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Abstract

Learning and Control of Deep Koopman Eigenfunctions

by

Alan Blake Cao

A nonlinear dynamical system can be represented by an infinite-dimensional linear opera-

tor known as the Koopman operator. Observables are scalar-valued functions of the state

space that collectively form a linear vector space. Although all observables evolve linearly

under the Koopman operator, special observables called eigenfunctions can be decoupled

from other observables and span a Koopman-invariant subspace. Finding a finite approx-

imation of the Koopman operator allows the application of well-developed linear systems

methodologies to nonlinear systems. Numerical methods such as Dynamic Mode De-

composition (DMD) and its variants are widely used to produce finite approximations of

the Koopman operator. Unfortunately, the approximations produced by these numerical

methods are highly sensitive to the choice of observables, which are typically user-defined.

In this work, we introduce a Koopman-inspired deep learning architecture that extracts

the eigenfunctions of discrete spectrum systems, resulting in a diagonal representation

of the Koopman operator. In numerical examples, the eigenfunctions learned using this

framework exhibit a predictive performance superior to existing methods. Finally, we

extend the architecture to controlled dynamical systems. Numerical examples show that

the linear predictors obtained in this way can be readily used to design controllers that

directly act on the Koopman modes of the system.
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Chapter 1

Introduction

Dynamical systems theory describes properties of systems that evolve in time, and can be

applied to a wide variety of fields including physics, biology, and economics. Dynamical

systems can be mathematically represented as differential or difference equations that

govern the evolution of a set of quantities, or states. One crucial motivation for under-

standing and modelling dynamical systems is the potential for control. The objective

of control is to drive a system to some desired state by applying a control action. Con-

trol theory is crucial in most applications involving robotics, power systems, or chemical

processes. Control is even irreplaceable in our daily lives: our senses provide reliable feed-

back allowing us to perform actions as desired. Although substantial theory has been

developed for the analysis and control of linear systems, it does not easily translate to

nonlinear systems. Nonlinearity is ubiquitous in physical phenomena, and representing

nonlinear dynamics in a globally linear formulation would allow existing linear theory to

be applied to a much larger class of systems.

A linearization of a nonlinear system is usually the first order Taylor expansion about a

desired point. This yields a linear representation that becomes less accurate the further
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Introduction Chapter 1

away the system strays from the point of linearization. A globally linear representation

would be superior and allow for control outside of a small neighborhood. Originally

attributed to Koopman, Carleman, and Von Neumann, the idea of modelling nonlin-

ear dynamics using infinite-dimensional linear operators offers an approach for finding a

globally linear representation. We define an observable as a scalar-valued function of the

state space, and note that the space of all observables forms a linear vector space. The

idea is to lift nonlinear dynamics into the infinite-dimensional space of all observables

where the evolution is described by the action of the so-called Koopman operator [6, 7].

Importantly, this operator is linear and the observables evolve linearly even though the

underlying dynamics are nonlinear. In addition, the Koopman operator offers spectral

information regarding coherent structures and frequencies in the underlying dynamics

[17, 12]. Recent renewed interest in Koopman theory can be mainly attributed to theo-

retical advances [14, 3, 13, 2] and improved numerical methods such as Dynamic Mode

Decomposition (DMD) [19, 20], Extended DMD (EDMD) [21], Hankel DMD [1], and

deep DMD [9, 22]. These numerical methods produce finite-dimensional approximations

of the Koopman operator from data that can be utilized in real-world applications. A

dictionary of observables is used to lift the dynamics to a high-dimensional space where

the evolution is approximately linear. Unfortunately, the observables are typically user-

defined and highly affect the quality of the approximations. Of all possible choices for

observables, the eigenfunctions of the Koopman operator are ideal because they can be

decoupled from other observables and span a Koopman-invariant subspace. Identify-

ing and representing the Koopman eigenfunctions has proven to be difficult in practice.

Other methods have tried to use neural networks to learn Koopman eigenfunctions from

data. In particular, [10] allows the eigenvalues to vary across the state space, resulting

in a nonlinear representation of the dynamics. Moreover, these methods were applied to

systems with continuous spectrum, in which there are no Koopman eigenfunctions ex-

2



Introduction Chapter 1

cept for invariants. In contrast, our method directly learns true Koopman eigenfunctions

for discrete spectrum systems. Importantly, our method learns Koopman eigenfunctions

associated with constant eigenvalues to produce a spectral expansion of the Koopman

operator. Our globally linear models can be integrated into linear control methodologies

to control the underlying nonlinear dynamics.

In 1958, the idea of mathematically modelling biological neurons and their synaptic

connections to perform pattern recognition was introduced via the concept of the per-

ceptron [16]. Since then, Artificial Neural Networks (ANNs) have received a great deal

of attention due to the development of learning algorithms, such as backpropagation

[18], as well as the increasing abundance of data. ANNs consist of many simple inter-

connected nonlinear systems with weights that are adjusted to improve performance in a

process known as learning. Increasing the depth of the ANNs enhances their performance

and rate of learning, resulting in the hierarchical methods being termed deep learning.

By the universal approximation theorem [4], ANNs are able to approximate arbitrar-

ily complex functions, holding the potential for finding useful observables to produce

superior representations of the Koopman operator. In this work we present an neural

network architecture inspired by Koopman operator theory that approximates Koopman

eigenfunctions and achieves improved prediction and control for nonlinear systems. Our

model inherently decouples the Koopman modes of the system, performing a spectral

decomposition of the underlying dynamics.

3



Chapter 2

Koopman Operator Theory

For some state space M we consider a nonlinear discrete-time uncontrolled dynamical

system

x+ = T (x), (2.1)

where x ∈ M is the state of the system and T : M → M is the state transition map-

ping between successive time steps. The Koopman operator U is an infinite-dimensional

operator that describes the evolution of all scalar-valued observables h : M → C and is

defined by

Uh(x) = h ◦ T (x). (2.2)

Importantly, the Koopman operator is globally linear even if the underlying dynamical

system is highly nonlinear. This representation has the potential to improve nonlinear

prediction and control by leveraging linear systems theory.

4



Koopman Operator Theory Chapter 2

2.1 Numerical Methods - EDMD

A finite-dimensional approximation of the Koopman operator can be applied to a sub-

set of observables to approximately predict the evolution of the underlying nonlinear

dynamics. Unfortunately, obtaining an approximation of the Koopman operator that

sufficiently captures the dynamics has proven to be difficult. Data-driven algorithms

such as DMD and its variants are often used to find finite-dimensional representations of

the Koopman operator. In particular, EDMD enhances the performance of DMD by pro-

viding the model with nonlinear functions of the measurements. The algorithm assumes

there exists data in the form of tuples (xi, x
+
i ), i = 0, 1, . . . , N that satisfy x+

i = T (xi)

and finds the optimal matrix A in a least-squares sense by minimizing

N∑
i=0

∥∥f(x+
i )− Af(xi)

∥∥2

2
(2.3)

where f is a vector lifted observable-functions. The observables must be chosen in a

meaningful way to produce an adequate approximation of the Koopman operator.

2.2 Koopman Eigenfunctions

For systems with a discrete Koopman spectrum, the ideal choice for observables are the

eigenfunctions of the Koopman operator ϕ, defined as

Uϕ(x) = λϕ(x). (2.4)

The eigenfunctions span a Koopman invariant subspace [12], and lead to an exact finite-

dimensional linear representation. The difficulty lies in choosing observables that ap-

proximately span this Koopman invariant subspace. Observable dictionaries consisting
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of radial basis functions, monomials, and time delays have shown limited success [8]. The

search for observables that approximate Koopman eigenfunctions motivates the use of

deep learning methodologies.

6



Chapter 3

Learning Discrete Spectrum

Linear systems can be diagonalized to decouple the dynamics and to study the spectral

properties. Representing nonlinear systems in the Koopman framework suggests a similar

reduction [12]. For systems with a discrete Koopman spectrum, there exist a finite

number of Koopman eigenfunctions that are able to sufficiently represent the underlying

nonlinear dynamics. Lifting the original states into eigenfunction coordinates results in a

globally diagonal representation that decouples the eigenfunction-eigenvalue pairs. This

is the equivalent of performing an eigendecomposition for a linear system. Typically,

observables used in EDMD are user-specified and are unable to sufficiently represent

the dynamics. We show that our deep learning model finds superior observables by

approximating Koopman eigenfunctions from data. By doing so, our model is able to

generate predictions superior to existing models.

3.1 Network Architecture

We leverage deep learning to learn eigenfunctions of the Koopman operator from data.

Importantly, we constrain our model to evolve the eigenfunctions through scalar multipli-

7
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cation by an eigenvalue to find a linear representation in the lifted space of eigenfunctions.

In order to generalize to systems with oscillatory behaviors, we equip our model to be

able to learn complex-valued eigenfunctions and eigenvalues. We use two sets of real-

valued weights to hold the complex quantities. The first set of weights corresponds to the

real components while the second set corresponds to the imaginary components. Because

all the operations can be reduced to scalar additions and multiplications, the resulting

complex quantities can be computed according to the relationships

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

(3.1)

To learn the dynamics, our model is trained on data in the form of trajectories produced

from a set of initial conditions. For every trajectory, the loss functions used in training

are:

1. Reconstruction Loss. This loss enforces that the model behaves as an autoen-

coder, where f is an encoder and f−1 is a decoder. The encoder lifts the states to a

space of eigenfunctions and the decoder unlifts the eigenfunctions back to the original

state space. Neural networks are used for the encoder and the decoder.

∥∥x0 − f−1(f(x0))
∥∥
MSE

(3.2)

2. Prediction Loss. This loss drives the network to learn eigenfunctions that can

sufficiently predict the nonlinear evolution of the states. The prediction loss is enforced

over n time steps that can capture the essential characteristics of the dynamics. By

taking the prediction loss over multiple time steps, the compounded error of the repeated

multiplication of the eigenvalues are taken into account to produce eigenfunctions well

8
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suited for long-term predictions. A neural network is used for the diagonal matrix D of

eigenvalues.

1

n

n∑
k=1

∥∥xk − f−1(Dk ◦ f(x0))
∥∥
MSE

(3.3)

Our autoencoder-based neural network model shown in Figure 3.1 is able to discover a

set of nonlinear observables on which the dynamics evolve linearly. The encoder lifts the

original states into the space of eigenfunctions and the decoder recovers the original states.

As opposed to enforcing linearity in the cost function [10], our network is constrained

to only evolve in time by repeated multiplication by eigenvalues. Thus, the architecture

constrains the model to approximate eigenfunctions and eigenvalues while sufficiently

representing the dynamics. Importantly, a diagonal representation of the dynamics is

obtained that decouples the principle characteristics of the nonlinear dynamics. Our

models takes the form of 

z′1

z′2
...

z′N


=



λ1

λ2

. . .

λN





z1

z2
...

zN


, (3.4)

where zi = fi(x) are the learned eigenfunctions and λi are the corresponding eigenvalues

for i = 1, . . . , N . We use the Pytorch framework [15] and the Adam optimizer [5] for all

training purposes. The neural networks used are composed of 2 hidden layers each with

20 neurons. Each hidden layer in our model is followed by a rectified linear unit (ReLU)

nonlinear activation function.

9
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Figure 3.1: Visualization of our deep learning architecture used for approximating Koop-
man eigenfunctions and eigenvalues. The model is based on an autoencoder that is able
to reconstruct the original inputs through a latent variable space we call the eigenfunction
space. In addition to the autoencoder loss, we minimize the prediction error so that the
model learns to predict the the dynamics. The green arrows represent repeated multi-
plication of each eigenfunction by its associated eigenvalue. These eigenvalues are also
weights that are learned during training. To obtain an eigenfunction k steps in the future,
the current eigenfunction must be multiplied by its eigenvalue k times. k must be chosen
to sufficiently capture the dynamics of interest. The network is trained by minimizing the
prediction error of the states at all future steps up to a desired time horizon.

3.2 Initialization with EDMD

We initialize the model with approximations of the eigenvalues and eigenfunctions of

the Koopman operator obtained from performing EDMD on time delay observables.

Although a better EDMD model can be constructed using more carefully chosen ob-

servables, the time delay observables can be readily obtained from the training data.

The eigenvalues of the model are directly initialized with the eigenvalues acquired from

EDMD, while the encoder and decoder are trained to represent the numerical eigenfunc-

10
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tions produced by EDMD. Training the network intialized in this way allows the networks

to start off with a better representation of the dynamics and decreases the amount of

training time necessary.

11



Chapter 4

Uncontrolled Numerical Examples

We demonstrate our deep learning model’s ability to approximate Koopman eigenfunc-

tions on example systems with discrete real and complex spectra. For a system with

complex spectra, we consider the Van der Pol oscillator which exhibits a highly nonlinear

limit cycle.

4.1 Discrete Real Spectrum

We consider a simple nonlinear system with a single fixed point at the origin.

ẋ1 = αx1

ẋ2 = β(x2 − x2
1)

(4.1)

For this simple system, it is not difficult to determine the eigenfunctions ϕ1 and ϕ2:

ϕ1 = x1

ϕ2 = x2 −
β

β − 2α
x2
1

(4.2)

12
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with corresponding eigenvalues λ1 = eα∆t and λ2 = eβ∆t. For our choice of α = −0.05

and β = −1, there is a stable manifold at x2 = x2
1. We create our datasets by solving

the systems of differential equations in (4.1) using a Runge-Kutta (4, 5) solver. 200,000

initial conditions are generated randomly from [−0.5, 0.5] × [−0.5, 0.5] and solved for

k = 256 time steps of ∆t = 0.1. 10% of the data are used for validation and the rest are

used for training. The discrete eigenvalues corresponding to α = −0.05 and β = −1 are

determined to be:

λ1 = eα∆t = e(−0.05)(0.1) ≈ 0.99501 (4.3)

λ2 = eβ∆t = e(−1)(0.1) ≈ 0.90484 (4.4)

4.1.1 Learning Real Eigenfunctions

We expect a model with two eigenfunctions to learn the eigenfunctions and eigenvalues

described in (4.2) in order to adequately predict the dynamics. Because this system

possesses purely real eigenvalues and eigenfunctions, our model can be constrained to use

purely real values. Before training the model on the dynamics, we use DMD to initialize

the weights and the eigenvalues. The results of applying DMD for initialization are shown

in Figure 4.1. Although the eigenvalues produced by DMD are very close to the expected

values, the corresponding eigenfunctions do not capture the nonlinearity due to the poor

choice of observables. After training, our model learns the eigenfunctions of the nonlinear

dynamics that are qualitatively similar to the expected analytical eigenfunctions.

13
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Figure 4.1: Left - Analytic eigenfunctions in (4.2) visualized over the state space. Mid-
dle - Numerical eigenfunctions computed using DMD. The eigenvalues are learned to be
0.99501 and 0.90507. Right - Numerical eigenfunctions produced using our method. The
eigenvalues are learned to be 0.99503+0.00013i and 0.90217−0.00990i. Note that Koop-
man eigenfunctions are invariant to scaling.

The state space can be partitioned into level sets of ϕ2 where the dynamics rapidly

converge to ϕ2 = 0 at the rate of λ2. The slow manifold shown in Figure 4.2 is the zero

level set of ϕ2. After the slow manifold has been reached, the dynamics slowly converge

to the origin at the rate of λ1 while passing through level sets of ϕ1.

Figure 4.2: Zero-level sets of the eigenfunctions are the slow and fast manifolds.

14
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Given initial conditions within the training bounds, our model is able to forecast trajec-

tories for long time horizons shown in Figure 4.3 using a compact 2× 2 diagonal matrix

representation:

ϕ′
1

ϕ′
2

 =

λ1 0

0 λ2


ϕ1

ϕ2

 . (4.5)

Our model is able to identify the nonlinear slow manifold at x2 = x2
1 that DMD is unable

to recognize. The eigenvalues change very little during training, indicating that a good

initialization was given that was able to accelerate the learning process.

Figure 4.3: Trajectories of 512 steps generated from a 6 × 6 grid of initial conditions.
Black - Trajectories generated using an ODE solver on the nonlinear equations in (4.1).
Green - Results from using a 2 × 2 linear model produced by DMD. Blue - Results from
using our 2 × 2 diagonal matrix representation in (4.5). Red - Training horizon. Log
absolute prediction error is averaged over the 36 trajectories.
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4.1.2 Redundant Eigenfunctions

Applying a model with redundant eigenfunctions, we expect to learn a set of eigenfunc-

tions generated by the two eigenfunctions in (4.2). The results of training the network

to learn sixteen eigenfunctions are shown in Figure 4.4. Considering the ℓ2 norm of the

eigenfunctions over the region of interest, we can see that three eigenfunctions have a

magnitude above our cutoff threshold of ϵ = 0.1.

Figure 4.4: Results from learning redundant eigenvalues. Although most of the eigen-
values jump around during training, three eigenvalues remain very close to their ini-
tialization values. It turns our that these three eigenfunctions also have a signifi-
cantly larger ℓ2 norm and can completely capture the dynamics. Top - The 15th and
13th eigenfunctions appear similar to the expected eigenfunctions. They have corre-
sponding eigenvalues at 0.99505 + 0.00011i and 0.90459 + 0.00641i. We also find the
14th eigenfunction to have a significant magnitude and a corresponding eigenvalue at
0.98973+0.00203i. The eigenfunction appears to be x2

1, which has an expected eigenvalue
at e2µ∆t = e2(−0.05)(0.1) ≈ 0.99005. Bottom - Average log absolute prediction error over a
6 × 6 grid of initial conditions. Using only the three dominant eigenfunctions results in
a very close result to using all sixteen eigenfunctions.

Not surprisingly, the three corresponding eigenvalues move very little relative to their

initialization compared to the other thirteen during training. Using only these three

16
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eigenfunctions to generate predictions, we see very little difference compared to using all

sixteen. This suggests that our model has the ability to perform dimensional reduction

and extract a few key eigenfunctions.

4.2 Van der Pol Oscillator

Next, we consider the Van der Pol oscillator. This is a system with complex eigenvalues

that exhibits a limit cycle.

ẋ1 = x2

ẋ2 = −0.5(x2
1 − 1)x2 − x1

(4.6)

We expect that two eigenfunctions should sufficiently capture the general behavior of the

Van der Pol system. One complex eigenfunction is expected due to the periodic motion

of the limit cycle, and a second eigenfunction is necessary to describe the stability of the

limit cycle. The level sets of these eigenfunctions are the isochrons and the isostables of

the system [11]. For some given phase θ, the isochron consists of all points such that the

trajectory through such points at t = 0 asymptotically approaches the trajectory that

belongs to a point on the limit cycle with phase θ at t = 0. From the period of the limit

cycle ≈ 6.3807, we expect a corresponding discrete time eigenvalue at:

e(
2πi

6.3807
)(0.1) ≈ 0.99518± 0.09802i (4.7)

Performing the computation of the so-called Fourier average

f ∗
ω(x) = lim

N→∞

1

N

N−1∑
j=0

(f ◦ T j)(x)e−iωj (4.8)

17
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for the observable f(x1, x2) = x1 + x2 with the period of the limit cycle results in the

isochrons f ∗
ω on the Van der Pol oscillator visualized in Figure 4.5. On the other hand,

isostables consist of all the points that share the same asymptotic convergence toward

a fixed point. A second eigenvalue corresponds to the stability of the limit cycle and

can be computed numerically. Taking a surface of section, we can see that the trajectory

exponentially approaches the limit cycle at a rate of decay of ≈ −0.5 with a corresponding

discrete eigenvalue at:

e(−0.5)(0.1) ≈ 0.9512 (4.9)

We create our datasets by solving the systems of differential equations in (4.6) using

a Runge-Kutta (4, 5) solver. 200,000 initial conditions are generated randomly from

[−3.0, 3.0] × [−3.0, 3.0] and solved for k = 256 time steps of ∆t = 0.1. 10% of the data

is used for validation and the rest is used for training.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
Isochron (Real)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
Isochron (Imaginary)

Figure 4.5: Isochrons of the Van der Pol oscillator shown as level sets of a complex
eigenfunction. The dashed line represents the limit cycle and the solid lines represent
level sets of the argument ∠f .
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4.2.1 Complex Eigenfunctions

The results of using DMD to initialize the model for the Van der Pol system are shown in

Figure 4.6. DMD produces a complex conjugate pair of eigenvalues with approximately

the expected periodicity. However, the original coordinates are poor choices of observ-

ables and the resulting model from DMD completely fails to capture the presence of the

limit cycle. The results for learning two eigenfunctions are shown in Figure 4.6. The

first eigenvalue is learned to be associated with the periodic motion of the system and

approaches the expected value in (4.7). The zero-level set of the eigenfunction is the

limit cycle itself, shown in Figure 4.7.

Figure 4.6: Top - Numerical eigenfunctions computed using DMD. The eigenvalues are
learned to be 0.97052± 0.09703i. Bottom - Numerical eigenfunctions produced using our
method. The eigenvalues are learned to be 0.99518 − 0.09831i and 0.95168 − 0.00024i.
Note that Koopman eigenfunctions are invariant to scaling.

The second eigenvalue is associated with the stability of the limit cycle and approaches

the expected value in (4.9). Notably, the level sets of the first eigenfunction learned by

our neural network model highly resembles the isochrons shown in 4.5.
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Figure 4.7: Limit cycle of the Van der Pol oscillator can be obtained as the zero-level set
of the eigenfunction associated with the periodic motion of the system .

In Figure 4.8, our 2×2 diagonal linear method in (4.5) is compared to a 2×2 linear model

produced by DMD. Our linear model is able to successfully predict trajectories that tra-

verse the limit cycle for multiple periods. EDMD involves lifting into higher-dimensions

to produce improved approximations of the Koopman operator. These methods produce

large sparse matrices that exhibit relatively poor long-term predictive performance. In

contrast, our compact diagonal representation (blue) is shown in Figure 4.9 to have su-

perior long-term predictive performance, even when compared to larger representations

that depend on user-defined observables. In particular, we compare our model to the

predictors developed in [8] with 100 thin plate spline radial basis functions as the lifting

functions. We also compare our results to a Hankel-DMD representation built on 10

time-delays. We find diminishing returns when constructing a model using more than 10

time-delays.

20
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Figure 4.8: Trajectories of 512 steps generated from a 6 × 6 grid of initial conditions.
Black - Trajectories generated using an ODE solver on the nonlinear equations in (4.6).
Green - Results from using a 2 × 2 linear model produced by DMD. Blue - Results from
using our 2 × 2 diagonal matrix representation. Red - Training horizon. Log absolute
prediction error is averaged over the 36 trajectories.
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Figure 4.9: Trajectories of 128 steps generated from two initial conditions. Left - Pre-
dictions given an initial condition inside the limit cycle. Right - Predictions given an
initial condition outside the limit cycle. Black - Trajectories generated using an ODE
solver on the nonlinear equations in (4.6). Red - Results from using a 102 × 102 linear
predictor developed in [8]. Green - Results from using a 22× 22 linear model produced by
Hankel-DMD with 10 time-delays. Blue - Results from using our 2 × 2 diagonal matrix
representation.
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Chapter 5

Koopman Modal Control

A key motivation for developing a globally linear model for nonlinear dynamics is the

application of linear control theory. For some state space M and set of admissible inputs

U , we now consider a nonlinear discrete-time controlled dynamical system

x+ = S(x,u), (5.1)

where x ∈ M is the state of the system, u ∈ U is the control input, and S : M ×

U → M is the mapping between successive time steps. We would like to predict the

trajectory of the controlled dynamical system given an initial condition x0 and the control

input signal {u0,u1,u2, . . . }. A linear representation which sufficiently captures the

nonlinear dynamics can be used to produce an optimal linear controller that is close to

the optimal controller for the nonlinear dynamics. Importantly, due to the uncoupling of

the Koopman modes, the different modes within the system can be directly controlled.
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5.1 Linear Predictors

We are interested in predictors that possess a structure that can be integrated into linear

control frameworks. Similar to the model used to learn the Koopman eigenfunctions, a

second autoencoder model u = g−1(g(u)) can be used to learn the appropriate lifting on

the inputs in order to produce the optimal linear predictor in the space of the learned

eigenfunctions. We assume a linear predictor that takes the form of a linear dynamical

system

z+ = Az + v, (5.2)

where z = f(x) is the lifted state and v = g(u) is the lifted input. To predict future

states, we use the state decoder f−1 to obtain x̂+ = f−1(z+). It is important to note that

in general, the lifted states are not linearly dependent on some function of the inputs.

However, if the linear predictor provides accurate predictions for a sufficient time hori-

zon, the predictions can be used in linear control methodologies such as model predictive

control (MPC) and linear quadratic regulator (LQR) that require finite time horizons of

predictions.

With this architecture, the dynamics are decomposed into uncoupled eigenfunctions with

corresponding eigenvalues that make up a diagonal A matrix. Lifting the control effort

to the same dimension as the eigenfunctions establishes a one-to-one correspondence

between approximated eigenfunctions and lifted inputs. Our linear predictor takes the
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form 

z′1

z′2
...

z′N


=



λ1

λ2

. . .

λN





z1

z2
...

zN


+



v1

v2
...

vN


, (5.3)

where vi = gi(u) for i = 1, . . . , N are lifted inputs that correspond to the ith eigenvalue-

eigenfunction pair. By posing the linear model in this diagonal form, it becomes straight-

forward to control specific eigenvalues or eigenfunctions using feedback control.

5.2 Closed-Loop Control

The ultimate goal of developing an accurate model is the prospect of designing a controller

so that the system dynamics behave as desired. Because our linear model acts on the

lifted space of eigenfunctions, linear methodologies produce a control law for the lifted

inputs v. Fortunately, because an autoencoder structure was used for lifting the inputs,

we have trained a mapping g−1 from the lifted space of inputs back to the original input

space. We use the control law

v = −Kz =⇒ u = g−1(−Kf(x)) (5.4)

as feedback into the system given in (5.1), where K represents some feedback gains

computed by optimal control algorithms such as LQR. Evaluation of the deep learning

model for lifting the states and unlifting the inputs can be rapidly performed, and this

framework can be integrated for real-time control.
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Controlled Numerical Examples

We use deep learning to find linear predictors on the space of the approximate eigenfunc-

tions and use linear control methodologies to perform control objectives.

6.1 Discrete Real Spectrum with Input Forcing

We consider the system in (4.1) modified by the addition of a control effort u.

ẋ1 = αx1

ẋ2 = β(x2 − x2
1) + u.

(6.1)

To learn the lifting of the control effort, we simulate trajectories using random input

signals with uniform distribution over the interval [−1, 1] to learn the lifted-controlled

system:

ϕ′
1

ϕ′
2

 =

λ1 0

0 λ2


ϕ1

ϕ2

+

v1
v2

 . (6.2)
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Starting at some arbitrary initial condition, Figure 6.1 shows the prediction generated

using a random input signal is compared to the effect of that signal on the actual dy-

namics.

Figure 6.1: Results from learning to predict the discrete spectrum system with random
inputs. A random input signal is generated that was not used in the training of the model,
and the trajectory of the linear predictor is compared with the trajectory of the dynamics.

Now that a linear predictor has been created for the controlled dynamical system, we

can apply feedback control. Here, our control objective is to achieve a specific rate of

convergence. This can be easily done by enforcing an eigenvalue in our model using

feedback control. Because the two lifted states in this system are decoupled and the

input is only applied in the x2 direction, only ϕ2 is controllable. Figure 6.2 shows the

results of the control effort applied to the original nonlinear dynamics. By learning the

Koopman eigenfunctions of the system, the level sets, including the slow manifold, are

preserved. Because of the high performance of the linear predictor, we are able to control

the system far from the original dynamics.
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Figure 6.2: Results from applying a control effort to decrease and increase the rate of
decay of ϕ2. Left - Control with eigenvalue 0.999. Right - Control with eigenvalue 0.2.

6.2 Van der Pol with Input Forcing

Next we investigate the forced Van der Pol Oscillator with dynamics given by

ẋ1 = x2 + u1 (6.3)

ẋ2 = −0.5(x2
1 − 1)x2 − x1 + u2. (6.4)

Similar to the discrete real spectrum system, we simulate trajectories using random input

signals with uniform distribution over the interval [−1, 1] × [−1, 1] to learn the lifted-

controlled system in (6.2). However, because the Van der Pol system exhibits periodic

behavior, the assumption that the approximated eigenfunctions are linearly dependent

on the inputs becomes a dangerous assumption. The lack of linear dependence results in

a poor linear predictor that fails to capture the controlled dynamics. Figure 6.3 shows the

prediction generated using a random input signal compared to the effect of that signal

on the actual dynamics. Because the linear model is poor, the errors compound and the

model quickly diverges.
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Figure 6.3: Results from learning the predict the Van der Pol system with random inputs.
A random input signal is generated that was not used in the training of the model, and
the trajectory of the linear predictor is compared with the trajectory of the dynamics.

Although the linear predictor has poor long-term predictions, the model is sufficient

for controlling the Koopman eigenvalues and eigenfunctions using finite time-horizon

methods. Our control objective is to achieve a specific periodicity on the limit cycle.

This can be easily done by enforcing an eigenvalue with unit magnitude associated with

the periodic motion of the system. Figure 6.4 shows the results of the control effort

applied to the original nonlinear dynamics. By learning the Koopman eigenfunctions of

the Van der Pol system, the isostables and isochrons can be preserved. This allows the

shape of the limit cycle to be retained while applying some control effort. Due to the

poor quality of the linear predictor shown in 6.3, it is expected that applying control to

the system can affect the shape of the limit cycle. Controlling the period of the limit

cycle near the original period reduces the distortion of the attractor.
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Figure 6.4: Results from applying control effort to decrease and increase the period of
the limit cycle. Left - Control with eigenvalue 0.998 − 0.06321js. Right - Control with
eigenvalue 0.994− 0.10938i.

We consider using a bilinear representation as a future direction. Our current model

experiences difficulties representing controlled dynamical systems. This is likely due to

the fact that the eigenfunctions produced by our model are not linearly dependent on

some function of the inputs in general. Providing a bilinear term that takes the current

state in addition to the current input into account should improve the performance of

our linear predictor.

30



Chapter 7

Conclusions and Outlook

A method is described that leverages deep learning to approximate Koopman eigenfunc-

tions for arbitrary nonlinear dynamical systems with discrete spectrum. The underlying

idea is a nonlinear lifting of the dynamics to a space of eigenfunctions where the evolution

is exactly linear. The lifted linear systems found using this framework exhibit superior

prediction compared to traditional methods that suffer from compounding errors over the

prediction horizon. Lifting the inputs to the same space, linear predictors for controlled

dynamical systems are obtained that can be readily applied to linear control design frame-

works. This diagonal linear representation enables individual control of Koopman modes.

Our method exhibits superior performance compared to traditional data-driven methods

that seek to find an approximately linear evolution on a user-defined lifted space. EDMD

approximates the Koopman operator based on the error of a single time step, which re-

sults in poor long-term performance due to the significance of compounding errors. Our

method produces superior long-term predictions by performing optimization over a user-

defined time horizon. In addition, this method creates a compact low-dimensional linear

representation by extracting the key dynamics instead of finding the dynamics on a much
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higher-dimensional lifted space. Furthermore, by decoupling the Koopman modes, the

spectral properties can be quickly interpreted and certain structures (such as steady-state

limit cycles) can be readily identified.

In constructing the framework for the controlled linear predictor, we assumed that the

approximated eigenfunctions are linearly dependent on some lifting of the inputs. How-

ever, this linear dependence does not hold in general. For systems with complex dynamics

like the Van der Pol oscillator’s limit cycle, the values of the inputs alone are inadequate

to predict the effect on the dynamics. In general, information about the current state

as well as the inputs is necessary. Future work should focus on developing a bilinear

predictor that can provide improved predictions and control. More work needs to be

done to generalize the architecture to systems with continuous Koopman spectra.
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[1] Hassan Arbabi and Igor Mezić. Ergodic theory, dynamic mode decomposition, and
computation of spectral properties of the koopman operator. SIAM Journal on
Applied Dynamical Systems, 16(4):2096–2126, jan 2017.
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