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Behavioral/Cognitive

Memory Alone Does Not Account for the Way Rats Learn a
Simple Spatial Alternation Task

David B. Kastner,1,2 Anna K. Gillespie,2 Peter Dayan,3,4* and Loren M. Frank1,2,5*
1Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, California 94143, 2Kavli Institute for Fundamental
Neuroscience and Department of Physiology, University of California, San Francisco, California 94158, 3Max Planck Institute for Biological
Cybernetics, Tübingen 72076, Germany, 4University of Tübingen, Tübingen 72074, Germany, and 5Howard Hughes Medical Institute,
San Francisco, California 94158

Animal behavior provides context for understanding disease models and physiology. However, that behavior is often charac-
terized subjectively, creating opportunity for misinterpretation and misunderstanding. For example, spatial alternation tasks
are treated as paradigmatic tools for examining memory; however, that link is actually an assumption. To test this assump-
tion, we simulated a reinforcement learning (RL) agent equipped with a perfect memory process. We found that it learns a
simple spatial alternation task more slowly and makes different errors than a group of male rats, illustrating that memory
alone may not be sufficient to capture the behavior. We demonstrate that incorporating spatial biases permits rapid learning
and enables the model to fit rodent behavior accurately. Our results suggest that even simple spatial alternation behaviors
reflect multiple cognitive processes that need to be taken into account when studying animal behavior.

Key words: behavioral modeling; learning and memory; reinforcement learning; rodent behavior

Significance Statement

Memory is a critical function for cognition whose impairment has significant clinical consequences. Experimental systems
aimed at testing various sorts of memory are therefore also central. However, experimental designs to test memory are typi-
cally based on intuition about the underlying processes. We tested this using a popular behavioral paradigm: a spatial alterna-
tion task. Using behavioral modeling, we show that the straightforward intuition that these tasks just probe spatial memory
fails to account for the speed at which rats learn or the types of errors they make. Only when memory-independent dynamic
spatial preferences are added can the model learn like the rats. This highlights the importance of respecting the complexity of
animal behavior to interpret neural function and validate disease models.

Introduction
Determining the causal relationship between animal behavior
and its governing neural activity is a fundamental goal of systems
neuroscience and is critical for understanding how aberrant neu-
ral processing underlies neuropsychiatric disease. However, the

way in which we interpret animal behavior often rests on unidi-
mensional and qualitative explanations of the factors at play.
There are, for example, at least implicit claims that the elevated
plus maze studies anxiety (Pellow et al., 1985; Walf and Frye,
2007), the forced swim test studies depression (Porsolt et al.,
1978; Slattery and Cryan, 2012), prepulse inhibition studies sen-
sorimotor gating (Swerdlow et al., 2000; Valsamis and Schmid,
2011), the Morris water maze studies spatial memory (Morris,
1984; Vorhees and Williams, 2006), and spatial alternation tasks
study working memory (Shoji et al., 2012). Although these differ-
ent components of cognition are likely necessary for the different
behaviors, it cannot be assumed that they are the sole compo-
nents responsible for the way in which animals perform the
tasks. Instead, the successful understanding of animal behavior
requires clear and quantitatively convincing elucidation of the
factors that influence movement and decisions.

Here, we focus on spatial alternation, a class of behaviors
widely used for studying hippocampal (Frank et al., 2000;
Karlsson and Frank, 2008; Carr et al., 2012; Jadhav et al., 2012;
Fernández-Ruiz et al., 2019), striatal (Gengler et al., 2005;
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Moussa et al., 2011), and prefrontal function and physiology
(Aggleton et al., 1995; Delatour and Gisquet-Verrier, 1996, 2001;
Jadhav et al., 2016; Shin et al., 2019) and as a cognitive test for
animal models of neuropsychiatric disease (Sigurdsson et al.,
2010; Mukai et al., 2019). Spatial alternation tasks, including the
Y-, T-, and W-mazes, require animals to alternate visits to left
and right maze arms between visits to the central arm. As mem-
ory for the immediate past choice or action (i.e., the past arm vis-
ited) is required for the behavior, changes in alternation behavior
or differences in behavior between groups are typically inter-
preted as solely reflecting changes in memory processing. Here
we use behavioral modeling to suggest that this interpretation,
while intuitive, is critically incomplete. We demonstrate that,
even making very generous assumptions, a purely memory-based
model produces learning that is too slow and inconsistent with
the way rats learn the task.

Materials and Methods
Experimental design and statistical analyses
All experiments were conducted in accordance with University of
California San Francisco Institutional Animal Care and Use Committee
and National Institutes of Health guidelines. Rat datasets were collected
from Long–Evans rats that were fed standard rat chow (LabDiet 5001). To
increase motivation, rats were food restricted to ;85% of their basal body
weight and provided with sweetened evaporated milk as reward in the task.

Ten male rats were run on the behavior in two cohorts of five ani-
mals each. At the start of the behavior, the rats were three to four months
old. The rats came from four litters.

The track was the same as previous reports of the behavior (Karlsson
and Frank, 2008). The track was elevated off of the ground. The arms
were 76 cm long with reward wells at the end of each arm. The distance
from the first to the third arm was also 76 cm with the arms equally
spaced. The reward wells emitted an infrared beam, which the rat broke
on visiting the well. The rats had a total of 15 sessions to learn the task
across 5 d. Each session was 15min long, and the three sessions within 1
d were separated by;2 h. At the start of the session the rat was placed at
the base of the middle arm, on the opposite side of the arm from the
reward well, facing the well.

Rewards were delivered according to the following rules. If the rat or
agent is at any arm other than arm 2, the way to get reward is by going
to arm 2. Once the rat or agent is at arm 2, the way to get reward is by
going to the least recently visited arm between arm 1 or 3, whether or
not that arm was previously rewarded. The one exception is if the rat or
agent visits arm 2 on the first visit of the session, then reward would be
delivered at either arm 1 or 3.

Before starting the alternation behavior all rats ran on a linear track
for 3 d, 5 min each day, getting rewards by alternating between reward
wells at each end of the linear track. This pretraining was done to famil-
iarize the rats with how to get reward from the reward wells as well as
habituate them to being on an elevated track. This pretraining is also
consistent with previous reports of the behavior.

To evaluate the similarity or difference between the model learning
rate and the learning rate of the average animal behavior, exponential
fits were performed on the data and model with 99th confidence interval.
If the values for the data and model did not overlap within the confi-
dence interval, then the p value was determined to be,0.01.

Reinforcement learning (RL) agents
Given that the spatial alternation task could be framed as a partially observ-
able Markov decision process, we adapted the working memory model of
Todd et al. (2009) as the basis for our RL agent. The models specify rules
governing propensities mða; sÞ that contain the preferences of the agent of
choosing arm a when the state is s. The models differ according to the vari-
ous terms whose weighted sum defines the propensity.

The state is defined as the combination of the current arm location
of the agent and the immediately preceding arm location of the agent,
st ¼ fat�1;atg. This is a simplification from the Todd et al. (2009)

model, whereby at�1 is always placed into the memory unit, effectively
providing perfect memory by setting the gating parameter for the mem-
ory unit to always update the memory unit. The first component of
mða; sÞ for all models is bða; sÞ, which is a 13 � 3 matrix containing the
transition contingencies to arm a from state s. The reason for the addi-
tional states beyond just the 9 (3 � 3Þ arms by previous arms is to include
the beginning of the session in the possible locations to allow for the inclu-
sion of the first arm visit of a session. In so doing that adds 31 1 additional
states since the animals can have just started the task and can be located at
any of the three arms having previously just started the task.

To provide the agents with additional spatial and transitional prefer-
ences, we added components to the arm transition propensities. The first
is an arm preference, biðaÞ that is independent of the current state of the
animal. The second is a preference for visiting arms that neighbor in
space the current arm, bnxða ¼ at 6 1Þ, where xðÞ is the characteristic
function that takes the value 1 if its argument is true (and ignoring arms
outside the range 1 . . . 3) and bn1 is the (plastic) weight for this compo-
nent. The neighbor arm transition preference contains only a single
value which applies to all arms, which reflects the preference to go to any
neighboring arm. The neighbor transition preference was applied
equally in both directions when possible (i.e., if the agent was at the end
of the track the neighbor bias could only be applied to one direction).

To determine the probability of visiting each of the arms from a
given state, the total propensity is passed through a softmax such that:

p a; sð Þ ¼ exp mða; sÞð ÞP
b exp mðb; sÞð Þ : (1)

The agent’s visit is then determined by a sample from this distribu-
tion. The choice of arm then determines the reward, r, which is either 0
or 1, based on the algorithm that governs the spatial alternation task.
The probability of revisiting the current arm is set to zero, and the prob-
abilities of going to the remaining arms sum to 1.

The model uses the REINFORCE policy gradient method (Williams,
1992) within the actor-critic framework of temporal difference learning,
to update the propensities in the light of the presence or absence of
reward. To do this, the agent maintains a state-long-run value approxi-
mation, VðsÞ, which functions as a lookup table, with one component
for each state. The reward determines the state-value prediction error:

d t ¼ rt 1 gV st11ð Þ � VðstÞ; (2)

where g e ½0;1Þ is a parameter of the model called the temporal dis-
counting factor, which determines the contribution of future rewards to
the current state.

d t is then used to update the preferences all of the components of
the propensities and VðsÞ. The state-based transition component is
updated according to the following rule:

b a; sð Þ ( b a; sð Þ1ad t �
1� pða; sÞ; s ¼ st; a ¼ at
�pða; sÞ; s ¼ st; a 6¼ at

0; s 6¼ st
;

8<
: (3)

where a e ½0;1� is a parameter of the model called the learning rate,
which determines the amount by which all components of the propen-
sities change based on the new information. The independent arm pref-
erence is updated according to the rule:

biðaÞ ( biðaÞ1ad t � 1� pða; sÞ; a ¼ at
�pða; sÞ; a 6¼ at

:

�
(4)

The strength of the neighbor arm preference is updated according to
the rule:

bn ( bn 1ad t � 1� pða ¼ fat11; at � 1g; sÞ; a ¼ at 6 1
�pða ¼ fat11; at � 1g; sÞ; a 6¼ at 6 1

:

�
(5)

And, finally, the state-value approximation is updated according to
the rule:
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V sð Þ ( V sð Þ1ad t � 1; s ¼ st
0; s 6¼ st

:

�
(6)

The learning rates, a, were the same for all of the updating rules.
This does not need to be the case, but since we found that a single learn-
ing and forgetting rate fit the data well, we did not feel there was a need
to increase the complexity of the models by increasing the number of
parameters.

Initial conditions were set by adding a single value to the propensity
to go to arm 1 and 3 across all states and for the enhanced memory mod-
els also for the independent arm bias for those arms. Given that the
enhanced model had the extra independent arm terms, the single initial-
izing value was lower for the enhanced model compared with the mem-
ory model. The initial value to go to arm 2 was initialized at 0. For the
enhanced memory model, the transition bias was initialized at 0.

Model fitting
The agents were implemented in C11 and run and fit within Igor Pro
(Wavemetrics). We fit the agents to average behavior of the rats and
individual animals using the Approximate Bayesian Computation
method (Lintusaari et al., 2017), as has previously been done for fitting
rodent behavior with RL models (Luksys et al., 2009; Lloyd et al., 2012).
For the fitting, we found the parameters that (1) minimized the average
root mean square (rms) difference between the average performance of
the rats and the average performance of 200 repeats of the agent (Fig. 1,
“best fit to rewards”; see Fig. 2B); or (2) maximized the total rewards
received by the model (Fig. 1, “max reward”); or (3) minimized the aver-
age rms difference between the inbound and outbound errors averaged
across all animal and of the average of 200 different repeats of the model
(see Fig. 2D); or (4) minimized the average rms difference between the
inbound and outbound errors of the individual animal and of the aver-
age of 200 different repeats of the model (Fig. 3). The inbound and out-
bound fitting errors were summed with equal weighting to create the
final fitting error. For all fitting categories, we used simulated annealing
and ran the optimization at least four different times from different ini-
tial conditions. For all types of fitting to the average behavior of the ani-
mals, we fit to the first 1012 well visits; this was the maximum number
of visits that all rats achieved. For the fitting to the individual animals,
we fit to all of the well visits that that animal performed. For each run of
the model we used the same random number generating seed to mini-
mize the random fluctuations between parameter sets (Daw, 2011).

For the fit to the average behavior of the rats, the initial condition
was set to match the initial reward rate of the model to the data. For the
fits to the individual rats the initial condition was an additional fitting
parameter and was therefore different for each rat.

Data and code availability
Code for the model as well as data for an example animal (animal from
Fig. 3A) has been uploaded to a GitHub repository (https://github.com/
dbkastner/threeArmWtrackModel.git). All data will made available on
reasonable request.

Results
We measured the performance of rats (n=10) on a standard,
three-arm, spatial alternation W-maze task (Fig. 1A,B). To gain
reward, the rats had to learn, through trial and error, to alternate
between visits to the outer arms after each visit to the center arm.
A correct sequence of arm visits is, therefore, 2–3–2–1–2. To test
the intuition that memory is solely responsible for the way ani-
mals learn the task, we adapted an RL agent with the capacity for
working memory (Todd et al., 2009). This class of RL models has
been used to learn common rodent behavioral tasks (Zilli and
Hasselmo, 2008) and exhibits various features of rat behavior
(Lloyd et al., 2012).

The RL agent chooses which arm to visit next based on its
current state, s. The state is defined by two factors: the current
arm location of the agent, at , and the previous arm visited by the

agent, at�1, as maintained in a memory unit (Fig. 1C). In the
original formulation by Todd et al. (2009), the agent had to learn
whether to update or maintain the information in its memory
unit. By contrast, we make the most generous possible

Figure 1. RL agent with memory does not learn a spatial alternation task in the same
way as a group of rats. A, Layout of the track. Reward wells were located at the end of the
three arms of the track. B, Probability of getting reward averaged across all rats (black;
n= 10) and for the RL agent with just memory best fit (over 1012 trials) to the averaged
data (orange) and fit to maximize reward (teal). The first 300 well visits are shown to high-
light the trials over which the majority of the learning occurs. For each rat or single run of
the agent, the presence or absence of reward over well visits was smoothed with a Gaussian
filter with a SD of 2.25 well visits. For all curves, the width of the bar indicates SEM. Dotted
lines show an exponential fit to the first 300 well visits. C, Graphic of RL agent. Colored sym-
bols, mða; stÞ and V, reflecting the transition propensities and the value approximation,
respectively, indicate the entities that change as the agent goes to arms, a, and does or does
not get reward, r. The state of this agent, and therefore the probability of transitioning to
each of the arms, pða; sÞ, is defined by the current arm location, at , and the previous arm
location, at�1, of the agent. The propensities, mða; stÞ, are comprised only of the state-
based transition matrix (i.e., the memory component). D, Probability of visiting each of the
arms within the first 10 trials averaged (6SEM) across all rats (black), across all repeats of
the best fit model to the rewards (orange), and across all repeats of the model that maxi-
mizes the rewards (teal). E, Values of t for the exponential fits to the learning performance
in panel B. Vertical extent of the bars indicate the 99% confidence interval of the fit value.
F, Average inbound (top) and outbound (bottom) errors across all rats (6SEM; black), for
the model that best fits the reward rate (orange), and for the fit that maximizes the reward
(teal) as shown in panel B. A third set of parameter values was fit to minimize the discrep-
ancy between the inbound and outbound errors of the model and the averaged errors of the
rats. These parameter values turn out to be very similar to those that maximize the total
reward of the model, and the curves are therefore obscured by the teal lines (and so are not
shown in part B or F). Inbound and outbound errors for each animal were smoothed with a
Gaussian filter with a SD of 2.25 errors and then interpolated to reflect well visits.
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assumption in favor of purely memory-
based performance and always update
the memory unit with the previously vis-
ited arm, thereby allowing the agent to
have perfect memory for this task.

Each state has its own propensities,
mða; stÞ, which determine the probabil-
ities of making a transition to the other
arms of the track (Fig. 1C). The propen-
sities are updated at each trial through
temporal difference learning within an
actor-critic framework, such that, for
example, for a given state if a given
action led to reward when reward was
not expected, its propensity is increased.
This rule is a form of what is known as
model-free (MF) RL (Sutton and Barto,
1998). There are two parameters that
govern the performance of the agent,
through changing the propensities: a
learning rate a and a temporal dis-
counting factor g (for a full description
of the modeling, see Materials and
Methods).

To be able to have the potential to
model the behavior of the rats accurately,
we had to initialize the model to capture
the initial biases expressed by the rats. In
general, it is hard to measure the initial
conditions of the rats independent of the
task, since the rules for delivering reward
are applied from the very first exposure
to the environment. Nonetheless, we
could approximate the initial conditions
by measuring the probability of the rats
visiting each of the arms within the first
ten well visits. The rats show a strong ini-
tial preference for the two outer arms of
the track (Fig. 1D), consistent with previ-
ous descriptions (Kim and Frank, 2009).
Therefore, we set the initial propensities,
mða; stÞ, of the model to match the initial
error rate across the average of all rats (see
Materials and Methods). In so doing, the model then matches the
arm visit probabilities of the animals during the first ten well visits
(Fig. 1D).

We found the model parameters that minimized the
error between 200 repeats of the model and the average per-
formance of the rats (Fig. 1B). Even with perfect memory,
the model was unable to reach asymptotic performance as
quickly as the rats. An exponential fit to the improvement
in performance averaged across the rats had a trial number
constant t ¼ 38:16 3:3 trials (6 99% confidence interval),
whereas the RL agent had t ¼ 52:36 3:2 trials (Fig. 1E;
p,, 0:01). Thus, the RL agent learned the task ;1.4 times
slower than the rats.

If we maximized the rewards that the model could receive,
instead of fitting to the average behavior of the animals, the model
still had a learning rate slower than the rats (t ¼ 55:16 2:1 trials;
p,, 0:01; Fig. 1B). However, these parameters provide a
closer match to the initial learning trajectory. The major
difference between the output of the model with the param-
eters that maximized the reward and the average reward of

the animals is that the model had a higher asymptotic per-
formance level. Thus, while this model could more closely
replicate part of the behavior of the rats, it still failed to pro-
vide a complete account.

Developing a model that could provide a complete account of
the behavior requires understanding not only the overall learning
curve but also the specific errors made by the animals and the
model. We therefore examined the patterns of errors across
learning. In understanding how the animals learn this task, it has
been helpful to consider the rules of the task (Kim and Frank,
2009; Jadhav et al., 2012; Fernández-Ruiz et al., 2019). These
rules define two trial types, inbound and outbound. If the rat is
at an outer arm, the way to get reward is to go to the center arm;
we will refer to these trials as inbound trials. Any such trial on
which the rat fails to go into the center arm is called an inbound
error. Once at the center arm, then the only way the rat can get
reward is to visit the less recently visited outer arm (i.e., if before
going to the center arm 2 the rat came from arm 1, then it would
have to go to arm 3 next to get a reward). We will refer to these
trials as outbound trials and the corresponding error as an out-
bound error. In the traditional way of understanding this task,

Figure 2. RL agent with memory and dynamic spatial preferences can learn a spatial alternation task as rapidly
as a group of rats. A, Graphic of RL agent. Colored symbols, mða; stÞ and V, indicate the entities that change as the
agent goes to arms, a, and does or does not get reward, r. The state of this agent, and therefore the probability of
transitioning to each of the arms, pða; sÞ, is defined by the current arm location at and the previous arm location
at�1 of the agent. The propensities mða; stÞ are comprised of the state-based transition matrix (i.e., the memory
component) combined with an independent arm preference biðaÞ and a neighbor transition preference
bnxða ¼ a6 1Þ. B, Probability of getting reward averaged across all rats (black; n = 10) and for the RL agent
with memory and the dynamic preferences for individual arms and neighbor transitions (green). The first 300 well
visits are shown to highlight the time over which the majority of the learning occurs. For each rat or single run of
the agent, the presence or absence of reward over well visits was smoothed with a Gaussian filter with a SD of
2.25 well visits. For all curves the width of the bar indicates SEM. Dotted lines show an exponential fit to the first
300 well visits. C, Values of t for the exponential fits to the learning performance in panel B. Vertical extent of
the bars indicate the 99% confidence interval of the fit value. D, Average inbound (top) and outbound (bottom)
errors across all rats (6SEM; black) and for the best fit model to those errors (green; different parameters than
from B). Inbound and outbound errors for each animal were smoothed with a Gaussian filter with a SD of 2.25
errors and then interpolated to reflect well visits.
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inbound trials do not require working memory whereas out-
bound trials do (Shin et al., 2019).

The rats learn the inbound rule much faster and more com-
pletely than the outbound rule (Fig. 1F), consistent with these
rules being differentially sensitive to hippocampal manipulations
(Kim and Frank, 2009; Jadhav et al., 2012; Fernández-Ruiz et al.,
2019). The model fails to capture this difference. When we mea-
sure the inbound and outbound error rates of the model fit to
the average behavior of the animals, the model distributes its
errors very differently from the rats (Fig. 1F). Furthermore, this
cannot be fixed by fitting the model directly to the inbound and
outbound errors of the animals. Indeed, when we fit the memory
model to minimize the difference between its error rates and the
average inbound and outbound errors of the rats, the model
more closely matches the inbound errors of the rats but deviates
substantially from the trajectory of outbound errors of the rats
(Fig. 1F). In the case of both fits, the model learns to perform the
inbound trials more slowly than the outbound trials. This is
exactly the opposite of what the rats do. These results provide
evidence against the intuition that memory alone governs the
way in which rats learn this task.

If memory is not the only computation responsible for learn-
ing this task, what else might be involved?We can modify the RL
agent to formalize potential hypotheses about other contribu-
tions to the rapid learning of the rats. Two such assumptions are
that (1) animals, in general, do not randomly visit locations and
instead form preferences for certain locations over others; and
(2) animals, in general, do not randomly transition between

locations, but rather develop preferences for transitioning to
neighbor locations.

We incorporated both of these dynamic preferences into
the RL agent by adding additional contributions to the pro-
pensities whose strengths were initialized in a simple manner
(see Materials and Methods) and were also updated through
learning. These dynamic preferences combine with the mem-
ory component of the model to determine the choices of the
agent (Fig. 2A). This enhanced model is now able to learn as
rapidly as the rats, fitting well the average performance of the
rats and closely mimicking the learning rate (t ¼ 39:56 1:2
trials; non-significant difference as compared with the aver-
age performance of the rats; Fig. 2B,C). This enhanced model
can also be fit to the average inbound and outbound errors of
the rats (Fig. 2D). Furthermore, the parameters that were
found when fitting the model to the average reward rate
(a ¼ 0:120; g ¼ 0:997) were very similar to those found
when fitting to the error rates (a ¼ 0:133; g ¼ 0:979). This
indicates that the agent fit to the overall rewards of the rats
makes similar types of errors as the rats, with reference to
inbound and outbound errors.

The goal of enhancing the model with the dynamic prefer-
ences was to generate a hypothesis as to the additional com-
putations that might underlie this simple spatial alternation
task. We therefore performed subsequent analyses to under-
stand the relative contributions of the two biases in enabling
more rapid learning. We found that a model that just adds
the independent arm preference to the memory learns more
quickly than the original model but still does not learn as
rapidly as the rats (t ¼ 45:96 1:0 trials; p,, 0:01 vs the
rats). Additionally, a model that just adds the neighbor tran-
sition preference to the memory also learns faster than mem-
ory alone but still does not match the learning rate as well as
the full model (t ¼ 43:66 1:38 trials; p,, 0:01). These
results suggest that the two computations interact synergisti-
cally to enhance the learning.

The enhanced agent with all three components, memory, in-
dependent arm preference, and neighbor transition preference,
not only can match the average behavior across all rats, it can
also fit the way in which individual rats learn the task. We fit the
enhanced model to all individual animals by minimizing the dif-
ference between the inbound and outbound error likelihood of
the rats and 200 repeats of the agent. For the fits to the individual
rats we added a third parameter to reflect the initial conditions (see
Materials and Methods). The enhanced agent well captured the
inbound and outbound errors of the rats (Fig. 3A,B), matching the
different time courses to learn the inbound and outbound trials as
well as the different asymptotic levels of these two error types. That
match was reflected in more similar values of the learning rates: the
model t ¼ 41:66 0:4 for the inbound errors overlapped with
t ¼ 41:16 1:3 for the inbound errors for the average rat behavior
(p. 0:05 vs the rats). The model t ¼ 183:36 3:1 for the out-
bound errors reflects slower learning than for the inbound
trials, although that value does reflect faster changes than the
t ¼ 306:86 41:5 for the outbound errors for the average rat
behavior (p,, 0:01). A subsequent analysis revealed that the
differences in t between the enhanced model and the ani-
mals could be explained largely by differences in the offset
and scale of the exponential fits, as constraining those pa-
rameters resulted in very similar decay values. Thus, this
model recapitulates the different learning rates for the
inbound and outbound components of the task; however, the
rats still show a slight deviation from the model in their

Figure 3. RL agent with memory and dynamic preferences fits spatial alternation learning
behavior of individual rats. A, Inbound (top) and outbound (bottom) error likelihood for an
individual animal (black). Values smoothed with a Gaussian filter with a SD of 2.25 errors
and then interpolated to reflect well visits. In green is the average behavior of 200 repeats
of the model using the parameters that minimize the rms difference between the model and
the animal, over all trials performed by that animal. The periodic bumps in the plot of the
inbound errors reflect the beginning of a session where the rat or agent is likely to not start
at arm 2 and thereby makes an inbound error. B, Average inbound (top) and outbound (bot-
tom) errors (6SEM) across all rats (black) and individual fits to each rat (green). Dotted lines
show an exponential fit to the curves.
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initial outbound error rate, indicating further potential com-
ponents beyond memory that might still underlie the behav-
ior of the animals.

Discussion
Here, we have shown that a core, and largely unquestioned,
assumption underlying the interpretation of spatial alterna-
tion behavior is likely incorrect. Memory alone, as imple-
mented in a MF RL system, does not account for the way in
which rats learn even a simple spatial alternation task on a W-
maze (Fig. 1). To better understand the computations that
underlie a behavior, traditionally, many animals would be run
on various, but conceptually related tasks, using lesions of var-
ious brain regions (Delatour and Gisquet-Verrier, 1996, 2001;
Ennaceur et al., 1997; Gisquet-Verrier and Delatour, 2006).
Here, we have taken a more direct approach using precisely
defined models. To generate a hypothesis as to what might
account for the rapidity of the learning, we posit that the task
also draws on dynamic preferences to visit and transition
between neighboring arms. A model that incorporates such
biases can learn as quickly as the rats (Fig. 2) and can well fit
the behavior of individual animals (Fig. 3).

It is important to clarify what these results mean. We have
not proven that it is impossible that a process that only
depends on memory can learn this task as rapidly as the rats.
It remains possible (but we argue unlikely) that a different,
purely memory-based model might be able to replicate the
behavior. However, short of a quantitative demonstration of
this, we suggest that our results shift the burden of proof,
making it inappropriate to posit that memory is solely respon-
sible for the behavior.

Dynamic preferences provide a simple explanation for what
else might be involved in the rapid learning of the rats. However,
other computations, as implemented in different processes, could
underlie the rapid learning. For instance, some form of model-
based RL (Gershman and Niv, 2010; Lake et al., 2017) could be
designed to model the behavior, but such a formulation would
also require adding putative cognitive biases or schema that go
beyond simple memory. Furthermore, it would likely require
some modification to cause the model-based agent to slow down
its learning to match the quality of fit to the animal behavior that
we exhibited. Future experiments will be necessary to determine
the actual additional computations involved in this behavior;
and, given model mimicry, neural data might also have to be
called on.

Animal behavior is complex. To make progress in under-
standing the causal relationship between neural activity and
behavior, it is critical to respect and account for that complexity.
Our results demonstrate that richer accounts are necessary even
to encompass apparently simple behaviors and illustrate the ben-
efits and necessity of moving toward quantitative models of
behavior.
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