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Abstract 
 

The common factor that underlies several types of functional brain imaging is the electric 
current of masses of dendrites. The prodigious demands for the energy that is required to 
drive the dendritic currents are met by hemodynamic and metabolic responses that are 
visualized with fMRI and PET techniques. The high current densities in parallel dendritic 
shafts and the broad distributions of the loop currents outside the dendrites generate both 
the scalp EEG and the magnetic fields seen in the MEG. The. Measurements of image 
intensities and potential fields provide state variables for modeling. The relationships 
between the intensities of current density and the electric, magnetic, and hemodynamic 
state variables are complex and far from proportionate. The state variables are 
complementary, because the information they convey comes from differing albeit 
overlapping neural populations, so that efforts to cross-validate localization of neural 
activity relating to specified cognitive behaviors have not always been successful. We 
propose an alternative way to use the three methods in combination through studies of 
hemisphere-wide, high-resolution spatiotemporal patterns of neural activity recorded 
non-invasively and analyzed with multivariate statistics. Success in this proposed 
endeavor requires specification of what patterns to look for. At the present level of 
understanding, an appropriate pattern is any significant departure from random noise in 
the spectral, temporal and spatial domains that can be scaled into the coarse-graining of 
time by fMRI/BOLD and the coarse-graining of space by EEG and MEG. Here the 
requisite patterns are predicted to be large-scale spatial amplitude modulation (AM) of 
synchronized neuronal signals in the beta and gamma ranges that are coordinated but not 
correlated with fMRI intensities.  
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1. Introduction 

1A. fMRI, neural activity and brain energetics: statement of the problem 

Brains as thermodynamic systems consume energy at rates roughly ten-fold greater than 
any other organ of comparable mass. The high rates hold whether subjects are at rest or 
active, leading to the sobriquet “dark energy” (Raichle, 2006) in analogy to the 
preponderance of inscrutable astronomical mass-energy. This difference in rates of 
energy dissipation is closely related to that between the metabolic rates of homeotherms 
vs. poikilotherms. Maintenance of high constant body temperature gives an unequivocal 
advantage to birds and mammals in the struggle for survival, despite the ten-fold increase 
in the cost of dissipated metabolic energy. Similarly, the high metabolic rate in brains is 
necessary to maintain the ionic energy reserves at self-organized criticality (Freeman, 
2008), a critical state of readiness to cope with environmental vicissitudes, whatever the 
metabolic cost.  

That readiness is based in the background activity, which has been shown to arise by 
mutual excitation among cortical excitatory neurons [reviewed in Freeman, 2008]. The 
intensity of the background activity varies with the degree of arousal, but the stability at 
every level and in every location is maintained by the refractory periods, not by inhibition 
or thresholds (Freeman, 2007b). The role of inhibition is to impose spatiotemporal order 
and structure on the otherwise random noise background activity. The transition from 
behavioral rest to intentional action invokes reorganization of the background activity 
that may increase, decrease or not change the mean level of activity. What is expected to 
change is the emergence of spatiotemporal patterning by local increases and decreases of 
energy dissipation from the background levels. Obviously in the continuous interactions 
of excitatory and inhibitory neurons the coincidence of excitatory and inhibitory currents 
in the same dendritic trees must at least partially cancel the extracellular electric and 
magnetic fields, but the metabolic demands must still be met for both forms of activation 
and for all frequency ranges. The resulting dissipation of energy resources, as well as the 
disparity in manifestations, is likely to be highest in the high frequency ranges, where 
phase dispersion with fixed axonal delays is maximal, and where the density of neural 
information is likely to be highest, but where resolution with fMRI is not possible.  

This cancellation focuses the problem to be solved for fMRI, which is to relate local 
cerebral blood flow to local neural activity. The basic relation in the simplistic view is 
that the capillaries open in brain areas in which CO2 has accumulated as the by-product 
of neurons burning glucose. The relation in one respect is simpler than in other organs, 
because brain arterioles lack the muscular cuff by which neural control can over-ride 
local control by CO2, especially in pre-adaptation of blood flow to predicted onset of 
muscular exercise vs. digestion. However, the CO2 combines locally with water by the 
enzyme carbonic anhydrase as carbonic acid, which then dissociates. It is unclear whether 
the capillaries respond directly to the CO2 or to the acid (pCO2 versus pH) or both. 
Moreover, the astrocytes in cortex hold a substantial reservoir of glycogen (“animal 
starch”), which is a ready local source of glucose that can be split without oxygen, giving 
pyruvic and lactic acids without producing CO2 (anaerobic metabolism), in which 
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instances neural activity might be dissociated from blood flow and blood oxygen level 
dependent (BOLD) signals for extended time periods until the oxygen debt is repaid.  

The homeostatic feedback that regulates the local pCO2 or pH is likely to be based 
regionally on the vascular architectures and its coupling to glial circuits (Schummers, Yu, 
& Sur, 2008) rather than the neural architectures, which varies among cortical regions. 
Astrocytes, the most abundant glial cells, are not only metabolically coupled to 
neighboring neurons but also communicate directly with the vasculature. Astrocytic 
activity affects local blood flow, which can be assessed by noninvasive hemodynamic 
mapping techniques such as intrinsic signal optical imaging  (Arieli & Grinvald, 2002). 
The relation between neuronal networks, astrocytes, and hemodynamic responses is an 
important topic of on-going research (Wolf & Kirchhoff, 2008). Resolution of this 
problem would appear to require detailed comparisons of the vascular and neural 
architectures of local cortical regions that have been located by simultaneous 
measurements of glycogen depletion, pO2, pCO2 and pH in conjunction with blood flow 
and, most revealingly, neural activity that has been classified by spatiotemporal neural 
activity patterns with respect to specific cognitive behaviors.  

Further complications ensue from the fact that the activity of inhibitory neurons also 
requires metabolic energy, and so also does the maintenance of inhibitory synaptic 
potentials by excitatory neurons (Buzsáki, Kaila, & Raichle, 2007; Logothetis, 2008). 
Since 95% of cortical energy is expended by dendrites and 5% by axons, the reduction in 
transmission of action potentials by excitatory neurons cannot compensate for the 
augmented dissipation necessitated by inhibition. The level of “activity” revealed by 
hemodynamic imaging alone must inescapably include both excitation and inhibition. 
However, in the identification of macroscopic spatiotemporal patterns, the localization of 
peaks and troughs to cortical landmarks is secondary to the classification of the field 
patterns with respect to intentional behavior, as prelude to correlation with respect to 
anatomical landmarks. The problem for interpretation of hemodynamic images can then 
be seen to require coordination not correlation with electric and magnetic measurements 
of excitation and inhibition in neuron populations across disparate scales of space and 
time.  

1B. Complementarity of EEG, MEG, and fMRI signals 

Multivariate approaches for characterizing and decoding local and distributed neuronal 
activity patterns in fMRI have been receiving increased attention in recent years. 
Multivoxel pattern analyses of fMRI and BOLD signals are being used to circumvent 
conceptual and methodological limitations of the localization approach to brain imaging 
(Logothetis, 2008). Spatial patterns of brain activity can have significantly greater 
sensitivity and specificity for detecting conscious and unconscious mental processes than 
activity in individual regions (Haynes & Rees, 2006; Soon, Brass, Heinze, & Haynes, 
2008).  This newfound emphasis in fMRI research on classification and pattern 
recognition, which is the focus of our proposed approach, will undoubtedly facilitate a 
more integrated approach to linking perceptually relevant representations of fMRI, EEG 
and MEG neuronal signals by highlighting their functional complementarity.  The most 
important insight is that the neural correlates of cognitive load are likely to be found in 
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the large-scale, widely distributed, spatially coherent neural activities at the mesoscopic 
and macroscopic levels, as defined below. At the systems level the problems encountered 
in attempts at spatial localization and the precise descriptions of microscopic causal 
relations are secondary. Our first task is to measure and model these transiently coherent 
spatiotemporal patterns.  

For direct correlation of fMRI with EEG and MEG the limitations of resolution of fMRI 
must be considered. Only the fMRI images of cortical activity are admissible for the 
correlation, owing to the limits on the class of neurons that can contribute to signals 
derived from the EEG and MEG, as discussed below. On the one hand the spatial 
resolution of fMRI reaches into the mm range, which is appropriate for cortical thickness 
in humans ranging from 1 to 4 mm. Matching the image of enhanced blood flow to the 
thickness of the cortical neuropil poses a strict criterion for localization that is not often 
met by any of the several methods. On the other hand, the temporal resolution of fMRI 
inherently limits correlations to spatial patterns of EEG and MEG that have been 
averaged over the several seconds that characterize the time resolution of changes in the 
metabolic and vascular responses of cortex to metabolic demands for the removal of 
waste CO2, acid, and heat. The need for time averaging unavoidably invokes the 
necessity to deal explicitly with a hierarchy of neural activity in cognition, not only with 
the microscopic action potentials but also with the macroscopic field potentials of the 
EEG and MEG.  

An optimal way to construct feature vectors for classification of spatial AM patterns 
would be to combine estimates of analytic power in frames from both EEG and MEG. 
Feature vectors defined below might then be constructed from all available sources to 
represent patterns of mean excitation, inhibition, and energy dissipation over the time 
spans are needed to estimate fMRI images reliably. To accomplish this the data must be 
spatially coarse-grained to conform to the spatial resolution specified by the spatial 
intervals of the sensors in the arrays used for EEG and MEG recordings and temporally 
coarse-grained to conform to the temporal frequencies provided by sequential 
hemodynamic imaging. The most valuable tool is the spatial power spectral density 
(PSDX), which has been calculated for the scalp EEG (Freeman et al., 2003), intracranial 
human electrocorticogram (ECoG, Freeman et al., 2000) and fMRI (Worsely, 2005) but 
surprisingly not for MEG.  

Temporal summation alone cannot suffice, because spatial images of dissipation given by 
analytic power from the EEG and MEG are specific for the temporal spectral pass bands, 
whereas fMRI is indiscriminate in that respect. The obvious remedies are to combine the 
spatial patterns over the several available temporal pass bands, and to conduct analysis of 
variance to determine which pass bands of analytic power might correspond to selected 
components of fMRI from two or more sequential behavioral states. This approach 
avoids subtracting control and test images in search of localization. As discussed below, 
in many physical systems the rate of energy dissipation is inversely proportional to the 
square of the frequency of oscillation. This relation is most clearly seen by graphing the 
temporal power spectral density (PSDT) in coordinates of log10 power vs., log10 
frequency. Such systems are said to generate “brown noise” with 1/f 2 power-law PSD 
(slope of -2). For example, the theta power spectral density at 4 Hz is 100 times the 
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gamma power spectral density at 40 Hz, while the power dissipations at 4 Hz and 40 Hz 
are equal. The utility of EEG and MEG data might be greatest in helping to decompose 
fMRI into identifiable frequency ranges of dissipation related to cognitive behaviors. For 
example, the fMRI might locate cortical areas in which the amplitudes of EEG and MEG 
oscillations are quite low. If the metabolic demand is low, then the neural activity is low. 
If the blood flow is high, the relative silence implies active silencing by inhibition. If it is 
very high, it may signify the furious dissipation of neural energy by the cancellation of 
strong excitatory and inhibitory synaptic currents in a situation that is metabolically very 
expensive indeed and perhaps restricted to a narrow pass band, or perhaps not. Then the 
problem to be solved for fMRI interpretation emerges in predicting the forms of 
spatiotemporal patterning revealed by EEG and EMG, such that they can be measured 
and averaged over time and space without loss of the essential features in the process of 
averaging. That is the problem addressed in the remainder of this essay.  

2. The several manifestations of cortical dendritic current in fMRI, EEG and MEG 

2A. Foundation of non-invasive brain imaging in neural energy 

Human brain activity can be monitored non-invasively at and above the scalp based on 
the production by intracranial neurons of electric and magnetic fields. The fields 
accompany the electric current by which dendrites sum and communicate their synaptic 
input to the trigger zones of the single, often many-branched axon by which each neuron 
transmits its output to other neurons more or less distant. The frequencies of oscillation in 
the intensities of the fields are much too low to generate significant electromagnetic 
radiation (radio waves), and the wavelengths are kilometers long, so the intensities of 
fields are measured separately as the EEG and MEG.  

The energy that drives the electric current is immediately provided by chemical gradients 
of ions, particularly those for sodium and potassium, which ionic pumps sustain across 
neural membranes. That chemical energy is held in a vast reservoir that is instantly 
available at all times like a battery to drive current at the flip of a synaptic switch. After 
each use that store of energy is replenished by relatively slow metabolic processes, which 
require the cerebrovascular system to deliver oxygen and glucose and remove carbon 
dioxide and heat. The modifications in local rates of cerebral blood flow that accompany 
changes in neural activity are detected and imaged by hemodynamic and metabolic 
techniques (Logothetis, 2008). The three signals, EEG, MEG, and fMRI, can either 
increase or decrease in relation to behavioral and cognitive demands, thereby forming 
spatial patterns in brain images. Because inhibition is an active process that requires 
expenditure of metabolic energy, “activation” and “deactivation” differ radically from 
“excitation” and “inhibition”.  

2B. Differing sensitivities of electromagnetic and hemodynamic measures 

All three types of non-invasive brain imaging methods reveal different aspects of global 
neural activity. The EEG and MEG manifest the activity of only a limited class of 
neurons. First, the neurons must have a degree of axial symmetry, meaning that the 
activated dendrites must lie to one side of the cell body and axon, so that the sites of 
current outflow (sources) are spatially separated from the sites of current inflow (sinks). 
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Typically these are pyramidal cells, which generate dipole fields that can extend 
throughout the brain and beyond. Cortical interneurons typically have radial symmetry 
(stellate cells), so their sources and sinks intermingle, and their distant fields cancel. The 
local field potentials (LFP) within their dendritic branches are designated as closed; they 
cannot contribute significantly to the EEG or MEG at or above the scalp, or even to 
electric fields recorded with electrodes on exposed pial surfaces, the electrocorticogram 
(ECoG). The syncytia formed by gap junctions also typically generate closed fields. The 
fields are dendritic in origin; axons clearly mediate the strengths of dendritic currents by 
the information they transmit, but their action potentials do not contribute directly to the 
dendritic potentials, certainly not as “envelopes of spikes” except when artificially 
synchronized by impulse stimuli. Second, the neurons must be aligned in palisades, both 
the dendrites in cortical columns perpendicular to the pial surface and the cell bodies in 
layers parallel to the pial surface. The cellular architectures of nuclei and reticular 
networks that lack the laminar organization of cortex seldom support the spatial 
summation of multineuronal dipole fields that is required for significant oscillations to 
appear at the scalp. Third, the contributing neurons must support strong local interactions 
probably by gap junctions in some areas and certainly by local and distant interactions 
through axodendritic synapses in all areas, in order to provide the temporal synchrony 
necessary for sufficiently broad summation for the potential fields to appear at the scalp.  

Thus, while fMRI and BOLD can image neural activities in all cortical, nuclear and 
reticular architectures predominantly containing dendrites, EEG and MEG are largely 
restricted to imaging activities of cerebral cortex but not cerebellar cortex. Purkinje cells 
also have a columnar and laminar structure that could, theoretically, permit neuronal 
sources in the cerebellum to also contribute to scalp EEG. However, the cerebellum does 
not contribute significantly to EEG signals, because of the extreme curvature of its gyri 
tending to form closed fields, the sparseness of the Purkinje cells, and the predominance 
of feedforward inhibition over feedback inhibition. Forward inhibition promotes spatial 
differentiation, not the integration that gives broad fields of synchronized oscillations 
provided by feedback inhibition and forward excitation. Likewise, neuronal sources in 
structures such as the thalamus and basal ganglia have a radial, non-columnar 
organization, so are less likely to make any significant contributions to the scalp EEG 
even when intense LFP can be recorded within them (Niedermeyer & Lopes da Silva, 
2004). The fMRI signals do not depend on the laminar or the radial neuronal 
organization, but have more to do with the coupling of metabolic processes to the 
underlying vascular and glial beds (Fox, Raichle, Mintun, & Dence, 1988; Menon & 
Crottaz-Herbette, 2005; Herrmann & Debener, 2008).  

All three methods give access to wide areas of cortex in a virtual continuum over the 
calvarium, albeit with differing degrees of spatial and temporal resolution. All three give 
2-D images of spatial patterns of neural activity that change with time, some of which are 
expected to correlate with specific cognitive behaviors. Therefore, the cortical fMRI and 
EEG and MEG offer opportunities for mutual validation of behavioral correlates. In a 
simplistic view the rate of energy dissipation that is required to generate dendritic current 
should rise in proportion to current density and therefore the amplitudes of EEG and 
MEG potential differences; so likewise on a longer time scale should the rate of tissue 
perfusion needed to replenish the ionic energy reservoir. Studies reflect that expectation 
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by combining imaging and physiology experiments in monkeys, indicating that the fMRI 
signals are more closely correlated with EEG, ECoG and LFP than with multiunit and 
single neuron activity (Logothetis & Pfeuffer, 2004), and that neurometabolic coupling in 
cerebral cortex reflects dendritic activity more than axonal activity (Viswanathan & 
Freeman, 2007). LFP in the high gamma band (> 40Hz) are better and more reliable 
predictors of the BOLD signal (Goense & Logothetis, 2008).  However, the mechanisms 
of the relations between electrical oscillations and the concurrent fMRI signals are not yet 
known in sufficient detail to integrate reliably. Predictions are needed of what forms the 
cognitively related activities take, such that the signals can be combined across the 
differences in time and space scales. This is not a trivial problem. Solution requires a 
deep understanding of the hierarchical organization of brain activity.  

2D. Differences between analyses of neural modules and neural fields 

A useful hierarchy of brain signals and levels of organization is based on techniques of 
observation. The predominant signals that are detected by microelectrodes inserted into 
cortex are the trains of action potentials from neurons that can be studied individually as 
components of networks and modules. The signals and the neurons are microscopic. The 
predominant signals that are recorded from arrays of depth electrodes, the LFP, and from 
arrays of electrodes on the cortical surface, the ECoG, are sums of potentials generated 
by cooperative interactions among very large assemblies. The signal from each electrode 
comes from at least 10,000 neurons and typically many more. These self-organized 
neural masses are continuous in space, and likewise the signals they generate are spatially 
continuous. The neural masses are fields that embed the networks and modules forming 
the primary sensory and motor cortices and components of the limbic system. They 
constitute the mesoscopic level of brain function. The effects of the fields on the neural 
networks and modules that they embed are only apparent in statistical averages of the 
microscopic activity. Lastly, the signals that emerge from the head in the EEG and MEG 
originate in neural masses that vary structurally and functionally in size and complexity, 
up to the entire cerebral hemisphere. These signals are from neural fields that are very 
large indeed, characteristically being difficult to distinguish from referential activity and 
volume conduction, yet providing insight into the global organization of brain activity. 
This is the macroscopic level given by EEG and MEG and fMRI from the continuous 
sheet of neuropil in each cerebral hemisphere in which the microscopic networks and 
modules are embedded along with the intermediate mesoscopic assemblies. It is apparent 
that networks and modules are functional entities with variable size and adaptive 
boundaries being re-defined by the mesoscopic and macroscopic fields of brain activity 
with each new cognitive task and within tasks from each tenth of a second to the next.   

The neocortex provides many specialized areas that provide substrates for locally self-
organized modules. The most widely held hypothesis of cortical function is that each 
module generates its characteristic signal; that these signals intermingle by volume 
conduction; that separation might be achieved by decomposition with independent 
component analysis (ICA); and that intermittent transmission among modules is 
manifested by transient phase-locking of microscopic or mesoscopic oscillations with 
zero phase lags despite axonal propagation delays on temporary connections (e.g., Singer, 
2001; Makeig et al., 2002; Bressler, Richter, Chen, & Ding, 2007). Our thermodynamic 
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hypothesis, which is loosely related to Baars’ (1997) “global workspace”, is that self-
organized modules are embedded in the cortical neuropil; that they enter by phase 
transitions into transient frames of synchronized oscillations having narrow spectral 
bands and broad spatial distributions; that the oscillation in the pass band of each frame is 
modulated in amplitude (AM) and phase (PM); that multiple frames coexist in narrow 
pass bands in the beta and gamma ranges; and that frames can be separated by spectral 
decomposition. The role of fMRI in this schema is to provide the macroscopic frame for 
the cortical events occurring in a 4 to 5 s window during a reproducible cognitive task. 
There is increasing evidence that areas of high and low blood flow form spatial patterns 
of PET and fMRI (Raichle, et al., 2001; Greicius, et al. 2003; Fransson, 2006; Morcom & 
Fletcher, 2007; Raichle & Snyder, 2007; Schacter & Addis, 2007; Szpunar, Watson & 
McDermott, 2008). The roles of EEG and MEG are to provide non-invasive 
measurements at high spatial and temporal resolution throughout the corresponding 
spatial and temporal window, and with repetition as often as needed to achieve statistical 
synthesis and verification in respect to fMRI.  

3. Search for control states in fMRI, EEG and MEG  

3A. Definitions of “resting” and “ground” states  

Many fMRI studies are based on comparison of spatial patterns between an active 
behavior and the control state without that behavior. Yet brains are always active. The 
study of the background activity forces this vexing problem (Raichle, et al., 2001; 
Freeman, 2004a, 2004b, 2995, 2006a). What is the baseline from which changes in 
activity levels are to be measured? How might a non-cogitative “resting” state or a 
“ground” state for brain activity best be defined? Must “activation” carry populations 
above the level of either state, or might “activation” include reductions below either 
state? If so, how, and with what advantage?   

Our path to understanding spatiotemporal patterns in scalp EEG and MEG began with 
analysis of the spatiotemporal properties of the ECoG in human (Freeman et al., 2006; 
Panagiotides et al., 2008) and animal (Freeman, 2004 a, b). For the extraction of the 
relevant AM patterns, the ECoG must be recorded with multielectrode arrays fixed on the 
flattened pial surface of cortex that provide the necessary window for observation and 
measurement. Examination of the background spontaneous ECoG in animals and humans 
has shown that the only unambiguously defined basal level for energy and neural activity 
is the absence of oscillation and action potentials giving flat EEG. This state is fully 
reversible when it is induced in some animals by hibernation and in others by very deep 
surgical anesthesia, therapeutically suppressing neural interactions. It corresponds to the 
open loop state (Freeman, 1975), in which the mesoscopic time and space constants of 
the dendrites of neural populations can be measured. From this vacuum state (Freeman & 
Vitiello, 2006) there is a graded return through slow wave coma and chaotic waking rest 
to expectant arousal, with culmination in engagement in intentional action (Skarda & 
Freeman, 1987; Freeman, 2008). The stages of arousal resemble those in waking from 
slow-wave sleep; they are discriminable with soft criteria. 

Of particular interest is the resting state, in which subjects are behaviorally inactive and 
unchallenged by immediate expectation of a conditioned stimulus (CS) and its attendant 
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conditioned response (CR), eyes closed or open. As observed in humans this state is 
accompanied with a remarkably reproducible pattern of increased metabolic activity in 
midline brain structures, notably the ventromedial prefrontal cortex and the posterior 
cingulate cortex, documented in humans at rest (Shulman, et al., 1997) with closed eyes 
and presumably empty minds. In view of its reproducibility during task based 
deactivations  Raichle labeled it as a “default mode” (Raichle, et al., 2001); reviewed by 
(Raichle & Snyder, 2007).  These regions are found to be highly correlated with each 
other and therefore are hypothesized to constitute a default mode network (Greicius, et 
al., 2003). Embarkation from the default state to overt action is accompanied by increases 
in neurometabolic demands in some brain regions and decreases in others. The neural 
mechanisms of the decreases and their functional significance are matters for conjecture 
and controversy (Morcom & Fletcher, 2007), and likewise the mental contents of subjects 
at rest in the default mode (Buckner, Andrews-Hanna, & Schacter, 2008). Raichle et al. 
and Greicius et al. defined their reference state with respect to behavioral and 
hemodynamic changes (Fig. 1). The uncertainty inherent in this definition is apparent in 
comparing the pattern with those demonstrated by others (Raichle & Snyder, 2007; 
Szpunar, Watson & McDermott, 2008) accompanying the cognitive functions of 
recollection and prediction, showing substantial overlap, which suggests that “resting” 
may be indistinguishable from “occult cogitating” by these criteria. This holds likewise 
for imaging correlates of “self-referential processing” (Northoff et al., 2006).  

A complementary approach is to seek in the EEG the characteristic power spectral 
density (PSD) of the ECoG, EEG or MEG that is recorded from subjects similarly 
showing no overt or imminent behaviors. The time series from multiple electrodes in this 
state often yield featureless fluctuations with no periodic waveforms. The PSDT plotted in 
coordinates of log10 power vs. log10 frequency often conforms to a straight line with slope 
ranging from near or below -2 (“brown” noise, 1/f2) in waking rest to near or below -3 
(“black” noise, near 1/f3 (Schroeder, 1991)) in deep slow wave sleep (Freeman, Holmes, 
West, & Vanhatalo, 2006). When subjects become active, and often well before they do, 
excess power emerges above the straight line particularly in the classic theta (3-7 Hz), 
alpha (8- 12 Hz), beta (12-25 Hz) and gamma ranges (30-80 Hz) (Fig. 2). These upward 
deviations manifest the breaking of the symmetry of unstructured random activity in 
disorder by the emergence of order in the spectral domain, giving the indication that 
within a collection of "resting" and "occult cogitating" and/or “self-referential 
processing” states there can be defined a ground state by its lack of spectral peaks 
reflecting scale-free random noise, which appears to be the form taken by basal brain 
activity from which order emerges (Freeman, 2006; Freeman and Zhai, 2008). 
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Fig. 1. (Left) Independent Components Analysis of “passive” resting-state fMRI scans 
 shows spatially coherent activity in the posterior cingulate cortex, precuneus and 
 medial prefrontal cortex nodes of the default mode network. (Right) Transient 
 fMRI signal reductions during an auditory “oddball” attention task in these same 
 regions. Unpublished data (Menon). 

 

 Fig. 2. The temporal power spectral density, PSDT, in this human ECoG tends to a 
power-law distribution, 1/fe, with exponent e ~ 3±.25 in slow-wave sleep and e ~ 
2±.25 in the awake state (Freeman, et al., 2006). Spectral peaks of excess power 
in the clinically significant bands (here gamma and low theta) during arousal and 
task performance. Adapted from (Freeman, et al., 2006). 

3B. Deviations from the ground state to an active state by the emergence of order 

This conclusion that the ECoG and EEG in the ground state conform to brown noise is 
consistent with the neural mechanism by which the background activity is maintained 
(reviewed in Freeman, 2008). The origin is in dense, distributed, mutual excitation among 
cortical excitatory neurons in positive feedback (Freeman, 1975; Freeman, 2007b; 
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Freeman, 2008). Despite their sparseness, the interconnections are sufficiently dense that 
an action potential given by each neuron yields a prolonged barrage of action potentials 
from neighbors; that is, the anatomical connection density supports feedback gain that is 
potentially greater than unity. It is the refractory period of each neuron that prevents 
runaway excitation, so that large populations of cortical neurons self-stabilize 
homeostatically and sustain their activity in steady state at unity gain. This self-stabilized 
discharge is transmitted also to inhibitory interneurons. It provides the background 
excitation that inhibitory neurons require to exercise the mutual inhibition that supports 
spatial and temporal contrast enhancement by positive feedback to each other and the 
oscillations in the beta and gamma ranges by negative feedback to the excitatory neurons. 
Local feedback with short delays generates gamma rhythms that in gamma ECoG are 
synchronized over distances of 1 to 3 cm (Freeman, 2005a). Longer range feedback with 
greater delays typically gives rise to synchronized beta (Brovelli, et al., 2004) and theta 
(Rizzuto, et al., 2003) rhythms over larger distances (Freeman, 2005). The inhibitory 
feedback does not stabilize cortex, nor do neural thresholds stabilize it; the factor that 
stabilizes the background fluctuations of EEG, MEG and ECoG is the refractory periods.  
 
The level of power is not thereby constrained. Calculation of the probability of neural 
action potential formation conditional on the amplitude of the ECoG has shown that the 
background power is maintained in steady state at unity gain (Freeman, 2008) over a 
broad range of variation in level of arousal, which implicates the role of brain stem nuclei 
in neurohumoral control of the level of background activity. In the olfactory system the 
agent of increased background activity with arousal is histamine (Freeman, 2005a). Other 
systems appear to rely on other neuroamines. In any case the regulation of the ground 
state admits of two independent degrees of freedom relating to the level of arousal. One is 
the level of power that is assessed by the intercept of the line fitted to the PSDT when it 
approaches the power-law form. The other is the robustness of the background activity, 
which is manifested as the slope of the PSDT approaches -2 (Freeman and Zhai, 2008).  

There is no a priori reason to suppose that the power level of the ground state should be 
constant over time and spatially uniform throughout the brain at rest. To the contrary, the 
brain likely resembles the body, which has “catabolic” musculoskeletal systems that are 
quiescent during the actions of “anabolic” systems including the intestines, liver and 
kidneys. In turn the restorative organs shut down during intense muscular activity. 
Similarly there are likely to be brain regions and networks for which the main functions 
are anabolic in leisure or down time and others that support catabolic activities during 
intentional action. It is well known that blood flow is allocated between the two systems 
in the body largely according to strictly local demand. Similar local controls are known to 
exist in brains, conceivably giving the observed BOLD patterns (Raichle & Mintun, 
2006). The mean level of power dissipation in brains is always high, owing to the 
necessity for maintaining a high-energy state near criticality (Freeman & Vitiello, 2006), 
so the question in any particular change of state is whether rate of dissipation necessarily 
increases with increased order in pattern formation. Indeed it may or may not. The 
separation between the two degrees of freedom is manifested in the independent 
variations of the slope and the intercept of the graph of log power versus log frequency 
(Freeman and Zhai, 2008).  
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Therefore the 1/f criterion defines the “ground” state as requiring a state of “waking rest” 
with non-zero activity but without specifying its rate of energy expenditure. Certainly the 
“open loop” state that supervenes under deep anesthesia serves as a near-equilibrium 
“vacuum” state with zero background activity, from which the “ground” state emerges 
with recovery, and then on to the 1/f “waking rest” state as prelude to the “active” state 
with emergence of spectral structure (Skarda & Freeman, 1987). The “waking rest” state 
defined behaviorally may include some areas at the “ground” state defined spectrally and 
other areas in “active” states defined spectrally, so that departures from “waking rest” 
might incur increases and decreases from prevailing mean levels of activity (Raichle, et 
al., 2001). A search for EEG and MEG peaks in the temporal PSDT and spatial PSDX 
“resting” state may yield clues to occult neural activity supporting mental activity that is 
undetected by observers or unreported by subjects because it is not conscious. The pass 
bands (widths and center frequencies) of the deviations from randomness (1/f irrespective 
of slope) can give clues to start modeling the activities.  

4. Search for spatial structures in EEG and MEG to combine with those in fMRI 

Most non-invasive brain imaging studies of field potentials have been devoted to spatial 
localization of brain activity, including the use of PET/fMRI to guide MEG/EEG source 
imaging for improved spatiotemporal localization (Heinze, et al., 1994; Menon et al., 
1997; Liu, Belliveau, & Dale, 1998; Ahlfors, et al., 1999). Here we propose an alternative 
way to use the data from the three non-invasive brain imaging methods, namely the 
detection of spatial patterns of amplitude modulation (AM) and phase modulation (PM) 
of non-local, transiently phase-locked oscillations in human brains.  

4A. Detecting spatial patterns of oscillatory activity in ECoG 

The aim of brain imaging is to relate brain state to behavioral state through measurement 
by which the infinite state spaces is projected into a finite measurement spaces. The high-
resolution measurements of the ECoG from arrays of electrodes fixed on the pial surface 
of cortex serve to sample infinite brain state in a series of spatial patterns of amplitude 
modulation (AM) and phase modulation (PM) of phase-locked oscillations in the beta and 
gamma ranges. The behavioral measurements project the infinite behavioral state space 
into discrete classes of CS and CR. The AM patterns are correlated with CS to which the 
subjects have been trained to give CR. Multivariate clustering and classification of AM 
patterns demonstrate the correlations between brain state and behavior state by projection 
into 2-space, i.e., a graphic display of clusters. Operationally, the amplitude of the signal 
from each of n spatial points in an array of n electrodes is calculated over a time segment. 
An n-dimensional feature vector is constructed from the n amplitudes that specify for 
each AM pattern a point in n-space. Similar AM patterns from repeated trials with the 
same CS form clusters of points. Differing AM patterns from trials with different CS 
form separate and partially overlapping clusters (Viana Di Prisco and Freeman, 1985; 
Ohl, Scheich and Freeman, 2001; Freeman & Burke, 2003; Freeman, 2005b). The 
trajectories between clusters describe the transitions between states.  

The classificatory information in the ECoG is homogeneously distributed over the 
sensory cortex; no electrode gives a signal that is any more or less effective than any 
other (Barrie, Freeman and Lenhart, 1996; Ohl, Scheich and Freeman, 2001), showing 



Combining fMRI, EEG, MEG    14                    Freeman, et al. 
 

that the location of the electrodes is not critical, provided that the electrodes are all fixed 
within the area of spatial coherence of the carrier wave. Both low and high amplitudes of 
signals have equal value in classification, showing inclusiveness with respect to 
excitation, disexcitation, inhibition, and disinhibition in activation and de-activation. This 
generality reflects the distributed nature of the contents of holographic types of memory 
storage (Pribram, 1975).  Each AM pattern is accompanied by a PM pattern, which is 
imposed by intracortical axonal conduction delays in the formation of each AM pattern. 
The phase dispersion at the peak frequency is within ±45°; it shows that synchronization 
is widespread but not strictly at zero lag.   

4B. Extrapolation to search for spatiotemporal patterns in scalp EEG 

 The demonstration of the equal classificatory value of each channel in ECoG is 
extremely important for image analysis. The geometry of ECoG recording is 
comparatively simple; that for the EEG and MEG is not. The amplitude of the signal 
from each scalp sensor depends in part on the intrinsic intensities of the dendritic sources 
of the local current densities and also on the distances from those sources (Fig. 3), the 
orientations of the palisade of pyramidal cells as determined by the geometry of the gyri 
and sulci, and the conductances of the intervening skull and soft tissues. However, after 
the sensor array has been fixed to the head, the signal from each channel can be 
normalized to equal variance across the array for the data set that includes all behavioral 
conditions over which AM patterns are to be compared and classified. Then these several 
factors can be treated as invariant.  
 
The AM patterns seen in the ECoG are stationary only for time segments lasting on the 
order of a tenth of a second. Each has an abrupt onset that is manifested in a temporal 
discontinuity of the analytic phase. When a jump in phase occurs at any one site, it tends 
to occur at all sites in the array, constituting what we call coordinated analytic phase 
differences (CAPD) that mark the onset of an AM pattern. These CAPD are also found in 
the EEG from 1-D arrays extending for distances up to 19 cm across the scalp (Freeman, 
Burke and Holmes, 2003). They suggest that comparable AM pattern formation by areas 
of cortex might simultaneously be manifested in electric, magnetic, and hemodynamic 
images from extended cortical areas comprising gyri and sulci (Fig. 4). The important 
lesson here is that time averages must be taken across EEG and MEG data to combine 
with fMRI data, but not as is commonly done by averaging the time-dependent 
oscillations, because the variations in frequency and phase degrade the sums. Instead, the 
requirement is for temporal coarse-graining by identifying the AM patterns at whatever 
carrier frequencies and phase gradients they might have and saving only the feature 
vectors as points in n-space within the designated time frame.   
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Fig. 3. A. Left lateral view of the locations of the MEG sensors (green squares) in 
relation to the pial surface of the cerebral cortex. The representation for the cortex 
was reconstructed from MR images. B. Histogram of MEG sensor distances to the 
nearest point on the pial surface. C. Left lateral view of the locations of EEG 
electrodes (yellow dots) relative to the cortex. D. Histogram of EEG electrode 
distances to the pial surface 
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Fig. 4. The raster plot shows the CAPD from the scalp EEG of a human volunteer at rest 

with eyes closed. The array was 1-D across the occipital lobe from right to left in 
steps of 3 mm (total length: 189 mm). Pass band = 12-30 Hz; spacing = 3 mm. 
CAPD were calculated at the digitizing step Δt = 5 ms and aligned in rows parallel to 
the left abscissa. The flat areas show the stationarity of the phase within frames. The 
spikes aligned in rows parallel to the right abscissa show the spatial coordination of 
the phase discontinuities, often across both hemispheres (Freeman, 2004a).  

4C. Extrapolation to search for spatiotemporal patterns in MEG 

Since the electric and magnetic fields of the MEG, EEG and ECoG share the same source 
in the dendritic currents of cortical pyramidal cells, we expected to find CAPD in the 
MEG as well. That we did not find them (Fig. 5) is quite instructive. In conformance with 
the law of charge conservation, dendritic currents flow in closed loops that cross the 
neural membranes twice. The ionic "battery" at the synapses has a high internal resistance 
that is matched by the high resistance at trigger zones. Most of the dendritic power is 
dissipated at these membrane crossings as heat, in proportion to the difference between 
the intracellular potential measured in millivolts compared with the extracellular potential 
measured in microvolts, a thousand-fold difference. The internal current is compressed 
into high density along the dendritic shafts in 1-D. The external current spreads widely in 
3-D. A common misconception is that the extracellular current determines the EEG, 
while the intradendritic current determines the MEG. Actually both parts of the loop 
current determine the fields of both EEG and MEG, so that variations in extracellular 
resistance (Pfurtscheller & Cooper, 1975; Zhou & van Oosterom, 1992; Ramon, Schimpf, 
Haueisen, Holmes, & Ishimaru, 2004) affect both EEG and MEG, and the currents 
flowing in opposite directions can reduce observed fields of potential by cancellation. 
Fortunately, although these complex details are critical for researchers who want to 
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localize current sources, they are not needed for multivariate classification of AM 
patterns of EEG and MEG. 

 

Fig. 5. The relationships are shown between analytic amplitude (smooth curves) and 
phase differences (spikes) in the beta range in non-invasive EEG (A), MEG 
gradiometers (B) and MEG magnetometers (C). The horizontal bars indicate the 
segments when the analytic phase difference was below 0.1 for at least 10 msec, 
suggesting the presence of CAPD. The large amplitude peak in MEG magnetometer 
data is an artifact due to cardiac magnetic field. D. The orientations of dipoles are 
schematized with respect to gyri and sulci in widely synchronized oscillatory 
potentials in the beta and gamma ranges for EEG (vertical arrows) and MEG 
(horizontal arrows). The signals from tangential source components (blue or black 
arrows) on opposite walls of sulci tend to cancel; this could explain why CAPD were 
not observed in the MEG recording.  

What is relevant to the missing CAPD is gyrification. The palisades of pyramidal cells 
are oriented perpendicular to the pial surface in both gyri and sulci. Sources of all 
orientations contribute to the EEG; however, the strongest contribution comes from the 
cortex in the crowns of gyri due to their closest distances to the scalp (Fig. 3) as well as 
the preferred orientation of the source currents. Conversely MEG is insensitive to source 
currents that are oriented perpendicular to the surface of the skull (radial sources, for 
example along the crests of the gyri). Therefore the strongest contribution to MEG 
signals typically originates from the tangentially oriented sources in sulci (Hillebrand & 
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Barnes, 2002; Goldenholz, et al., 2008), provided that the pyramidal cells in the opposing 
walls are not synchronized, for in the synchronized case the opposing vectors tend to 
cancel. This may explain the finding that the CAPD do not appear in averaged signals 
derived from the MEG despite their appearance in averaged signals derived from the 
simultaneously recorded EEG (Fig. 5). The appearance of CAPD in EEG averages but 
not in MEG averages means that EEG will be especially important in providing markers 
for state transitions and frames in the search for AM patterns of analytic power (the 
maxima in the blue curves in Fig. 5 A) to combine EEG and MEG for inclusion in the 
construction of global state variables. Power dissipation should be combined over the full 
spectral range in the steps required for application of the Hilbert transform to compute the 
analytic power in each frequency band.  

5. Conclusion 

To reiterate, in the detection and description of mesoscopic AM patterns, the spatial 
locations on the cortical surface of the peaks and troughs of analytic amplitude and their 
spatial boundaries are secondary. The identification is made by the locations in n-space of 
the AM patterns being classified by their Euclidean distances from the centers of gravity 
of clusters representing the classes. Only after an AM pattern has been correlated with an 
aspect of cognitive behavior might it then be repeatedly induced and observed. The 
cortical domain within which it most probably originates can be mapped using a two-
dimensional array of local electric and magnetic dipoles at the grain of the arrays, using 
the gyri and sulci revealed in structural MRI, so that the distributed sources contributing 
to an AM pattern of analytic power dissipation can be computed for each frequency 
range. The sum of power over the full frequency range and the time interval needed for 
reliable fMRI can be compared and coordinated with an fMRI map of power that has 
been computed with local averages corresponding to the sensor arrays.  

The implication is that the brain state in any given time segment has the form of a spatial 
pattern of the rate of energy dissipation that is manifested in the three forms of imaging. 
Each state can be expressed in an AM pattern, in which every value, whether high or low, 
negative or positive, has equal value for purposes of description and classification. The 
nature of the state variables, whether electric, magnetic, or metabolic, may differ, but the 
value is independent of the source. The fMRI pattern in each macroscopic time interval at 
its time resolution provides an arena for analysis. The voxels can be selected to 
correspond to the neocortex and locally averaged spatially to coarse-grain the data in 
correspondence to the spatial resolution of the EEG and MEG data, which is determined 
by the sensor arrays. The high temporal resolution of the EEG and MEG gives repeated 
samples that cannot be summed as raw oscillations, but the clusters of points of their 
respective AM patterns can be accumulated over the time intervals dictated by the fMRI, 
so the basis for combining them is inherent in the spatial layout of the neocortex spread 
under the scalp and skull. The end result is the reduction of infinite brain state space to a 
finite measurement space that is determined by the spatial sampling imposed on the EEG 
and MEG data and the temporal sampling that is imposed on the fMRI data. Multivariate 
statistics then supports projection of the finite state space into 2-space, a graph, in which 
each state may appear as a point, similar states as clusters, and state transitions as 
trajectories between clusters. Such macroscopic patterns are described as metastability 
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(Kelso, 1995; Bressler and Kelso, 2001), itinerant trajectories (Tsuda, 2001), and 
cinematographic cortical dynamics (Freeman, 2007b).   

References 
 
Ahlfors, S., Simpson, G., Dale, A., Belliveau, J., Liu, A., Korvenoja, A., et al. (1999). 

Spatiotemporal activity of a cortical network for processing visual motion 
revealed by MEG and fMRI. J Neurophysiol, 82(5), 2545-2555. 

Arieli, A., & Grinvald, A. (2002). Optical imaging combined with targeted electrical 
recordings, microstimulation, or tracer injections. J Neurosci Methods, 116(1), 
15-28. 

Baars, B. J. (1997) In the Theater of Consciousness: The Workspace of the Mind.   New 
York: Oxford U.P.  

Barrie, J., Freeman, W., & Lenhart, M. (1996). Spatiotemporal analysis of prepyriform, 
visual, auditory, and somesthetic surface EEGs in trained rabbits. J Neurophysiol, 
76(1), 520-539. 

Bassett, D., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). 
Adaptive reconfiguration of fractal small-world human brain functional networks. 
Proc Natl Acad Sci USA, 103(51), 19518-19523. 

Bressler, S. L. and Kelso, J. A. S. (2001) Cortical coordination dynamics and cognition. 
Trends Cog Sci 5:26-36.  

Bressler, S., Richter, C., Chen, Y., & Ding, M. (2007). Cortical functional network 
organization from autoregressive modeling of local field potential oscillations. 
Stat Med, 26(21), 3875-3885. 

Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., & Bressler, S. (2004). Beta 
oscillations in a large-scale sensorimotor cortical network: directional influences 
revealed by Granger causality. Proc Natl Acad Sci USA, 101(26), 9849-9854. 

Buckner, R., Andrews-Hanna, J., & Schacter, D. (2008). The brain's default network: 
anatomy, function, and relevance to disease. Ann N Y Acad Sci, 1124, 1-38. 

Buzsaki, G. (2006). Rhythms of the Brain. New York: Oxford UP. 
Buzsáki, G., Kaila, K., & Raichle, M. (2007). Inhibition and brain work. Neuron, 56(5), 

771-783. 
Emery, J., & Freeman, W. (1969). Pattern analysis of cortical evoked potential 

parameters during attention changes. Physiology & Behavior, 4, 67-77. 
Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. 

E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated 
functional networks. Proc Natl Acad Sci USA, 102(27), 9673-9678. 

Fox, P., Raichle, M., Mintun, M., & Dence, C. (1988). Nonoxidative glucose 
consumption during focal physiologic neural activity. Science, 241(4864), 462-
464. 

Fransson, P. (2006). How default is the default mode of brain function? Further evidence 
from intrinsic BOLD fluctuations. (Vol. 44, pp. 2836-2845). 

Freeman, W. (1975). Mass Action in the Nervous System. New York: Academic Press. 
Freeman, W. (2004a). Origin, structure, and role of background EEG activity. Part 1. 

Analytic amplitude. Clin Neurophysiol, 115(9), 2077-2088. 
Freeman, W. (2004b). Origin, structure, and role of background EEG activity. Part 2. 

Analytic phase. Clin Neurophysiol, 115(9), 2089-2107. 



Combining fMRI, EEG, MEG    20                    Freeman, et al. 
 

Freeman, W. (2005a). NdN, volume transmission, and self-organization in brain 
dynamics. J Integr Neurosci, 4(4), 407-421. 

Freeman, W. (2005b). Origin, structure, and role of background EEG activity. Part 3. 
Neural frame classification. Clin Neurophysiol, 116(5), 1118-1129. 

Freeman, W. (2006). Origin, structure, and role of background EEG activity. Part 4: 
Neural frame simulation. Clin Neurophysiol, 117(3), 572-589. 

Freeman, W. (2007a). Indirect biological measures of consciousness from field studies of 
brains as dynamical systems. Neural Netw, 20(9), 1021-1031. 

Freeman, W. (2007b). Proposed cortical "shutter" mechanism in cinematographic 
perception. In: Perlovsky, L. & Kozma, R. (Eds.), Neurodynamics of Cognition 
and Consciousness (pp. 11-38). Heidelberg: Springer Verlag. 

Freeman, W. (2007c). Encyclopedia for Computational Neuroscience. 
http://www.scholarpedia.org/article/Hilbert_transform_for brain_waves 

Freeman, W. (2008). A pseudo-equilibrium thermodynamic model of information 
processing in nonlinear brain dynamics. Neural Netw, 21(2-3), 257-265. 

Freeman WJ, Bollobás B, Kozma R [2008] Scale-free cortical planar networks. 
Handbook of Large-Scale Random Networks. Bolyai Mathematical Soci. Budapest: 
Springer. http://www.springer.com/math/numbers/book/978-3-540-69394-9 

Freeman, W., & Burke, B. (2003). A neurobiological theory of meaning in perception.  
Part 4. Multicortical patterns of amplitude modulation in gamma EEG. Int. J. 
Bifurc. Chaos, 13, 2857-2866. 

Freeman, W., Burke, B., & Holmes, M. (2003). Aperiodic phase re-setting in scalp EEG 
of beta-gamma oscillations by state transitions at alpha-theta rates. Hum Brain 
Mapp, 19(4), 248-272. 

Freeman, W., Holmes, M., Burke, B., & Vanhatalo, S. (2003). Spatial spectra of scalp 
EEG and EMG from awake humans. Clin Neurophysiol, 114(6), 1053-1068. 

Freeman, W., Holmes, M., West, G., & Vanhatalo, S. (2006). Fine spatiotemporal 
structure of phase in human intracranial EEG. Clin Neurophysiol, 117(6), 1228-
1243.  

Freeman, W., O'Nuillain, S. and Rodriguez, J. (2008). Simulating resting cortical 
background activity with filtered noise. J. Integr. Neurosci. 7(3): 337-344. 

Freeman, W., & Rogers, L. (2003). A neurobiological theory of meaning in perception.  
Part 5. Multicortical patterns of phase modulation in gamma EEG. Int. J. Bifurc. 
Chaos, 13, 2867-2887. 

Freeman, W., Rogers, L., Holmes, M., & Silbergeld, D. (2000). Spatial spectral analysis 
of human electrocorticograms including the alpha and gamma bands. J Neurosci 
Methods, 95(2), 111-121. 

Freeman, W., & Vitiello, G. (2006). Nonlinear brain dynamics as macroscopic 
manifestation of underlying many-body field dynamics. Physics of Life Reviews, 
3, 93-118. 

Freeman, W., & Zhai, J. (2009). Simulated power spectral density (PSD) of background 
electrocorticogram (ECoG). Cognitive Neurodynamics 3(1): 97-103. 

Goense, J., & Logothetis, N. (2008). Neurophysiology of the BOLD fMRI signal in 
awake monkeys. Curr Biol, 18(9), 631-640. 



Combining fMRI, EEG, MEG    21                    Freeman, et al. 
 

Goldenholz, D., Ahlfors, S., Hämäläinen, M., Sharon, D., Ishitobi, M., Vaina, L., et al. 
(2008). Mapping the signal-to-noise-ratios of cortical sources in 
magnetoencephalography and electroencephalography. Hum Brain Mapp. 

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity 
in the resting brain: A network analysis of the default mode hypothesis. Proc Natl 
Acad Sci USA, 100(1), 253-258. 

Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory 
task: Uncoupled from deactivation but impacting activation. J. Cogn. Neurosci., 
16(9), 1484-1492. 

Haynes, J., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nat 
Rev Neurosci, 7(7), 523-534. 

Heinze, H., Mangun, G., Burchert, W., Hinrichs, H., Scholz, M., Münte, T., et al. (1994). 
Combined spatial and temporal imaging of brain activity during visual selective 
attention in humans. Nature, 372(6506), 543-546. 

Herrmann, C., & Debener, S. (2008). Simultaneous recording of EEG and BOLD 
responses: a historical perspective. Int J Psychophysiol, 67(3), 161-168. 

Hillebrand, A., & Barnes, G. (2002). A quantitative assessment of the sensitivity of 
whole-head MEG to activity in the adult human cortex. Neuroimage, 16(3 Pt 1), 
638-650. 

Kelso, J. A. S. (1995) Dynamic Patterns: The Self Organization of Brain and Behavior. 
Cambridge: MIT Press.  

Kozma, R., & Freeman, W. (2001). Methods and applications for robust classification of 
noisy and variable patterns. Intern J Bifurc Chaos(10), 2307-2322. 

Liu, A., Belliveau, J., & Dale, A. (1998). Spatiotemporal imaging of human brain activity 
using functional MRI constrained magnetoencephalography data: Monte Carlo 
simulations. Proc Natl Acad Sci USA, 95(15), 8945-8950. 

Logothetis, N. (2008). What we can do and what we cannot do with fMRI. Nature, 
453(7197), 869-878. 

Logothetis, N. K., & Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast 
mechanism. Magn Reson Imaging, 22(10), 1517-1531. 

Makeig, S., Westerfield, M.,  Jung, T.‐P., Enghoff, S., Townsend,  J., Courchesne, E. and 
Sejnowski,  T.  J.  (2002).  Dynamic  brain  sources  of  visual  evoked  responses. 
Science 295, 690‐694.  

Menon, V., & Crottaz-Herbette, S. (2005). Combined EEG and fMRI studies of human 
brain function. Int Rev Neurobiol, 66, 291-321. 

Morcom, A., & Fletcher, P. (2007). Does the brain have a baseline? Why we should be 
resisting a rest. Neuroimage, 37(4), 1073-1082. 

Niedermeyer, E., & Lopes da Silva, F. H. (2004). Electroencephalography: Basic 
principles, clinical applications, and related fields (5th ed.). Philadelphia: 
Lippincott Williams & Wilkins. 

Northoff, G., Heinzel, A., De Greck, M., Bermpohl, F., Dobrowolny, H. & Panksepp, J. 
(2006) Self-referential processing in our brain—A meta-analysis of imaging 
studies of the self. NeuroImage 31, 440-457.  

Ohl, F.W., Scheich, H., Freeman, W.J. (2001) Change in pattern of ongoing 
cortical activity with auditory category learning.  Nature 412: 733-736.  



Combining fMRI, EEG, MEG    22                    Freeman, et al. 
 

Panagiotides, H., Freeman, W. J., Holmes, M. D. and Pantazis, D. (2008). Behavioral 
states exhibit distinct spatial EEG patterns. Abstract #1.051, 62nd Ann. Mtg., 
Amer. Epilepsy Soc., Seattle WA.  

Pfurtscheller, G., & Cooper, R. (1975). Frequency dependence of the transmission of the 
EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol, 38(1), 93-96. 

Pribram, K. (1975). The primate frontal cortex: progress report 1975. Acta Neurobiol Exp 
(Wars), 35(5-6), 609-625. 

Pribram, K. H. (1971). Languages of the Brain:  Experimental Paradoxes and Principles 
in Neuropsychology. Englewood Cliffs, NJ: Prentice-Hall; Monterey. 

Raichle, M. (2006). Neuroscience. The brain's dark energy. Science, 314(5803), 1249-
1250. 

Raichle, M., MacLeod, A., Snyder, A., Powers, W., Gusnard, D., & Shulman, G. (2001). 
A default mode of brain function. Proc Natl Acad Sci U S A, 98(2), 676-682. 

Raichle, M., & Mintun, M. (2006). Brain work and brain imaging. Annu Rev Neurosci, 
29, 449-476. 

Raichle, M., & Snyder, A. (2007). A default mode of brain function: a brief history of an 
evolving idea. Neuroimage, 37(4), 1083-1090; discussion 1097-1089. 

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & 
Shulman, G. L. (2001). A default mode of brain function. Proceedings of the 
National Academy of Sciences of the United States of America, 98(2), 676-682. 

Ramon, C., Schimpf, P., Haueisen, J., Holmes, M., & Ishimaru, A. (2004). Role of soft 
bone, CSF and gray matter in EEG simulations. Brain Topogr, 16(4), 245-248. 

Rice, S. O. (1950). Mathematical Analysis of Random Noise - and Appendixes - 
Technical Publications Monograph B-1589. New York: Bell Telephone Labs.  

Rizzuto, D., Madsen, J., Bromfield, E., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-
Scheibe, R., et al. (2003). Reset of human neocortical oscillations during a 
working memory task. Proc Natl Acad Sci U S A, 100(13), 7931-7936. 

Sacks, O. (2004). In the river of consciousness. New York Review, 51(1).  
Schacter, D.L. & Addis, D.R. (2007). The cognitive neuroscience of constructive 

memory: Remembering the past and imagining the future.  Phil. Trans. Roy. Soc. 
(B) 362, 773-786. 

Schroeder, M. (1991). Fractals, Chaos, Power Laws. San Francisco: WH Freeman. 
Schummers, J., Yu, H., & Sur, M. (2008). Tuned responses of astrocytes and their 

influence on hemodynamic signals in the visual cortex. Science, 320(5883), 1638-
1643. 

Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., 
et al. (1997). Common blood flow changes across visual tasks: II. Decreases in 
cerebral cortex. J. Cogn. Neurosci., 9, 648-663. 

Singer, W. (2001). Consciousness and the binding problem. Ann N Y Acad Sci, 929, 123-
146. 

Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense 
of the world. Behavioral and Brain Sciences, 10(2), 161-195. 

Soon, C., Brass, M., Heinze, H., & Haynes, J. (2008). Unconscious determinants of free 
decisions in the human brain. Nat Neurosci, 11(5), 543-545.  

Szpunar, K.K., Watson, J.M. & McDermott, K.B. (2007). Neural substrates of 
envisioning the future. Proc. Natl. Acad. Sci. 104, 642-647. 



Combining fMRI, EEG, MEG    23                    Freeman, et al. 
 

Tsuda, I. (2001) Towards an interpretation of dynamic neural activity in terms of chaotic 
dynamical systems. Behav Brain Sci 24: 793-810. 

Viana Di Prisco. G.  , Freeman, W.J.  (1985) Odor‐related bulbar EEG spatial pattern 
analysis  during  appetitive  conditioning  in  rabbits.   Behavioral Neuroscience 
99:  962‐978. 

Viswanathan, A., & Freeman, R. (2007). Neurometabolic coupling in cerebral cortex 
reflects synaptic more than spiking activity. Nat Neurosci, 10(10), 1308-1312. 

Wolf, F., & Kirchhoff, F. (2008). Neuroscience. Imaging astrocyte activity. Science, 
320(5883), 1597-1599. 

Worsely, K. J. (2005) Spatial smoothing of autocorrelations to control the degrees of 
freedom in fMRI analysis. NeuroImage 26(2), 635-642. PMID: 15907321 
[PubMed - indexed for MEDLINE] 

Zhou, H., & van Oosterom, A. (1992). Computation of the potential distribution in a four-
layer anisotropic concentric spherical volume conductor. IEEE Trans Biomed 
Eng, 39(2), 154-158. 

 




