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Donna Niedzwiecki, PhD5,6; Jessica D. Tenenbaum, PhD5; and Manisha Palta, MD3,6

abstract

PURPOSE Patients undergoing outpatient radiotherapy (RT) or chemoradiation (CRT) frequently require acute
care (emergency department evaluation or hospitalization). Machine learning (ML) may guide interventions to
reduce this risk. There are limited prospective studies investigating the clinical impact of ML in health care. The
objective of this study was to determine whether ML can identify high-risk patients and direct mandatory
twice-weekly clinical evaluation to reduce acute care visits during treatment.

PATIENTS AND METHODS During this single-institution randomized quality improvement study (ClinicalTrials.gov
identifier: NCT04277650), 963 outpatient adult courses of RT and CRT started from January 7 to June 30, 2019,
were evaluated by anML algorithm. Among these, 311 courses identified byML as high risk (. 10% risk of acute
care during treatment) were randomized to standard once-weekly clinical evaluation (n 5 157) or mandatory
twice-weekly evaluation (n5 154). Both arms allowed additional evaluations on the basis of clinician discretion.
The primary end point was the rate of acute care visits during RT. Model performance was evaluated using
receiver operating characteristic area under the curve (AUC) and decile calibration plots.

RESULTS Twice-weekly evaluation reduced rates of acute care during treatment from 22.3% to 12.3% (dif-
ference, 210.0%; 95% CI, 218.3 to 21.6; relative risk, 0.556; 95% CI, 0.332 to 0.924; P 5 .02). Low-risk
patients had a 2.7% acute care rate. Model discrimination was good in high- and low-risk patients undergoing
standard once-weekly evaluation (AUC, 0.851).

CONCLUSION In this prospective randomized study, ML accurately triaged patients undergoing RT and CRT,
directing clinical management with reduced acute care rates versus standard of care. This prospective study
demonstrates the potential benefit of ML in health care and offers opportunities to enhance care quality and
reduce health care costs.

J Clin Oncol 38. © 2020 by American Society of Clinical Oncology

INTRODUCTION

An estimated 650,000 patients with cancer receive
systemic therapy or radiation therapy (RT) annually
in the United States.1 Among these, 10%-20% of
patients undergoing outpatient RT or chemoradiation
(CRT) will require acute care with an emergency de-
partment (ED) visit or hospital admission because of
symptoms from treatment, disease, or comorbidities.2,3

This can affect outcomes, patient quality of life and
preferences, and costs to patients and the health care
system, making it a priority to the Centers for Medicare
& Medicaid Services (CMS).2-5 Early identification and
intervention may prevent such events.6,7

Artificial intelligence (AI) and machine learning (ML)
have garnered enthusiasm for their potential to provide
accurate predictions, with the goal of directing inter-
ventional strategies. We previously developed an ML
algorithm utilizing electronic health record (EHR) data,
which retrospectively demonstrated strong predictive
ability to identify patients at high risk for acute care,8

comparing favorably to other models for this complex
problem.9,10 Despite growing retrospective medical ML
literature,11,12 prospective evaluation remains tre-
mendously limited, primarily to diagnostic fields.13-16

Despite the need for prospective interventional trials,17

few have been published.18 There are even fewer
studies investigating the use of ML to improve clinical
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outcomes, which may be related to challenges in clinical
implementation and viability of systematic management
strategies. The need to prospectively demonstrate the value
of these technologies is underscored by historical findings,
such as the potential worsening of mammographic de-
tection with computer-aided diagnosis.19

Randomized quality improvement (QI) studies offer op-
portunities to create a learning health care system to im-
prove care delivery.20 In certain scenarios, this may
represent a platform for evaluating the utility of ML.
SHIELD-RT (System for High Intensity Evaluation During
Radiation Therapy) was a prospective, randomized QI study
evaluating the benefit of ML to triage high-risk patients and
direct supplemental clinical evaluation to potentially de-
crease acute care required during outpatient RT or CRT. To
our knowledge, this study represents one of the first to
leverage health care ML prospectively to direct a random-
ized intervention.

Patients and Methods

This single-institution randomized study was approved as
a prospective QI project by the Duke University Medical
Center Institutional Review Board (Pro00100647) and
registered on ClinicalTrials.gov (NCT04277650). All adult
outpatient RT courses with or without concurrent systemic
therapy (chemotherapy or immunotherapy) started from
January 7, 2019, to June 30, 2019, at the Duke Cancer
Center were included, with the exception of total body ir-
radiation (as these patients are planned for admission for
hematopoietic stem-cell transplantation). The study pro-
tocol is available in the Data Supplement (online only).

For the randomized component, the ML algorithm was run
weekly to identify high-risk patients who had started RT in
the current week, defined as those with $ 10% risk of
acute care (ED visit or hospital admission) during treat-
ment. This threshold was predetermined based on clin-
ical judgment, the Youden cut point in retrospective
development,8 and available resources. Patients had to
have ongoing RT/CRT planned for the following week to

be eligible. Two physicians in the department opted out of
randomization before study initiation.

Data Processing and Machine Learning

OurML pipeline was previously described, and source code
is available online.8 The algorithm aggregates a patient’s
pretreatment EHR history via the Duke Enterprise Data
Unified Content Explorer (DEDUCE)21 and cancer treat-
ment plan (ie, RT prescription, concurrent chemotherapy)
and utilizes gradient-boosted trees (GBTs) to predict the
likelihood (on a continuous scale from 0-1) that a patient
will require acute care during treatment. Gradient boosting
is a supervised ML technique that uses data with predictors
and explicit outputs (ie, classification of whether an acute
care event occurred). Multiple weak predictive models
are generated, with subsequent models fitting pseudo-
residuals. This study used XGBoost, which has gained
popularity because of its success in ML challenges.22 GBTs
balance predictive accuracy with interpretability by iden-
tification of important variables. One of the strengths of
decision trees is their ability to accommodate missing
values at the time of prediction.

For this study, the algorithm was retrained on the entire
original development cohort, treated from January 2013 to
December 2016 and locked for the duration of the study. As
previously published, no individual variables dominated,
and top predictive factors were broad, including treatment
parameters, encounter history, vitals, age, and laboratories
(Data Supplement). Of note, the interpretation of variable
importance can be challenging because of correlated
factors.

For pragmatic reasons, the pipeline was implemented on
Fridays for courses started during the current week. New
patient starts were identified via Aria (Varian Medical
Systems, Palo Alto, CA). A manual process was required to
verify eligibility and confirm that patients had initiated RT as
outpatients and not yet completed RT before random as-
signment (N.C.W.E., J.C.H.). High-risk patients who
completed a short course of RT within a calendar week
before the weekly algorithm run were thus not eligible for

CONTEXT

Key Objective
Canmachine learning based on routine pretreatment electronic health record data direct supplemental care to reduce acute

care (emergency visits and hospitalization) during outpatient cancer radiotherapy and chemoradiation?
Knowledge Generated
In this prospective randomized study, machine learning accurately identified outpatient treatment courses as high risk for

acute care. Machine learning–identified high-risk patients randomly assigned to supplemental clinical evaluations during
treatment had reduced acute care rates.

Relevance
Machine learning with electronic health data can accurately triage patients and guide intervention to decrease acute care.
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random assignment, as they would not have been able
to complete the intervention. The algorithm was in-
dependently rerun by two investigators to verify risk output
(N.C.W.E., Y.M.M.).

Randomization and Intervention

ML-identified high-risk courses were randomized in a 1:1
fashion to standard-of-care management (clinical evalua-
tion at least once weekly) or mandatory twice-weekly
evaluation. During RT, patients are seen weekly by the
treating radiation oncologist as standard of care. These
visits are problem focused and involve a directed history
and physical examination with appropriate symptomatic
management. The supplemental visit followed the same
structure and did not require additional studies, such as
laboratory studies or imaging. As a QI study, informed
consent was not required. However, patients randomly
assigned to twice-weekly visits were informed of their
computational identification as high risk and the purpose of
the additional evaluations. They were given the opportunity
to ask questions at each visit. Patients in either arm could
also have additional ad hoc clinical evaluations as deemed
appropriate by the treating physician. Visits with other
providers continued per standard of care, and referrals
were based on the clinical judgment of the treating
physician.

Random assignment was performed on a per-course basis,
and patients undergoing multiple eligible courses were
randomly assigned separately for each course. A permuted
block randomization schema with a block size of six was
generated using SAS 9.4 (Cary, NC) by the associate
statistician. No stratification variables were used. All eligible
patients were entered into REDCap, which performed
random assignment.23 Courses randomized to intervention
were relayed to study teammembers responsible for seeing
patients for their supplemental visits, which were initiated in
the second week of treatment. The team consisted of at-
tending physicians, resident physicians, advanced practice
providers, and nurse clinicians. When possible, a primary
radiation team member was responsible for supplemental
evaluations. As in standard weekly evaluations, the man-
datory second visits were performed by a single clinician
during a treatment course unless unavailable. Assignment
to mandatory twice-weekly evaluation was unblinded to the
study team and patients. However, ML identification of
high-risk patients randomly assigned to control was
blinded.

Statistical Methods

The primary end point of the randomized component was
the rate of acute care visits during RT, defined as un-
planned ED visits or hospital admissions (planned ad-
missions for procedures or chemotherapy were not
included). Target sample size was initially pragmatically
determined to be 202 courses because of concerns
regarding feasibility of sustained ML deployment. Given

seamless integration of ML implementation, the study was
amended on May 2, 2019, to increase the power to fa-
cilitate a hypothesis more consistent with prior retrospective
studies.6 An interim analysis was not performed at the time
of amendment. The final sample size was determined to be
314 treatment courses to test the hypothesis of decreased
acute care visits in the high-intensity evaluation arm. This
was designed with 80% power to detect a difference be-
tween 20% and 10% of patients requiring acute care visits
in the control and intervention arms, respectively, with
a one-sided significance level of 0.05. Secondary end
points included rate of acute care during RT and the
15 days after treatment, rate of missed intervention eval-
uations, and reasons for acute care. Reasons for acute care
were grouped based on those designated as potentially
preventable by CMS: anemia, nutrition (including de-
hydration), diarrhea, emesis, infections (including fever,
pneumonia, and sepsis), nausea, neutropenia, and pain.5

An intent-to-treat analysis was used.

The overall performance of the ML model and clinician
prediction were evaluated by plotting the receiver operating
curve (ROC) and decile calibration plots of risk score and
true event probability. For courses on the intervention arm,
clinician predictions were collected during the first man-
datory supplemental evaluation. These predictions were
unblinded to knowledge that the patient had been assigned
to intervention with an ML risk of at least 10%. Clinicians
documented time spent after each mandatory supple-
mental evaluation.

Although acute care visits outside the Duke system were
documented and reviewed in the routine and supplemental
clinical evaluations for courses that underwent randomi-
zation, nonrandomized courses were retrospectively
assessed and limited to encounters within the Duke
system.

Patient and treatment course characteristics were sum-
marized with No. (%) andmedian (interquartile range, IQR)
for categorical and continuous variables, respectively.
Differences between groups were tested using x2 or
Fisher’s exact tests for categorical variables and t tests or
analysis of variance for continuous variables. ROC curves
were created, and area under the curve (AUC) values were
estimated based on ML prediction. Decile calibration plots
were created for ML risk versus true event probability and
clinician risk estimate. No adjustments were made for
multiple testing. All statistical analyses were conducted
using SAS version 9.4 (SAS Institute, Cary, NC).

RESULTS

Between January 7, 2019, and June 30, 2019, 963
treatment courses were assessed by ML (Fig 1, Table 1).
The study completed accrual with 361 courses identified by
ML as high risk and 314 courses undergoing planned
randomization. Among the remaining 47 ML high-risk
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courses, 31 courses were treated by physicians who had
opted out of the randomized study before initiation, and 16
had completed treatment before the weekly algorithm run.
Three ineligible courses were randomized, with one initi-
ated in the inpatient setting and another two completed
before ML screening and randomization. These patients
underwent standard care. There were 311 total eligible and
analyzable courses (Table 2). The Duke analytics platform
was offline during 3 separate weeks because of in-
dependent technical reasons, and courses started during
these weeks were neither assessed nor included.

ML prediction was comparable between the standard
(median, 18.8%) and intervention arms (19.6%). The
randomized arms were also similar in baseline character-
istics, including age, sex, race, ethnicity, marital status,
cancer diagnosis, and treatment characteristics (Table 2).
Rates of concurrent systemic therapy were comparable
across the standard (42.7%) and interventional arms
(47.4%). Radiation technique, a correlate of treatment
intent, was also comparable. Days elapsed on RT were
similarly distributed for the standard (median, 35 days) and
interventional arms (34 days; Data Supplement). The most
common diagnoses in the randomized cohort were GI
(21.5%) and primary brain (16.4%) malignancies.

Randomized Study Outcomes

Among ML high-risk patients, supplemental clinical evalu-
ation demonstrated a decrease in the primary end point
(aggregate ED visits or unplanned hospital admission during
radiotherapy), with an event rate of 12.3% compared with
22.3% (difference, 210.0%; 95% CI, 218.3 to 21.6; rel-
ative risk, 0.556; 95% CI, 0.332 to 0.924; P5 .02; Table 3).
This difference remained when the 15 days after treatment
were included (22.1% v 32.5%; difference, 210.4%;
95% CI,220.2 to20.6; relative risk, 0.68; 95% CI, 0.468 to
0.987;P5 .04; Table 3). This effect was seen across a broad
spectrum of primary diagnoses (Data Supplement). For ML
low-risk courses (, 10% risk of acute care), 2.7% resulted in
an acute visit. Overall, 79.7% (444 of 557) of study-
mandated supplemental evaluations were completed.

The most common reasons for individual acute care visits
during radiation were neurologic (18.4%), nutritional
(11.8%), and other treatment complication (11.8%; Table 4).
Among these, 30.3% met CMS criteria as potentially pre-
ventable. The proportion of CMS-designated preventable
visits was greater in the standard (35.3%) than in the in-
tervention arm (20%).

There was a median of no missed supplemental visits (IQR,
0-1) during amedian of three (IQR, 1-5) additional visits per

Randomly assigned
(n = 314)

Adult outpatient
treatment courses

(N = 963)

Machine learning
high risk
(n = 361)

Machine learning
low risk
(n = 602)

Not randomly assigned
   Supervising physician opt out
   Completed before weekly algorithm run

Randomly assigned
to twice-weekly

evaluation
(n = 156)

Randomly assigned
to once-weekly

evaluation
(n = 158)

Ineligible
   Inpatient course

Ineligible
   Completed treatment before random
   assignment

Allocated to
protocol

treatment
(n = 157)

Allocated to
protocol

treatment
(n = 154)

(n = 31)
(n = 47)

(n = 1)
(n = 1)

(n = 2)
(n = 2)

(n = 16)

FIG 1. CONSORT diagram.
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TABLE 1. Major Characteristics for Entire Cohort
Characteristic All Courses (N 5 963) High Risk (n 5 361) Low Risk (n 5 602)

Distinct patientsa 917 352 581

ML risk, % 7.2 (2.8-15.1) 18.8 (13.6-26.2) 3.6 (1.7-6.4)

Age at prediction, years 65 (56-72) 64 (55-72) 66 (57-72)

Sex

Female 472 (49) 154 (42.7) 318 (52.8)

Male 491 (51) 207 (57.3) 284 (47.2)

Race

White 681 (70.7) 251 (69.5) 430 (71.4)

Black or African American 220 (22.8) 93 (25.8) 127 (21.1)

Other 32 (3.3) 10 (2.8) 22 (3.7)

Unknown 30 (3.1) 7 (1.9) 23 (3.8)

Ethnicity

Hispanic 18 (1.9) 8 (2.2) 10 (1.7)

Non-Hispanic 892 (92.6) 339 (93.9) 553 (91.9)

Unknown 53 (5.5) 14 (3.9) 39 (6.5)

Marital status

Married or life partner 625 (64.9) 232 (64.3) 393 (65.3)

Single 146 (15.2) 64 (17.7) 82 (13.6)

Divorced or legally separated 91 (9.4) 35 (9.7) 56 (9.3)

Widowed 70 (7.3) 27 (7.5) 43 (7.1)

Unknown 31 (3.2) 3 (0.8) 28 (4.7)

Disease site

Bone metastases 131 (13.6) 44 (12.2) 87 (14.5)

Primary brain cancer 82 (8.5) 53 (14.7) 29 (4.8)

Brain metastases 156 (16.2) 31 (8.6) 125 (20.8)

Breast cancer 123 (12.8) 7 (1.9) 116 (19.3)

GI cancer 108 (11.2) 75 (20.8) 33 (5.5)

Genitourinary cancer 92 (9.6) 28 (7.8) 64 (10.6)

Gynecologic cancer 29 (3) 18 (5) 11 (1.8)

Head and neck cancer 45 (4.7) 32 (8.9) 13 (2.2)

Respiratory/intrathoracic cancer 122 (12.7) 44 (12.2) 78 (13)

Other cancer 364 (37.8) 139 (38.5) 225 (37.4)

Concurrent treatment

Chemotherapy 160 (16.6) 147 (40.7) 13 (2.2)

Immunotherapy 11 (1.1) 7 (1.9) 4 (0.7)

Radiation technique

2D or 3D conformal RT 367 (38.1) 135 (37.4) 232 (38.5)

Intensity-modulated RT or volumetric modulated arc therapy 331 (34.4) 221 (61.2) 110 (18.3)

Stereotactic body RT/stereotactic radiosurgery 261 (27.1) 5 (1.4) 256 (42.5)

Total skin irradiation 4 (0.4) 0 (0) 4 (0.7)

Days on treatment 14 (6-35) 32 (14-42) 9 (4-23)

NOTE. Data are presented as median (interquartile range) or No. (%). Percentages may not add up to 100 because of rounding or missing values.
Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ML, machine learning; RT, radiotherapy.
aA total of 917 distinct patients were included in this study, but random assignment was done on a per-course basis, so a specific patient may

appear in multiple arms if multiple course of RT were administered.
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TABLE 2. Major Characteristics for Randomized Cohort

Characteristic

Randomly Assigned

All
(N 5 311)

Control
(n 5 157)

Intervention
(n 5 154)

Distinct patientsa 305 156 152

ML risk, % 19.4 (14.2-26.6) 18.8 (14.2-26.9) 19.6 (14.3-25.9)

Age at prediction, years 64 (55-72) 64 (55-72) 64 (56-72)

Sex

Female 128 (41.2) 63 (40.1) 65 (42.2)

Male 183 (58.8) 94 (59.9) 89 (57.8)

Race

White 222 (71.4) 120 (76.4) 102 (66.2)

Black or African American 72 (23.2) 31 (19.7) 41 (26.6)

Other 10 (3.2) 4 (2.5) 6 (3.9)

Unknown 7 (2.3) 2 (1.3) 5 (3.2)

Ethnicity

Hispanic 8 (2.6) 3 (1.9) 5 (3.2)

Non-Hispanic 290 (93.2) 146 (93) 144 (93.5)

Unknown 13 (4.2) 8 (5.1) 5 (3.2)

Marital status

Married or life partner 207 (66.6) 104 (66.2) 103 (66.9)

Single 50 (16.1) 24 (15.3) 26 (16.9)

Divorced or legally separated 31 (10) 15 (9.6) 16 (10.4)

Widowed 20 (6.4) 12 (7.6) 8 (5.2)

Unknown 3 (1) 2 (1.3) 1 (0.6)

Disease site

Bone metastases 33 (10.6) 21 (13.4) 12 (7.8)

Primary brain cancer 51 (16.4) 23 (14.6) 28 (18.2)

Brain metastases 25 (8) 12 (7.6) 13 (8.4)

Breast cancer 5 (1.6) 4 (2.5) 1 (0.6)

GI cancer 67 (21.5) 31 (19.7) 36 (23.4)

Genitourinary cancer 23 (7.4) 12 (7.6) 11 (7.1)

Gynecologic cancer 18 (5.8) 7 (4.5) 11 (7.1)

Head and neck cancer 32 (10.3) 20 (12.7) 12 (7.8)

Respiratory/intrathoracic cancer 41 (13.2) 23 (14.6) 18 (11.7)

Other cancer 109 (35) 63 (40.1) 46 (29.9)

Concurrent treatment

Chemotherapy 140 (45) 67 (42.7) 73 (47.4)

Immunotherapy 6 (1.9) 3 (1.9) 3 (1.9)

Radiation technique

2D or 3D conformal RT 105 (33.8) 52 (33.1) 53 (34.4)

Intensity-modulated RT or volumetric modulated arc therapy 204 (65.6) 103 (65.6) 101 (65.6)

Stereotactic body RT/stereotactic radiosurgery 2 (0.6) 2 (1.3) 0 (0)

Days on treatment 34 (15-43) 35 (14-43) 34 (15-43)

NOTE. Data are presented as median (interquartile range) or No. (%). Percentages may not add up to 100 because of rounding or missing values.
Abbreviations: 2D, two-dimensional; 3D, three-dimensional; ML, machine learning; RT, radiotherapy.
aA total of 305 distinct patients were randomly assigned in this study, but random assignment was done on a per-course basis, so a specific

patient may appear in multiple arms if multiple course of RT were administered.
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course. The distribution approximates the expected once-
weekly supplemental visits (Data Supplement). Visits re-
quired a median of 5 minutes of clinician time (IQR, 5-10
minutes).

ML Performance

Overall, ML demonstrated good prospective predictive
performance. Binary discrimination of high and low risk
demonstrated AUC of 0.820 across all courses (Data
Supplement). For patients who underwent standard once-
weekly clinical evaluation, discrimination was higher (AUC,
0.851; Data Supplement). Calibration demonstrated
a similar observation; ML prediction versus observed acute
care rate decile CIs overlapped with the diagonal reference,
particularly for patients undergoing standard management
(Data Supplement).

Concordant with the primary end point results, ML esti-
mated risk was greater than the observed rate of acute care
in those undergoing intervention, although mostly within
the 95% CI (Data Supplement).

Clinician Predictions

Clinicians completed predictions for 145 of 154 in-
tervention courses (94%). With knowledge that ML had
identified patients with at least 10% risk, clinician pre-
dictions had a narrow distribution centered around a me-
dian of 10% (IQR, 5%-15%). In addition, there were wide
CIs at most deciles (Data Supplement). Among seven
patients assigned a 0% risk of acute care, 14.3% had an
acute care visit during RT.

DISCUSSION

This study represents one of the first prospective evalua-
tions, to our knowledge, investigating ML-directed clinical

intervention, demonstrating that ML can be feasibly in-
corporated into a clinical setting and accurately triage and
direct supportive care, reducing the rate of acute care
events during outpatient RT and CRT. This has potential to
improve clinical outcomes and reduce health care costs.
We also present randomized data supporting the benefit of
more frequent clinical evaluations during treatment.

At present, there are few prospective interventional studies
of ML in health care. Randomized interventional data are
limited, including a recent study applying ML to reduce
intraoperative hypotension.18 High-quality data are nec-
essary to demonstrate the prospective accuracy and value
of the expanding number of published ML algorithms,
particularly given limitations of retrospective validation.17,24,25

Despite their general proliferation, the value of AI and ML
algorithms in medicine remains generally unverified, and
their deployment remains accordingly limited. This study
prospectively demonstrated predictive accuracy of our
model with one application where AI and ML can improve
patient care. In addition, our study demonstrates an ap-
plication of randomized QI studies to enable a learning
health care system.20

Our study addresses the critical clinical problem of de-
creasing acute care during cancer treatment, central to
delivering high-quality cancer care and a point of emphasis
for CMS.4,5 Importantly, we tied our model to a systematic
interventional strategy streamlined into the care pathway.
This approach may minimize additional cognitive burden to
health care providers.26,27 It is possible that the intervention
may also benefit low-risk patients, although our study
demonstrates the effectiveness of ML to appropriately triage
and optimize resources. On the basis of available re-
sources, individual practices could opt for different

TABLE 3. Acute Care Visits

Visit
All Courses
(N 5 963)

Randomly Assigned

% Difference
(95% CI) Relative Risk (95% CI) P a

All
(n 5 311)

Control
(n 5 157)

Intervention
(n 5 154)

Admission or ED visit

During RT 76 (7.9) 54 (17.4) 35 (22.3) 19 (12.3) 210 (218.3 to 21.6) 0.553 (0.332 to 0.924) .02

During RT 1 15 days 131 (13.6) 85 (27.3) 51 (32.5) 34 (22.1) 210.4 (220.2 to 20.6) 0.68 (0.468 to 0.987) .04

Admission

During RT 48 (5) 34 (10.9) 24 (15.3) 10 (6.5) 28.8 (215.6 to 21.9) 0.425 (0.21 to 0.858) .01

During RT 1 15 days 92 (9.6) 59 (19) 36 (22.9) 23 (14.9) 28 (216.7 to 0.7) 0.651 (0.406 to 1.046) .07

ED visit

During RT 44 (4.6) 25 (8) 15 (9.6) 10 (6.5) 23.1 (29.1 to 3) 0.68 (0.315 to 1.466) .32

During RT 1 15 days 77 (8) 40 (12.9) 25 (15.9) 15 (9.7) 26.2 (213.6 to 1.2) 0.612 (0.336 to 1.115) .10

NOTE. Data are presented as No. (%) unless otherwise noted. Percentages may not add up to 100 because of rounding or missing values.
Differences were estimated as Intervention % 2 Control %. Relative risks were estimated as Intervention %/Control %.

Abbreviations: ED, emergency department; RT, radiation therapy.
ax2 or Fisher’s exact P values for categorical variables and t test P values for continuous variables for comparison of two groups (control v

intervention).
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prediction thresholds for identifying high-risk patients. This
strategy may also be appropriate in other settings, including
during systemic therapy, the subject of many prediction
models.9,10,28,29

We also evaluated reasons for visits to determine if certain
types of acute care were preventable. CMS-designated
preventable diagnoses during RT were less common
with intervention, although more data may be required to
understand which acute care visits are truly preventable.

This study was performed at a single institution, potentially
affecting generalizability. It is likely that individual in-
stitutions will require distinct models, given variations in
patient populations, clinical practice, and supportive re-
sources. Moreover, this approach may not universally
generalize. However, given increasing standardization in
EHRs and adoption of common data models, it is likely that
many institutions will be able to deploy and validate
a similar approach. We previously made our code available
online.8 Our group is currently assessing reproducibility at
a second institution. Ongoing quality assurance and
recalibration are also imperative; we verified our results
during this study, but over time, data and practice can shift

because of phenomena such as distributional shift, auto-
mation bias, and complacency.25

Although we were able to demonstrate the benefit of ML-
directed supportive care, our study was designed for fea-
sibility, and we opted for a control arm representing the
standard-of-care management (once weekly visits, with
additional visits per clinician discretion). Randomly
assigning all patients to undergoML evaluation or not would
have required a substantially larger sample size to detect
a decrease in the lower event rate (7.9%) across all patients
in this study. Nevertheless, our study remains one of the
few prospective ML studies broadly, and patients pro-
spectively identified as low risk by ML were appropriately
triaged, with a 2.7% event rate. To ensure that the control
arm was the current standard of care, we were unable to
pragmatically randomly assign patients to mandatory
evaluations on the basis of predictions generated by other
approaches, such as simpler logistic regression models or
clinician predictions. Our retrospective analysis had pre-
viously demonstrated superior predictions with GBTs
compared with Least Absolute Shrinkage and Selection
Operator (LASSO) regularized logistic regression.8 It is

TABLE 4. Reasons for Acute Care Visits During Radiation Therapy

Reason for Acute Care Visit
All Randomly Assigned

(N 5 76)

Randomly Assigned

Control (n 5 51) Intervention (n 5 25)

Distinct coursesa 54 35 19

Reason for visit

Cardiac 4 (5.3) 3 (5.9) 1 (4)

Fatigue 1 (1.3) 1 (2) 0 (0)

GI 3 (3.9) 3 (5.9) 0 (0)

Infection 7 (9.2) 6 (11.8) 1 (4)

Liver 2 (2.6) 2 (3.9) 0 (0)

Nausea/vomiting 4 (5.3) 3 (5.9) 1 (4)

Neurologic 14 (18.4) 10 (19.6) 4 (16)

Neurologic deficits 6 (7.9) 4 (7.8) 2 (8)

Headaches 2 (2.6) 2 (3.9) 0 (0)

Altered mental status 5 (6.6) 3 (5.9) 2 (8)

Seizures 1 (1.3) 1 (2) 0 (0)

Nutrition 9 (11.8) 7 (13.7) 2 (8)

Pain 3 (3.9) 2 (3.9) 1 (4)

Renal 2 (2.6) 1 (2) 1 (4)

Respiratory 4 (5.3) 3 (5.9) 1 (4)

Thrombotic 3 (3.9) 2 (3.9) 1 (4)

Other treatment complication 9 (11.8) 3 (5.9) 6 (24)

Other 8 (10.5) 4 (7.8) 4 (16)

Preventable reason for visit 23 (30.3) 18 (35.3) 5 (20)

NOTE. Data are presented as No. (%).
Abbreviations: ED, emergency department; RT, radiation therapy.
aOf 54 randomized courses with at least one admission or ED visit during RT, 76 admissions or ED visits during RT were observed.
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possible that a simpler model may offer sufficient predictive
power to reproduce these results, with the benefits of
greater interpretability and generalizability. Nevertheless,
the prospective metrics of our model compare favorably to
our retrospective validation and, although potentially biased
by knowledge of ML identification, clinician predictions
were loosely calibrated in the intervention arm. Moreover,
standard management allowed clinicians to perform ad hoc
supplemental evaluations, which should also reflect clini-
cian risk assessment. Combining physician and ML pre-
dictions may warrant future investigation, as human-in-the-
loop studiesmay yield greater accuracy.30 The advantage of
our study, however, is that automated evaluation removes
human variability and potential bias and minimizes addi-
tional cognitive load on providers. Moreover, this approach
can also ensure consistent use of resources on the basis of
the limitations of a specific clinical setting.

Finally, the mechanism by which mandatory twice-weekly
evaluation reduced acute care is not well defined. Standard
weekly evaluations are primarily intended to enable clini-
cians to manage symptoms related to treatment or other-
wise. More routine interaction may provide reassurance,
continuity, and overall care management or enable op-
portunities for detection and early intervention. It is possible
that additional visits facilitated reduced acute care through
medication management, outpatient hydration, additional
laboratory or imaging studies, and/or consultation to other
services. Although knowledge that a patient was identified
as “high risk” by the ML algorithm may affect a patient or

clinician’s decision to pursue acute care, this would typi-
cally be expected to raise awareness and lead to increased
acute care in the interventional arm. However, our study
remained positive, demonstrating decreased acute care
despite the lack of blinding in the interventional arm. We
ultimately selected an intervention that has been adopted
at other centers to enable a systematic protocol.6 Prior
before-after studies in ML and digital health may have been
limited in clinical impact without systematic interventional
strategies.31,32

Given the significant reduction in acute care, we are
evaluating the cost impact of our intervention, as acute care
visits make up nearly half of the financial burden of cancer
patients.2 Currently, on-treatment clinical evaluations are
included in the costs of a radiotherapy course, and re-
ducing acute care would yield cost savings for payers. We
are also planning randomized evaluations comparing
mandatory supplemental evaluations on the basis of ML
versus clinician risk estimates. Additional areas of active
investigation include integration of natural language pro-
cessing33 and patient-reported outcomes34 and assess-
ment of generalizability.35

In conclusion, machine learning based on electronic health
records can be used to generate accurate and clinically
actionable predictions. We demonstrate the ability of ma-
chine learning to direct clinical management through ad-
ditional supportive evaluation and to decrease the rate of
acute care during outpatient cancer radiotherapy and
chemoradiotherapy.
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