
fixations made to different scene regions. Scene description therefore allows us to assess the influence of image 
salience versus meaning in a continuous, on-line task in which attention to specific scene regions is functional and 
necessary. In Experiment 1, subjects were asked to describe what someone might do in each scene. In Experiment 
2, subjects were simply asked to describe each scene. In both experiments, subjects were instructed to begin their 
description as soon as each scene appeared and to continue speaking for 30 seconds. Eye movements over the 
scenes were tracked throughout the trial.

In summary, the goal of this study was to test current theoretical approaches to attentional guidance in 
real-world scenes across two free-viewing experiments using two scene description tasks. We applied a recently 
developed method, meaning maps, to generate the spatial distribution of semantic content across the scenes, and 
used a popular computational model to generate image salience. We then tested cognitive and image guidance 
theories by comparing the relative success of meaning maps and saliency maps to predict the distribution of 
attention as assessed by eye fixations in the scene description tasks.

Experiment 1
In Experiment 1, subjects were asked to describe a set of actions that could be performed in the currently viewed 
scene. Each scene was presented for 30 s, and both eye movements and speech were recorded throughout viewing.

Results
On average, subjects began speaking 2.500 s (SE = 46 ms) after scene onset, and stopped speaking 26.178 s 
(SE = 181 ms) after scene onset. The delay prior to speaking reflects speech preparation and planning referred 
to as an initial apprehension stage33, whereas the tendency to stop speaking shortly before the end of the trial 
reflected the subject’s decision that they had fully described all actions in the scene. Because the focus of the 
experiment was on attentional guidance during an on-line viewing task, only eyetracking data up to the end of 
speech in each trial was included in the attention map analyses.

Figure 1. An example scene with its attention map empirically determined from viewer fixations, along with its 
meaning and saliency maps. (Grid lines are included for ease of comparison and were not present in the scenes).
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Meaning maps and saliency maps served as predictions concerning how viewers distributed their attention 
over scenes. Attention maps representing the distribution of attention were generated from eye fixations. Figure 1 
shows examples of these maps. The critical empirical question is how well the two types of prediction maps align 
with the attention maps in this on-line scene description task. To answer this question, we used linear correlation 
to quantify the degree to which the meaning maps and saliency maps accounted for shared and unique variance 
in the attention maps for each scene31. Linear correlation is a map-level analysis method that makes relatively 
few assumptions, is intuitive, can be visualized, and generally balances the various positives and negatives of dif-
ferent analysis approaches34. It also provides a sensitive method for teasing apart variance in the attention maps 
accounted for by meaning and image salience.

We started by examining the correlation between the meaning and saliency maps themselves (Fig. 2). First, 
we computed the overall correlation across the two maps for each scene. The squared correlation (R2) between 
the full meaning saliency maps was 0.70, averaged across the 30 scenes (SD = 0.10), t(29) = 39.92, p < 0.0001, 
95% CI [0.66 0.73]. However, this correlation overestimated the strength of the relationship because of the shared 
center bias present in both maps: These maps all had values of zero in the periphery, artificially increasing the 
correlations. Therefore, we also computed the correlations between the meaning and saliency maps excluding the 
periphery of each map to provide a more accurate estimate of the true relationship. The R2 excluding the periph-
ery was 0.45 (SD = 0.14), t(29) = 17.16, p < 0.0001, 95% CI [0.40 0.51]. The strength of the correlation across 
maps is consistent with previous work31 and with the proposal that the success of image salience in accounting 
for attention in previous studies could in fact be due to the correlation of image salience with meaning26,27. At the 
same time, these correlations leave considerable unique variance in meaning and image salience that could be 
independently associated with the distribution of attention.

Our primary concern in the present study involved the relationships between the theory-based maps (mean-
ing and saliency) and the observed attention maps. Fig. 3 presents these data for each of the 30 scenes. Each data 
point shows the relationship (R2) between the meaning map and the observed attention map by scene (red), 
and between the saliency map and the observed attention map by scene (blue). The top half of Fig. 3 shows the 
squared linear correlations. On average across the 30 scenes, meaning accounted for 46% of the variance in fixa-
tion density (M = 0.46, SD = 0.14) and salience accounted for 34% of the variance in fixation density (M = 0.34, 
SD = 0.14). A two-tailed t-test revealed the advantage for meaning over salience to be statistically significant, 
t(58) = 3.47, p = 0.001, 95% CI [0.052 0.194].

Figure 2. Correlation (R2) between saliency and meaning maps. The line plots show the correlation between 
the meaning and saliency maps for each scene. The scatter box plots on the right show the corresponding grand 
correlation mean across N = 30 scenes (black horizontal line), 95% confidence intervals (colored box), and 1 
standard deviation (black vertical line). The top (light) line shows the full correlation and the bottom line shows 
the correlation with center bias removed. The mean correlations differed significantly from zero, p < 0.0001.

Figure 3. Squared linear correlation and semi-partial correlation by scene and across all scenes in Experiment 
1. The line plots show the linear correlation (top) and semi-partial correlation (bottom) between fixation density 
and meaning (red) and salience (blue) by scene. The scatter box plots on the right show the corresponding 
grand mean (black horizontal line), 95% confidence intervals (colored box), and 1 standard deviation (black 
vertical line) for meaning and salience across all 30 scenes.



www.nature.com/scientificreports/

4SCientifiC REPORtS |  (2018) 8:13504  | DOI:10.1038/s41598-018-31894-5

The critical theoretical question is how well the unshared variance in meaning and salience predicted the 
distribution of attention. To examine the unique variance in attention explained by meaning and salience when 
controlling for their shared variance, we computed squared semi-partial correlations (bottom half of Fig. 3). 
Across the 30 scenes, meaning accounted for a significant 17% additional variance in attention after controlling 
for salience (M = 0.17, SD = 0.10), whereas salience accounted for a non-significant 4% additional variance after 
controlling for meaning (M = 0.04, SD = 0.05). A two-tailed t-test confirmed that this difference was statistically 
significant, t(58) = 5.766, p < 0.0001, 95% CI [0.081 0.166]. These results indicate that meaning explained the 
distribution of attention over scenes better than image salience.

It has sometimes been proposed that attention might initially be guided by image salience, but that as the 
scene is viewed over time, meaning begins to play a greater role in attentional guidance7,35–38. To test this hypoth-
esis, we conducted time-step analyses. Linear correlation and semi-partial correlations were generated based on 
a series of attention maps, with each map representing sequential eye fixations (i.e., 1st, 2nd, 3rd fixation) in each 
scene. We then compared these time-step attention maps to the meaning and saliency maps to test whether the 
relative importance of meaning and salience in predicting attention changed over time.

Linear and semi-partial correlations were generated based on a series of attention maps, with each map rep-
resenting sequential eye fixations. We then compared the first three time-step attention maps to the meaning and 
saliency maps to test whether the relative importance of meaning and salience in predicting attention changed 
over time. For the linear correlations, the relationship was stronger between the meaning and attention maps for 
all time-steps, and was highly consistent across the 30 scenes. Contrary to the saliency first hypothesis, meaning 
accounted for 35.2%, 20.4%, and 16.3% of the variance in the first three fixations, respectively, whereas salience 
accounted for 11.0%, 12.5%, and 10.3% of the variance in these fixations. Two sample two-tailed t-tests were per-
formed for these three fixations, and p-values were corrected for multiple comparisons using the false discovery 
rate (FDR) correction39. This procedure confirmed the advantage for meaning over salience during the first three 
fixations (FDR <0.05).

Importantly, the improvement in R2 for the meaning maps over saliency maps observed in the linear correla-
tion analyses was also found across fixations in the partial correlations (FDR < 0.05), with meaning accounting 
for 27.1%, 13.6%, and 9.9% of the unique variance in the first three fixations, whereas salience accounted for 
just 2.8%, 5.7%, and 3.9% of the unique variance in the first three fixations, respectively. Overall, counter to the 
salience-first hypothesis and consistent with our prior work31, meaning accounted for more variance in attention 
than salience beginning with the very first fixation. Indeed, contrary to salience-first, the meaning advantage was 
quantitatively larger for the first fixation than for subsequent fixations.

Experiment 2
It could be that in Experiment 1, the focus on describing potential activities biased viewers to attend to functions 
afforded by scenes rather their visual properties, which may have biased attention toward meaningful rather than 
visually salient features, leading to a stronger relationship between meaning and attention. If this is correct, then 
a more open-ended description task should lead to greater reliance on image salience. To test this hypothesis, In 
Experiment 2 we replicated and extended the basic scene description paradigm by asking subjects to describe the 
scenes in whatever manner they liked. These more open-ended instructions should be less constraining and so 
should eliminate any implicit bias to attend to meaning related to scene function. As in Experiment 1, each scene 
was presented for 30 s during the description task and both eye movements and speech were recorded throughout 
each trial.

Results
Figure 4 presents the primary data for each of the 30 scenes. Each data point shows the relationship (R2) between 
the meaning map and the observed attention map by scene (red), and between the saliency map and the observed 
attention map by scene (blue). The top half of Fig. 4 shows the squared linear correlations. On average across 
the 30 scenes, meaning accounted for 47% of the variance in fixation density (M = 0.47, SD = 0.13) and salience 
accounted for 35% of the variance in fixation density (M = 0.35, SD = 0.13). A two-tailed t-test revealed that the 
advantage for meaning over salience was statistically significant, t(58) = 3.61, p < 0.001, 95% CI [0.055 0.191]. 
These results replicate those of Experiment 1.

Once again, the critical question was how well unshared variance in meaning and salience predicted the dis-
tribution of attention. The squared semi-partial correlations for meaning and salience controlling for their shared 
variance are presented in the bottom half of Fig. 4. Across the 30 scenes, meaning accounted for a significant 
15% additional variance in the attention maps after controlling for salience (M = 0.15, SD = 0.10), whereas sali-
ence accounted for a non-significant 3% additional variance after controlling for meaning (M = 0.03, SD = 0.04). 
A two-tailed t-test confirmed that this difference was statistically significant, t(58) = 6.390, p < 0.0001, 95% CI 
[0.084 0.162]. These results also replicate Experiment 1 and indicate that meaning explained the distribution of 
attention over scenes better than salience.

To investigate whether the importance of salience and meaning changed over the course of viewing, we again 
conducted a time-step analysis as described in Experiment 1. For the linear correlations, the relationship was 
stronger between the meaning and attention maps for all time-steps and was highly consistent across the 30 
scenes. Contrary to the saliency first hypothesis, meaning accounted for 38.2%, 22.3%, and 17.0% of the variance 
in the first 3 fixations, whereas salience accounted for only 11.5%, 10.8%, and 13.0% of the variance in the first 3 
fixations, respectively. Two sample two-tailed t-tests corrected for multiple comparisons using the false discovery 
rate (FDR) correction confirmed the advantage for meaning over salience during the first 2 time-steps (FDR 
<0.05).

The improvement in R2 for the meaning maps over saliency maps observed in the overall analyses was also 
found in the partial correlations for the first 2 time-steps (FDR < 0.05), and the advantage was marginal for the 
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third time-step (FDR = 0.08), with meaning accounting for 29.9%, 15.3%, and 9.0% of the unique variance in the 
first 3 fixations, whereas salience accounted for 3.2%, 3.8%, and 5.1% of the unique variance in the first 3 fixations, 
respectively. Again, counter to the salience-first hypothesis, meaning accounted for more variance in attention 
than salience beginning with the very first fixation.

Discussion
Real-world scenes contain an enormous amount of information, but human vision and visual cognition are 
capacity-limited: Only a small amount of the available information can be processed at any given moment. 
Efficient visual analysis therefore requires properly selecting the information that is most relevant given the cur-
rent needs of the viewer.

How is attention guided through real-world scenes? The concept of image salience, typically represented by 
computationally derived saliency maps, has provided an important theoretical framework for thinking about 
the guidance of attention in scenes11–16. At the same time, it is well established that people are highly sensitive 
to the semantic content of the visual world they perceive5,6, suggesting that attention is directed by the semantic 
content of a scene rather than by visually salient image features26,27. Until recently it has been difficult to directly 
contrast image salience and meaning so that their relative influences on attention can be compared. To address 
this challenge, we developed a method for identifying and representing the spatial distribution of meaning in real 
world scene images31. The resulting meaning maps quantify the spatial distribution of semantic content across 
scenes in the same format that saliency maps quantify the spatial distribution of image salience. Meaning maps 
therefore provide a method for directly comparing influences of the distributions of meaning and image salience. 
In the present study, we used meaning maps to test the relative importance of meaning and salience by assessing 
theoretically motivated meaning maps and saliency maps against observed attention maps generated from the eye 
movements of viewers during two scene description experiments.

In Experiment 1, subjects described actions that could take place in the scenes. In Experiment 2, they simply 
described the scenes. In both experiments, the main results were that meaning accounted for more of the overall 
variance and more of the unique variance in attention compared to image salience. The spatial distribution of 
meaning and image salience were correlated across the images, but importantly, when this correlation was statis-
tically controlled, meaning accounted for substantial additional variance in attention, whereas salience did not. 
Furthermore, the advantage for meaning started with the very first subject-determined fixation. Together these 
results support cognitive over image salience theories of attentional guidance.

As an example of how cognitive guidance might work, the cognitive relevance model26,27 proposes that a 
representation of scene entities is generated based on an initial image parse, with attentional priority assigned to 
entities (e.g., perceptual objects) based on their meaning and relevance in the context of the current task. In this 
view, contrasts in image features are not used to assign attentional priority, but instead serve as the basis of the 
scene parse. It is important to note that cognitive guidance does not require that meaning be assigned simulta-
neously to all perceptually mapped objects across the entire scene. That is, cognitive guidance does not require a 
strong late-selection view of scene perception. Indeed, there is significant evidence against semantic analysis of 
objects in the visual periphery of scenes40–43. Instead, when a scene is initially encountered, its gist can be quickly 
apprehended44–47. Apprehending the gist allows access to schema representations that provide constraints on 
what objects are likely to be present and where those objects are likely to be located within the scene3,7, and can 
guide attention at the very earliest points of scene viewing7,48–50. Information retrieved from memory schemas 
can be combined with low-quality visual information from the periphery to assign tentative meaning to percep-
tual objects and other scene regions. These initial representations provide a rich set of priors and can be used 

Figure 4. Squared linear correlation and semi-partial correlation by scene and across all scenes in Experiment 
2. The line plots show the linear correlation (top) and semi-partial correlation (bottom) between fixation density 
and meaning (red) and salience (blue) by scene. The scatter box plots on the right show the corresponding 
grand mean (black horizontal line), 95% confidence intervals (colored box), and 1 standard deviation (black 
vertical line) for meaning and salience across all 30 scenes.



www.nature.com/scientificreports/

6SCientifiC REPORtS |  (2018) 8:13504  | DOI:10.1038/s41598-018-31894-5

to generate predictions for guiding attention to regions that have not yet been identified4,30. In addition, many 
saccades during scene viewing are relatively short in amplitude, such that attention is frequently guided from one 
location to the next using parafoveal and perifoveal information relatively close to the fovea where at least partial 
identity and meaning can be determined.

The type of scene meaning we have investigated here is based on ratings of scene patches that were shown 
to raters independently of their scenes and independently of any task or goal other than the rating itself. These 
experiments therefore investigated the role of what we call scene-intrinsic context-free meaning on attention. We 
can contrast this with other types of meaning based on other types of cognitive representations. As one example, 
we might consider scene-intrinsic contextualized meaning, in which the degree of meaning associated with a scene 
region is based on its relationship to the meaning of the scene as a whole. For instance, an octopus might be 
meaningful floating in an undersea scene, but it might be even more meaningful in a farmyard scene or floating 
in the sky7,40,42,51–54. Note that in all cases, a scene parse will lead to a representation of an octopus object, but its 
meaning value may differ substantially. Similarly, we might consider task-related and goal-related contextualized 
meaning, in which the meaning of a scene region is based on its relationship to the viewer’s task and goals rather 
than intrinsic to the scene itself. For example, during a tennis serve, the bounce point of the ball might not be 
especially intrinsically meaningful, but might become meaningful right after the ball leaves the server’s racket 
given the goal of determining where the ball is going to end up1,2,4,25,55,56. How cognitive representations that 
encode these types of meaning interact with each other to guide attention is currently unknown. The meaning 
map approach provides a basis for pursuing these questions, and the present results suggest that such a pursuit 
would be worthwhile. Note that given these considerations, the present study using context-free meaning poten-
tially employed the least potent version of meaning maps, and we may therefore be underestimating the degree to 
which meaning predicts attention.

Given the dominance of meaning over image salience we have observed previously31 and in the present study, 
how do we account for prior results suggesting that image salience can account for attention? One answer is that 
in some earlier studies, meaningless images (e.g., fractals) were used as stimuli. In these cases, the only meaning 
to be found in the image may be feature contrasts. That is, salience may be meaningful when no other type of 
meaning is available. In the case of studies supporting an effect of image salience in meaningful real-world scenes, 
it is likely that salience accounts for attention to some degree because of its strong correlation with meaning31,57. 
As we have shown here, shared variance between meaning and salience was about .70 overall and .45 when the 
down-weighted map peripheries were removed from the analysis. Given this relationship, the only way to unam-
biguously demonstrate an influence of salience over meaning is to de-correlate them. And as we have shown, 
when this is done statistically, there is little evidence for an influence of image salience independent of meaning 
both in the present task and in scene memorization and aesthetic judgement tasks31,58.

Conclusion
In this study we investigated the relative importance of meaning and image salience on the guidance of attention 
when viewers engage in on-line free-viewing tasks involving real-world scene description. To assess meaning, we 
used meaning maps, a recently developed method for measuring and representing the distribution of semantic 
content over scene images31. We assessed the relative influences of meaning and image salience in two language 
production tasks, one in which subjects simply described the scenes, and a second in which they described scene 
functions. We found that the spatial distribution of meaning was better able than image salience to account for 
the guidance of attention in both tasks. The pattern of results is consistent with cognitive control theories of scene 
viewing in which attentional priority is assigned to scene regions based on semantic information value rather 
than image salience. In addition to the important theoretical implications of these findings for understanding 
attention, the present results also have important implications for current artificial intelligence and machine 
learning approaches to detecting and labeling real-world images. These systems often use image salience to locate 
regions likely to be attended by people, and the present results suggest that such an approach may be limited.

Methods
Meaning and Image Saliency Map Generation. We created meaning maps based on the method 
developed in our previous work31. Each 1024 × 768 pixel scene image was decomposed into a series of partially 
overlapping (tiled) circular patches at two spatial scales. The full patch stimulus set consisted of 12000 unique 
fine-scale patches (87 pixel diameter) and 4320 unique coarse-scale patches (205 pixel diameter) for a total of 
16320 scene patches. Scene patch ratings were performed by 165 subjects on Amazon Mechanical Turk. Subjects 
were recruited from the United States, had a hit approval rate of 99% and 500 hits approved, and were only 
allowed to participate in the study once. Subjects were paid $0.50 cents per assignment and all subjects provided 
informed consent.

Each subject rated 300 random patches extracted from the scenes. Subjects were instructed to assess the mean-
ingfulness of each patch based on how informative or recognizable they thought it was. Subjects were first given 
examples of two low-meaning and two high-meaning scene patches to make sure they understood the rating 
task, and then rated the meaningfulness of scene patches on a 6-point Likert scale (‘very low’,‘low’,‘somewhat 
low’,‘somewhat high’,‘high’,‘very high’). Patches were presented in random order and without scene context, so 
ratings were based on context-free judgments. Each unique patch was rated three times by three independent 
raters for a total of 48960 ratings. Due to the high degree of overlap across patches, each fine-scale patch con-
tained rating information from 27 independent raters and each coarse-scale patch contained rating information 
from 63 independent raters. Meaning maps were generated from the ratings by averaging, smoothing, and then 
combining scale maps from the corresponding patch ratings. The ratings for each pixel at each scale in each scene 
were averaged, producing an average fine-scale and coarse-scale rating map for each scene. The average rating 
maps were then smoothed using thin-plate spline interpolation (Matlab‘fit’ using the‘thinplateinterp’ method). 
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Finally, the smoothed maps were combined using a simple average. This procedure resulted in a meaning map for 
each scene. The final maps were blurred using a Gaussian kernel followed by a multiplicative center bias operation 
that down-weighted the scores in the periphery to account for the central fixation bias commonly observed in 
scene viewing in which subjects concentrate their fixations more centrally and rarely fixate the outside border of 
a scene14,27,59.

Image-based saliency maps were computed for each scene using the Graph-based Visual Saliency (GBVS) 
toolbox with default settings15. GBVS is a prominent saliency model that combines maps of neurobiologically 
inspired low-level image features. A center bias operation is intrinsic to the GBVS saliency maps.

Meaning and saliency maps were normalized to a common scale using image histogram matching, with the 
fixation map for each scene serving as the reference image for the corresponding meaning and saliency maps. 
Histogram matching of the meaning and saliency maps was accomplished using the Matlab function ‘imhist-
match’ in the Image Processing Toolbox. Further details about map generation can be found in previous work31.

Experiment 1
Subjects. University of California, Davis, undergraduate students with normal or corrected-to-normal vision 
participated in the experiment. All subjects were naive concerning the purposes of the experiment and provided 
informed consent. An initial group of 32 subjects was recruited, and data from an a priori target number of 30 
subjects were included in the analyses. The target of 30 was chosen by examining in several independent data 
sets the number of subjects needed to establish stable attention maps. The two excluded subjects could not be 
accurately eye-tracked.

Stimuli. Thirty digitized (1024 × 768 pixels) photographs of real world scenes depicting a variety of indoor 
and outdoor environments were presented. Of the 30 scenes, 10 depicted outdoor environments and 20 depicted 
indoor environments. The outdoor scenes included various buildings (e.g., houses, businesses), and half (5) of the 
outdoor scenes were street views. The set of indoor scenes included 5 living rooms, 3 kitchens, 2 desk areas within 
a room, and 10 different room types. The scenes did not contain people. Twenty of these stimuli were included 
in Henderson and Hayes (2017) and ten had not been tested previously. Scenes were selected to maximize the 
absolute difference between the meaning and saliency maps to enable separation of the influence of each on visual 
attention. In addition, the selected scenes were easy to describe in that they contained recognizable and readily 
distinguishable objects in familiar contexts.

Apparatus. Eye movements were recorded with an SR Research EyeLink 1000+ tower mount eyetracker 
(spatial resolution 0.01) sampling at 1000 Hz. Subjects sat 90 cm away from a 21” monitor, so that scenes sub-
tended approximately 33° × 25° of visual angle at 1024 × 768 pixels. Head movements were minimized using a 
chin and forehead rest. Although viewing was binocular, eye movements were recorded from the right eye. The 
experiment was controlled with SR Research Experiment Builder software. Audio was digitally recorded using a 
Roland Rubix 22 USB audio interface and a Shure SM86 cardioid condenser microphone.

Procedure. Each trial began with a five-point array of fixation crosses used to check calibration. The subject 
then fixated the center cross until the experimenter pressed a key to begin the trial. The scene was then presented 
for 30 s while eye movements and speech were recorded. A unique pseudo-random scene order was generated for 
each subject with the restriction that two scenes of the same category (e.g., kitchen) did not occur consecutively. 
Subjects were instructed to describe a set of actions that could be performed in the scene in the following way: 
“In this experiment, you will see a series of scenes. In each scene, think of the average person. Describe what the 
average person would be inclined to do in the scene. You will have 30 seconds to respond.” After the 30 second 
response window terminated, subjects proceeded to the next trial by pressing any button on a response box. Prior 
to the experimental trials, subjects completed three practice trials to familiarize themselves with the task and the 
duration of the response period.

A calibration procedure was performed at the start of each session to map eye position to screen coordi-
nates. Successful calibration required an average error of less than 0.49° and a maximum error of less than 0.99°. 
Fixations and saccades were segmented with EyeLink’s standard algorithm using velocity and acceleration thresh-
olds (30°/s and 9500°/s2).

Eye movement data were imported offline into Matlab using the EDFConverter tool. The first fixation, deter-
mined by the fixation cross and always located at the center of the display, was eliminated from analysis.

Experiment 2
Subjects. Thirty University of California, Davis, undergraduate students with the characteristics listed in 
Experiment 1 participated in this experiment. None of the subjects participated in Experiment 1. An initial group 
of 38 subjects was recruited, and data from an a priori target number of 30 subjects who met the inclusion criteria 
were included in the analyses. Excluded subjects failed to calibrate (one), did not follow instructions to speak out 
loud (one), or could not be accurately eye-tracked (six).

Stimuli, Apparatus. Stimuli and apparatus were the same as in Experiment 1.

Procedure. The procedure was the same as in Experiment 1, with the exception that the instructions were 
changed such that subjects were instructed simply to describe each scene: “In this experiment, you will see a series 
of scenes. You will have 30 seconds to describe the scene out loud.”
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Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

References
 1. Land, M. F. & Hayhoe, M. M. In what ways do eye movements contribute to everyday activities? Vision Research 41, 3559–3565 

(2001).
 2. Hayhoe, M. M. & Ballard, D. Eye movements in natural behavior. Trends in Cognitive Sciences 9, 188–194 (2005).
 3. Henderson, J. M. Human gaze control during real-world scene perception. Trends in Cognitive Sciences 7, 498–504 (2003).
 4. Henderson, J. M. Gaze Control as Prediction. Trends in Cognitive Sciences 21, 15–23 (2017).
 5. Buswell, G. T. How People Look at Pictures. (University of Chicago Press Chicago, 1935).
 6. Yarbus, A. L. Eye movements and vision. https://doi.org/10.1016/0028-3932(68)90012-2 (Plenum Press, 1967).
 7. Henderson, J. M. & Hollingworth, A. High-level scene perception. Annual Review of Psychology 50, 243–271 (1999).
 8. Rayner, K. The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search. The 

Quarterly Journal of Experimental Psychology 62, 1457–1506 (2009).
 9. Treisman, A. M. & Gelade, G. A Feature-Integration Theory of Attention. Cognitive Psychology 12, 97–136 (1980).
 10. Wolfe, J. M. & Horowitz, T. S. Five factors that guide attention in visual search. Nature Human Behaviour 1, 1–8 (2017).
 11. Itti, L. & Koch, C. Computational modelling of visual attention. Nature Reviews Neuroscience 2, 194–203 (2001).
 12. Parkhurst, D., Law, K. & Niebur, E. Modelling the role of salience in the allocation of visual selective attention. Vision Research 42, 

107–123 (2002).
 13. Borji, A., Parks, D. & Itti, L. Complementary effects of gaze direction and early saliency in guiding fixations during free viewing. 

Journal of Vision 14, 3 (2014).
 14. Borji, A., Sihite, D. N. & Itti, L. Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. 

IEEE Transactions on Image Processing 22, 55–69 (2013).
 15. Harel, J., Koch, C. & Perona, P. Graph-Based Visual Saliency. Advances in neural information processing systems. 1–8, 

doi:10.1.1.70.2254 (2006).
 16. Koch, C. & Ullman, S. Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. Human Neurobiology 4, 

219–227 (1985).
 17. Henderson, J. M. Regarding scenes. Current Directions in Psychological Science 16, 219–222 (2007).
 18. Einhäuser, W., Rutishauser, U. & Koch, C. Task-demands can immediately reverse the effects of sensory-driven saliency in complex 

visual stimuli. Journal of vision 8(2), 1–19 (2008).
 19. Tatler, B. W., Hayhoe, M. M., Land, M. F. & Ballard, D. H. Eye guidance in natural vision: Reinterpreting salience. Journal of Vision 

11, 5 (2011).
 20. Buswell, G. T. How People Look at Pictures. Psychological Bulletin (University of Chicago Press Chicago,). https://doi.org/10.1037/

h0053409 (1936).
 21. Henderson, J. M. Eye movements and scene perception. In The Oxford Handbook of Eye Movements (eds Liversedge, S. P., Gilchrist, 

I. D. & Everling, S.) 593–606 (Oxford; New York: Oxford University Press, 2011).
 22. Wu, C. C., Wick, F. A. & Pomplun, M. Guidance of visual attention by semantic information in real-world scenes. Frontiers in 

Psychology 5, 1–13 (2014).
 23. Neider, M. B. & Zelinsky, G. Scene context guides eye movements during visual search. Vision Research 46, 614–621 (2006).
 24. Stirk, J. A. & Underwood, G. Low-level visual saliency does not predict change detection in natural scenes. Journal of Vision 7(3), 

1–10 (2007).
 25. Hayhoe, M. M. V and Action. 389–413, https://doi.org/10.1146/annurev-vision-102016-061437 (2017).
 26. Henderson, J. M., Malcolm, G. L. & Schandl, C. Searching in the dark: Cognitive relevance drives attention in real-world scenes. 

Psychonomic Bulletin & Review 16, 850–856 (2009).
 27. Henderson, J. M., Brockmole, J. R., Castelhano, M. S. & Mack, M. Visual saliency does not account for eye movements during visual 

search in real-world scenes. In Eye movements: A window on mind and brain (eds Van Gompel, R. P. G., Fischer, M. H., Murray, 
Wayne, S. & Hill, R. L.) 537–562 (Elsevier Ltd), doi:10.1016/B978-008044980-7/50027-6 (2007).

 28. Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. Pattern Analysis and Machine 
Intelligence, IEEE Transactions on 20, 1254–1259 (1998).

 29. Borji, A. & Itti, L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 
185–207 (2013).

 30. Torralba, A., Oliva, A., Castelhano, M. S. & Henderson, J. M. Contextual guidance of eye movements and attention in real-world 
scenes: the role of global features in object search. Psychological Review 113, 766–786 (2006).

 31. Henderson, J. M. & Hayes, T. R. Meaning-based guidance of attention in scenes as revealed by meaning maps. Nature Human 
Behaviour 1, 743–747 (2017).

 32. Ferreira, F. & Swets, B. How incremental is language production? Evidence from the production of utterances requiring the 
computation of arithmetic sums. Journal of Memory and Language 46, 57–84 (2002).

 33. Griffin, Z. M. & Bock, K. What the eyes say about speaking. Psychological Science 11, 274–279 (1999).
 34. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A. & Durand, F. What do different evaluation metrics tell us about saliency models? arXiv 

1–23 (2016).
 35. Mannan, S. K., Ruddock, K. H. & Wooding, D. S. The relationship between the locations of spatial features and those of fixations 

made during visual examination of briefly presented images. Spatial Vision 10, 165–188 (1996).
 36. Parkhurst, D., Law, K. & Niebur, E. Modeling the role of salience in the allocation of overt visual attention. Vision Research 42, 

107–123 (2002).
 37. Anderson, N. C., Ort, E., Kruijne, W., Meeter, M. & Donk, M. It depends on when you look at it: Salience influences eye movements 

in natural scene viewing and search early in time. Journal of Vision 15, 9 (2015).
 38. Henderson, J. M. & Ferreira, F. Scene perception for psycholinguists. In The Interface of language, Vision, and Action (Psychology 

Press, 2004).
 39. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of 

the Royal Statistical Society 57, 289–300 (1995).
 40. Henderson, J. M., Weeks, P. A. J. & Hollingworth, A. The effects of semantic consistency on eye movements during complex scene 

viewing. Journal of Experimental Psychology: Human Perception and Performance 25, 210–228 (1999).
 41. Võ, M. L. H. & Henderson, J. M. Object–scene inconsistencies do not capture gaze: evidence from the flash-preview moving-window 

paradigm. Attention, Perception, & Psychophysics 73, 1742–1753 (2011).
 42. Võ, M. L. H. & Henderson, J. M. Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention 

during scene perception. Journal of Vision 9 (2009).
 43. Gareze, L. & Findlay, J. M. Absence of scene context effects in object detection and eye gaze capture. In Eye Movements 617–637 

https://doi.org/10.1016/B978-008044980-7/50031-8 (2007).
 44. Biederman, I. Perceiving Real-World Scenes. Science 177, 77–80 (1972).

http://dx.doi.org/10.1016/0028-3932(68)90012-2
http://dx.doi.org/10.1037/h0053409
http://dx.doi.org/10.1037/h0053409
http://dx.doi.org/10.1146/annurev-vision-102016-061437
http://dx.doi.org/10.1016/B978-008044980-7/50031-8


www.nature.com/scientificreports/

9SCientifiC REPORtS |  (2018) 8:13504  | DOI:10.1038/s41598-018-31894-5

 45. Potter, M. Meaning in visual search. Science 187, 965–966 (1975).
 46. Castelhano, M. S. & Henderson, J. M. The influence of color on the perception of scene gist. Journal of Experimental Psychology: 

Human Perception and Performance 34, 660–675 (2008).
 47. Fei-Fei, L., Iyer, A., Koch, C. & Perona, P. What do we perceive in a glance of a real-world scene? Journal of Vision 7, 10 (2007).
 48. Oliva, A. & Torralba, A. Building the gist of a scene: the role of global image features in recognition. Progress in Brain Research 155 

B, 23–36 (2006).
 49. Castelhano, M. S. & Henderson, J. M. Flashing scenes and moving windows: An effect of initial scene gist on eye movements. Journal 

of Vision 3, 67a (2003).
 50. Võ, M. L. H. & Henderson, J. M. The time course of initial scene processing for eye movement guidance in natural scene search. 

Journal of Vision 10, 1–13 (2010).
 51. Hollingworth, A. & Henderson, J. M. Does consistent scene context facilitate object perception? Journal of Experimental Psychology 

General 127, 398–415 (1998).
 52. Biederman, I., Mezzanotte, R. J. & Rabinowitz, J. C. Scene perception: Detecting and judging objects undergoing relational 

violations. Cognitive Psychology 14, 143–177 (1982).
 53. Loftus, G. R. & Mackworth, N. H. Cognitive determinants of fixation location during picture viewing. Journal of Experimental 

Psychology: Human Perception and Performance 4, 565–572 (1978).
 54. Greene, M. R. Statistics of high-level scene context. Frontiers in Psychology 1–31 (2013).
 55. Land, M. F. & McLeod, P. From eye movements to actions: how batsmen hit the ball. Nature neuroscience 3, 1340–5 (2000).
 56. Hayhoe, M. M. & Ballard, D. Modeling Task Control of Eye Movements Minireview. Current Biology 24, R622–R628 (2014).
 57. Elazary, L. & Itti, L. Interesting objects are visually salient. Journal of Vision 8(3), 1–15 (2008).
 58. Henderson, J. M. & Hayes, T. R. Meaning Guides Attention in Real-World Scene Images: Evidence from Eye Movements and 

Meaning Maps. Journal of Vision 18, 10 (2018).
 59. Tatler, B. W. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and 

image feature distributions. Journal of Vision 7(4), 1–17 (2007).

Acknowledgements
Research reported in this publication was supported by the National Eye Institute of the National Institutes of 
Health under award number R01EY027792. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Author Contributions
All authors conceived of the study. G.R. collected and G.R. and T.H. analyzed the data. J.H. wrote the first draft of 
the manuscript and all authors reviewed and revised the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Meaning Guides Attention during Real-World Scene Description
	Experiment 1
	Results
	Experiment 2
	Results
	Discussion
	Conclusion
	Methods
	Meaning and Image Saliency Map Generation. 

	Experiment 1
	Subjects. 
	Stimuli. 
	Apparatus. 
	Procedure. 

	Experiment 2
	Subjects. 
	Stimuli, Apparatus. 
	Procedure. 

	Acknowledgements
	Figure 1 An example scene with its attention map empirically determined from viewer fixations, along with its meaning and saliency maps.
	Figure 2 Correlation (R2) between saliency and meaning maps.
	Figure 3 Squared linear correlation and semi-partial correlation by scene and across all scenes in Experiment 1.
	Figure 4 Squared linear correlation and semi-partial correlation by scene and across all scenes in Experiment 2.




