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Abstract

Similar to genomic and proteomic platforms, metabolomic data acquisition and analysis is

becoming a routine approach for investigating biological systems. However, computational

approaches for metabolomic data analysis and integration are still maturing. Metabox is a

bioinformatics toolbox for deep phenotyping analytics that combines data processing, statis-

tical analysis, functional analysis and integrative exploration of metabolomic data within

proteomic and transcriptomic contexts. With the number of options provided in each analy-

sis module, it also supports data analysis of other ‘omic’ families. The toolbox is an R-based

web application, and it is freely available at http://kwanjeeraw.github.io/metabox/ under the

GPL-3 license.

Introduction

Advances in high-dimensional ‘omic’ platforms have enabled large-scale characterization of

molecular phenotypes for a variety of biological systems. Processing, integrating and visualiz-

ing modern biological data sets is a formidable task that requires a flexible computational

framework to enable a growing variety of genomic, biochemical and phenotypic data types.

Key metabolomic data analyses are comprised of four major steps (1) raw data pre-processing

including compound identification (2) data processing including data transformation and

data normalization (3) statistical analysis and (4) data interpretation. Raw data pre-processing

composes of several steps to preprocess raw signals from analytical techniques (e.g. mass spec-

trometry (MS) and nuclear magnetic resonance (NMR)), which includes noise reduction, peak

picking and compound identification [1]. Metabox is independent of tools that were used for

raw data preprocessing. Metabox starts with step (2), data processing. Data transformation is

defined as the process of converting data into more useful forms of the same data either by

mathematical operations (e.g. log-transformation) or by changing formats (e.g. rounding data,

or converting units). Data normalization and data transformation are performed on the matrix

of imported metabolomic result data to minimize systematic and technical variations before
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statistical evaluation [1] Subsequently, statistical analyses are used to pinpoint metabolites that

are altered based on the experimental design group that therefore must be detailed in the

imported data. Statistcal result outputs are then interrogated by downstream modules includ-

ing network- and pathway-based data analyses and visualization tools [2]. Fig 1 illustrates key

analysis steps that can be performed in metabox.

Given the diverse areas of metabolomic data analysis, computational platforms are needed

for average users to increase efficiency and to reduce hurdles for in-depth interpretations of

metabolomic data along with other ‘omic’ data types. MetaboAnalyst is an online web applica-

tion that covers comprehensive analysis of metabolomic data [3–5]. The functional module for

the integrative analysis is based on metabolomics pathway analysis (MetPA). In difference to

MetaboAnalyst, metabox uses a graph database as underlying resource. Pathway relationships in

MetaBox are dynamically constructed and therefore, pathway mapping is not limited to static

(pre-defined) metabolic pathways as in MetaboAnalyst. [6]. Similarly, a tool like IMPaLa addresses

the integration of transcriptomic and metabolomic data on the metabolic pathway contexts but it

lacks of an integrative visualization option [7]. In fact, metabolite profiles incorporate environ-

mental and genetic factors into biochemical processes [8]. Combining metabolic information with

biological mechanisms of genes and proteins reflects the flow of biological information between

layers of cellular regulation. An integrative exploration of metabolomics with secondary lines of

molecular ‘omic’ information enables generating new hypotheses such as identification of disease

factors [9]. Further tools exist that also exploit the framework of biological networks for multi-

omic data exploration, such as MetScape [10], Grinn [2], ConsensusPathDB [11] or 3Omics [12].

Similar to metabox, these tools facilitate the joint visualization of genes, proteins and metabolites

in different combinations of biological networks. However, in general these programs are less

powerful in data processing and statistical analysis tools. In addition, both MetScape and Grinn

lack modules for pathway analyses. All these programs serve the community as open-access soft-

ware; commercial software such as MetaCore was not available to us for comparison.

We here introduce the R-based web application ‘metabox’ that combines state-of-the-art

methods essential for metabolomic data processing, statistical analyses, network-based visualiza-

tion and functional analyses. The current version of metabox highlights deep analyses of metabo-

lomic data and integrative exploration of metabolites, proteins and genes of interest within seve-

ral contexts of biological networks such as metabolic pathways, gene regulation and molecular

interaction. A number of options are provided, which can be selected to apply on the other omic

studies (e.g. transcriptomics and proteomics). Briefly, the following features are integrated in

metabox: (i) data normalization and data transformation, (ii) univariate statistical analyses with

hypothesis testing procedures that are automatically selected based on users’ study designs, (iii)

joint visualization of genes, proteins and metabolites in different combinations of biochemical

networks, (iv) calculation of data-driven networks using correlation-based approaches, (v) esti-

mating chemical structure similarity networks from substructure fingerprints, (vi) functional

interpretation with overrepresentation analysis, functional class scoring and WordCloud gene-

ration and (vii) interactive visualization of information-rich tables and networks. In addition,

metabox is distributed as a standard R package which allows ease of distribution, installation and

makes internal metabox functions available to be used in custom workflows by advanced users.

Materials and Methods

Metabox is an R-based software package that is developed as a web application for interactive

scientific computing and visualization. The tool is composed of a pre-compiled graph database

and R functions essential for the analysis of metabolomic data. The following sections explain

each of the tool components in details.

Metabox for Metabolomics Data Exploration
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Internal graph database

The internal graph database is a pre-compiled graph database, which is used for collecting

prior knowledge from several resources (S1 Table). The database is required for biological

network query functions explained in the following section. A Neo4j graph database (http://

neo4j.com/) is used for storing information of molecular entities and their relationships. In

this version, the graph database is available for Homo sapiens. Upon installation, it will auto-

matically access this pre-compiled human database on our server.

The database schema was adapted from the Grinn package [2] (S1 Fig). In particular, the

database includes the majority of biological relationships among molecular entities such as

substrate-product relationships (BIOCHEMICAL_REACTION), protein-compound catal-

ysis (CATALYSIS), protein-protein interactions (MOLECULAR_BINDING), gene-encod-

ing proteins (CONVERSION), protein-gene transcription regulations (CONTROL), gene-

gene associations (GENETIC_ASSOCIATION), microRNA-gene regulations (CONTROL)

and pathway-entity annotations (ANNOTATION) (S2 Table).

Two identifier systems are used in the database: Neo4j internal identifiers (NIDs) and Grinn

identifiers (GIDs). The NID is a numeric number generated automatically by the Neo4j data-

base system. The GID uses the authentic identifiers of different domain databases. In particular,

GIDs uses ENSEMBL identifiers for genes, miRTarBase nomenclature for micro-RNAs, Uni-

Prot entries for proteins, and PubChem CIDs or KEGG numbers for compounds and pathways.

User inputs require either GID identifiers or convert other identifiers into NIDs via a converter

tool provided in metabox (S3 File).

R-based functions for analysis workflows

In metabox, metabolomics analysis workflows are divided into statistics and interpretation (Fig

1). The statistics package includes data processing and statistical analysis, while the interpretation

workflow is used for biological interpretations of the statistical outputs. Backend functions for

both workflows were developed in the R programming language (https://www.r-project.org/).

Fig 1. Analysis workflows. Metabox supports in-depth analysis of metabolomic data by including four

analysis modules: data normalization (red), statistical analysis (blue), network construction (green) and

functional analysis (purple). Outputs from each module are in red, blue, green and purple circles respectively.

The tool accepts external inputs on each analysis level. Within metabox, the output from an analysis module

can be used for subsequent analyses in the other modules denoted as a colored circle inside a box.

doi:10.1371/journal.pone.0171046.g001

Metabox for Metabolomics Data Exploration
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Data processing and statistical analysis. Data processing and statistical analysis are the

key tasks of metabolomic data analysis. The aim of data processing (transformation and nor-

malization) is to improve normality of data sets in order to improve comparability of metabo-

lite intensities. Subsequently, statistical tools are used to find significant molecular entities,

both for hypothesis testing (univariate analysis) and cluster analysis (multivariate analysis

which may serve for hypothesis generation).

• Data normalization. Two types of normalization methods are currently implemented: fea-

ture-based normalization and sample-based normalization. Both normalizations can be per-

formed sequentially. Sample-based normalization aims to normalize each sample to control

for the systematic and technical variance between samples. Several commonly used normali-

zation methods are included in metabox: normalization to sample-specific metadata (such as

dry mass), normalization to the sum of all identified metabolites [13], normalization to batch-

median values of specific samples data, or LOESS (locally estimated scatterplot smoothing)

normalization to specifically introduced quality control or pool samples [14]. LOESS normali-

zations are performed with span parameters that are automatically selected by cross-valida-

tion and batch effect correction [15]. Conversely, metabolite-based normalization aims to

make the measured variables more comparable to each other with respect to total variance.

Three methods are available in metabox including auto-scaling, Pareto scaling and range scal-

ing [16]. These normalization methods are usually performed for multivariate analyses tools

in order to ensure that data heteroscedasticity is reduced to a minimum.

• Data transformation. Metabox offers common variable transformation methods including

logarithm and power. These methods can be used to improve data normality assumptions

for parametric statistical hypothesis testing procedures which can otherwise be sensitive to

non-normal distributions, outliers and lack of homogeneity of variances.

• Exploratory data analysis. Metabox uses principal components analysis (PCA) score plots for

real-time visualization during data processing procedures [16]. It allows users to detect outli-

ers and choose appropriate methods for data normalization and transformation according

to the properties of the data structure. In addition, users may select scatters on the PCA

score plots and get the corresponding sample information from a donut chart. This helps

users to discover unexpected features within the data structure.

• Univariate Analysis. Metabox collects a variety of well-established statistical hypothesis test-

ing methods and post hoc analysis procedures (Table 1). In addition, metabox includes cor-

responding non-parametric testing procedures, post hoc analysis with false discovery rate

(FDR) correction on both main effect level and simple main effect level, and power analyses

at the entity-level. Bootstrapping is provided as an optional non-parametric testing proce-

dure. Furthermore, metabox automatically and appropriately suggests statistical analysis

methods according to the user-input study design. This feature aims to aid users through the

depths of statistical terminology.

• Power analysis is provided at the entity-level. It covers power analyses for hypothesis testing

procedures listed in Table 1. Metabox offers two levels of power analyses: prior to estimate

sample size and post-hoc to estimate statistical power.

Network construction. Network-based analysis is a promising approach to explore molecu-

lar interactions. In addition, networks can be used as a scaffold for mapping experimental results

to identify potential markers, altered pathways or active subgraphs. Metabox supports both

Metabox for Metabolomics Data Exploration
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construction of networks from domain knowledge relationships and from empirical relationships.

There are four main functions to construct networks from different contexts.

• Biological networks are queried from our pre-compiled graph database that contains a priori
relationships from several resources in SimpleNetwork and HeterogeneousNetwork analy-

ses. SimpleNetwork analysis is used to query biological networks of one type of relationship

(e.g. protein-protein interaction networks) whereas HeterogeneousNetwork analyses query

biological networks containing one or combinations of relationship types (e.g. biochemical

reaction networks containing substrate-product and compound-enzyme associations). Lists

of entities and relationship patterns are illustrated in the database schema (S1 Fig).

• Weighted correlation networks are computed from experimental data using pairwise or par-

tial correlation approaches. Pairwise correlation analysis computes associations between

every pair of entities. Metabox includes Pearson, Spearman or Kendall correlation analyses

based on the WGCNA package [22]. Partial correlation analysis is performed based on the

qpgraph package that estimates associations between entities while controlling effects from

other entities [23, 24].

• Chemical structure similarity networks are computed from PubChem substructure finger-

prints by using Tanimoto chemical similarity matrix calculations [25, 26].

• A high-scoring subnetwork is enumerated from biological networks, weighted correlation net-

works or chemical structure similarity networks. This subnetwork identification is based on the

Table 1. List of statistical analysis procedures in metabox.

Study Design Test Methods Following Procedures

Two-independent

group

Statistically significant difference exists

between means of two independent

groups

Welch’s t test, Mann-Whitney U

test*, t test;

P-values adjusted for FDR correction using

Bonjamini-Hochberg procedure [17]

Two-paired

group

Mean difference between paired

observations is statistically significant

different from zero

Welch’s t test on difference, Mann-

Whitney U test on difference*,

Welch’s t test on difference;

P-values adjusted for FDR using Bonjamini-Hochberg

procedure

Multiple-

independent

group

There are statistically significant

differences between the means of three

or more independent groups

Welch ANOVA; Kruskal-Wallis

rank sum test*; ANOVA;

Parametric test followed by Games-Howell (or Tukey)

post hoc test to compare all possible combinations of

group differences; non-parametric test followed by

pairwise comparisons using Dunn’s procedure [18]

with Bonferroni adjustment.

Multiple-paired

group

There are statistically significant

differences between the means of three

or more levels of a within-subjects factor.

Repeated ANOVA; Friedman

test*;

Parametric test result corrected by Greenhouse-

Geisser procedure [19] for violation of sphericity and

followed by Bonferroni post hoc test as suggested by

Maxwell and Delaney [20]; non-parametric followed by

pairwise comparisons using Wilcoxon signed-rank

tests [21] were performed with Bonferroni correction

Two-way

independent

groups

There is a statistically significant

interaction effect between two ways of

independent groups

Two-way ANOVA, two-way

ANOVA with robust estimation

Results followed by post hoc analysis on main effect

level and simple main effect level corresponding to

secondary study design structure

Two-way paired

groups

There is a statistically significant

interaction effect between two within-

subject ways

Two-way repreated ANOVA Results followed by post hoc analysis on main effect

level and simple main effect level corresponding to

secondary study design structure

Two-way mixed

groups

There are differences between

independent groups over time

Mixed ANOVA Results followed by post hoc analysis on main effect

level and simple main effect level corresponding to

secondary study design structure

* Non-parametric test.

Underlined method denotes the default method in metabox

doi:10.1371/journal.pone.0171046.t001

Metabox for Metabolomics Data Exploration
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BioNet package that calculates scores of network nodes from p-value results of statistical analy-

ses and follows by a heuristic search for identification of the high-scoring subnetwork [27, 28].

Functional analysis. Functional analysis is provided to aid biological interpretations of

the results from statistical analysis, the network outputs, and user-uploaded list of molecular

entities. The current version of metabox supports KEGG [29] pathway-based analysis for com-

pounds, proteins and genes. Additionally, metabox uses Medical Subject Headings (MeSH)

[30] for compound interpretations by querying the ‘chemicals and drugs’ category in the Pub-

Chem database [31]. Three different analysis options are included.

• Functional class scoring [32] or set enrichment analysis assesses the significance of annotation

terms from entity-level statistics (e.g. p-values of entities calculated from statistical analysis).

Metabox integrates commonly used methods of gene set enrichment analysis from the piano

package, including [33], Fisher ’s combined probability test [34], Stouffer’s method [35],

Reporter features [36, 37], Median and Mean. The Fisher’s method computes each set-level

statistics by combining log-transformation of entity-level statistics, while the Stouffer’s

method calculates from aggregating Z scores of entity-level p-values. The Reporter method

is similar to the Stouffer’s method with an additional procedure of background distribution

correction. The Median and Mean method are straightforward (i.e. each set-level statistics is

the median and mean of entity-level statistics respectively.). The piano package uses a per-

mutation approach to evaluate the significance of entity set of an annotation term.

• Overrepresentation analysis is to identify overrepresented annotation terms of the given list

of entities using hypergeometric test. For the networks containing multiple types of nodes,

the Fisher’s method is used to combine p-values from hypergeometric test.

• WordCloud generation is a simple, graphical presentation of annotation terms where the font

size of a word corresponding to number of members. It provides a quick summary of anno-

tation terms of the given list of entities without any statistical test. The function is based on

the R package tm [38] and the R package wordcloud (https://cran.r-project.org/web/

packages/wordcloud/).

Graphical user interface

The metabox graphical user interface (GUI) was implemented with HTML, JavaScript and

CSS. The backend R functions were deployed on a web browser using the OpenCPU JavaScript

library [39], which allows users to execute the R functions on a web browser such as Firefox,

Chrome, Internet Explorer and Safari. The GUI is a two-column layout with a side navigation

bar containing the list of different functions. On the right side, page contents are changed cor-

respondingly to the selected function. Collapsible tree views of MeSH terms are drawn using

the D3.js JavaScript library (https://d3js.org/). Word clouds are plotted using the wordcloud

package (https://cran.r-project.org/web/packages/wordcloud/). The Cytoscape.js JavaScript

library [40] is used to create interactive networks. Network navigation such as pan, zoom and

select can be performed using a mouse or a touchpad. The resulting networks can be down-

loaded as PNG format and tab-delimited text files which can be used in other software.

Results and Discussions

In this section, the utility of metabox for metabolomic data analysis is demonstrated using

two independent data sets that measured metabolomic and gene expression profiles of lung

Metabox for Metabolomics Data Exploration
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adenocarcinoma and adjacent non-malignant lung tissues [41, 42]. The example data sets, cor-

responding tutorials and metabox user manual are provided as supplemental files (S1, S2 and

S3 Files, respectively).

Omic data sets

The metabolomic data contain 39 malignant and adjacent non-malignant lung tissue samples

measured by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and pre-

processed by the BinBase database [43]. 462 compounds were measured, 171 of which were

structurally identified and associated by PubChem CID. The data from the BinBase database

were uploaded to metabox for log transformation before statistical analysis using paired t-test.

After Benjamini and Hochberg FDR (BH-FDR) adjustment at 5% (pFDR < 0.05), there were

131 significant compounds between cancer and control tissues.

Gene expression profiles of 58 lung adenocarcinoma and adjacent non-malignant lung tis-

sues were acquired using Illumina HumanWG-6 v3.0 expression BeadChip platform and

downloaded from the Gene Expression Omnibus database [44] as transcriptomic data set

GSE32863. Differential gene expression analysis comparing lung adenocarcinoma and adja-

cent non-malignant lung tissues was performed with GEO2R [44]. P-values were adjusted

with Benjamini and Hochberg false discovery rate at 5% (pFDR < 0.05). Differential gene

expression analysis comparing tumor and control tissues reported 171 out of 21,204 genes in

which pFDR < 0.05 and |log2FC| > 2.

Using metabox for in-depth analysis of metabolomic data

The following metabox example shows a comprehensive analysis of metabolomic data, pro-

gressing through a variety of common analyses steps including: data processing, statistical

analyses, and biochemical display of results within a variety of contexts including structural

similarity, pathway and based on other biochemical relationships. The pre-processed meta-

bolic profiles were imported to metabox for data processing and statistical analysis. Subse-

quently the output was transferred to the network construction part to calculate the chemical

structure similarity network of the measured compounds (i.e. 171 compounds have associated

PubChem CID). The default threshold was used with a correlation coefficient rxy> 0.7. The

resulting lists of pair-wise metabolic correlations are then displayed as network graph that can

be enhanced by further empirical or annotation information. Here, we applied the Functional

Class Scoring option to estimate significantly enriched pathways. We found significantly

enriched pathways (p-value< 0.05) to include arginine and proline metabolism, arginine bio-

synthesis and pentose and glucuronate interconversions. Fig 2 shows a part of the resulting

similarity network overlaid with enriched pathways. Amino acids, ornithine, citrulline and

glutamine were metabolically linked through the pathway ‘arginine biosynthesis’. In addition,

ornithine was metabolically linked to proline, 5-aminopentanoic acid and glutamic acid

through the pathway ‘arginine and proline metabolism’.

Metabox supports integrative exploration of significant genes and

compounds from lung cancer studies in biological network context

Next, we used the lists of significantly dysregulated genes (pFDR< 0.05 and |log2FC|> 2) and

significantly different compounds (pFDR< 0.05) from comparisons between paired lung tumors

and non-malignant tissues to construct the biological network using the internal graph relation-

ship database. The resulting network was downloaded and enhanced further by mapping with

statistical information using Cytoscape [45].

Metabox for Metabolomics Data Exploration
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The output network shows metabolic links among carbohydrates, glycerol, fatty acids, pal-

mitic acid, sphingolipids, sphinganine, amino acids, glutamic acid and glyceric acid, and glyco-

sylation-related metabolites, including uridine diphosphate glucuronic acid (UDP-glucuronic

acid) and uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) (Fig 3). Combinations of

relationships can be explored through such networks, including protein-compound catalysis,

protein-encoding genes and protein-gene regulations, integrating information from the regu-

lation of transcription to cellular metabolism. For example, the network outlines metabolic

relationships for UDP-GlcNAc and N-acetylglucosamine (GlcNAc) through the correspond-

ing N-acetyltransferase enzymes encoded by GCNT3 and OGT genes, both of which were sig-

nificantly up-regulated. Modification of nuclear and cytosolic proteins by addition of O-linked

β-N-actylglucosamine (O-GlcNAc) at serine or threonine residues or O-GlcNAcylation plays

important roles in several cellular processes such as cell signaling, metabolism, transcription

regulation and cell division [46]. Evidence indicates that hyper-O-GlcNAcylation is a common

feature in cancer [46–48]. UDP-GlcNAc is a crucial GlcNAc donor, which is transferred to

protein substrates by O-linked N-acetylglucosamine transferase [46]. Fig 3 also shows that the

enzyme-encoding gene OGTwas linked to protein regulators such as FOXO4 and TFE2 that

were connected to genes of phospholipid phosphatase 3 (PLPP3) and long-chain-fatty-acid—

CoA ligase 4 (ACSL4). Both genes were significantly down-regulated in lung cancer compared

to control tissues and associated proteins were metabolically linked to significantly decreased

compounds sphinganine and palmitic acid respectively. The OGT gene was also linked to tran-

scription factors MYC (an oncoprotein found to involve in initiation and maintenance of sev-

eral cancers [47, 49]) and LEF1, which in turn were associated to genes ALDH18A1 and

GFPT1. Both genes were significantly up-regulated in lung cancer compared to control sam-

ples and encoded proteins were metabolically linked to significantly increased glutamic acid.

In addition, ALDH18A1 shared the same transcription factor CREB1 with up-regulated gene

CHPF of glucuronic acid transferase that was connected to substrate UDP-glucuronic acid.

This example demonstrates the use of metabox to integrate information from metabolic

and gene expression results for joint visualization in the network context. The resulting net-

work lists and shows relationships among protein regulators, genes, enzymes and metabolites

related to amino acid, fatty acid and lipid metabolism, and glycosylation that can be function-

ally tested in subsequent studies.

Fig 2. Partial visualization of the entire ‘chemical structure similarity’ network of metabolites in a lung

adenocarcinoma study. Chemical similarities between all identified metabolites was calculated from PubChem

substructure fingerprints. Network nodes are connected by correlation coefficients using edge thickess for

correlations rxy>0.7. Metabox functional class scoring was applied to estimate significantly enriched pathways

(p<0.05), yielding arginine/proline metabolism, arginine biosynthesis and pentose/glucuronate interconversions

among other pathways. Pathway enrichments are given by color in node pie charts.

doi:10.1371/journal.pone.0171046.g002

Metabox for Metabolomics Data Exploration
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Comparison to existing tools

To date, a variety of bioinformatics tools exist for metabolomic data analysis, however, not all

of them support the comprehensive analysis and integrative exploration of metabolomic data.

Metabox is a freely available tool that consolidates a number of approaches for data processing,

statistical analysis, network construction, integrative visualization and functional interpreta-

tions of metabolomic data in one software package. Table 2 provides an overview of tools that

Fig 3. Biological network integrating significant differences in gene and metabolite regulation in lung adenocarcinoma compared to paired

control tissues. Significantly different genes and metabolites were mapped onto the metabox internal graph database using enzymes as linking nodes

(grey). The resulting network was downloaded and mapped relative changes between tumor and non-tumor tissues using Cytoscape. Graph relationships

CONTROL, CONVERSION, and CATALYSIS are labeled by colored edges. The network shows metabolic links between glycerol, palmitic acid, sphinganine,

glutamic acid, glyceric acid, UDP-glucuronic acid and UDP-GlcNAc.

doi:10.1371/journal.pone.0171046.g003

Metabox for Metabolomics Data Exploration
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contains comparable features to metabox. It also highlights that metabox excels in the scope of

statistics and integrative exploration with other ‘omic’ data in network contexts and functional

analysis.

Limitations and future directions

The main aim of metabox is to support comprehensive analysis workflows of metabolomics

and the integrative exploration with other ‘omic’ data. For the statistics workflow, we included

standard normalization, transformation and statistical analysis approaches optimized for

metabolomic data. While data processing approaches can be selectively applied on any ‘omic’

data sets, computational time is increased in larger data sets such as transcriptomics and prote-

omics. Furthermore, when using bootstrapping procedures, run times increase significantly.

The current release of metabox does not yet provide a full list of all multivariate or advanced

statistics tools (e.g. linear regression and Bayesian models) to support further statistical-based

integration of multi-omic data sets. R-packages for these tools exist and will be integrated into

the toolbox over time.

In the part of interpretation workflow, metabox supports joint visualization of molecular

entities in several combinations of biological networks. The present databases include domain

knowledge relationships available only for human from limited resources. We plan to update

Table 2. Comparison with existing tools for analysis and interpretation of metabolomic data.

Tools Metabox MetaboAnalyst ConsensusPathDB MetScape 3Omics Grinn

Input Gene lists, protein lists,

compound lists, omic

data, statistical values

Metabolomic data,

mass spectral data,

Zipped file of NMR

data, mass spectral

peak lists or mass

spectral data

Gene lists, protein lists,

compound lists,

statistical values

Gene lists,

compound lists,

correlation

values,

statistical values

Omic data Gene lists,

protein lists,

compound

lists, omic data

Data processing Yes Yes No No No No

Statistical analysis Univarate and power

analysis, automatically

suggest analysis

method

Univariate and

multivariate analysis,

clustering,

classification

No No No No

Network

construction

Biological-, weighted

correlation- and

chemical structure

similarity network,

subnetwork

identification

No Biological network Biochemical

network

Biochemical and

weighted

correlation

network

Biochemical

and weighted

correlation

network

Functional class

scoring

Yes Yes Yes No No No

Overrepresentation

analysis

Yes Yes Yes No Yes No

WordCloud

generation

Yes No No No No No

Output Tab-delimited files for

statistical results,

network outputs, and

functional analysis

result, PNG file for

network image, PDF,

SVG or PNG file for

WordCloud image

CSV files for analysis

results, PDF, SVG,

PNG or TIFF file for

image

Tab-delimited files for

network outputs, and

functional analysis

result

Cytoscape

output files

Tab-delimited

files for network

outputs, and

functional

analysis result

Tab-delimited

files for

network

outputs

GUI Web-based Web-based Web-based Cytoscape-

based

Web-based Web-based

doi:10.1371/journal.pone.0171046.t002
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the current databases using more information from pre-compiled databases such as Consen-

susPathDB. In addition, a function to combine different network outputs will also be added.

Current functional interpretations are in the contexts of KEGG pathways and MeSH chemicals

and drugs categories for compounds. We are investigating to include more types of biological

annotations such as disease associations and gene ontology (GO) annotations [50], however,

addition of further databases requires careful validation and suitability assessments.

Conclusions

In this study, we propose an alternative toolbox for thorough analysis and integrative explora-

tion of metabolomic data. Metabox includes widely used statistical methods to process and

identify keys entities of input experiments, offers different integrative analysis methodologies

and provides interactive visualization to facilitate biological interpretations. The tool is embed-

ded with a graph database and supports both knowledge-based and data-driven network con-

struction. The design of GUI as an intuitive web interface aims to support bench biologists to

simply perform data analysis. Metabox is also run as a standard R package for advanced users

to use in combination with other R projects. The development of metabox highlights the needs

of research communities for the efficient analysis, integration and interpretation of metabolo-

mic studies.
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