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Abstract of the Dissertation 

Electrophysiological Studies of Visual Attention and of Emotion Regulation 

By 

Veronica Chu 

Doctor of Philosophy in Psychology 

University of California, Irvine, 2019 

Professor Michael D’Zmura, Chair 

Electrophysiological methods, such as electroencephalography (EEG) and electrocardiography 

(ECG), measure biological activity that allow us to infer underlying cognitive processes. In the 

first study, we use EEG to track feature-based attention (FBA), a form of visual attention that 

helps one detect objects with a particular color, motion, or orientation. We explore the use of 

SSVEPs, generated by flicker presented peripherally, to track attention in a visual search task 

presented centrally. Classification results show that one can track an observer’s attended color, 

which suggests that these methods may provide a viable means for tracking FBA in a real-time 

task. In the second study, we use cardiovascular measures to examine influences of the emotion 

regulation strategy of reappraisal. We examine cooperation and cardiovascular responses in 

individuals that were defected on by their opponent in the first round of an iterated Prisoner’s 

Dilemma. We find significant differences between the emotion regulation conditions using the 

biopsychosocial (BPS) model of challenge and threat, where participants primed with the 

reappraisal strategy were weakly comparable with a threat state of the BPS model and 

participants without an emotion regulation were weakly comparable with a challenge state of the 

BPS model. In the third study, we use EEG to study the chromatic sensitivity of FBA for color 

during a visual search task. We use SSVEP responses evoked through peripheral flicker to 

measure the spectral tuning of color detection mechanisms and how attentional selection is 

affected by distractor color. Our results find smaller responses for the distractor colors and 

suggest that feature-based attention to a particular color involves chromatic mechanisms that 

both enhance the response to a target and minimize responses to distractors. 
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1 Introduction 

Chapter 2 discusses an experiment aimed at tracking feature-based attention in a virtual 

environment using a peripherally flickering stimulus to evoke electrophysiological activity in the 

brain. Chapter 3 discusses an experiment aimed at studying the effects of emotion regulation on 

behavioral and cardiovascular measures. Chapter 4 discusses an experiment aimed at studying 

feature-based attentional filters manipulated by surrounding distractors, measured using 

peripherally flicker stimuli to evoke electrophysiological activity. 

2 Tracking Feature-Based Attention 

This study was published in Journal of Neural Engineering at https://doi.org/10.1088/1741-

2552/aaed17 

2.1 Introduction 

Electrophysiological and neuroimaging studies have explored attentional mechanisms that help 

us select for detailed processing those elements of complex visual scenes that are most likely to 

be useful in a given task. For spatial attention, these studies have found increased neural activity 

when attention is directed at a region of space (Morgan, Hansen, & Hillyard, 1996; N. G. Müller, 

Bartelt, Donner, Villringer, & Brandt, 2003; Nobre, Sebestyen, & Miniussi, 2000). These 

findings support theories that characterize spatial attention as a “spotlight” or a “zoom lens” 

(Eriksen & St. James, 1986; Posner, 1980).  

Feature-based attention (FBA) directs attention to a non-spatial visual feature, like a particular 

color, motion, or orientation, and operates independently of and in parallel to spatial attention 

(Andersen, Muller, & Hillyard, 2009; Hopf, Boelmans, Schoenfeld, Luck, & Heinze, 2004; W. 

Zhang & Luck, 2009). FBA increases neural activity in the brain region associated with 

processing of the attended feature (Liu, Larsson, & Carrasco, 2007; Motter, 1994; Muller et al., 

2006; Treue & Trujillo, 1999). FBA enhances activity for a selected feature throughout the 

entirety of the visual field; this global enhancement works independently of the deployment of 

spatial attention (Andersen, Hillyard, & Muller, 2013; Saenz, Buracas, & Boynton, 2002). FBA 

appears to spread uniformly across the visual field and modulates sensitivity in areas of the 

visual field without stimuli (Liu & Mance, 2011; Serences & Boynton, 2007).  

https://doi.org/10.1088/1741-2552/aaed17
https://doi.org/10.1088/1741-2552/aaed17
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While spatial attention and feature-based attention are independent mechanisms, they interact 

with one another during the early stages of visual processing (Andersen, Fuchs, & Müller, 2011; 

Leonard, Balestreri, & Luck, 2015). In performing a visual search task, observers may either 

enhance an attended feature or inhibit distractor features (Treisman & Gelade, 1980; Wolfe, 

1994). These enhancements and inhibitions are reflected in electrophysiological responses 

(Bridwell & Srinivasan, 2012; Forschack, Andersen, & Muller, 2017; Moher, Lakshmanan, 

Egeth, & Ewen, 2014; Painter, Dux, & Mattingley, 2015; Painter, Dux, Travis, & Mattingley, 

2014).  

Researchers have studied FBA and its operation across the entire visual field by using EEG to 

measure steady-state visually-evoked potentials (SSVEPs) (Andersen et al., 2013; Bridwell & 

Srinivasan, 2012; Forschack et al., 2017; Hasan, Grossman, & Srinivasan, 2017; Muller et al., 

2006; Painter et al., 2015, 2014; Störmer & Alvarez, 2014; W. Zhang & Luck, 2009). An area of 

the visual field that flickers at a constant frequency generates an SSVEP at that frequency in 

occipital and parietal areas (Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015). One can 

observe the effects of attention by measuring the strength of the respective SSVEPs produced by 

flickering different frequencies at two or more different areas of the visual field. While the 

typical SSVEP study presents centrally-presented flicker, Painter and colleagues (Painter et al., 

2014) took advantage of the global property of FBA by presenting their flicker stimulus in the 

periphery while having participants perform a visual search task in the fovea. They found that 

this peripheral display produced SSVEPs when the task in the fovea was demanding and required 

the use of FBA. In the present study, we follow Painter and colleagues (Painter et al., 2014) by 

using SSVEP responses evoked by peripheral flicker to track FBA. 

A potential application of using peripheral flicker to track attention is to brain-computer 

interfaces (BCIs). Attention-based BCIs estimate what the user is paying attention to and carry 

out an appropriate response. While various neural responses have been used by BCIs, the two 

most common are the P300 response and SSVEPs (Fazel-Rezai et al., 2012; Nicolas-Alonso & 

Gomez-Gil, 2012; Norcia et al., 2015). In BCIs based on the P300 response, the user is typically 

asked to attend to a single stimulus within a grid of stimuli, while each stimulus is individually 

flashed (e.g., P300 spellers (Guger et al., 2009; Krusienski et al., 2010)). The P300 is a positive 

ongoing deflection in the EEG at about 300ms from stimulus onset, typically elicited by the odd-
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ball paradigm, where the signal is stronger when a person attends to a target location and that 

target location undergoes a change. Single trial classification methods using ERPs have found 

success using time durations of 125ms and 800ms (Cecotti & Ries, 2017; Nunez, 

Vandekerckhove, & Srinivasan, 2017). SSVEP-based BCIs present a set of stimuli that flicker at 

various frequencies; the user selects one of these stimuli to attend. Attention enhances the 

amplitude of the SSVEP with the frequency that matches that of the attended stimulus (Calore, 

Gadia, & Marini, 2014; Lalor et al., 2005; Lin et al., 2012; Mun, Cho, Whang, Ju, & Park, 2012). 

Both on-line and off-line SSVEP-BCIs have found success with trial durations ranging from four 

to eight seconds per trial (Brunner, Allison, Altstätter, & Neuper, 2011; Ng, Bradley, & 

Cunnington, 2012; Wan et al., 2016; Won, Hwang, Dähne, Müller, & Lee, 2016; D. Zhang et al., 

2010; S. Zhang et al., 2018).  

The present study extends that by Painter and colleagues (Painter et al., 2014). We follow them 

in taking advantage of the global spread of FBA to track the attended feature using flicker 

presented in the peripheral visual field. In the first experiment, we replicate the finding of Painter 

and colleagues that SSVEPs evoked by peripheral flicker display can be used to track feature-

based attention for subjects wearing a head-mounted display (HMD). In the second experiment, 

we use the HMD to produce a dynamic virtual environment and test whether FBA can be tracked 

in this situation. Through our results, we aim to provide a viable way to study the neural 

mechanisms of FBA in realistic environments and to use these methods in future BCIs. 

2.2 Experiment 1 

2.2.1 Methods 

2.2.1.1 Participants 

Twenty participants (mean age 26 years; 8 females) volunteered in the experiment. All 

participants had normal or corrected-to-normal vision. The study obtained written consent from 

all participants following protocol HS#2014-1090, which was approved by the University of 

California, Irvine Institutional Review Board. 

2.2.1.2 Stimuli and Apparatus 

The experiment was generated using the Unity game engine (Unity Technologies, San Francisco, 

CA, USA) and was displayed by an Oculus Rift Development Kit 2 head-mounted display 

(HMD) (Oculus VR, Menlo Park, CA, USA) with a resolution of 1920x1080 (960x1080 pixels 
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per eye), a refresh rate of 75 Hz, and a field of view of 100º. Visual field angles in the HMD are 

calculated using the vertical resolution (1080 pixels) and the field of view (100º): 10.8 pixels per 

visual degree.  

Experiment participants performed a conjunction search task (Treisman & Gelade, 1980). Items 

displayed during the task included blue (1.598 cd/m2) and green (7.143 cd/m2) Ts on a black 

background (0 cd/m2). Each T was displayed in one of four possible orientations from the upright 

position: 0º, 90º, 180º, 270º (in clockwise order). An upright T was about 3º high and 2.5º wide. 

The Ts were placed randomly in a 4x4 array of possible locations that spanned the central 

22ºx22º of visual field. 

The central search array was surrounded by a circular annulus comprising a blue and green 

checkerboard pattern (see Figure 1). The circular annulus had an outer radius of 44º and an inner 

radius of 17.5º, respectively. The green- and blue-colored elements of the circular annulus 

flickered from green to black and from blue to black, respectively. Two flicker frequencies were 

used: 12.5 Hz and 18.75 Hz. These frequencies were selected from the limited frequencies that 

the 75 Hz refresh rate of the display could complete steadily without losing frames. Additionally, 

these frequencies were close to or fell within the beta band, while differing sufficiently from one 

another to prevent possible overlap. On half of the trials, chosen randomly, the green parts of the 

peripheral display flickered at 12.5 Hz while the blue parts of the peripheral display flickered at 

18.75 Hz. Both the green and blue parts flickered simultaneously at their respective frequencies. 

These color-frequency combinations were reversed on the other half of the trials: green elements 

flickered at 18.75 Hz, while blue elements flickered at 12.5 Hz. The peripheral display flickered 

only during the visual search phase of each trial. 

2.2.1.3 Procedure 

Participants viewed 128 trials. Each trial had three phases: cue, visual search, and response (see 

Figure 1). T targets varied in color (blue or green) and orientation (0º, 90º, 180º, 270º). During 

the  
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Figure 1. Example progression of a single trial in Experiment 1. First, the cue phase (top left) displays the T-

target’s color and orientation for at least three seconds. In this example, the T-target is green and oriented 90º. 

After a button press, the visual search phase begins (middle). This consists of seven sequential search arrays that 

each have a duration of one second, resulting in a total duration of seven seconds. Each search array has five blue 

items and five green items that may or may not include the target. The target may appear multiple times within 

the visual search phase across multiple search arrays, but only once within any individual search array. The 

subjects’ task is to report the location of the last target found. After the seven search arrays have been presented, 

the subject is shown the response display (bottom right). This shows a 4x4 grid of possible locations. Subjects use 

the grid to select the location of the last target found. The peripheral flicker display remains in the same location 

relative to the participant throughout the experiment. It flickers only during the visual search phase. The green 

and blue components flicker at different frequencies. We used 12.5 Hz and 18.75 Hz as the two flicker 

frequencies. Color-frequency combinations were counterbalanced across trials. Note that the experiment is 

displayed entirely by an Oculus Rift DK2 HMD. In consequence, the images shown above do not replicate 

exactly what subjects see. In particular, the peripheral flicker display lies farther in the periphery than this figure 

indicates. 
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cue phase, the T target was displayed for three seconds. The visual search phase was then 

initiated by a button press.  

Following Painter and colleagues (2014), we used a visual search task with known target to 

direct participants’ attention to the target’s color. The visual search phase comprised seven 

different search arrays presented sequentially. Each array lasted one second, so that the full 

duration of each trial’s visual search phase was seven seconds. Each array presented ten items 

(five blue Ts and five green Ts); each item was a combination of the two possible colors and the 

four possible orientations. These ten items were randomly placed within a 4x4 array of possible 

locations. The presented item types and locations changed randomly for each of the seven arrays 

presented during a single trial.  

During a single trial, the target appeared once, multiple times, or not at all. The target appeared 

at most once within any single search array. The participant responded with the last known 

location of the target. This task was chosen to ensure that the participant attended to the target 

color throughout the entirety of the visual search phase. The target had a 10% probability of 

appearing in the first and second search arrays, a 12.5% chance of appearing in the third and 

fourth search arrays, a 16.7% chance of appearing in the fifth and sixth search arrays, and a 25% 

chance of appearing in the seventh search array. The increased probability of a target appearing 

in later search arrays had the dual purposes of ensuring attention throughout the trial and of 

decreasing the likelihood of memory interference when multiple targets appeared within a trial. 

The peripheral display flickered during the entire seven second visual search phase. 

The response phase of a trial presented the 4x4 array of possible locations using clear cubes as 

well as a “None” option. Participants selected the location where they last spotted the target. If 

the target did not appear during the trial, then they selected the “None” option. 

2.2.1.4 EEG Recording and Analysis 

EEG signals were recorded using a WaveGuard 64-channel Ag/AgCl electrode cap (which uses 

the 10/20 system), and an ANT amplifier (ANT Neuro, Enschede, Netherlands). A photocell was 

used to record flicker on a display monitor that mirrored the HMD. The photocell waveform was 

used to precisely segment EEG data into trials during offline data analysis. Signals were 

recorded at a sampling rate of 1024 samples/sec and average referenced offline to the mastoid 

electrodes. EEG data were recorded continuously throughout the experimental block.  
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All EEG analyses were conducted offline in MATLAB (The MathWorks, Natick, MA, USA). 

EEG data were detrended and filtered using a Butterworth bandpass filter that passed energy in 

the range of 1–50 Hz with 1 dB ripple, and stopbands at 0.25 Hz and 60 Hz with 10 dB 

attenuation. An additional 60 Hz notch filter was applied to remove power line noise. For each 

trial, we analyzed data drawn from the start of the third search array to the start of the seventh 

search array, a total duration of four seconds. These data were designed to be selected prior to 

analysis following Painter and colleagues to ensure that steady-state responses were analyzed, so 

excluding data from the first two search arrays and avoiding possible fatigue effects during the 

final search array (Painter et al., 2014). 

For each participant, we examined the steady-state response by first computing the amplitude 

spectrum for each trial using a Fast Fourier Transform (FFT). We then averaged the amplitude 

spectra within each condition (Attend Blue at 12.5 Hz, Attend Blue at 18.75 Hz, Attend Green at 

12.5 Hz, and Attend Green at 18.75 Hz) to produce condition-averaged amplitude spectra. 

Finally, we calculated the signal strength for each of the four condition-averaged amplitude 

spectra for each participant. The signal strength was calculated using methods similar to those of 

Srinivasan and colleagues (Srinivasan, Bibi, & Nunez, 2006). The signal strength at a target 

frequency is defined as the ratio of the amplitude at that target frequency to the mean amplitude 

of the 16 immediately lower and 16 immediately higher frequencies. As we used four seconds of 

EEG data at a sampling rate of 1024, there was a temporal resolution of 0.25 Hz.  

For each condition, we found the six electrodes with the highest participant-averaged signal 

strength values. Combining electrodes across the four conditions, we found ten total most 

informative electrodes that produced the highest participant-averaged signal strength across all 

conditions for Experiment 1. These ten most informative electrodes are: Oz, O1, O2, POz, PO6, 

PO8, PZ, P8, CPZ, and CZ. 

2.2.1.5 Trial Classification Analysis 

We tested whether SSVEP responses can be used to predict the color a participant is attending to 

within a trial. For each participant, we first transformed the EEG data for each trial and each 

electrode into the frequency domain using an FFT on the observed four seconds. We then 

calculated the signal strength values, using the same method previously stated, at 12.5 Hz and 

18.75 Hz for the 10 most informative electrodes. We used these 20 features (2 frequencies x 10 
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electrodes) in the trial classification analysis. Each trial was classified into one of two classes, 

“Attention to color that flickered peripherally at 12.5 Hz” or “Attention to color that flickered 

peripherally at 18.75 Hz”, depending on the flicker frequency of the attended color for the 

specific trial. We used linear discriminant analysis (LDA), Naïve Bayes (NB) classification, and 

support vector machine (SVM) as classification methods. LDA and NB classification were 

executed using the classify.m function in MATLAB. SVM classification was executed using 

code exported from the MATLAB Classification Learner App for the linear SVM classifier. 

Five-fold cross validation on the 128 trials was used to evaluate each classifier; 102 or 103 trials 

were used for training and 25 or 26 trials were used for testing for each subject.  

Classifier performance was evaluated using measures of: accuracy, area under the curve (AUC), 

and Matthew’s correlation coefficient (MCC).  

2.2.2 Results 

2.2.2.1 Behavioral Results 

In Experiment 1, participants were required to provide the location of the target’s last position 

for each trial. Overall accuracy was found to be 79.18% ± 2.17% (SD = 9.70), which was 

considerably greater than the chance performance of 6.25%. 

We then grouped the data into four conditions with target color (blue, green) and target 

frequency (12.5 Hz, 18.75 Hz) as factors. A two-way repeated measures ANOVA was used to 

test whether response accuracy depended on condition (attend blue at 12.5 Hz, attend blue at 

18.75 Hz, attend green at 12.5 Hz, and attend green at 18.75 Hz). There was no main effect of 

color (F(1,19) = 0.006, p = 0.937) or of frequency (F(1,19) = 0.603, p = 0.447), and there was no 

interaction between color and frequency (F(1,19) = 2.058, p = 0.168).  

2.2.2.2 SSVEP Results 

SSVEP responses were grouped into four conditions: attend blue at 12.5 Hz, attend blue at 18.75 

Hz, attend green at 12.5 Hz, and attend green at 18.75 Hz. We averaged the signal strength 

values across all participants within each of the four conditions. Figure 2 displays topographic 

maps of the participant-averaged signal strength for each condition at the attended frequency. 

These results show that the SSVEP responses appear primarily in the occipital and posterior 

parietal areas.  
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Figure 2. Topographic maps displaying the participant-averaged signal strength at the attended frequency across 

the scalp for each of the conditions in Experiment 1. The triangle on top indicates the nose and the half ovals on 

the left and right sides indicate the ears. Dark red indicates low signal strength values and white indicates high 

signal strength values. Row A are the topographic maps for the Attend Blue at 12.5 Hz condition, displaying the 

signal strength for 12.5 Hz across the scalp on the left and the signal strength for 18.75 Hz across the scalp on the 

right. SSVEPs appeared primarily in the occipital and parietal areas. Row B are the topographic maps for the 

Attend Blue at 18.75 Hz condition, displaying the signal strength for 18.75 Hz across the scalp on the left and the 

signal strength for 12.5 Hz across the scalp on the left. Again, SSVEPs appeared primarily in the occipital and 

parietal areas. The figures in Row C and Row D display similar information for the Attend Green conditions. 
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We assessed the strength of the SSVEPs by averaging the participant-averaged signal strength 

values across the ten most informative electrodes (see Figure 3). Figure 3 shows the signal 

strength values for each of the four conditions. In the Attend Blue at 12.5 Hz condition (top left), 

the attended frequency (12.5 Hz) has a greater signal strength value than the unattended 

frequency (18.75 Hz). In the Attend Blue at 18.75 Hz condition (top right), the attended 

frequency (18.75 Hz) has a greater signal strength value than the unattended frequency (12.5 

Hz). Equivalent results were found in the respective Attend Green conditions. Throughout each 

of the four conditions, we observed that the signal strength values for the frequency of the 

attended color are greater than the signal strength values for the frequency of the unattended 

color. It should also be noted that there is also a similar response pattern at the second harmonics 

(i.e. 25 Hz, 37.5 Hz) of both frequencies.  

 

Figure 3. Signal strength as a function of frequency averaged across 20 subjects and the ten most informative 

electrodes, for each of the conditions in Experiment 1. The horizontal axis displays the frequency values and the 

vertical axis displays signal strength values. The top-left figure displays the Attend Blue at 12.5 Hz condition, where 

a high signal strength value at the attended frequency (12.5 Hz) and its harmonic (25 Hz) can be seen as large peaks. 

The unattended frequency (18.75 Hz) has a much lower signal strength value. Shading represents the standard error 

of the mean across the 20 subjects. The top-right figure displays the Attend Blue at 18.75 Hz condition, where a 

high signal strength value at the attended frequency (18.75 Hz) and its harmonic (37.5 Hz) can be seen as large 

peaks. The unattended frequency (12.5 Hz) has a much lower signal strength value. The bottom figures display 

information similar to that shown above for the respective Attend Green conditions. In each of the four conditions, 

SSVEP responses appear for the attended frequencies (12.5 Hz and 18.75 Hz) and their respective harmonics (25 Hz 
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and 37.5 Hz).  

 

To examine if these responses were significantly different, the signal strength values were 

submitted to a three-way repeated measures ANOVA with the factors: attention (attended, 

unattended), color (blue, green), and frequency (12.5 Hz, 18.75 Hz). The effect of attention was 

significant (F(1,19) = 50.314, p < .000, η2
 = .726), with signal strength values greater for 

attended (M = 4.29, SE = .43) than for unattended (M = 1.49, SE = .10). The effect of color was 

significant (F(1,19) = 10.192, p < .005, η2
 = .349), with signal strength values greater for blue (M 

= 3.00, SE = .26) than for green (M = 2.78, SE = .23). The effect of frequency was significant 

(F(1,19) = 5.931, p < .025, η2
 = .238), with signal strength values greater for 12.5 Hz (M = 3.15, 

SE = .29) than for 18.75 Hz (M = 2.63, SE = .23). The interaction between attention and 

frequency was also significant (F(1,19) = 5.050, p < .037, η2
 = .210). 

2.2.2.3 Trial Classification Results 

We wanted to identify the color an individual was attending to on a given trial using his or her 

SSVEP response. As described in the methods section, we used LDA, NB, and SVM as our 

classifiers with a five-fold cross validation. We extracted the classifiers’ performance measures 

by classifying a participant’s trial as either “attention to color that flickered peripherally at 12.5 

Hz” or “attention to color that flickered peripherally at 18.75 Hz”. Table 1 displays the trial 

classification accuracy results, AUC results, and MCC results for each of the 20 participants in 

Experiment 1.  

Table 1. Trial classification results for each of the 20 subjects (column 1) in Experiment 1 using performance 

measures of accuracy (column 2), area under the curve (AUC) (column 3), and Matthew’s correlation coefficient 

(MCC) (column 4). Subjects ordered in ascending order from lowest LDA classification accuracy at the top to the 

highest LDA classification accuracy at the bottom. 

Subject 
Accuracy (%) AUC MCC 

LDA NB SVM LDA NB SVM LDA NB SVM 

1 40.71 51.57 48.44 0.36 0.52 0.44 -0.19 0.03 -0.03 

2 50.03 54.06 60.16 0.48 0.49 0.59 0.00 0.08 0.20 

3 54.52 54.68 62.50 0.56 0.62 0.66 0.09 0.09 0.25 

4 57.14 48.40 46.88 0.58 0.53 0.41 0.14 -0.03 -0.06 

5 62.49 62.58 54.69 0.64 0.68 0.64 0.25 0.25 0.09 

6 63.29 67.11 64.06 0.75 0.76 0.73 0.27 0.35 0.28 

7 64.09 63.35 60.16 0.70 0.68 0.68 0.28 0.27 0.20 
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8 65.60 63.35 67.19 0.71 0.68 0.71 0.31 0.27 0.34 

9 68.91 71.88 74.22 0.75 0.77 0.82 0.38 0.44 0.48 

10 72.63 67.91 71.88 0.78 0.78 0.79 0.45 0.36 0.44 

11 75.69 71.92 78.13 0.83 0.81 0.83 0.52 0.44 0.56 

12 76.55 71.20 73.44 0.84 0.78 0.82 0.53 0.42 0.47 

13 81.29 75.75 77.34 0.87 0.86 0.85 0.63 0.52 0.55 

14 82.12 78.89 77.34 0.89 0.83 0.89 0.64 0.58 0.55 

15 85.05 82.03 84.38 0.94 0.89 0.93 0.71 0.65 0.69 

16 87.51 82.76 79.69 0.91 0.89 0.88 0.75 0.66 0.59 

17 89.14 89.94 89.84 0.96 0.95 0.96 0.78 0.80 0.80 

18 91.41 86.77 89.84 0.95 0.93 0.95 0.83 0.73 0.80 

19 92.15 85.20 91.41 0.96 0.94 0.97 0.85 0.70 0.83 

20 92.18 88.25 90.63 0.97 0.94 0.97 0.84 0.77 0.81 

Mean 72.63 70.88 72.11 0.77 0.77 0.78 0.45 0.42 0.44 
 

 

There were no significant differences between the three classifiers for accuracy (F(2,57) = 0.08, 

p = 0.92), AUC (F(2,57) = 0.02, p = 0.98), and MCC (F(2,57) = 0.08, p = 0.92). As such, we 

focused on the LDA classifier for further analyses.  

Figure 4 displays the classification accuracies of the 20 subjects organized in ascending order 

from the lowest LDA classification accuracy to the highest LDA classification accuracy. We had 

eleven subjects with classification accuracies above 70%, eight subjects with classification 

accuracies above 80%, and three subjects with classification accuracies above 90%. The LDA’s 

accuracy measure strongly correlated with the other performance measures, AUC (r = 0.98, p < 

0.001) and MCC (r = 1.0, p < 0.001).  

The results show clearly that the SSVEP responses can be used to classify trial condition and, 

more generally, to track feature-based attention to a particular color. Classification accuracy 

varies among subjects. 
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Figure 4. Trial classification accuracy results for each of the 20 subjects in Experiment 1 using the linear 

discriminant analysis (LDA), Naïve Bayes (NB), and support vector machine (SVM) classification methods. 

Subjects are organized in ascending order from lowest LDA classification accuracy at left to highest LDA 

classification accuracy at right. The graph has been segmented into six categories (< 50%, > 50%, > 60%, > 70%, 

> 80%, and > 90%) based on the LDA classification result. For each subject, LDA accuracies are displayed as 

black bars, NB accuracies are shown as grey bars, and SVM accuracies are shown as white bars. A 50% accuracy 

represents chance, as there are two possible classification responses.  

 

2.3 Experiment 2 

In the second experiment, we tested whether SSVEPs can be used to track feature-based 

attention while observers move through a virtual environment. 

2.3.1 Methods 

2.3.1.1 Participants 

Twenty-one participants (mean age 25 years; 10 females) volunteered to participate in the 

experiment. 17 of the participants in Experiment 1 also participated in Experiment 2. All 

participants had normal or corrected-to-normal vision.  

2.3.1.2 Stimuli and Apparatus 

Experiment 2 placed participants in a dynamic virtual environment rather than the static one used 

in the first experiment. This was achieved by creating a virtual, circular racetrack and placing the 

observer’s camera in a third-person perspective above a virtual car model. For each trial, 
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participants were moved along the same established path around the racetrack, created using the 

iTween software (Berkebile, 2010). The racetrack was surrounded by a grey enclosure (see 

Figure 5). This acted as the background for the search arrays that appeared while participants 

moved around the racetrack.  

2.3.1.3 Procedure 

Participants performed a visual search task like that used in Experiment 1. Instead of responding 

with the last position of the target, participants reported the number of target appearances in each 

trial. Participants were again presented with 128 trials. These were separated into four blocks of 

32 trials with a pause between each block. These breaks between blocks were included to 

minimize cybersickness. The Simulator Sickness Questionnaire (SSQ) was administered to 

participants before and after the experiment to help measure cybersickness caused by the 

experiment (Kennedy, Lane, Berbaum, & Lilienthal, 1993). The SSQ generates a total sickness 

score which is based on three sub-scores: Nausea, Oculomotor Discomfort, and Disorientation.  

Like Experiment 1, each trial in Experiment 2 had three phases: cue, visual search, and response 

(see Figure 5).  

The visual search phase used six search arrays rather than the seven used in Experiment 1. These 

arrays appeared in sequence as participants moved around the racetrack. Each array’s duration 

was 1.5 seconds, so the full duration of the visual search phase was nine seconds. While 

Experiment 1 had an increasing probability of a target appearing in later search arrays, 

Experiment 2 had a constant 25% probability of a target appearing in each of the search arrays. 

For the response phase, an input bar was displayed, and participants could use the number pad to 

enter the number of targets found during the trial (see Figure 5).  
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Figure 5. Example image of during visual search phase in Experiment 2. The visual search phase has six 

sequential search arrays that appeared as participants moved around the racetrack. Each search array has a 

duration of 1.5 seconds, resulting in a total of nine seconds for the visual search phase. Each search array has five 

blue and five green items that may or may not include the target. The target may appear multiple times within the 

visual search phase across multiple search arrays, but only once within any individual search array. Subjects’ task 

is to count the number of targets that appear. The peripheral flicker display remains in the same location relative 

to the participant throughout the experiment, and flickers only during the visual search phase. The green and blue 

parts flicker at different frequencies. The green and blue parts flicker at different frequencies, either at 12.5 Hz or 

18.75 Hz. Color-frequency combinations were counterbalanced across trials. The experiment is displayed by an 

Oculus Rift DK2 HMD. In consequence, the images shown above do not duplicate exactly what subjects see. In 

particular, the peripheral flicker display lies farther in the periphery than this figure indicates. 

 

2.3.1.4 EEG Recording and Analysis 

EEG signals were recorded in the same manner as in Experiment 1. As the trials are longer in 

Experiment 2, EEG data were segmented into nine-second periods corresponding to individual 

trials. The experiment was designed such that the final second of data from each trial was 

planned to be removed to avoid possible fatigue and movement artifacts from anticipating the 

response phase. The remaining eight seconds were used to calculate SSVEP responses using the 

same methods described in Experiment 1. As there were eight seconds of EEG data at a sampling 

rate of 1024 Hz, there was a temporal resolution of 0.125 Hz. 
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We found the six electrodes with the highest participant-averaged signal strength values for each 

condition. Combining electrodes across the four conditions, we found the ten most informative 

electrodes that produced the highest participant-averaged signal strength across all conditions for 

Experiment 2. Across all conditions for Experiment 2: Oz, O1, O2, P2, POz, PZ, CPZ, CP1, 

CP2, and CZ. 

2.3.1.5 Trial Classification Analysis 

The classification analysis for Experiment 2 was like that of Experiment 1. The main difference 

is that four seconds of data per trial were used in Experiment 1, while eight seconds of data per 

trial were used in Experiment 2.  

2.3.2 Results 

2.3.2.1 Behavioral Results 

Participants responded with the number of targets that appeared within a trial. Overall response 

accuracy was found to be 73.77% ± 2.41% (SD = 11.02), which is considerably greater than the 

chance performance level of 14.29%. 

We grouped the data into four conditions with target color (blue, green) and target frequency 

(12.5 Hz, 18.75 Hz) as factors. A two-way repeated measures ANOVA was used to test whether 

accuracy depended on condition (attend blue at 12.5 Hz, attend blue at 18.75 Hz, attend green at 

12.5 Hz, and attend green at 18.75 Hz). There was no main effect of color (F(1,20) = 1.346, p = 

0.26), or of frequency (F(1,20) = 0.409, p = 0.53), and there was no interaction between color 

and frequency (F(1,20) = 0.449, p = 0.51). 

2.3.2.2 SSQ Results 

The average Total Sickness Score across participants, measured after the experiment, was 10.90 

± 1.98 (SD = 9.08) with a maximum score of 38. The average Total Sickness Score measured 

before the experiment was only 4.33 ± 1.16 (SD = 5.33); the change suggests that the experiment 

induced modest motion sickness. For purposes of comparison, the original study that developed 

the SSQ found a similar mean Total Sickness Score of 9.8 with a maximum score of 108.6 in 

their simulator sickness study (Kennedy et al., 1993). The current study’s sub-scores in Nausea 

(M = 3.48 ± 0.75, SD = 3.41), Oculomotor Discomfort (M = 4.76 ± 0.69, SD = 3.18), and 

Disorientation (M = 2.67 ± 0.69, SD = 3.15) were lower than Kennedy and colleagues’ sub-
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scores in Nausea (M = 7.7, SD = 15.0), Oculomotor Discomfort (M = 10.6, SD = 15.0) and 

Disorientation (M = 6.4, SD = 15.0). These results suggest that subjects in this experiment 

suffered somewhat less motion sickness than the average of subjects studied by Kennedy and 

colleagues. 

2.3.2.3 SSVEP Results 

Just as in Experiment 1, SSVEP responses were grouped into four conditions: attend blue at 12.5 

Hz, attend blue at 18.75 Hz, attend green at 12.5 Hz, and attend green at 18.75 Hz. We averaged 

the signal strength values across all participants within each of the four conditions. Figure 6 

displays topographic maps of the participant-averaged signal strength for each condition at the 

attended frequency, confirming again that the SSVEP responses appear primarily in the occipital 

and parietal areas.  

The signal strength topographies show that SSVEP responses vary in location with each 

condition. The most informative electrodes, again, are found primarily over occipital and parietal 

cortex.  
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Figure 6. Topographic maps display the participant-averaged signal strength at the attended frequency across the 

scalp for each of the four conditions in Experiment 2. The triangle on top indicates the nose and the half ovals on 

the left and right sides indicate the ears. Dark red indicates low signal strength values and white indicates high 

signal strength values (as per the color bars). Row A are the topographic maps for the Attend Blue at 12.5 Hz 

condition, displaying the signal strength for 12.5 Hz across the scalp on the left and the signal strength for 18.75 

Hz across the scape on the right. SSVEPs appear primarily in the occipital and parietal areas. Row B are the 

topographic maps for the Attend Blue at 18.75 Hz condition, displaying the signal strength for 18.75 Hz across 

the scalp on the left and the signal strength for 12.5 Hz across the scalp on the right. Again, SSVEPs primarily 

appeared in the occipital and parietal areas. The figures in Row C and Row D display similar information for the 

Attend Green conditions. 
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We then examined the strength of the SSVEPs in Experiment 2 by averaging the participant-

averaged signal strength values across the ten most informative electrodes (see Figure 7). The 

signal strength values in each condition produced patterns similar to those found in Experiment 

1. A greater SSVEP response was generated at the frequency of the attended color, and its 

harmonics, than at the frequency of the unattended color.  

 

Figure 7. Signal strength as a function of frequency averaged across 21 subjects and the ten most informative 

electrodes for each of the four conditions in Experiment 2. The horizontal axis displays the frequency values and the 

vertical axis displays signal strength values. The top-left figure displays the Attend Blue at 12.5 Hz condition, where 

a high signal strength value at the attended frequency (12.5 Hz) and its harmonic (25 Hz) can be seen as large peaks. 

The unattended frequency (18.75 Hz) has a much lower signal strength value. Shading represents the standard error 

of the mean across the 21 subjects. The top-right figure displays the Attend Blue at 18.75 Hz condition, where a high 

signal strength value at the attended frequency (18.75 Hz) and its harmonic (37.5 Hz) can be seen as large peaks; the 

unattended frequency (12.5 Hz) has a much lower signal strength value. The bottom figures display similar 

information as their above counterparts for the respective Attend Green conditions. Throughout the conditions, 

SSVEP responses appear for the attended frequencies (12.5 Hz and 18.75 Hz) as well as their harmonics (25 Hz and 

37.5 Hz), respectively. 

 

To examine if these responses were significantly different, the signal strength values were 

submitted to a three-way repeated measures ANOVA with the factors: attention (attended, 

unattended), color (blue, green), and frequency (12.5 Hz, 18.75 Hz). Only the effect of attention 
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was found to be significant (F(1,20) = 42.323, p < .000, η2
 = .679); signal strength values were 

greater for attended (M = 2.94, SE = .23) compared to unattended (M = 1.49, SE = .11).  

2.3.2.4 Trial Classification Results 

We used classification methods to see how well SSVEPs can be used to determine the attended 

color on a given trial. We used the same methods and classifiers (LDA, NB, and SVM) in 

Experiment 2 as those used in Experiment 1. Table 2 displays the trial classification accuracy 

results, AUC results, and MCC results for each of the 21 subjects in Experiment 2. 

Table 2. Trial classification results for each of the 21 subjects (column 1) in Experiment 2 using performance 

measures of accuracy (column 2), area under the curve (AUC) (column 3), and Matthew’s correlation coefficient 

(MCC) (column 4). Subjects ordered in ascending order from lowest LDA classification accuracy at the top to the 

highest LDA classification accuracy at the bottom. 

Subject 
Accuracy AUC MCC 

LDA NB SVM LDA NB SVM LDA NB SVM 

1 40.64 58.62 53.13 0.46 0.60 0.57 -0.19 0.17 0.06 

2 56.31 60.09 55.47 0.57 0.66 0.61 0.13 0.20 0.11 

3 57.78 62.43 60.94 0.65 0.68 0.69 0.16 0.25 0.22 

4 58.08 60.18 57.03 0.61 0.67 0.64 0.16 0.20 0.14 

5 61.69 68.21 72.66 0.69 0.76 0.76 0.23 0.36 0.45 

6 63.29 61.78 65.63 0.65 0.63 0.66 0.27 0.24 0.31 

7 63.32 65.71 68.75 0.69 0.71 0.73 0.27 0.31 0.38 

8 67.20 64.00 65.63 0.75 0.68 0.74 0.34 0.28 0.31 

9 67.97 72.74 74.22 0.77 0.76 0.83 0.36 0.45 0.48 

10 71.14 68.74 81.25 0.80 0.79 0.84 0.42 0.38 0.63 

11 76.46 76.54 78.13 0.85 0.86 0.85 0.53 0.53 0.56 

12 76.62 78.27 77.34 0.83 0.86 0.86 0.53 0.56 0.55 

13 78.12 75.77 76.56 0.89 0.81 0.88 0.56 0.52 0.54 

14 78.92 72.68 75.78 0.88 0.85 0.87 0.58 0.45 0.52 

15 80.34 74.22 78.13 0.84 0.82 0.85 0.61 0.48 0.56 

16 80.43 85.17 89.06 0.91 0.93 0.95 0.61 0.71 0.79 

17 81.38 82.03 82.81 0.89 0.91 0.91 0.63 0.64 0.66 

18 82.00 69.45 81.25 0.88 0.75 0.88 0.64 0.39 0.63 

19 88.25 84.34 89.06 0.94 0.92 0.95 0.77 0.69 0.78 

20 89.02 86.77 92.19 0.95 0.95 0.96 0.78 0.73 0.85 

21 92.12 86.47 87.50 0.95 0.90 0.93 0.85 0.74 0.75 

Mean 71.96 72.10 74.40 0.78 0.79 0.81 0.44 0.44 0.49 
 

 

There were no significant differences between the three classifiers for accuracy (F(2, 60) = 0.31, 
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p = 0.73), AUC (F(2, 60) = 0.25, p = 0.78), and MCC (F(2, 60) = 0.31, p = 0.73). We focus on 

the LDA classifier for further analyses. 

Of the 21 subjects, twelve subjects had classification accuracies above 70%, seven subjects had 

classification accuracies above 80%, and one subject had classification accuracies above 90% 

(see Figure 8). The LDA’s accuracy measure strongly correlated with the other performance 

measures, MCC (r = 1.0, p < 0.001) and AUC (r = 0.98, p < 0.001).  

 

Figure 8. Trial classification accuracy results for each of the 21 subjects in Experiment 2 using the linear 

discriminant analysis (LDA), Naïve Bayes (NB), and support vector machine (SVM) classification methods. 

Subjects are organized in ascending order from lowest LDA classification accuracy at left to highest LDA 

classification accuracy at right. The graph has been segmented into five categories (< 50%, > 50%, > 60%, > 

70%, and > 80%) based on the LDA results. For each subject, LDA accuracies are displayed as black bars, NB 

accuracies are shown as grey bars, and SVM accuracies are shown as white bars. A 50% accuracy represents 

chance, as there are two possible classification responses. 

 

We then compared the LDA trial classification accuracies for the 17 participants who 

participated in both experiments (see Figure 9). A paired-samples t-test on accuracies across 

participants revealed no significant difference in classification accuracies (t(16) = 0.277, p = 

0.786) between Experiment 1 (M = 73.13, SD = 16.10) and Experiment 2 (M = 72.25, SD = 

13.95). There was also a strong correlation (r = 0.63, p = 0.006) between subjects’ Experiment 1 
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and Experiment 2 accuracies. However, there was no correlation between classification accuracy 

and behavioral performance for either Experiment 1 or Experiment 2. 

 

Figure 9. Comparison of LDA trial classification accuracy results for the 17 subjects that participated in both 

Experiment 1 and Experiment 2. Subjects are organized in ascending order from lowest LDA classification 

accuracy in Experiment 2 at left to highest LDA classification accuracy in Experiment 2 at right. The graph has 

been segmented into five categories (< 50%, > 50%, > 60%, > 70%, and > 80%) based on the Experiment 2 

results. For each subject, Experiment 1 results are displayed as dark grey bars and Experiment 2 results are 

displayed as light grey bars.  

 

2.4 Discussion 

2.4.1 SSVEP Results 

Peripheral flicker displayed in an HMD produces SSVEP responses. SSVEP responses appear in 

occipital and parietal locations for both of the experiments presented here, a result found earlier 

by Painter and colleagues (Painter et al., 2014). In both experiments, we consistently found a 

strong influence of attention on SSVEP responses. We observed a strong response at the 

frequency of the flickering area with the attended color, and a minimal response at the frequency 

of the flickering area with the unattended color. This finding is consistent with those found in 

previous studies of feature-based attention and SSVEP (Andersen et al., 2013; Andersen, 

Hillyard, & Müller, 2008; Andersen, Muller, & Martinovic, 2012; Bridwell & Srinivasan, 2012).  
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In Experiment 1, we found significant differences in SSVEPs according to the colors and 

frequencies used, as well as an interaction of attention and frequency. Painter and colleagues 

(2014) also found an interaction of attention and frequency in their study. The main effects of 

color and frequency found in Experiment 1 may be a result of using an HMD. The way that color 

pixel stimuli are presented in the Pen-Tile matrix AMOLED display used by HMDs is different 

from the way that these are generated by LED displays used in monitors (Kunić & Šego, 2012; 

Vauderwange, Curticapean, Dreßler, & Wozniak, 2014). Additionally, the green used had a 

greater luminance value than the blue used in the experiments. However, the unique artifacts in 

color production that the HMD’s AMOLED display may have introduced in our experiment and 

the different luminance values between the two colors did not influence the results of Experiment 

2. We thus suspect that the effects of color and frequency on the SSVEP responses in 

Experiment 1 are likely to have arisen because the experiment was stationary and controlled, so 

emphasizing the presentation differences between the colors and frequencies used. This 

difference between Experiment 1 and Experiment 2 suggests that, in less controlled and more 

realistic environments, color and frequency differences become negligible when using an HMD. 

SSVEP signal strength values in Experiment 1 were larger than SSVEP signal strength values in 

Experiment 2. One possible explanation is that the dynamic virtual environment may require 

increased processing from neural areas other than the ones generating SSVEPs, especially since 

there are many more sources of distraction compared to the stationary environment (Rousselet, 

Fabre-Thorpe, & Thorpe, 2002; VanRullen & Thorpe, 2001). Increased activity in other neural 

areas may result in reduced SSVEP signal strength values. Another consideration is that HMDs 

are known to induce the side effect of cybersickness in most of its users (Cobb, Nichols, 

Ramsey, & Wilson, 1999; Dennison, Wisti, & D’Zmura, 2016; McCauley & Sharkey, 1993). 

Experiment 2 displays optic flow consistent with movement through the virtual environment, 

despite the subject remaining seated and stationary. Significant but modest cybersickness was 

produced by Experiment 2. This cybersickness may have impacted visual attention and the size 

of the SSVEP signal strength. Additional experiments could further explore these underlying 

effects of stationary and dynamic virtual environments on visual attention.  
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2.4.2 Trial Classification Results 

Trial classification analysis shows that a peripheral flicker display can be used to successfully 

track feature-based attention in both stationary and dynamic virtual environments. Using the 

LDA classifier on trials in each Experiment 1 and Experiment 2, we reached classification 

accuracies averaging 72% across all participants; a significant fraction of subjects reached 

accuracies above 80%. An examination of classification results for subjects who participated in 

both experiments found no differences in classification accuracy despite the difference in the two 

experiments’ SSVEP response magnitudes. We conclude that one can use peripheral flicker to 

track FBA using SSVEPs, whether the observer is in a stationary or a moving virtual 

environment.  

BCI researchers have previously examined possible systems that do not require direct spatial 

attention. These methods have focused on using covert visual attention, auditory stimuli, and 

tactile stimuli to control BCIs (Riccio, Mattia, Simione, Olivetti, & Cincotti, 2012). BCI studies 

examining systems that use visual attention separated from eye movements have so far been 

limited to forms of covert spatial attention, a form of spatial attention where the user’s eyes and 

attention are not directed at the same location (Tonin, Leeb, & Millán, 2012; Treder, Schmidt, & 

Blankertz, 2011). One study by Zhang and colleagues (2010) (D. Zhang et al., 2010) explored a 

design similar to the current study, where objects of two possible colors were presented in the 

periphery. However, in Zhang and colleagues’ study, participants were asked to attend covertly 

to the peripheral objects rather than to engage in a foveal task. Zhang and colleagues found an 

average classification accuracy of 71.7%. This suggests that the spatial attention to a peripheral 

flicker used in Zhang and colleagues and the feature-based attention to a peripheral flicker used 

in the current study perform similarly. While foveal SSVEP displays may produce stronger and 

more defined responses, peripheral displays can still be useful in creating flexible and usable 

BCI systems.  

Since we examined the peripheral flicker display as a viable alternative to the foveal flicker 

display currently used in SSVEPs studies, future work can investigate direct comparisons 

between the two types of displays to determine tradeoffs between them. These comparisons may 

examine classification accuracies in offline and online BCI systems and cognitive factors that 
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may impact user comfort, such as visual fatigue (Cao, Wan, Wong, da Cruz, & Hu, 2014; Mun, 

Park, Park, & Whang, 2012; Xie et al., 2016). 

2.5 Conclusions 

The current study explores the use in virtual reality of a peripheral flicker display to produce 

SSVEPs with the goal of tracking feature-based attention. The first experiment placed observers 

in a stationary virtual environment and was used to establish that a peripheral flicker display in 

an HMD generates SSVEPs. The second experiment placed observers in a dynamic virtual 

environment and used the peripheral flicker display to track observers’ feature-based attention to 

color. Through offline classification, we were able to successfully track an observer’s attended 

color on a trial-by-trial basis. These results show that a peripheral flicker display produces 

SSVEPs that can be used to track feature-based attention. The use of peripheral flicker lets 

researchers create more flexible and practical BCIs based on feature-based attention. 
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3 Emotion Regulation in the Prisoner’s Dilemma: Effects of reappraisal on 

behavioral measures and cardiovascular measures of challenge and threat 

This study was published in Frontiers in Human Neuroscience at 

https://doi.org/10.3389/fnhum.2019.00050 

3.1 Introduction 

Imagine you are walking along a sidewalk and someone bumps into you and then smiles. You 

may interpret this smile to be innocuous or malicious. Depending on how you interpret this 

person’s actions and how you regulate your emotions, you may display different behavioral and 

physiological responses. 

Given that it is infeasible to study an individual’s responses to someone stepping on his or her 

foot, we have relied on established paradigms from behavioral economics and cognitive science. 

The Prisoner’s Dilemma is one such experimental paradigm that allows researchers to study 

social interactions in a controlled environment. In its basic form, the Prisoner's Dilemma is a 

two-player task where the payoffs for each player depend on the simultaneous choice of both 

players (Poundstone, 1993). The task creates incentives to cooperate (mutual cooperation yields 

the largest rewards) but also temptations to exploit the other player, creating a dilemma of trust. 

The iterated Prisoner’s Dilemma allows players to repeat this dilemma over multiple rounds and 

provides a powerful laboratory to study trust establishment, violation, and repair. The decision to 

trust is often characterized as an emotional decision and the current study explores how trust 

repair is shaped by both intrapersonal and interpersonal emotion processes (Dunn & Schweitzer, 

2005; Fehr & Gächter, 2002). Specifically, we create a situation where an opponent (a human 

confederate) initially establishes a lack of trust (by acting non-cooperatively on the first round) 

and then tries to build trust by cooperating for the remainder of the game).  Regarding 

intrapersonal emotion, people often respond to trust violations with anger and this can undermine 

their ability to both recognize and accept sincere attempts to repair the relationship. Emotion 

regulation can help reduce this felt anger and facilitate trust repair. The emotional expressions of 

the opponent can help intensify or regulate these angry feelings. For example, if opponents smile 

with genuine pleasure following their betrayal, this can intensify feelings of anger by signaling 

https://doi.org/10.3389/fnhum.2019.00050
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the betrayal was intentional and desired (de Melo, Carnevale, Read, & Gratch, 2014). We 

examine how participant regulation and opponent expressions interact to shape trust repair. 

3.1.1 Emotion Regulation and Reappraisal 

In the context of social interactions in experimental games, rejection induces anger and motivates 

costly punishment, leading both players to lose money. By modifying their anger, players might 

reduce this aggressive tendency and lead them to decide on accepting an attempt at trust repair. 

The current study focuses on the emotion regulation strategy of reappraisal. Reappraisal involves 

re-interpreting an emotional stimulus towards a positive direction (Gross, 1999). For example, 

following a trust violation, a player might distance herself from the situation (“it’s just a game”) 

or reinterpret the motives of the other player (“maybe she made a mistake”). Reappraisal is a 

proactive response to an emotional stimulus that must occur early in the emotion-generative 

process (Gross, 2002; Gross & John, 2003). This contrasts with other emotion regulation 

strategies, such as suppression, that focus on downregulating an emotional response after it has 

fully developed.  

Several studies suggest that reappraisal can reduce the tendency towards costly punishment in a 

variety of economic games such as the Prisoner’s Dilemma. For example, Grecucci and 

colleagues (2013a) taught their participants how to reappraise negative events and reduced the 

tendency to reject unfair offers in an ultimatum game. In a similar vein, Fabiansson and Denson 

(2012) reduced costly punishment in the ultimatum game by helping participants reappraise their 

opponent’s intentions, telling participants that their opponent was in a bad mood and not to take 

their actions personally. Feinberg and colleagues (2012) demonstrate that reappraisal is effective 

in reducing disgust reactions towards morally provocative situations, leading to more 

deliberative moral judgments.   

3.1.2 The Biopsychosocial Model of Challenge and Threat 

The Prisoner's Dilemma also creates a motivated performance situation, in which the 

biopsychosocial (BPS) model of challenge and threat provides a well-documented theoretical 

framework to interpret physiological responses (Blascovich, 2008; Blascovich & Seery, 2007). 

The BPS model of challenge and threat posits that when an individual is placed in a motivated 

performance situation, cardiovascular response patterns emerge that indicate the individual’s 

position on a continuum between challenge and threat states, which are differentiated by the 
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degree of vasoconstriction (higher in threat) and cardiac output. The BPS model states that the 

challenge state occurs when the available mental resources meets or exceeds the situational 

demands and the threat state occurs when the available mental resources do not meet the 

situational demands. For example, researchers have found that individuals tend to exhibit the 

challenge state when they are experienced in a task, as these individuals do not need to expend 

mental resources learning the task (Blascovich, Mendes, Hunter, & Salomon, 1999). 

The relationship between the challenge/threat psychological states and neurophysiological 

activity is based upon Dienstbier (1989). When in a motivated performance situation, the body 

activates the sympathetic-adrenal-medullary (SAM) axis and the hypothalamic-pituitary-adrenal 

(HPA) axis of the neuroendocrine system. The SAM axis sharply increases bodily activity by 

releasing epinephrine and norepinephrine. The HPA axis increases bodily activity for a 

prolonged period by releasing cortisol. In the BPS model, the SAM axis is active in both 

challenge and threat states, but the HPA axis is only active in the threat state (Blascovich, 

Mendes, & Seery, 2002). An individual’s challenge/threat state can be inferred through a pattern 

of cardiovascular measures that reflect activations by the SAM and the HPA axes. 

There are four cardiovascular responses targeted in the BPS model: heart rate (HR), ventricular 

contractility (VC), cardiac output (CO), and total peripheral resistance (TPR). VC is the time 

from the initial left-ventricular valve contraction to the opening of the aortic valve; VC is related 

to the pre-ejection period (PEP): VC = – (PEPtask – PEPbaseline). Cardiac output is the amount 

of blood pumped out by the heart in liters per minute. TPR is the total amount of 

vasoconstriction or vasodilation in the peripheral blood vessels: (CO * 80) ÷ mean arterial 

pressure.  

Task engagement is required for cardiovascular analysis in the BPS model to be valid, which is 

defined as either an increase in HR or an increase in VC (Seery, 2013). Once task engagement is 

confirmed, the individual’s challenge/threat state can be determined. The challenge state is 

characterized by decrease in TPR, increase in VC, and increase in CO; the threat state is 

characterized by increase in TPR, increase in VC, and decrease in CO (Blascovich et al., 2002). 

In general, the challenge state increases blood flow whereas the threat state decreases blood flow 

throughout the entire body.  
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In the BPS model, an individual placed in a motivated performance situation can fall more 

towards the challenge state or the threat state and several factors may influence where he or she 

falls along this continuum (Blascovich, Mendes, Hunter, Lickel, & Kowai-Bell, 2001; Mendes, 

Blascovich, Lickel, & Hunter, 2002). In social situations with in-group members, the BPS model 

has found that the challenge state arises when individuals are socially accepted, and the threat 

state arises when individuals are socially rejected (Mendes, Major, McCoy, & Blascovich, 2008). 

The threat state can also arise with uncertainty, as individuals attempt to make sense of an 

unclear reaction or situation (Khooshabeh et al., 2013). In decision-making situations, loss 

framing has been found to evoke the challenge state (Khooshabeh et al., 2016). In the current 

study, we expect players without the reappraisal strategy to exhibit the threat state (greater task 

demands) when reacting to their opponent’s non-cooperation, as they deal with both their 

emotional reactions and producing a strategy for the game. However, with the influence of 

reappraisal, we expect players to exhibit the challenge state, as they reduce their emotional 

reactions and focus only on strategizing for the game. 

3.1.3 Effect of Facial Expression 

As the Prisoner's Dilemma is a dynamic social situation between two players, we explore how an 

opponent’s emotional expressions may affect players. Facial expressions are important social 

cues that signal players to their opponent’s intentions, which can help players predict cooperation 

in the Prisoner's Dilemma. Positive expressions, such as smiling, from opponents have led to 

increased cooperation from the player observing the expression (Reed, Zeglen, & Schmidt, 

2012).  

Facial expressions are complex, and several possible smiles can be used (Ekman, Friese, & 

Davidson, 1988). The current study uses a form of the Duchenne smile and the non-Duchenne 

smile. Duchenne smiles are associated with genuine, positive emotions; they are characterized by 

both a contraction of the zygomaticus major muscle and a contraction of the orbicularis oculi 

muscle surrounding the eye. Non-Duchenne smiles are social smiles and are characterized by 

only a contraction of the zygomaticus major muscle. A previous study found that receiving either 

the Duchenne smile or the non-Duchenne smile from an opponent has behaviorally produced no 

differences in cooperation rate in players (Reed et al., 2012). However, it is still unexplored if 

cardiovascular responses can reveal underlying appraisal differences between receivers of the 



 

 

30 

 

two smiles. As the BPS literature offers little information on the influences of facial expressions 

on challenge and threat states, we investigated the effects of receiving the Duchenne and the non-

Duchenne smile during the Prisoner’s Dilemma game.  

To briefly recap, the current study examines the effects of emotion regulation and interpersonal 

cues exchanged with opponents on behavioral and cardiovascular measures. First, we 

hypothesize that subjects instructed with a reappraisal strategy will react to non-cooperation with 

increased cooperation responses compared to subjects not primed with an emotion regulation 

strategy. Second, we hypothesize that subjects instructed with the reappraisal strategy will 

exhibit cardiovascular activity representing the challenge state and control subjects will exhibit 

cardiovascular activity representing the threat state. Third, we conducted an exploratory analysis 

comparing a form of the Duchenne smile and a form of the non-Duchenne smile to examine their 

effects on cooperation responses and cardiovascular activity. 

3.2 Method 

3.2.1 Participants 

Eighty-six paid participants (mean age 40 years; 37 females) recruited through Craigslist 

participated in the study. The study obtained informed consent from all subjects in accordance 

with the Declaration of Helsinki. The study was carried out in accordance to protocol UP-14-

00321, approved by the University of Southern California Institutional Review Board. 

3.2.2 Experimental Procedure 

Participants played a version of the iterated Prisoner's Dilemma called the Split-Steal game (see 

Stratou, Hoegen, Lucas, & Gratch, 2015). As in the Prisoner’s Dilemma, the Split-Steal game 

provides the two players with two options: the cooperative choice or the non-cooperative choice. 

The cooperative choice leads to the highest payout if selected by both players; however, this 

choice also places a player at risk for exploitation. If one player selects the cooperative choice 

and the other selects the non-cooperative choice, then the defector receives a large payoff and the 

cooperator receives a small payoff. If both players defect, they both receive a small payout. The 

current study used the same payoff matrix as Stratou and colleagues (2015). The Split-Steal 

game is a simple extension of the standard game, where the two players play ten rounds with 

each other. 
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Prior to the game, the participant was introduced to a female confederate (under the guise of 

another participant) that would be his or her opponent in the game. Both the participant and the 

confederate were seated in the same room but were quarantined to individual computer stations. 

Baseline cardiovascular data was setup for both the participant and the confederate, but 

cardiovascular data was recorded only from the subject. We recorded five minutes of baseline 

cardiovascular activity.  

Participants were randomly assigned to either the emotion regulation (reappraisal) condition or 

the no regulation (control) condition. Based on Grecucci and colleagues (2013b), those in the 

regulation condition were instructed about the reappraisal strategy, and an example of how to use 

it to reinterpret the other person’s actions in a less negative way. The reappraisal strategy 

example related to being cut off while driving on the freeway, and how anger can be reduced by 

reinterpreting the event from a disrespectful driver to viewing the other cars as mindless 

machines. Then they were instructed to think of another negative situation to apply the 

reappraisal strategy. Participants in the control group read instructions for the experiment and 

were told to interpret a picture of a man.  

After reading the emotion regulation or the control prompt, participants were setup to play the 

Split-Steal game. On the opening screen, the emotion regulation group was told to practice the 

reappraisal strategy during the game and the control group was told to simply enjoy the game. 

Cardiovascular recording began at the start of the Split-Steal game. A webcam streamed the 

players’ faces to each other. The stream was only visible to players during the time interval they 

received the current round’s results; this allowed both players to see their opponent’s reaction to 

the results. For all subjects, the confederate defected in the first round, and then cooperated in the 

remaining nine rounds. For a randomly selected half of the subjects, the confederate was directed 

to present a “condescending” smile; in the other half of the subjects, the confederate was directed 

to present a “genuine” smile. Each experimental session took approximately 50 minutes for each 

participant. 

3.2.3 Cardiovascular Recording 

Cardiovascular data were recorded using a Biopac MP150 (BIOPAC Systems, Inc.); signals were 

recorded at a sampling rate of 2000 Hz. Three measures were collected: impedance, 

electrocardiography (ECG), and blood pressure. Impedance measures were recorded using a pair 
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of electrodes placed on the left and right sides of the neck and another pair of electrodes placed 

on the left and right sides of the torso (under the sternum). ECG was recorded using the modified 

lead II configuration, where an electrode was placed below the right clavicle and another 

electrode was placed below the left bottom rib. Blood pressure was measured using a blood 

pressure cuff placed directly over the brachial artery of the subject’s non-dominant hand and 

finger cuffs placed on the first two fingers to calibrate the measure using the radial artery. 

3.3 Data Analysis 

3.3.1 Behavioral Analysis 

Of the eighty-six subjects that participated in the study, six participants who defected (rather than 

cooperated) in the first round were removed to focus on responses to betrayal (rather than mutual 

defection). However, it should be noted that the behavioral results are almost identical if they are 

included. Additionally, three participants were removed from the main analysis as they were 

missing smile classification data. 

3.3.2 Cardiovascular Analysis 

An additional six subjects were removed due to errors during cardiovascular data collection and 

eleven subjects were removed during pre-processing due to bad waveforms. Thus, there were 

sixty remaining subjects with intact cardiovascular data for analyses.  

The Moving Ensemble Average Pipeline (MEAP) software package (Cieslak et al., 2018) was 

used to remove confounding artifacts and to create 10-second ensemble averages for each target 

cardiovascular measure. We focused on the 10-second interval immediately after the non-

cooperation outcome is revealed to the subject. For each target measure, ensemble averages of 

the final minute of baseline recording were similarly calculated using MEAP to produce stable 

baseline measures. Previous BPS studies have only been able to obtain minimal intervals of 60 

seconds; however, MEAP allows for shorter intervals ranging from 10 to 30 seconds. The use of 

10-second intervals is supported by previous work that suggests challenge and threat 

cardiovascular activity occur within 8 to 12 second intervals (Cieslak, 2016).  

We created cardiovascular reactivity values (i.e. percentage change from the baseline data) for 

each of the target measures (Seery, Blascovich, Weisbuch, & Vick, 2004). The cardiovascular 

reactivity values were used to conduct statistical analyses. 
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3.3.3 Smile Expression Analysis 

Upon further inspection of the experimental session video recordings, we believe that the 

confederate did not consistently present convincing “condescending” or “genuine” smiles, so this 

factor may not have been a properly controlled between-subject manipulation. This could 

possibly be due to vague instructions or lack of facial action unit posing experience by the 

confederate. As such, we decided to conduct an algorithmic classification of smiles to 

objectively produce separate categories of the presented smiles. We then examined the produced 

categories of smiles for their distinguishing facial features.   

We analyze the confederate’s facial recordings with measures of facial movement, head 

movements, and smile temporal dynamics to confirm that the smiles presented to participants 

were appropriate for the respective smile conditions. We included head movements and smile 

temporal dynamics due to research suggesting their significant impact on perceived smile 

authenticity (Krumhuber, Manstead, & Kappas, 2007). All facial movements and head positions 

were tracked offline using the OpenFace software package (Baltrušaitis, Robinson, & Morency, 

2016). Smile temporal dynamics was manually annotated for the smiles’ onset-apex-offset times 

and calculated using the tool ELAN (Wittenburg, Brugman, Russel, Klassmann, & Sloetjes, 

2006). 

Facial movement was measured using action units (AUs) from the standardized Facial Action 

Coding System (FACS) (Ekman, Friesen, & Hager, 2002). Head movement was measured using 

head position in the up-down direction and pitch rotation. Smile temporal dynamics were 

measured using the smile onset, offset, and apex duration. We isolated the time segment of the 

experimentally manipulated smile (i.e. during Round 1 reveal) and averaged each measure across 

time. Baseline values were calculated by averaging each measure across the full duration of the 

Split-Steal game. For each measure, we then calculated the change from baseline value used for 

smile analysis. 

Following Ambadar, Cohn, & Reed (2009), we conducted a K-means cluster analysis (K = 2) in 

JMP Pro v12 (SAS Institute, Cary, NC) using selected AUs, head position measures, and smile 

temporal dynamics. AUs were selected for analysis if they were significantly correlated to 

participant cooperation behavior in Rounds 2 and 3: AU 06, AU 10, AU 12, AU 14, and AU 25. 
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The Duchenne smile is associated with AU 06 and AU 12, while the non-Duchenne smile is 

associated with only AU 12. 

We found clusters analogous to the genuine “polite” smile and the “amused” smile found in 

Ambadar and colleagues. The only differences in our results from Ambadar and colleagues are: 

1) our amused smile cluster has a longer duration than our polite smile cluster, and 2) we did not 

find any significant difference for maximum offset velocity (i.e. speed of the smile ending) 

between the two smile clusters. Corresponding with the original smile groups, the “polite” smile 

cluster consists of 27 “condescending” smiles and 10 “genuine” smiles and the “amused” smile 

cluster consists of 28 “condescending” smiles and 12 “genuine” smiles. This confirms that the 

original smile categories were not properly controlled and distinctive in their respective intended 

features. 

While the presented smiles correspond to the Duchenne and non-Duchenne smiles, there are 

additional features in the two smile types that are not central to the Duchenne and non-Duchenne 

smiles. We follow Ambadar and colleagues in characterizing our smiles as “amused smile”, the 

cluster including the Duchenne features, and “polite smile”, the cluster including the non-

Duchenne features. 

3.4 Results 

3.4.1 The Effect of Emotion Regulation and Opponent’s Smile 

3.4.1.1 Behavioral Results 

For the behavioral analyses, the 77 participants analyzed were placed in four conditions: control 

and polite smile (N = 18), control and amused smile (N = 19), regulation and polite smile (N = 

19) and regulation and amused smile (N = 21).  

We examined the participant’s choice to cooperate or defect on the subsequent round (Round 2) 

across the four conditions. Taking both regulation and opponent’s smile into consideration, the 

choice to cooperate or not on the next round was compared between these four groups in a log-

linear analysis. As Pearson’s chi-square test cannot accommodate more than one predictor, the 

log-linear analysis is a generalized linear model that allows for comparison of more than two 

categorical variables, e.g., polite/amused smile and regulation/control.  
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This analysis did not find a significant interaction between regulation and smile (G2 = 6.72, p = 

0.15). In the regulation condition, there was no effect (χ2 = 0.31, ns); 15 out of 19 participants 

who saw the polite smile (78.9%) cooperated and 15 out of 21 participants who saw the amused 

smile (71.4%) cooperated. The effect of smile only appears in the control condition (χ2 = 5.81, p 

= 0.02), where 16 out of 18 in the control group who saw the polite smile (88.9%) cooperated but 

only 10 out of 19 participants who saw the amused smile (52.6%) cooperated. Due to the high 

G2 value, we conducted further analysis examining the cooperation behavior in the emotion 

regulation and the smile conditions separately. The choice to cooperate or defect on the next 

round was compared between control (N = 37) and regulation (N = 40) groups in a chi-square 

test. There was no effect of regulation on cooperation (χ2 = 0.22, ns); 26 control participants 

(70.3%) chose to cooperate, and similarly, 30 regulation participants (75.0%) chose to cooperate. 

These results do not support our hypothesis. The chi-square test comparing polite smile (N = 37) 

and amused smile (N = 40) groups on the choice to cooperate or defect on the next round 

revealed a significant effect (χ2 = 4.39, p = 0.04), such that 83.7% of participants who saw the 

polite smile cooperated on the next round and only 62.5% of participants who saw the amused 

smile cooperated. 

To consider whether the effect might emerge or change over the following round, we also 

analyzed cooperation rates in Round 3. A log-linear analysis reveals a significant interaction 

between regulation and smile conditions (G2 = 12.24, p = 0.02). Specifically, the effect of smile 

only appears in the control condition (χ2 = 6.06, p = 0.01), where 66.7% in the control group 

who saw the polite smile cooperated on the next round and only 26.3% participants who saw the 

amused smile cooperated. There was a no significant effect of regulation on cooperation (χ2 = 

3.15, p = 0.076); 18 control participants (46.2%) chose to cooperate, however, 27 regulation 

participants (65.9%) chose to cooperate. Though, there was again a significant effect for smile 

(χ2 = 8.48, p = 0.004), such that 73.0% of participants who saw the polite smile cooperated and 

only 40.0% of participants who saw the amused smile cooperated. We also considered the effect 

of the participant’s gender on cooperation behavior; however, the log linear analysis found no 

significant interaction of gender with either regulation or smile (G2 = 1.45, ns). 

Overall, the effect of smile persisted throughout the remaining 8 rounds after Round 2; indeed, 

on average those in the polite smile condition cooperated more in subsequent rounds (M = 7.68, 
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SE = 0.30) than those in the amused smile condition (M = 5.91, SE = 0.29; F (1, 73) = 17.89, p < 

.001). 

3.4.1.2 Cardiovascular Results 

For the cardiovascular analyses, the 60 participants analyzed were placed in four conditions: 

control and polite smile (N = 14), control and amused smile (N = 13), regulation and polite smile 

(N = 15) and regulation and amused smile (N = 18). 

3.4.1.2.1 Task Engagement 

We first ensured the presence of task engagement in the cardiovascular data. Task engagement is 

a prerequisite to the BPS model and is exhibited by either a significant increase in VC and/or a 

significant increase in HR from baseline (Seery, 2013). If participants are not engaged, then we 

will be unable to properly examine challenge/threat responses. 

In the control condition, a single-sample t-test found that the VC reactivity value was 

significantly greater than zero, t(31) = 3.78, p = 0.001 (M = 7.34, SD = 10.98). The HR reactivity 

was also significantly greater than zero, t(31) = 3.28, p = 0.003 (M = 9.36, SD = 16.16). This 

confirms that those in the control condition experienced task engagement during the reveal of the 

opponent’s non-cooperation. 

In the regulation condition (N = 37), a single-sample t-test indicated that the VC reactivity was 

not significantly greater than zero, t(36) = 0.77, ns (M = 1.35, SD = 10.64). However, the HR 

reactivity was significantly greater than zero, t(36) = 3.08, p = 0.004 (M = 7.27, SD = 14.38), 

which confirms that those in the regulation condition experienced task engagement during the 

reveal of the opponent’s non-cooperation.  

We found task engagement in the targeted cardiovascular activity (see Figure 10). With the 

establishment of task engagement, we proceeded with further cardiovascular analyses using the 

BPS model. 
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Figure 10. Cardiovascular measures, ventricular contractility (VC) and heart rate (HR), indicate task engagement 

of participants in both the no regulation control and the regulation conditions. Task engagement is a prerequisite 

for applying the BPS model of challenge and threat and is determined by increases in either VC or HR. We 

observed significant increases from zero in both VC and HR for the no regulation control condition, and only a 

significant increase from zero in HR for the regulation condition; the criteria for task engagement was met for 

both conditions. 

 

3.4.1.2.2 BPS Model Results 

Baseline cardiovascular reactivity measures (TPR, VC, and CO) were compared between these 

four groups in a two-way MANOVA. This baseline comparison of cardiovascular variables 

resulted in no significant differences; this ensured that there were no pre-dispositional 

differences between the two groups. 

The cardiovascular reactivity measures (TPR, VC, and CO) were used as dependent variables in 

a two-way MANOVA consisting of the emotion regulation (control vs. regulation) and smile 

(polite vs. amused) conditions. This analysis found that the multivariate main effect of emotion 

regulation (Pillai’s Trace = 0.14, F(3,54) = 2.87, p = .05, η = .14) was significant with an 

observed power of .66; however, smile (Pillai’s Trace = 0.08, F(3,54) = 1.49, ns) and their 

interaction (Pillai’s Trace = 0.03, F(3,54) = 0.64, ns) were not significant (see Figure 11). 

Examining the main effect of emotion regulation, TPR in the control group (M = -12.04, SE = 

4.28) was lower than the regulation group (M = -2.73, SE = 3.89); VC in the control group (M = 

8.27, SE = 2.40) was higher than the regulation group (M = 1.11, SE = 2.18); CO in the control 

group (M = 12.37, SE = 3.61) was higher than the regulation group (M = 7.67, SE = 3.28). We 
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also examined the influence of gender in a three-way MANOVA with emotion regulation, smile, 

and gender. However, we found that participant’s gender (Pillai’s Trace = 0.02, F(3,49) = .34, 

ns) and its interaction with emotion regulation (Pillai’s Trace = 0.004, F(3,54) = .50, ns) to be 

not significant. 

 

Figure 11. The cardiovascular measures involved in the BPS model of challenge and threat – total peripheral 

resistance (TPR), ventricular contractility (VC), and cardiac output (CO) – in the control no regulation and 

regulation conditions. We observed significant differences in a MANOVA of the three cardiovascular measures 

due to emotion regulation (control vs. regulation). TPR in the no regulation group was lower than the regulation 

group. VC in the no regulation group was higher than the regulation group. CO in the no regulation group was 

higher than the regulation group. 

Given the multi-variate effect in emotion regulation for our cardiovascular measures, we used a 

secondary analysis to further examine our effects. We calculated the challenge and threat index, 

as outlined by Blascovich, Seery, Mugridge, Norris, and Weisbuch (2004), to classify challenge 

and threat states across all participants. This was done by converting TPR and CO values (r(69) 

= -0.80, p < .001) into z-scores, and assigning TPR a weight of -1 and CO a weight of +1; the 

two values were then summed to create the challenge and threat index. This produces relative 

challenge and threat differences from the TPR and CO measures. To interpret the challenge and 

threat index, higher values towards +1 (greater CO compared to TPR) indicate challenge and 

lower values towards -1 (greater TPR compared to CO) indicate threat.  

Given the multivariate main effect of emotion regulation, we focused the challenge-threat index 

analysis on only the emotion regulation conditions using a Welch’s t-test. The t-test did not 
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reveal any significant differences in index values between emotion regulation (t(44) = 1.22, ns) 

(see Figure 12). A post hoc power analysis using G*Power revealed that to obtain a desired 

statistical power at 0.80 with α = 0.05, we would require 240 subjects for regulation conditions 

(Faul, Erdfelder, Lang, & Buchner, 2007). This suggests that the transformation to the challenge 

and threat index score eliminates substantial degrees of freedom and may require a substantial 

increase in subjects to exhibit the significant difference found in the MANOVA between the 

emotion regulation conditions. 

 

Figure 12. Challenge and threat index values for the control no regulation and the regulation conditions. There 

were no significant differences between the two index values. However, we note that the no regulation control 

condition’s index value is a higher positive value, aligning closer to the challenge state, and that the regulation 

condition’s index values is a lower negative value, aligning closer to the threat state. 

 

3.5 Discussion 

The current study placed participants in a Prisoner’s Dilemma scenario, where the opponent 

defected on the first round. We then explored the effects of reappraisal and the opponent’s smile 

on measures of cooperation behavior and cardiovascular responses.  

We predicted that the opponent’s smile would not affect cooperation behavior, as previous 

research found no differences between the amused and the polite smiles (Reed et al., 2012). 
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Counter to our hypotheses, we found differences in cooperation behavior between the amused 

smile and the polite smile. Particularly in the control conditions, participants were more likely to 

cooperate if they saw the polite smile than the amused smile. An explanation for this discrepancy 

is that Reed and colleagues presented the smiles prior to the decision phase, allowing participants 

to incorporate the perceived state of their opponent into their decision-making. However, in the 

current study we present the smiles after the decision is made and participants instead use their 

opponents’ reaction as information for future decisions, changing the context of the smile. 

Another possible factor is that the current study used a female confederate, which may have 

influenced perception of smiles across the participants of various demographics. Though, the 

present dataset did not find any influence of participant’s gender on cooperation behavior. 

Further studies could measure more directly how people perceive the same smiles in different 

contexts, such as during the decision-making process and after the decision has been made.  

We also predicted that the reappraisal group would hesitate to retaliate, manifesting in increased 

cooperation behavior in the following round (Fabiansson & Denson, 2012; Grecucci, Giorgetta, 

Bonini, et al., 2013). However, we found no difference in cooperation behavior between the 

reappraisal group and the control group. Since the present study uses the iterated Prisoner’s 

Dilemma rather than the ultimatum games used in previous studies, the lack of effect by 

reappraisal may suggest a difference in strategy or other factors specific to the Prisoner’s 

Dilemma. For example, the iterated Prisoner’s Dilemma encourages participants to make 

decisions that have lasting effects, this may lead to the opponent’s smile being weighted more 

than emotion regulation in the decision-making process leading to the observed cooperation 

behavior.   

For the cardiovascular measures, we predicted that the reappraisal group would exhibit activity 

aligning with the challenge state of the BPS model and the control group would exhibit activity 

aligning with the threat state of the BPS model. Our initial multivariate analysis indicated that 

the aggregate cardiovascular measures were different between the reappraisal and the control 

groups. The control group had lower TPR, greater VC, and greater CO compared to the emotion 

regulation group. This pattern of cardiovascular measures in the BPS model suggests that the 

control group experienced the challenge state and, relatively, the emotion regulation group 

experienced the threat state (Blascovich et al., 2002).  
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As the results of the multivariate analysis was counter to our hypothesis, this prompted further 

analysis of the cardiovascular measures using the challenge-threat index measure (Blascovich et 

al., 2004). The challenge-threat index reflects that the BPS model of challenge and threat is a 

continuous state that leans toward either challenge or threat rather than a binary state 

classification. The challenge-threat index yielded no significant differences between the emotion 

regulation groups; however, a post-hoc power analysis suggests that this measure may not 

produce enough power to reveal the differences found in the initial analysis. This may be due to 

the relative nature of the challenge-threat index as it is derived from the absolute TPR and CO 

measures that were directly used in the initial analysis.  

Though the indices between the two groups were not significantly different from one another, the 

challenge-threat index contains meaningful values in the context of the continuum, as values 

closer to +1 are associated with the challenge state and values closer to -1 are associated with the 

threat state. We observed that the relative directions of the challenge-threat index measures 

between the groups was counter to our original hypothesis and supported the initial results of the 

multivariate analysis. The resulting challenge-threat indices suggest that reappraisal participants 

were closer to the threat state, while control participants were closer to the challenge state, albeit 

statistically non-significant. Future research could examine more directly the relationship of 

these challenge and threat directionalities with reappraisal and other emotion regulation 

strategies. 

A few factors may have affected the cardiovascular results in the present study. First, the 

confederate was female, and many of the participants were males; the BPS literature suggests 

increased threat responses when people interact with out-group members. Though, the present 

dataset did not find any influence of participant’s gender on cardiovascular measures. Second, 

reappraisal may increase self-awareness of physiological responses, such that reappraisal 

encourages active monitoring of physiological responses (Jamieson, Mendes, & Nock, 2013; 

Jamieson, Nock, & Mendes, 2012). If physiological responses are explicitly monitored, then it 

could lead people to a challenge response as Jamieson and colleagues found. If physiological 

responses are not explicitly monitored, as in the current experiment, then reappraisal’s 

encouragement for active monitoring may increase mental load and increase the likelihood of a 

threat response. It seems that the effects of reappraisal on physiological responses may be more 
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complex than we previously expected. Future studies could compare the effects of various 

emotion regulation strategies on BPS model of challenge and threat. 

In conclusion, the current study examines the effects of reappraisal and an opponent’s smile on 

players who were defected on by their opponent in the Prisoner’s Dilemma. In the no regulation 

control condition, we found that when the opponent expressed an offensive and amused smile, 

participants were less likely to cooperate the next round than when the opponent expressed a 

polite smile. In the cardiovascular measures, we found significant differences between the 

emotion regulation groups. However, further analysis into these differences through the 

secondary measure of the challenge-threat index found insignificant results. Future work should 

examine the nature and extent of multi-variable cardiovascular responses during emotion 

regulation. 
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4 SSVEP Measurements of Feature-Based Attention to Color 

4.1 Introduction 

Several attentional mechanisms facilitate our processing of complex visual scenes when we 

search for a target item. One mechanism identified in behavioral and electrophysiological studies 

is spatial attention, where attention to a physical location is enhanced (Eriksen & St. James, 

1986; Morgan et al., 1996; N. G. Müller et al., 2003; Nobre et al., 2000; Posner, 1980). Another 

mechanism is feature-based attention, where attention to a target feature (e.g. color or motion 

direction) is enhanced independently of physical location (Andersen et al., 2009; Hopf et al., 

2004; W. Zhang & Luck, 2009).  

Both spatial and feature-based attention perform better when there is greater discriminability 

between targets and distractors (Duncan & Humphreys, 1989; Nagy & Sanchez, 1990). D’Zmura 

(1991) suggests that linear detection mechanisms for bottom-up search may enhance target-

distractor discriminability. These linear detection mechanisms produce fast search times when 

target and distractors can be separated by a single line, typically in feature space. When targets 

and distractors require multiple lines or non-linear functions to fully separate the two stimuli 

types (i.e. target and distractors are not linearly separable), these linear detection mechanisms are 

unable to aid search and the difficulty of attentional tasks increases. This effect occurs regardless 

of the specific features (e.g. color, orientation) and in multi-dimensional feature spaces (e.g. hue 

and luminance) (Bauer, Jolicoeur, & Cowan, 1996a, 1996b, 1998, 1999; Daoutis, Pilling, & 

Davies, 2006; Hodsoll & Humphreys, 2001).  

Target-distractor discriminability is affected by the distance of distractors in physical space or 

feature space. Psychophysical and neurophysiological studies exploring the pattern of attentional 

selection suggest a strong attentional modulation at the target location or feature and a gradual, 

monotonic decrease in the benefits of attention as the physical distance or feature distance 

incrementally deviates from the target location or feature (Störmer & Alvarez, 2014; Sun, 

Chubb, Wright, & Sperling, 2016). Under this model, distractors closer in physical distance or 

feature similarity to the target increase the difficulty of attentional tasks compared to distractors 

further away in physical distance or feature similarity (Caputo & Guerra, 1998; Tombu & 

Tsotsos, 2008). Studies using finer sampling points in distractor distances have further found a 

surround suppression that appears near the attended location or feature in addition to the 
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monotonic decrease (Störmer & Alvarez, 2014; Tombu & Tsotsos, 2008; Wang, Miller, & Liu, 

2015). This suggests an active suppressive mechanism for distractors with high similarity to the 

target.   

This pattern of attentional selection suggests that there are mechanisms that enhance the response 

to certain features and others that suppress the response to other features, and these operate 

simultaneously when one views a scene. Various examples of attentional enhancement and 

suppression have been examined in electrophysiological studies (Andersen et al., 2013, 2008, 

2009; Bridwell & Srinivasan, 2012; Hopf et al., 2004; W. Zhang & Luck, 2009). Researchers 

have found that feature-based attention enhances target features globally throughout a visual 

scene. In contrast, feature-based suppression does not seem to be applied globally throughout the 

visual field; rather, it is a locally applied mechanism that operates when a competing feature is 

present in the same area as the target feature (Forschack et al., 2017; Hasan et al., 2017; M. M. 

Müller, Gundlach, Forschack, & Brummerloh, 2018). These global enhancement and local 

suppression aspects of feature-based attention have allowed researchers to study attention using 

peripherally flickering stimuli that produce steady-state visually evoked responses (SSVEPs) 

measured using EEG (Chu & D’Zmura, 2019; Hasan et al., 2017; Jiang, Wu, & Gao, 2017; 

Painter et al., 2015, 2014).  

The current study measures SSVEPs in response to peripheral flicker as the flickering color is 

systematically varied. This lets us examine the chromatic sensitivity of feature-based attention 

mechanisms for color.  We use SSVEP responses evoked through peripheral flicker to measure 

the spectral tuning of color detection mechanisms. Our aim is to provide detailed measurements 

of color detection mechanism sensitivities when we deploy feature-based attention to a particular 

color is deployed. We also examine how attentional selection is affected by distractor color. We 

hypothesize that changing distractor colors shifts color-detection mechanisms sensitivities in a 

way that causes the responses to distractor colors to be suppressed relative to the response to the 

target color.  Colors more similar to a distractor’s color will be suppressed, while colors more 

similar to the target color yet dissimilar to those of the distractors will show an enhanced 

response. 
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4.2 Methods 

4.2.1 Participants 

11 participants (mean age 27.5 years; 7 females) volunteered in the experiment. All participants 

reported normal or corrected-to-normal vision and normal color vision. All participants provided 

written consent following protocol HS#2014-1090, which was approved by the University of 

California, Irvine Institutional Review Board. 

4.2.2 Apparatus 

The experiment was generated using the Unity game engine (Unity Technologies, San Francisco, 

CA, USA) and was displayed on a HP LP2475w 24-inch LCD monitor with a 1920 x 1200 

resolution and 60 Hz refresh rate. The monitor was calibrated using a spectrophotometer to 

generate the luminance lookup table that linearized the monitor’s luminance (i.e. gamma 

correction).  Participants were placed 60 cm away from the monitor.  

4.2.3 Foveal Stimuli 

All colors were converted to and manipulated in the DKL color space, which defines a spherical 

color space that takes into account color-opponent channels in human color vision (Derrington, 

Krauskopf, & Lennie, 1984). The DKL color space encodes chromatic change using three 

spherical coordinates: elevation θ (a measure of luminance based on elevation out of the 

equiluminant plane), chromatic stimulus vector length r (saturation), and azimuth φ (hue). 

For each condition, participants adjusted the elevation θ for each of the foveal search task colors 

(the purple color of the target and the two distractors’ colors) so that they appeared equiluminant 

to the grey background, which was set to 56 cd/m2, the half-maximum luminance of the display 

monitor.  Participants then adjusted the saturation r of the two distractor colors to match that of 

the purple target.  

During the experiment, participants performed a foveal conjunction search task similar to the one 

used in Chu and D’Zmura (2019).  Throughout the entire experiment, participants sought the 

same target, an upright purple T (θ = 1.23°, r = 20, φ = 75°), which was shown among distractors 

of differing color. 

The azimuths (hues) of the distractor colors were manipulated across three experimental 

conditions. They were varied in a way that we hypothesized would influence the sensitivity of 
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the color filter used to detect the purple target.  We measured these sensitivities using SSVEP 

responses.  

There were three conditions (see Figure 13). The neutral condition was presented first for all 

subjects. The remaining two conditions were counterbalanced across subjects. 

The neutral condition used blue-green distractors (φ = 165°, i.e. +90° away from the azimuth of 

the purple target) and red-orange distractors (φ = -15°, i.e. -90° away from the azimuth of the 

purple target) with azimuths along the axis in the equiluminant plane that lies orthogonal to that 

of the purple target.  

The blue distractor condition used blue distractors (φ = 120°, i.e. +45° away from the azimuth of 

the purple target) and yellow distractors (φ = 300°, i.e. +225° away from the azimuth of the 

purple target and +180° away from the blue distractor color). We hypothesized that using blue 

distractors would induce participants to use a color detection mechanism that is insensitive to the 

blue distractors yet sensitive to the purple distractors, namely a detection mechanism biased 

towards red.  

The red distractor condition used red distractors (φ = 30°, i.e. -45° away from the azimuth of the 

purple target) and green distractors (φ = -150°, i.e. -225° away from the purple target and -180° 

away from the red distractor color). We hypothesized that using red distractors would induce 

participants to use a color detection mechanism that is insensitive to the red distractors yet 

sensitive to the purple distractors, namely a detection mechanism biased towards blue. 
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Figure 13. Schematic depiction of the central task’s color stimulus hues across the three conditions in the 

equiluminant plane of DKL color space. The same target is used in all conditions, and is marked by the purple ‘T’ 

in the diagram. Neutral condition distractors are marked by ‘N’, blue condition distractors are marked by ‘B’, and 

red condition distractors are marked by ‘R’. 

 

4.2.4 Peripheral Stimuli 

The peripheral stimulus consisted of an inner and an outer square border surrounding the foveal 

search task. The two peripheral square borders always had identical colors to one another. The 

peripheral colors were randomly selected from ten possible colors from trial to trial (see Figure 

14). One of the peripheral colors had an azimuth that matched the azimuth of the purple target. 

Four of the peripheral colors had azimuths that were greater than that of the purple target in steps 

of 22.5° (+22.5°, +45°, +67.5°, +90°), while a further four had azimuths that decreased in steps 

of 22.5° (-22.5°, -45°, -67.5°, -90°).  The final peripheral color had an azimuth that placed it on 

the opposite end of the purple target’s chromatic axis:  180°. Following Störmer & Alvarez 

(2014), responses to this color were used as a baseline to determine attentional enhancement or 

suppression. 

The saturation of each peripheral color was adjusted to match the saturation of the purple target. 

We minimized heterochromatic flicker to adjust the luminance of each peripheral color so that it 

matched the luminance of the purple target (Lee, Martin, & Valberg, 1988). 
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During the experiment, the peripheral stimulus was flickered during the foveal search task to 

produce SSVEP responses. The variation in SSVEP response strength as a function of peripheral 

stimulus azimuth is a measure of the sensitivity of the chromatic mechanism used to detect the 

foveal target. The peripheral flicker used a square wave, modulated at 15 Hz, that flickered 

between the selected peripheral color and black. 

 

Figure 14. Schematic depiction in the equiluminant plane of the peripheral stimulus hues used in all conditions. 

The target azimuth is marked by ‘T’ in the diagram. The numbers indicate the size of the azimuthal angles by 

which the peripheral stimuli varied in hue from the target. 

 

4.2.5 Procedure 

For each of the three conditions, participants completed two blocks of 100 trials of a conjunction 

search task for a total of 200 trials.  In one block, peripheral colors ranged from 0° to +90° away 

from the target azimuth (hue) across trials, while in the other block they ranged from 0° to -90°. 

Trials that used the color opposite to that of the purple target, of azimuth 180°, were split 

between the two blocks.  The foveal search task colors remained the same for both blocks of 

trials.  

Each trial had a cue phase, a visual search phase, and a response phase (see Figure 15). During 

the cue phase, the upright purple T target was displayed for a minimum of one second before 
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subjects could self-initiate the visual search phase using a button. The visual search phase 

consisted of four sequentially presented search arrays. Each search array was presented for one 

second, resulting in a total duration of four seconds for each trial’s visual search phase. Each 

array contained sixteen items: six Ts had the target color, five Ts had one distractor color, and 

five Ts had the other distractor color. The sixteen items were placed randomly in a 4 x 4 array of 

possible locations. All of the Ts could be oriented in one of the four possible orientation 

directions (upright, rotated 90°, upside-down, rotated 270°). The item types and locations 

changed randomly for each search array.  

For each of the two distractor colors’ five items, there were luminance and saturation value 

perturbations made relative to the subject’s calibrated stimulus colors: one item had a 5% 

increased luminance, one item had a 5% decreased luminance, one item had a 5% increased 

saturation, one item had a 5% decreased saturation, and one item had no change. The perturbed 

values created a visually detectable change in the items’ colors, but not enough to attract bottom-

up attentional mechanisms.  These perturbations were used to minimize any possible influence of 

luminance or saturation differences on the search task. 

For each individual search array, the trial’s target appears only once. However, within the span 

of the four sequential search arrays, the target may appear in zero, one, two, three, or four of the 

arrays.  The participant is tasked to count the number of times the target appears across the eight 

search arrays and to enter the final count during the response phase. 
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Figure 15. Example progression of a single trial. First, the cue phase (bottom left) displayed the target T’s color and 

orientation – this was the same purple upright-T across all trials and all conditions. After at least a one second delay, 

subjects could use a button press to initial the visual search phase (middle). The visual search phase consisted of 

four sequential visual search tasks in a 4x4 array.  Each array had a duration of one second, resulting in a total of 

four seconds for the visual search phase. Each array had six target colored items and five of each distractor item. 

The purple upright-T target could appear across multiple arrays, but only once within any specific search array. 

Subjects were tasked with counting the number of times the target appeared within the trial. The final response 

phase let subjects enter the counted number. 

 

4.2.6 EEG Recording and Analysis 

EEG signals were recording using a Cognionics Quick-20 wireless dry EEG headset with 20 

electrodes following the 10/20 system (Cognionics Inc., San Diego, CA, USA). Signals were 

recorded at 1000 samples/sec and recorded using Cognionics Data Acquisition Software Suite 

(Cognionics Inc., San Diego, CA, USA) and synchronized with stimulus events from the Unity 

program using LabStreamingLayer (LSL). Impedance values were kept below 200 ohms. 

All EEG analyses were conducted offline in MATLAB (The MathWorks, Natick, MA, USA). 

EEG data were detrended and filtered using a Butterworth bandpass filter set at 1–50 Hz, a 1dB 

ripple with stopbands at 0.25 Hz and 60Hz, a 10dB attenuation, and a 60 Hz notch filter to 

remove power line noise. Each trial was segmented using time markers that indicated each trial’s 

onset sent by the Unity program and time matched using LabStreamingLayer to the EEG data.  



 

 

51 

 

For the remaining EEG analyses, we analyzed data only from trials where subjects responded 

with the correct response. We calculated the steady-state response for each participant by 

computing the amplitude spectrum for each trial using a Fast Fourier Transform (FFT), 

averaging the amplitude spectrum within each peripheral condition, and finally, calculating the 

signal-to-noise ratio (SNR). The SNR was calculated using the ratio of the amplitude of the 

target frequency to the standard deviation of the surrounding 16 frequency bins (8 above target 

frequency and 8 below target frequency) (Srinivasan et al., 2006). With a sampling rate of 1000 

Hz and a total of four seconds for each trial, we had a frequency resolution of 0.25 Hz. 

4.3 Results 

4.3.1 Behavioral Results 

We averaged behavioral accuracy across all subjects and found for the neutral condition an 

average accuracy of 86.18% ± 3.14% (SD = 10.42), for the blue condition an average accuracy 

of 90.86% ± 1.70% (SD = 5.63), and for the red condition an average accuracy of 87.45% ± 

3.41% (SD = 11.32) (see Figure 16).  Note that the neutral condition was always presented first, 

so that the average performances may be influenced by this order effect. A one-way ANOVA on 

the accuracies across the three conditions (neutral, blue, and red) found no significant differences 

between the three conditions (F(2,30) = 0.72, p = 0.495).  
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Five subjects consistently performed better than the remaining subjects. This led us to run post-

hoc analyses comparing the five high-performing subjects, with the highest accuracies across all 

conditions, to the remaining six subjects to determine whether there were significant differences 

between subject groups (see Figure 17). The high performers yielded average accuracies of 

92.80% ± 2.0% (SD = 4.48) in the neutral condition, 95.40% ± 1.29% (SD = 2.88) in the blue 

condition, and 95.50% ± 1.35% (SD = 3.02) in the red condition. The low performers yielded 

average accuracies of 80.67% ± 4.49% (SD = 10.99) in the neutral condition, 87.08% ± 1.78% 

(SD = 4.35) in the blue condition, and 80.75% ± 4.66% (SD = 11.42) in the red condition. 

A two-way ANOVA on the accuracies of the two subject groups (high performers, low 

performers) and the three conditions (neutral, blue, and red) found only a main effect of subject 

group (F(1,27) = 20.97, p < 0.001). There was no main effect of condition (F(2,27) = 1.05, p = 

0.365) and no interaction between subject group and condition (F(2,27) = 0.51, p = 0.604). Due 

to this difference in subject group performance, further analyses examine the SSVEP responses 

 

Figure 16. Overall accuracy for all eleven subjects across distractor conditions. The neutral condition, with 

distractors at ±90° away from the target color, had an average accuracy of 86.18% ± 3.14%. The blue condition, 

with distractors at +45° and +225° away from the target color, had an average accuracy of 90.86% ± 1.70%. The 

red condition, with distractors at -45° and -225° away from the target color, had an average accuracy of 87.45% ± 

3.41%. 
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of the two groups of subjects separately in order to determine different strategies in attentional 

selection.  

 

Figure 17. Overall accuracy grouped by high performers (n=5), light grey, and low performers (n=6), dark grey, 

across distractor conditions. For the neutral condition, distractors at ±90° from the target color, high performers 

had an average accuracy of 92.80% ± 2.0% and low performers had an average accuracy of 80.67% ± 4.49%. For 

the blue condition, distractors at +45° and +225° from the target color, high performers had an average accuracy 

of 95.40% ± 1.29% and low performers had an average accuracy of 87.08% ± 1.78%. For the red condition, 

distractors at -45° and -225° from the target color, high performers had an average accuracy of 95.50% ± 1.35% 

and low performers had an average accuracy of 80.75% ± 4.66%. 

 

4.3.2 EEG Results 

Figure 19 displays the participant-averaged signal-to-noise ratios (SNRs) in the frequency 

domain for each peripheral stimulus in the neutral condition. We see the expected peaks at 15 Hz 

(the flicker frequency) and at its harmonic 30 Hz.  
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Figure 18. Raw amplitude spectrum plot displaying the target channel-averaged and participant-averaged 

amplitudes for peripheral at azimuth color +22.5° away from target color in the neutral condition. Peaks for the 

target frequency (15 Hz) and its second harmonic (30 Hz) in the raw. 

 

 

Figure 19. Frequency plots displaying the target channel-averaged and the participant-averaged SNRs for each 

peripheral stimulus in the neutral condition. Peaks can be seen at the target frequency (15 Hz) and its second 

harmonic (30 Hz). The solid-lined box highlights the peripheral stimulus that matches the target color. The 

dashed-lined boxes highlight the peripheral stimuli that matches the two distractor colors in the control condition. 
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Figure 20 displays topographic maps of the participant-averaged SNR at the 15 Hz flicker 

frequency for each peripheral stimulus in the neutral condition. The topographic maps for the 

neutral condition confirm that the SSVEP responses occur in the occipital and posterior parietal 

areas regardless of the specific peripheral flicker stimuli. For the following analyses, we 

normalized the electrode responses across each condition using z-scores, averaged the 

normalized values across conditions, and used the resulting values to create electrode weights. 

 

 

Figure 20. Topographic maps displaying the participant-averaged SNR at the target frequency (15 Hz) and its 

second harmonic (30 Hz) for each peripheral stimulus in the neutral condition. The solid-lined box highlights the 

peripheral stimulus that matches the target color. The dashed-lined boxes highlight the peripheral stimuli that match 

the two distractor colors in the control condition. 

 

Figure 21 displays the SNR values at the flicker frequency for each peripheral stimulus in each 

condition, averaged within each of the two subject groups:  low performers in the top row and 

high performers in the bottom row.  The high performers have generally higher SNR values.  In 

the neutral condition, the high performers exhibited a pattern, where the peripheral stimulus with 

the color of the attended target had an increased peak, and the surrounding peripheral colors are 

decreased. On the other hand, the low performers seem to be biased, such that the positively 

deviating peripherals (towards blue) had higher SNR values.  
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Figure 21. Bar plots displaying channel-averaged and participant-averaged SNRs for all subjects at the target 

frequency for each peripheral stimulus in each of the three conditions (neutral, blue, and red). The top row displays 

the results for the low performers and the bottom row displays the results for the high performers. 

 

I will first describe the results of ANOVAs using the data presented in Figure 21. Then I will 

transform the results (Figure 22) in a way that makes the effects of color condition on detection 

mechanism sensitivity more apparent. To compare the two groups and the peripheral colors of 

interest, we ran mixed ANOVAs for each condition on the SNRs comparing the peripheral colors 

of interest (target and the condition’s distractors) between subject groups.  

For the neutral condition, there was a significant difference between the subject groups (F(1,9) = 

5.533, p = .043, η2 = .381). There was no significant main effect for the peripheral colors of 

interest (target and two distractor) (F(2,8) = .421, p = 0.670) and no interaction effect between 

the peripherals of interest and subject group (F(2,8) = .469, p = .642) for the neutral condition. 

Post-hoc independent-sample t-tests between the two subject groups did not find any significant 

differences for target color (t(9) = 1.953, p = .083), distractor color -90 deg (t(9) = 1.812, p = 

.103), or distractor color +90 deg (t(9) = .653, p = .530).  

For the blue condition, there was a significant difference between subject groups (F(1,9) = 

21.476, p = .001,  η2 = .705). There was no main effect for the peripheral colors of interest (target 

and blue distractor) (F(1,9) = 1.795, p = .213) and no interaction effect between the peripherals 



 

 

57 

 

of interest and subject group (F(1,9) = .485, p = .504) for the blue condition. Post-hoc 

independent-sample t-tests between the two subject groups found a significant difference for 

target color (t(9) = 5.525, p < .001), where the high performing group (M = 12.99, SD = 1.22) 

had higher SNR values than the low performing group (M = 7.64, SD = 1.85). There was also a 

significant difference between the two groups for the blue distractor color (t(9) = 3.098, p = 

.013), where the high performing group (M = 12.29, SD = 5.00) had higher SNR values than the 

low performing group (M = 5.42, SD = 2.03).  

For the red condition, there was a main effect for the peripheral colors of interest (target and red 

distractor) (F(1,9) = 5.820, p = .039, η2 = .393). There was no interaction effect between the 

peripherals of interest and subject group (F(1,9) = .015, p = .906) and no significant difference 

between subject groups (F(1,9) = 3.898, p = .080) for the red condition. Post-hoc independent-

sample t-tests between the two subject groups found no significant difference for the target color 

(t(9) = 1.571, p = .151) or the red distractor color (t(9) = 1.937, p = .085).  

Figure 22 transforms the SNR values in Figure 21 by subtracting each SNR value from the 

respective subject’s control peripheral, the 180° peripheral stimuli’s SNR value in the neutral 

condition.  This transformation is used to visualize attentional enhancement and suppression in 

relation to the control peripheral’s SNR.  In both distractor conditions and both subject groups, 

we observe decreased SNRs in the peripheral colors that match the condition’s distractors.  The 

peripheral colors that match condition distractors are the +45° peripheral color in the blue 

condition and the -45° peripheral color in the red condition.  SSVEP responses to peripheral 

stimuli which are colored to match a distractor are reduced in the red and blue conditions, 

relative to the neutral condition, with the one exception of the relative SNR for blue distractors in 

the results for high performers (bottom left plot).  Note also that the red distractor condition 

displayed a large SNR increase for the SSVEP response to the +22.5° peripheral color.  
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Figure 22. Bar plots displaying relative channel-averaged and participant-averaged SNRs using as baseline each 

subject’s neutral condition response to the 180° peripheral stimulus.  These relative SNRs display attentional 

enhancement and suppression directly.  The top row displays the results for the low performers and the bottom row 

displays the results for the high performers. 

 

4.4 Discussion 

The current study examined feature-based attention for color using a visual search task with a 

purple target and with distractors that shared either the red or the blue coloration of the target.  

Using blue distractors while searching for purple limits one’s ability to use the blue information 

presented by the purple target, while using red distractors limits one’s ability to use the red 

information presented by the target.  We varied the chromatic properties of a flickering 

peripheral field while participants performed the foveal visual search task.  We used EEG to 

determine the strength of the SSVEP response to the flickering peripheral field while varying 

field chromatic properties.   The strength of the SSVEP responses as a function of peripheral 

field color are a measure of the chromatic sensitivity of feature-based attention for a particular 

task.  By varying distractor color in the foveal visual search task, we are able to measure how 

feature-based attention may be varied to enhance the response to a target while minimizing the 

response to distractors. 
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Our study found two groups of subjects, high performers and low performers, which displayed 

significant differences in their behavioral performance of the task.  Within each group of subjects 

and across all subjects, performance in the neutral, blue, and red conditions were similar. In other 

words, the three conditions were equivalent in terms of task difficulty.  

The SSVEPs produced by the peripheral flicker revealed the expected peaks at the peripheral 

field’s flicker frequency of 15 Hz and at the second harmonic 30 Hz.  Activity was localized to 

parietal-occipital cortex. These results agree with those from earlier studies of feature-based 

attention using peripheral SSVEPs (Chu & D’Zmura, 2019; Hasan et al., 2017; Painter et al., 

2014; D. Zhang et al., 2010).  This also indicates minimal differences between peripheral stimuli 

conditions in terms of their ability to produce SSVEPs, thus the observed differences are more 

likely due to attentional mechanisms related to feature-based attention. This assumption is 

further supported by previous studies on feature-based attention that have found global 

enhancement for attended features across the visual field, which have found higher SSVEPs for 

attended features and lower or unaffected SSVEPs for distractor features (Andersen et al., 2013, 

2008; Andersen, Muller, & Hillyard, 2015; Forschack et al., 2017). Previous studies have also 

found that unattended features that do not directly compete with the target feature for attention 

are unaffected by this global property of feature-based attention (Forschack et al., 2017; M. M. 

Müller et al., 2018). As such, the peripheral flicker stimuli colors should not affect the attentional 

filter being measured from the foveal task. 

In the neutral condition, the high performers and low performers exhibited slightly different 

SNRs. The high performers exhibited a pattern with an increased SNR at the target color and 

decreased SNRs at the surrounding colors, a similar pattern found in previous psychophysical 

and neurophysiological studies (Bartsch et al., 2017; Fang, Becker, & Liu, 2019; Geng, 

DiQuattro, & Helm, 2017; Kehoe, Rahimi, & Fallah, 2018; Störmer & Alvarez, 2014; Tombu & 

Tsotsos, 2008; Wang et al., 2015; Yoo, Tsotsos, & Fallah, 2018).  The low performers seemed to 

weigh the blue colors higher and the red colors lower.  This difference in the neutral condition 

suggests that the reason the low performers performed poorly on the task compared to the high 

performers was because the low performers had difficulty isolating the target color purple.  

While previous studies in feature-based attention have found attentional profiles that decrease 

with distance from the attended feature, as found with the SNR results of high performers in the 
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present study, the SNR results of low performers in the present study may indicate that the 

attentional profile may not follow the previously found pattern if the task is too difficult.  

In both distractor conditions, we observed decreases in SSVEP responses for the distractor 

colored peripherals compared to the target colored peripheral. In the blue condition, the high 

performing group produced higher SSVEP responses than the low performing group for the 

target color. Additionally, the high performing subjects during the red distractor condition 

produced significantly higher SSVEP responses for the distractor color compared to the low 

performing subjects; we also note an interesting enhancement of the +22.5° peripheral, slightly 

further away from the distractor color, that is higher than the target colored peripheral. This 

could indicate a shift in the attentional selection profile toward blue that helps high performing 

subjects to better select the target color in the presence of red distractors. This effect did not 

appear in the blue distractor condition for high performers, so the results seem mixed. However, 

it is possible that the target purple color chosen may have appeared more red than blue, which 

may explain the general bias in the results away from the red peripheral colors. Previous studies 

have found that subjective appearance of color category influence attentional selection and that 

there may be different attentional profiles for different color categories (Daoutis et al., 2006; 

Fang et al., 2019; Jiang et al., 2017). This effect of color category may have influenced the 

attentional profiles observed in the distractor conditions, and future studies could examine the 

attentional profiles for other target-distractor color combinations.  

While the current study found differences between subject ability to perform the visual search 

task, future studies could incorporate a process to set individual difficulty levels for the task to 

control for individual differences. This would allow us to control for task difficulty and observe 

more directly if the differences in attentional mechanisms examined in the current study arose 

due to different strategies in relation to task difficulty. Additionally, since all the conditions in 

the current study were linearly separable, a future study could also incorporate a non-linearly 

separable condition. If one of the conditions were non-linearly separable, then we would expect 

there to be a large increase in performance difficulty compared to the linearly separable 

conditions. The resulting attentional profile exhibited through SSVEP responses would be 

expected to peak more highly at the target color compared to the neutral condition in a non-

linearly separable condition. 
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4.5 Conclusion 

In conclusion, the present study examined the attentional profile of feature-based attention for 

color by measuring SSVEP responses to flickering peripheral chromatic stimuli while subjects 

performed foveal color search tasks.  We examined the attentional profile for distractors that had 

minimal effect on detecting the purple target, distractors that influenced the use of blue 

information carried by the target, and distractors that influenced the use of red information 

carried by the target.  SSVEP signal-to-noise ratios showed that there are smaller responses for 

the distractor colors in the blue and red distractor conditions.  These results suggest that feature-

based attention to a particular color involves chromatic mechanisms that both enhance the 

response to a target and minimize responses to distractors. 
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