
UC Irvine
ICS Technical Reports

Title
System-level timing-constrained scheduling

Permalink
https://escholarship.org/uc/item/7v8308z3

Authors
Chang, En-Shou
Gajski, Daniel D.

Publication Date
1998-01-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7v8308z3
https://escholarship.org
http://www.cdlib.org/

Notice; This Material

may be protected
by Copyright Law
(Title 17 U.S.C.)

System-Level Timing-Constrained Scheduling

En-Shou Chang and Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine, CA 92697

Technical Report 98-15

January 17, 1998

Abstract

HLS scheduling algorithms can not be applied on system-level synthesis due to the fol
lowing problems:

The control-step is not available at system-level.
Mixed concurrent and exclusive execution flows

Synchronization among objects scheduled
Execution time of objects scheduled may not be determined until run-time.

In this paper, we present a data-structure to specify the Input for system-level scheduling,
and a system-level timing-constrained scheduling algorithm. Static scheduling, which has
no OS overhead and better system WCET, is used. The algorithm presented can obtain
near-optimal solutions within acceptable and predictable CPU time.

1 Introduction

Years ago, when the total number of transistors on a

chip bit thousands, to design a system transistor by

trajisistor became a tough job for human. The need

to design with abstr€iction urged the birth of high-level

synthesis (HLS)[1, 2], where operations and functional

units (FUs) can be used to design a system. Nowa

day, the total number of transistors on a chip are hit

ting millions. Again, to design a system operation by

operation becomes painful. Methodologies to design a

system at system-level[3, 4, 5], where tasks, processing

elements (PEs), and intellectual properties (IPs) can be

used, is urgent.

The system synthesis flow[5] consists of a series of

well-defined design steps which will eventually map the

system specification to the target architecture. These

design steps include peurtitioning, scheduling, and com-

mimication refinement. The task of partitioning dis

tributes the behaviors (or processes) that comprise the

system specification eimongst PEs, ASICs, and IPs. Schedul

ing determines the order of execution of the behavior

to meet certain constraints like response time, through

put, maximum resource available, etc. The task of com

munication refinement selects the appropriate protocols

and resources to implement the abstract communica

tions between the behaviors. The result of the synthe

sis flow is hand-off to software compilers, HLS synthesis

tools, and interface synthesis tools to synthesize the tar

get machine.

Effective scheduling algorithms for HLS are avail

able for years. For almost every HLS scheduling prob

lem, excellent algorithms have been presented to serve.

However, most of the algorithms can not be applied on

system-level synthesis due to the following problems:

1. Scheduling in HLS is based on control-step, which

is no longer available at system-level. The ob

jects need to be schedule at system-level are tasks,

whose duration is a real number, no longer an in

teger.

2. Task graphs for system-level scheduling usually

combine concurrent and exclusive execution flows.

In HLS, control/data-flow graph (CDFG) has con

current execution flows only in DFG and exclusive

execution flows only in CFG.

3. In addition to sequentiality, task graphs for system-

level scheduling also have synchronization between

tasks.

4. Execution time of a task may not be determined

until the task is executed.

Bzisically, there are two ways to do system-level schedul

ing, namely, dynamic scheduling and static scheduling.

Dynamic scheduling[6] leaves the actual execution

sequence of tasks to be determined by operating sys

tem (OS) at run-time. The synthesis tools only has to

focus on allocation. By using dynamic scheduling, high

utilization can be easily obtained whereas the cost of

OS overhead, including CPU time and memory, has to

be paid. On the other hand, static scheduling lets the

schedule done by synthesis tools whereas the execution

sequence of tasks is determined before run-time. Static

scheduling can be favorite under either of the following

conditions:

1. Worst case execution time (WCET) and av

erage execution time of each subtask are

similar. Usually, OS consumes 5% to 40% of

system resource. In case the difference between

WECT and average execution time is smaller than

the OSoverhead, static schedulingcan have higher

performance than dynamic scheduling.

eran

2. System WCET is more important than uti-

lization. Worst case execution sequences for both

dynamic scheduling and static scheduling are the

seune. Since dynamic scheduling has to pay for

OS overhead, static scheduling can obtain better

system WECT.

In this paper, we present asystem-level timing-constrained ^
scheduling algorithm. Static scheduling approach is used. / ^ I I
The algorithm presented can obtain near-optimal solu- J V f [
tions within acceptable and predictable CPU time. We ^ i
define the time-constrained scheduling problem in Sec- ^
tion 2. Our scheduling algorithm and the mathematical

theorems which the algorithm is based on are presented Figure 1. An example of ETC
in Section 3. Several system design examples are used

• Esync Is a set of synchronis
to illustrate the efficiency and effectiveness of the algo-

rithm in Section 4.

2 Timing-constrained scheduling
at system-level

Input for system-level scheduling is an ETG and a timing-

constraint. The ETG is a task graph representing sub-

behaviors which comprise the system and relations be

tween the sub-behaviors.

Definition 1 An ETG is a graph G = {V, E) where

• V = VtUVfUVj]

• E —Eseq 0 Esync ;

• Vt is a set of tasks ;

• V)? is a set of forks ;

• Vj is a set of joints ;

• Eseq Is a set of sequentialities, which are di
rected arcs;

2.5148mS

• Esync Is a set of synchronizations, which are

undirected arcs.

Each task / is associated with a PE type pt and exe

cution time rrit. In case the execution time can only

be determined at run-time, WECT can be used as mj.

Only one arc is allowed between any two nodes, either

a sequentiality or a synchronization. When multiple se

quentialities source a task, only one of the arcs can be

true at run-time. When multiple sequentialities source

a fork, all of them are true. The sink of a joint can not

be true until all sources of the joint become true. Tasks

connected by synchronizations have to be executed at

the same time.

The nodes connected by synchronizations can be treated

as a supernode. Thus, (U,E'seq) of an acyclic ETG is

a partial order.

Definition 2 For a given ETG G, a schedule a '.Vr

% assigns to each tasks t a start-time.

A schedule is called feasible if and only if no sequential

ity is violated.

Definition 3 For a given ETG G, compatible graph

is an undirected graph C = (Vr.F*) such that G

F if and only if and tg can always be scheduled on

the same PE. ti and fg said to be compatible if

{ti,t2)eF .

Figure 1 shows an example of ETG. In the ETG, task

d is compatible with both a and e but not compatible

with c.

For convenience, we define two general graph func

tions as following:

V{U) B {U, r(£/')) is a complete imdirected graph(l)
Q{H) = the minimal set of cliques

which can cover the graph H

The system cost is determined by the maximum num

ber of PE of each type occupied simultaneously. We

define it formally as following:

Defmition 4 Given an ETG G, a PE cost function a

, and a schedule a, the system cost is defined as

Cost((r) = Evpep{®(P)

where Cp{x) = (.Ap(x), r(Ap(x) n F))

Ap{x) = {i I o-(i) < r < o-(t) + mi, Vt 9 fp =p}

C = (Vt, F) is the compatible graph of G

P is the set of PEs used in G

3 The CLMF algorithm

In this section, we first present the mathematical model

for our system-level timing-constrained scheduling algo

rithm in Section 3.1. Then, our scheduling algorithm is

shown in Section 3.2.

3.1 Mathematical model

Definition 6 For a given ETG G in which start-time

of some tasks is already determined, the corresponding

partial schedule 7r(<) = where

• both T) and A are schedules ;

• r){t) = A(<) = start-time off , if f is scheduled ;

• r){t) is earliest feasible start-time and A(t) is latest

feasible start-time, otherwise.

When an ETG G in which no task has been scheduled

yet is given, r} is the ASAP schedule for G cind A is the

ALAP schedule.

Definition 7 For a given partial schedule tt, the corre

sponding distribution S : P x Tl. P, such that

S{p,x)= max-r-T-r (5)VP") ^ V /
Vy€n(Cp(x)) /V ; -r t

where Gp(x) = (Ap(x), r(Ap(x) n F) (6)

Ap{x) = {< I T?(f) < X< A(f) -I- mt.Vf Btp

_. , « , 11-. -1 Under the condition that no hint is provided, we as-
Now, we can define the system-level timmg-constrained

, , ,, . sume the probability of scheduling a task < to any point
scheduling problem as follow:

between Tj{t) and A(f) is equal. Thus the distribution

Definition 5 System-level Timing-constrained Schedu|anction S{p, x) is the expected resource requirement at

ing: Given an ETG G, a PE cost function q , and a time x. As a consequence, the expected system cost

timing-constraint q, find a feasible schedule a such that is

0 < (t(<) +mt < q, Vf € Vt

.and. Cost(<T) is minimal

Ex_Cost(7r) = ^ {a(p) •max5(p,x)} (8)
Vp€P

Definition 8 For a given distribution S, distribution

boundary is a sorted list B = {xi,a;2) •*•»such

that

T}{t)>r}{t) + A(f) + m(€ Vt e Vr

•and. i < j Xi < xj (9)

Theorem 1 Given a distribution S and its distribution

boundary B,

V6i,bi+i e B, bi <x< bi+i ,bi<y <

Hp,x) = S{p,y) (10)

proof : Given t €Vt, bi <x < 6,+i, bi <y < bi+i

=> a:,y < T7(<)

or V{^) <x< A(t) + mt,T]{t) <y < A(/) + rut

or A(t) + mt < x,y

=» Ap{x) = Ap{y) where Ap is defined as in Eq.(7)

=> 5{p,x) = 6{p,y)

Theorem 1 directly implies the following useful the-

Theorem 2 The expected system cost Ex-Cost can be

found over distribution boundary.

Given a partial schedule tt, let iTg^y = {Vx.y,^x.y)

denote one of tt's consequent partial schedule in which

task X is then scheduled to start-time y. We have

f . _ (ij{t) + {y —r}{x)) if t is a successor ofx
Vx,y[) — otherwise

(11)
, /a\ _ /M^) ~ ~ y) if <is a predecessor of x
s.yt, — otherwise

(12)

Theorem 3 For a given partial schedule it and a given

unscheduled task x, max^(i)<2<A(r) Ex_Cost(7ra,_i) can

be found over B , where

B is the distribution boundary

d = X{x) - Tj{x)

Eg —{y(f) 11 is a successor of x)

Lg —{A(t) I<is a predecessor, of x}

By = {6|6 € B, y < 6 < y + d}, Vye B®

By = {b\b € B,y - d <b < y], "dy e Lg

B = {nix) + 6 - y I € By,Vy € Eg]

B = {A(a:) - (y - 6) | V6 6 By, Vy € Lx]

B is the sorted list of B U B

proof:

Let f{z) = (y(p,g)

where S is defined in Eq.(5)

Considering tf(p,g) where q < z

If task t is not a predecessor of task x

2ii

— m.

All the terms in Eq.(21) are independent from z

thus Eq.(21) is a constant.

If task t is a predecessor of task x

where

c = A(t) —y(<) + mt —A(x)

is independent from z

When z is increasing, Eq.(24) is decreasing

On the other hand,

all the terms inside Eq.(5) are not changed,

since Ap defined in Eq.(7) is identical

Algorithm CLMF

begin
Compute Compatible Graph of G
TT = (ASAP(G) , ALAP(G))
while 6 VV , < is not scheduled do

/* choose the best task */
Find i G Vt such that minimum

/* compute the best start-time */
Compute distribution boundary B
Compute B as defined in Eq.(19)
find 2 G 5 such that Ex_Cost(irt.z) is minimum
TT := TTt.i

endwhile

end

Figure 2: Costly-Least-Mobility-First Scheduling Algo
rithm (CLMF)

for all z ^ Ci < z < Ci+i where c^,c,+i G B

Thus,

f{z) = S{p,q) q<z (26)

is a decreasing function within domain c,- < z < Cj+i

Similarly,

f[z) = S{p,g) ^>2 (27)

is an increasing function within domain c,- < z <

Therefore, /(z) is monotonicbetween Ci and c,+i

And, all the local max. and min. are located on B

3.2 The algorithm

Since the scheduling problem is NP-hard, approxima

tion algorithms which can find near-optimal solutions

within predictable and acceptable time is favorite. We

develop an algorithm that finds near-optimal solutions

by constructing a sequence of partial schedule, where

in each iteration an un-scheduled task is assigned to a

start-time. The algorithm is shown in Figure 2.

The CLMF algorithm select the most critical task to

be scheduled first by task mobility and PE cc«t. Since

the selection of the start-time of the task with less mo

bility is more critical to the system cost, the task should

be considered earlier. On the other hand, the cost of the

PE which executes the operation can also play an im

portant roll in chocking the candidate. Obviouslycostly

PEs are more critical to the system cost than cheaper

PEs. As a result, we use a mixed cost-mobility measure

to decide which task is scheduled first.

Once the candidate which heis high^t priority is de

termined, the CLMF algorithm assigns the task to a

start-time where the expected system cost Ex_Cc»t can

be minimized. The statistical expected system cost of

a partial schedule can be computed by Eq.(3). Ac

cording to Theorem 2, the CLMF algorithm can find

the Ex_Cost by computing Eq.(5) over the distribution

boundary B defined in Definition 8. Whereas, with the

help of Theorem 3, the CLMF algorithm can find the

best start-time for the selected task t by evaluating all

the Ex_Cost of scheduling t to eeich element in B. As

soon as the best start-time for the task t is found, the

CLMF algorithm schedule t to the start-time, then the

CLMF continues next iteration. Finally, all the tasks

are scheduledone by one until the schedule is completed.

4 Experimental results

We use several system design examples to illustrate the

efficiency and effectiveness of the CLMF algorithm. The

results of CLMF algorithm are compared with human

designs.

Figure 3 shows the ETG derived from an ATM en

coder specification. The results obtained by both the

CLMF algorithmand human designer are shown in Fig

ure 4. We can see the CLMF algorithm obtains results

as good as human designer in mwt cases on this small

example.

Table 1 shows results of examples with different sizes.

The c(^t ratio is the ratio of the cost of the result ob

tained by the CLMF algorithm against that of human

dummvi Mmy

Figure 3; ETG of an ATM encoder specification

©--Ohuman

&—GCLMF

13.0 18.0

Time-constraint

Figure 4: Results of human designer and the CLMF
algorithm

54

138

287

CPU A/H cost
arc time ratio

93 0.05s 1.01

313 0.67s 1.00

704 3.54s 0.98

1372 18.128 n.a

Table 1: Results of four larger examples

designer. The human designer performs worse and be

comes more erroneous when dealing with larger system

specification. The ratio of the leirgest example is not

available, since the exetmple is too big to be compre

hended by human designers.

5 Concluding remarks

We define the system-level timing-constrained schedul

ing problem in this paper. HLS scheduling algorithms

can not be applied on system-level synthesis due to the

following problems:

• The control-step is not available at system-level.

• Mixed concurrent and exclusive execution flows

• Synchronization among objects scheduled

• Execution time of objects scheduled may not be

determined until run-time.

We present a data-structure to specify the input for

system-level scheduling, and an algorithm which can

perform system-level timing-constrained scheduling ef

fectively and efficiently.

Static scheduling approach, which determines the ex

ecution sequence of teisks when the system is synthe

sized, is used in this paper. Static scheduling has two

advantage:

• No OS overhead

• Better system WCET

The algorithm presented can obtain near-optimal solu

tions within acceptable and predictable CPU time.

The system-level scheduling methodology presented

in this paper targeting on obtaining scheduling which

can meet a given system response time requirement.

Methodologies which consider features like system with

multiple local timing-constraints, architecture which con

sists pipelines, and scheduling which can meet a given

throughput requirement are still needed.

References

[1] D. Gajski (Editor), Silicon Compilation. Addison-

Wesley, 1988.

pj D. Gajski, N. Dutt, C. Wu, and Y. Lin, High-Level
Synthesis: Introduction to Chip and System Design.

Boston, Massachusetts: Kluwer Academic Publish

ers, 1991.

[3] J. Zhu, R. Domer, and D.Gajski, "Essential issues in

codesign." Chapter 1 in J. Staunstrup and W. Wolf,

Elditors, Hardware/Software Co-Design: Principles

and Practice, Kluwer Academic Publishers, October

1997 (ISBN 0-7923-8013-4).

[4] J. Zhu, R. Domer, &ad D. Gajski, "Syntax and se-

matics of the SpecC language," in Proceedings of

the Synthesis and System Integration of Mixed Tech

nologies, December 1997.

[5] D. Gajski, G. Aggarwal, E.-S. Chang, R. Domer,

T. Ishii, J. Kleinsmith, and J. Zhu, "Methodology

for design of embedded systems." UC Irvine, Dept.

of ICS, Technical Report 98-07,March 1998.

[6] T.-Y. Yen and W. Wolf, "Sensitivity-driven co-

synthesis of distributed embedded systems," in Pro

ceedings of the International Symposium on System

Synthesis, 1995.

