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Abstract 

Stability of Reinforced Concrete Wall Boundaries 

by 

Pablo Fernando Parra Torres 

Doctor of Philosophy in Engineering - Civil and Environmental Engineering 

University of California, Berkeley 

Jack P. Moehle, Chair 

Structural (shear) walls are used worldwide to resist gravity and earthquake loads. In many 
countries, structural walls commonly are constructed with a rectangular cross section, or a cross 
section made up of interconnected rectangles, without an enlarged boundary element. In some 
countries, design practice has resulted in walls that are more slender than those used in the past. 
For example, in Chile and elsewhere it is not unusual to find rectangular wall edges having 
thickness of 6 to 8 in. (150 to 200 mm), resulting in floor-to-floor slenderness ratios reaching ℎ௨ ܾ⁄ = 16 or greater. Such walls can be susceptible to overall wall buckling in which a portion of 
the wall buckles out of the plane. The main objective of this research is to develop a methodology 
for evaluation of the onset of lateral instability in reinforced concrete slender walls. First, a 
simplified buckling mechanics solution for prismatic columns under inelastic tension/compression 
cycles is presented and later evaluated using the results of column tests. Later, three numerical 
models for buckling in columns are evaluated: nonlinear beam-column elements with fibers, and 
two-dimensional and three-dimensional nonlinear finite element models. Wall boundaries have 
strain gradient along the wall length, which would tend to brace the edge of the wall with the result 
that the simplified mechanics solution may give an over-conservative estimation of the onset of 
buckling. The theory may also be conservative for walls where the axial force in the boundary 
elements is not constant along the unsupported height, as may occur where moment gradients 
occur. To study these effects, analytical models of columns and walls are implemented. A simple 
approach is proposed to reduce the over conservatism of the simplified mechanics in cases where 
strain gradients cannot be neglected. Later, two-dimensional nonlinear finite element models are 
used to analytically reproduce the experimental response of wall tests. These models are used to 
estimate strain profiles for evaluation of the onset of lateral buckling in slender boundaries. Strain 
profiles are also estimated from a plastic hinge model. Finally, three damaged buildings in Chile 
are analyzed using linear models for the buildings and nonlinear models for isolated walls. Both 
buildings had some buckled walls after the 2010 Maule earthquake. Based on these studies, it is 
concluded that buckling in Chilean buildings most likely was a secondary failure that occurred 
after initial crushing of the wall boundaries. 
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1 Introduction 

1.1 THE PROBLEM OF WALL BOUNDARY ELEMENT INSTABILITY 

Design practices prior to the 1990s favored rectangular walls with enlarged boundary elements, 
contributing to stability of the flexural compression zone. More recently, prevailing practices in 
many countries favor rectangular sections without enlarged boundaries. The more slender flexural 
compression zones can be susceptible to inelastic lateral buckling as shown in Figure 1.1. 

 

Figure 1.1 Buckled wall in first story of Building #1 (DICTUC, 2010). 

Figure 1.2 depicts a wall in a multistory building. A typical wall boundary will be subjected 
to alternating tension and compression as a building responds to an earthquake. Compressive 
loading acting over a wall boundary (Figure 1.2a, right edge in first story wall) may cause directly 
failure due to out-of-plane instability, especially if very slender. Additionally, in walls subjected 
to cyclic loading, buckling can also be strongly influenced by the magnitude of the tensile strain 
experienced by the wall for prior loading in the opposite direction (Paulay and Priestley 1993, Chai 
and Elayer 1999, Parra and Moehle 2014). This is because residual tensile strains in the previously 
yielded longitudinal reinforcement leave the wall boundary with open cracks, resulting in reduced 
lateral stiffness (Figure 1.2b, left edge of first story wall). Two failure modes are hypothesized. 
One hypothesis is that tensile yielding for loading in one direction softens the boundary for 
subsequent loading in the opposite direction, leading to lateral instability of an otherwise intact 
wall. A second hypothesis is that the wall crushes first, leaving an even smaller, irregular and 
probably unsymmetrical cross section, increasing the tendency for instability. This crushed section 
may become immediately unstable or, alternatively, subsequent tension and compression cycles 
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may lead to instability of the reduced cross section according to the first hypothesis, leading to a 
secondary buckling failure. In such cases, the compression zone of a well confined slender wall 
behaves basically as a plastic material with very low lateral stability (Moehle, 2014). Either type 
of buckling can lead to critical loss of axial force capacity in the flexural compression zone of the 
wall. The many questions surrounding the occurrence of wall instability led to the research that is 
summarized in this dissertation. 

 

Figure 1.2 Lateral instability of wall boundary previously yielded in tension (After 
Chai and Elayer, 1999). 

1.2 REVIEW OF PRIOR STUDIES 

Prior 2010, out-of-plane buckling of columns and structural walls during cyclic loading had been 
reported only in a few laboratory tests but not in an actual earthquake. In 2010, following the Mw 
8.8 Maule Earthquake, out-of-plane buckling of slender walls was reported in two buildings in 
Chile (Parra and Moehle, 2014). Damage associated with out-of-plane deformation of structural 
wall boundaries was also observed following the Mw 7.1 New Zealand Earthquake in 2011 
(Sritharan et al., 2014). These observations created a renewed interest in the practical aspects of 
inelastic buckling of slender structural walls. As part of the research that ensued, several past 
studies related to out-of-plane instability were identified as being particularly relevant.  

In the 1970s, the Portland Cement Association (PCA) conducted a combined experimental 
and analytical investigation to develop design criteria for seismically loaded structural walls 
(Oesterle et. al, 1976). The testing program included two rectangular walls, six barbell walls and 
one flanged wall, all of them under reversing lateral loading. Large out-of-plane displacement of 
the boundary region was reported in one of the rectangular walls (specimen R2), followed by 
failure induced by lateral instability. This was the first documented case of failure in a slender wall 
due to out-of-plane buckling. 

Goodsir (1985) conducted a testing program with the purpose of assessing the effects of 
slenderness ratio and confinement of the flexural compression region on the hysteretic response of 
structural walls. Approximately quarter-scale models were built and loaded with reversed cyclic 
lateral forces. Failure due to out-of-plane-instability of the wall boundary was reported. 
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Paulay and Priestley (1993) postulated that the main cause of instability in wall boundaries 
was the inelastic tensile steel strains imposed by preceding earthquake-induced displacements, 
rather than excessive compressive strains. They developed a theoretical model for the prediction 
of the onset of out-of-plane buckling, based on considerations of fundamental structural behavior. 
Paulay and Priestley compared their model with the experimental response in walls obtained by 
Goodsir (1985). Their work forms part of the basis of the simplified mechanics of wall instability 
presented in the present research. 

Chai and Elayer (1999) conducted a set of tests of reinforced concrete columns under 
reversed cyclic axial tension and compression. Fourteen specimens were tested, with incremental 
tension/compression cycles until buckling failure was reached. They also developed a model for 
the prediction of the maximum tensile strain required to buckle a column during load reversal. 

Thomsen and Wallace (2004) conducted an experimental and analytical study of reinforced 
concrete structural walls with symmetrical and unsymmetrical cross sections, designed under a 
displacement-based methodology. Four, approximately quarter-scale walls (two rectangular and 
two T-shaped walls) where tested under constant axial load and reversed cyclic lateral 
displacements. For one of the T-shaped walls (TW2) with closely spaced hoops at the wall 
boundaries, failure due to global instability of the wall stem was reported. 

Dashti, Dhakal, and Pampanin (2014) investigated the ability of finite element models in 
predicting nonlinear behavior and failure patterns of reinforced concrete walls. The software TNO 
DIANA with curved shell elements and embedded reinforcement was used for this purpose. They 
reported that finite element models can simulate the response of structural walls at global and local 
levels with reasonable accuracy, with failure patterns that include shear, flexure, flexure-shear, and 
flexure-out-of-plane modes, depending on different parameters, particularly the shear-span ratio 
of the specimens. 

Rosso, Almeida, and Beyer (2015) report tests of two thin reinforced concrete walls with 
single layers of vertical and horizontal reinforcement. The two walls were subjected to 
unidirectional (in-plane) and bidirectional (in-plane and out-of-plane) loading, respectively. 
Failure in both walls was triggered by out-of-plane instability of the boundary elements. 

1.3 RELEVANT CODE REQUIREMENTS AND DESIGN PRACTICE 

Provisions governing the slenderness of structural walls designed as compression members are 
contained in Chapter 11 of ACI 318-14, Building Code Requirements for Structural Concrete and 
Commentary (ACI, 2014). According to section 11.3.1 of ACI 318-14, for a given unsupported 
wall height, ℎ௨, an empirical method limits wall slenderness ratios to ℎ௨ ܾ⁄ ≤ 25, and 
corresponding wall thicknesses to ܾ ≥ 4 inches, in which ܾ  is the thickness of the extreme flexural 
compression fiber. Alternatively, walls can be designed by section 11.5.2 or analyzed by 11.8 of 
ACI 318-14, in which case there are no minimum thickness requirements. 

Previously, the Uniform Building Code (ICBO, 1997) required ℎ௨ ܾ⁄ ≤ 16 for structural 
walls providing lateral resistance in regions of highest seismicity. This provision was intended to 
ensure lateral stability for wall boundaries. This provision was not carried forward into the 
International Building Code (ICC, 2000) and subsequent editions. 
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Up through its 2011 edition, ACI 318 did not limit the slenderness of special structural 
walls, that is walls intended to provide lateral force resistance in buildings assigned to the highest 
seismic design categories. However, the 2014 edition of ACI 318 introduced slenderness 
provisions for such walls. According to section 18.10.6.4(b), when special boundary elements are 
required, the width of the flexural compression zone, ܾ , along the special boundary element region, 
including flange if present, shall be at least ℎ௨ 16⁄ . This is a new requirement of ACI 318-14 
introduced to prevent lateral instability failures of slender wall boundaries observed in recent 
earthquakes (Wallace et al., 2012; Parra and Moehle, 2014; ATC-94, 2014). For walls with large 
cover, where spalling of cover concrete would lead to a significantly reduced section, ACI 318-14 
recommends considering a larger thickness for the boundary element. 

ACI 318-14, section 11.7.2.3 requires two curtains of reinforcement for walls thicker than 
10 inches. Additionally, section 18.10.2.2 requires at least two curtains of reinforcement in walls 
having a factored design shear force ௨ܸ > ඥߣ௖௩ܣ2 ௖݂ᇱ or ℎ௪ ݈௪ ≥ 2⁄  where ℎ௪ and ݈௪ refer to 
height and length of the entire wall, ܣ௖௩ is the web area (equal to wall length, ݈௪, times wall web 
thickness, ܾ ௪), ߣ is a modification factor for lightweight aggregate concrete, and ݂ ௖ᇱ is the specified 
compressive strength of the concrete (psi). Otherwise one curtain of reinforcement is permitted. 
These provisions are intended to improve stability of wall boundaries. 

Prior to the 1990s, common design and construction practice used enlarged boundary 
elements that provided inherent stability against overall wall buckling. Current practice embeds 
the boundary element within the rectangular cross-section. According to NIST GCR 11-917-11, 
Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide 
for Practicing Engineers (NIST, 2011), 8 inches is a practical lower limit on thickness for special 
structural walls; however, construction quality and wall performance are generally improved if the 
thickness is at least 12 inches where special boundary elements are used, and at least 10 inches 
elsewhere. Thinner wall sections are permitted by ACI 318, and are not uncommon in the United 
States or other countries that use ACI 318 as a basis. 

Eurocode 8 (2004) specifies minimum wall thickness of 8 inches (200mm) for confined 
parts of walls. Moreover, if the length of the confined part does not exceed the larger of 2ܾ and 0.2݈௪, ܾ should be at least ℎ௨ 15⁄ . Otherwise, ܾ should be at least ℎ௨ 10⁄ . According to NZ 3101 
(2006), the thickness of the wall boundary over the height of the plastic hinge but not less than the 
full height of the first story shall be at least: ܾ௠ = ℎ௨)ߚ௥݇௠ߙ ݈௪ + 2⁄ )݈௪1700ඥߦ௥  (1.1)

in which ߙ௥ = 1 for walls with two curtains of longitudinal reinforcement and 1.25 for walls with 
one curtain, ߚ = 7 for ductile plastic regions, ݇௠ = 1 except for long walls it can be defined as: ݇௠ = ݈௨(0.25 + 0.055 ℎ௨ ݈௪⁄ )݈௪ ≤ ௥ߦ(1.2) 1.0 = 0.3 − ௟ߩ ௬݂2.5 ௖݂′ ≥ 0.1 (1.3)

The term ߩ௟ refers to the local longitudinal reinforcement ratio in the wall boundary. These 
equations result in wall slenderness ratio ℎ௨ ܾ⁄  ranging from around 8 for slender, heavily 
reinforced walls to around 30 for more squat, lightly reinforced walls. 
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1.4 RESEARCH PROGRAM OBJECTIVES 

This research addresses the key aspects involved in out-of-plane stability of reinforced concrete 
wall boundaries during cyclic (earthquake) loading. The research program had the following 
specific objectives: 

• To develop a simplified buckling mechanics solution for evaluation of the onset of 
out-of-plane instability in slender columns subjected to inelastic 
tension/compression cycles, and to evaluate its accuracy using the results of 
previous column tests. 

• To analytically study the onset of out-of-plane instability in column specimens 
using three numerical models: force-based elements in OpenSees, and two-
dimensional and three-dimensional nonlinear finite elements in TNO DIANA. 

• To study the effects of strain gradients along the length and height of a wall using 
OpenSees and TNO DIANA models. 

• To develop a simple method for the estimation of the onset of out-of-plane 
instability in slender walls for constant and variable strain gradients along their 
length and height. 

• To analytically study the onset of out-of-plane instability in wall specimens using 
two-dimensional nonlinear finite element models in TNO DIANA and a plastic 
hinge model. 

• To study two damaged buildings in Chile where wall buckling was observed 
following the 2010 Maule earthquake, to explore the failure mechanism in buckled 
walls, and to provide recommendations for the improvement of current design 
practices of slender walls. To study one collapsed building in Chile, following the 
2010 earthquake, to determine if buckling was one of the causes that triggered the 
observed failure. 

1.5 ORGANIZATION OF REPORT AND SCOPE 

Chapter 1 introduces the study of out-of-plane instability in columns and slender walls. Chapter 2 
presents the main theoretical background of four models for out-of-plane instability: simplified 
buckling mechanics, OpenSees force-based elements with fibers, and TNO DIANA finite element 
models using shell and solid elements. Chapter 3 presents an evaluation of each analytical model 
by comparison with the results of column tests. These studies include sensitivity analysis of the 
response for the variation of some key parameters. Chapter 4 studies the influence of a variable 
strain profile along the wall length and unsupported height in the onset of out-of-plane instability 
of slender walls. Chapter 5 evaluates the onset of out-of-plane instability in wall tests using 
different models (nonlinear finite elements, nonlinear beam-column elements, and simplified 
approaches). Chapters 6 presents analysis results for two buildings where walls showed apparent 
damage due to buckling following the 2010 Maule earthquake and one building that collapsed 
following the same earthquake. For Building #1, analyses include an ETABS linear model of the 
full structure and two approaches for the analysis of isolated walls: a PERFORM 3D model and a 
simplified nonlinear models. Building #2 is also analyzed using ETABS. Nonlinear analysis of 
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isolated walls considers only simplified methods for this case. For Building #3, results of linear 
analysis of the full building (Tanyeri, 2014) are considered for this research. Simplified nonlinear 
models are used here to analyze isolated walls. For buckling evaluation, the simplified mechanics 
is used for the three buildings. These analyses provide data from which to assess the likelihood of 
failure being triggered by concrete crushing or by wall lateral instability. Chapter 7 presents a 
summary of the findings of the study and Appendix A presents analysis results of OpenSees 
models used to determine buckling in columns for different axial force profiles. 
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2 Analytical Models for Global Instability 

2.1 INTRODUCTION 

Figure 1.2 presented a typical multistory wall, where the foundation, floor diaphragms, and roof 
diaphragm provide lateral support at every story level. Thus, the unsupported height of the wall 
boundary can be taken equal to the story clear height, ℎ௨. An effective length ݇ℎ௨ can be defined 
based on the rotational restraints at the different floor levels. In the present analysis, which is 
concerned with very slender walls, it may be reasonable to consider the wall to be fixed at top and 
bottom of the clear height. Accordingly, k is taken equal to 0.5. If the boundary yields in tension, 
a cracked section is produced, with crack width dependent on the amplitude of the reinforcement 
tensile strain ߳௦௠ during the tension excursion. In a previously yielded wall, crack closure under 
deformation reversal may require yielding of the longitudinal reinforcement in compression. In a 
wall with two curtains of reinforcement, any slight asymmetry in the reinforcement is likely to 
result in one curtain yielding before the other, leading to out-of-plane curvature and a tendency to 
buckle out of plane. In a wall with one curtain of reinforcement, out-of-plane curvature occurs 
even more readily. Whether the wall remains stable depends on the amplitude of the prior tensile 
strain ߳௦௠ and the slenderness ratio ℎ௨ ܾ⁄  of the wall. As a design approximation, the critical 
slenderness ratio can be related to the maximum prior tensile strain ߳௦௠, as will be shown later. In 
this research different procedures are used to estimate ߳௦௠ in laboratory tested walls (Oesterle et 
al., 1976; Thomsen and Wallace, 2004) and walls in two Chilean buildings (Buildings #1 and #2). 
The estimated tensile strain values are compared with the limit given by the buckling theory 
developed in section 2.2. This enables an assessment of whether the walls are likely to have 
buckled prior to concrete crushing. 

2.2 SIMPLIFIED MECHANICS OF GLOBAL INSTABILITY1 

Consider the wall shown in Figure 2.1. Wall lateral buckling is constrained by the story clear height 
(Figure 2.1a). We assume the wall has been flexed previously such that the boundary yields in 
tension (Figure 2.1b), with a unit length (measured in the horizontal direction) of the boundary 
element developing tension force ܶ, maximum tensile stress ௦݂௠, and tensile strain ߳௦௠. Upon 
deformation reversal, just before the boundary element yields in compression, the longitudinal 
reinforcement will have unloaded by strain ߳௦ = ௦݂௠ ⁄௦ܧ  and reloaded in compression to −߳௬, 

                                                 
 
1 In the following theoretical development, some concepts introduced by Paulay and Priestley (1993) and Chai and 
Elayer (1999) are followed. 
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ignoring the Bauschinger effect, such that the residual tensile strain is approximately ߳௥௘௦ =߳௦௠ି ௦݂௠ ⁄௦ܧ − ߳௬. To simplify the model, the residual tensile strain is approximated as ߳௥௘௦ ≈߳௦௠ − 0.005. Invariably, one curtain of reinforcement will yield before the other, producing the 
curvature shown in Figure 2.1d, and out-of-plane displacement as illustrated in Figure 2.1a and 
Figure 2.1c. Whether the boundary remains stable depends on magnitude of the lateral 
displacement ߜ௠௔௫ relative to the wall thickness ܾ, which relates to the maximum previous tensile 
strain ߳௦௠ and the resulting curvature as illustrated in Figure 2.1c. 

 

Figure 2.1 Lateral instability of wall boundary previously yielded in tension, partly 
after Paulay and Priestley (1993). 

To estimate conditions for stability, we first approximate the effective length (height). For 
a multi-story wall with length ݈௪ not less than the first-story clear height ℎ௨, it is reasonable to 
assume that the flexural plastic hinge extends over the height of the first story. Assuming fixity at 
top and bottom, the effective length in Figure 2.1a is ݇ℎ௨ = 0.5ℎ௨. Examining the effective length 
more closely (Figure 2.1c) and assuming a simple harmonic buckled shape, we can express the 
lateral displacement as: (ݔ)ߜ = ௠௔௫ߜ  ∙ ݊݅ݏ ൬ ℎ௨݇ݔ ൰ (2.1)ߨ

Computing the second derivative of Equation (2.1). ߜᇱᇱ(ݔ) = ௠௔௫ߜ−   ൬ ℎ௨൰ଶ݇ߨ ݊݅ݏ ൬ ℎ௨݇ݔ  ൰ߨ
(2.2)

Now Equation (2.2) is evaluated at the element midheight to obtain the maximum 
curvature. ߜᇱᇱ ൬݇ℎ௨2 ൰ = ߶௠௔௫ = ௠௔௫ߜ− ൬ ௨൰ଶߨ݈݇

 
(2.3)



9 

The maximum lateral displacement is defined as ߜ௠௔௫ =  in Figure 2.1c. Therefore, the ܾߦ
relation between ߜ௠௔௫ and the maximum curvature ߶௠௔௫ is: ߜ௠௔௫   = ܾߦ = ߶௠௔௫ ൬݇ℎ௨ߨ ൰ଶ

 
(2.4)

As indicated before, the residual tensile strain is approximated as ߳௥௘௦ ≈ ߳௦௠ − 0.005. 
Therefore, from Figure 2.1d the maximum curvature is: ߶௠௔௫ = ߳௦௠ − 0.005݀  

(2.5)

Combining Equation (2.4) and (2.5): ܾߦ = ߳௦௠ − 0.005݀ ൬݇ℎ௨ߨ ൰ଶ
 

(2.6)

Equilibrium of forces and moments in the free-body diagram of Figure 2.1d result in the 
following two expressions: ෍ ܨ = 0 → ܥ = ௖ܥ + ௦ (2.7)ܥ

෍ ܯ = 0 → ܾߦܥ = (2.8) ܾߛ௖ܥ

From Equation (2.8) we obtain: ܥ = ߦߛ ௖ (2.9)ܥ

In Equation (2.8), moments are taken about the centerline, such that moments of 
longitudinal reinforcement compressive force resultants (assumed equal) cancel. Assuming 
longitudinal reinforcement is stressed to ௬݂ and assuming the concrete compressive force ܥ௖ is 
represented by the usual rectangular stress block with depth ߚଵܿ and average stress 0.85 ௖݂ᇱ, we can 
write: ܥ௦ = ܾߩ ௬݂ (2.10)ܥ௖ = 0.85 ௖݂ᇱߚଵܿ (2.11)

From Figure 2.1d: ܾߛ = 2ܾ − 12  ଵܿߚ
(2.12)
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Then Equation (2.11) can be expressed as: ܥ௖ = 0.85 ௖݂ᇱ(1 − (2.13) ܾ(ߛ2

Substituting Equation (2.9), Equation (2.10) and (2.13) in Equation (2.7): ߦߛ 0.85 ௖݂ᇱ(1 − ܾ(ߛ2 = 0.85 ௖݂ᇱ(1 − ܾ(ߛ2 + ܾߩ ௬݂ (2.14)

Manipulating Equation (2.14) we obtain: ߛଶ − ߛ ൬12 + ൰ߦ + 2ߦ ቀ1 + ݉0.85ቁ = 0 (2.15)

in which ݉ = ߩ ௬݂ ௖݂ᇱ⁄  is the mechanical reinforcement ratio. 

Equation (2.16) shows the solutions of the quadratic equation: 

ߛ = ቀ12 + ቁߦ ± ටቀ12 + ቁଶߦ − ߦ2 ቀ1 + ݉0.85ቁ2  
(2.16)

To have a real solution and stability, the term in the radical must be positive. Then: ൬12 + ൰ଶߦ ≥ ߦ2 ቀ1 + ݉0.85ቁ (2.17)

Rearranging terms of Equation (2.17):  ߦଶ − ߦ ൬1 + 2݉0.85൰ + 14 ≥ 0 (2.18)

In order to meet Equation (2.18), the upper bound of ߦ is given by the smallest solution of 
the quadratic equation. Therefore: 

ߦ ≤ 0.5 ቌ1 + 2݉0.85 − ඨ൬ 2݉0.85൰ଶ + 4݉0.85ቍ (2.19)

Equation (2.19) was originally introduced by Paulay and Priestley (1993). From Figure 
2.1d, ݀ = ܾ From Equation (2.6), defining the width ܾ as the critical width ܾ௖௥ and solving for .ܾߢ ݇ℎ௨⁄  results in: ܾ௖௥݇ℎ௨ = ߨ1 ඨ߳௦௠ − ߦߢ0.005  (2.20)
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The main variables appearing in Equation (2.20) are slenderness ratio ݇ℎ௨ ܾ⁄ , maximum 
tensile strain ߳௦௠ in longitudinal reinforcement, effective depth parameter ߢ for longitudinal 
reinforcement, and ߦ. Parameter ߢ can be found from ݀ = ߢ where it is noted that ,ܾߢ ≈ 0.8 for 
thin walls with two curtains of reinforcement and 0.5 for walls with single layer of reinforcement. 
From this, it is clear that walls with two curtains of longitudinal reinforcement are inherently more 
stable than walls with a single curtain. 

Parameter ߦ relates to the mechanical reinforcement ratio as shown in Equation (2.19). The 
somewhat complex expression for this parameter makes it inconvenient for preliminary design. 
For practical construction, 0.4 ≤ ඥߦ ≤ 0.6. By selecting typical values, a more practical 
preliminary design tool might be developed. 

Equation (2.20) is plotted in Figure 2.2 for the two practical limit values of ඥߢ ,ߦ = 0.8, 
and considering fixed-fixed boundary conditions (݇ =0.5). The strain corresponding to fracture of 
the boundary element longitudinal reinforcement represents a practical upper bound for strain in 
the reinforcement. Considering the effects of low-cycle fatigue, the fracture strain of reinforcement 
bars depends on the number of cycles and the strain range ߳௔ of each cycle (Coffin, 1954; Manson, 

1953; Brown and Kunnath, 2004). For earthquake loading, a commonly accepted maximum tensile 
strain is 0.05 (Moehle, 2014). Therefore, the practical range of strain indicated in Figure 2.2 is 
limited by 0.05. Also shown in the figure is the limiting slenderness ratio of ℎ௨ ܾ⁄ = 16, as 
specified in the 1997 Uniform Building Code. If this slenderness limit is considered, the maximum 
useable tensile strain before buckling in compression ranges from 0.025 to 0.05. 

 

Figure 2.2 Critical slenderness ratio as a function of maximum tensile strain. 

The preceding derivation is based on an idealized wall boundary subjected to uniform 
compressive strain. Actual wall boundaries have strain gradient along the wall length, which would 
tend to brace the edge of the wall. This suggests that the preceding results should be conservative 
for actual wall boundaries. 
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2.3 NONLINEAR BEAM-COLUMN ELEMENTS WITH FORCE-BASED 
FORMULATION 

2.3.1 Introduction 

Two approaches are usually followed to perform nonlinear analysis of frame structures: 
concentrated plasticity and distributed inelasticity elements. For the case of concentrated plasticity 
elements, inelastic deformations take place at predetermined locations at the element ends. For the 
case of distributed inelasticity elements, nonlinearity is defined at the sectional level. The element 
is modeled with a number of controlling sections and then the inelastic behavior is integrated to 
obtain the global inelasticity of the structure. Therefore, there is no need to predefine the regions 
where nonlinear excursions can occur. 

One way of computing the section response is by discretizing it using fibers, with each 
fiber following a uniaxial nonlinear material behavior. By this approach, the model does not 
require calibration of the moment-curvature relation. However, reproducing flexure-shear 
interaction can be challenging. 

Two formulations are normally used in distributed inelasticity elements: displacement-
based and the force-based formulations. For this study, force-based beam-column elements with 
fibers and nonlinear geometry are considered to model buckling of prismatic sections under 
tension/compression loading. Open Systems for Earthquake Engineering Simulation (OpenSees) 
is used as the analysis platform. The use of OpenSees force-based elements here is limited to the 
buckling analysis of columns. For walls, where buckling does not involve the entire cross section 
and is limited to the boundary elements region, a different approach using nonlinear finite element 
methods is considered, as described in section 2.4. Frame analyses are performed in the buckling 
plane only. 

2.3.2 Two-dimensional element formulation 

The basic principles of distributed inelasticity elements with force-based formulation in 2D 
problems are presented next (Filippou and Fenves, 2004). Section level analysis is a crucial step, 
since the material nonlinear behavior is introduced at this level using uniaxial constitutive 
relationships of the form ߪ௫ =  ௫(߳௫) for each fiber. The strain and stress are functions of theߪ
position x along the element axis and the position within the cross sections specified in local 
coordinates y and z. The axial strain at point M in Figure 2.3 can be written as the product of two 
functions: ߳௑(ݔ, ,ݕ (ݖ = ሼ1 ሽݕ− ൜߳௔(ݔ)ϕ௭(ݔ)ൠ = ሼܽ௦(ݕ)ሽሼ݁(ݔ)ሽ (2.21)

where ሼ݁(ݔ)ሽ is the section deformations vector (߳௔ = axial strain at coordinate origin; ϕ௭(ݔ) = 
curvature about z-axis) and ሼܽ௦(ݕ)ሽ represents the strain distribution at section x according to 
Bernoulli’s assumption of plane sections remaining plane. 
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Figure 2.3 Cross section with coordinates axes. 

Section forces vector is defined as: 

ሼ(ݔ)ݏሽ = ൜ ൠ(ݔ)௓ܯ(ݔ)ܰ = න ൜ ൠݕ−1 ஺ܣ݀௫(߳௑)ߪ  (2.22)

where ܰ is the axial force and ܯ௓ is the moment about the z-axis. The area integral of Equation 
(2.22) is evaluated numerically using fiber discretization in the y-direction. The same approach is 
used to evaluate Equation (2.23). The section stiffness matrix ሾ݇௦(ݔ)ሿ is defined as the partial 
derivative of the section forces ሼ(ݔ)ݏሽ with respect to section deformations ሼ݁(ݔ)ሽ, as shown next: 

ሾ݇௦(ݔ)ሿ = ߲ሼ(ݔ)ݏሽ߲ሼ݁(ݔ)ሽ = න ൜ ൠݕ−1 ௫߲߳௑ߪ߲ ሼܽ௦(ݕ)ሽ݀ܣ஺  (2.23)

The differential equations of equilibrium for a frame element in the undeformed 
configuration are: ߲߲ܰx + ;   (ݔ)௫ݓ ߲ଶܯ௭߲xଶ − (2.24) (ݔ)௬ݓ

in which ݓ௫ and ݓ௬ are the axial and transverse components of the distributed element load. 

Figure 2.4 shows the basic force system of a 2D beam-column element ሼݍሽ =ሾݍଵ ଶݍ  ଷሿ୘, which comprises an axial load and two end moments. In the basic system the shearݍ
forces depend on the end moments and provide equilibrium. The basic deformations ሼݒሽ =ሾݒଵ ଶݒ  ଷሿ୘ comprise one axial deformation and two rotations of the end nodes. These flexuralݒ
deformations are measured relative to the element chord in the deformed configuration. 

Using the basic forces ሼݍሽ (Figure 2.4) as boundary values of the problem to obtain the 
statement of equilibrium: 

ሼ(ݔ)ݏሽ = ൜ܰ(ݔ)(ݔ)ܯൠ = ቈ1 0 00 ቀܮݔ − 1ቁ ቉ܮݔ ൝ݍଵݍଶݍଷൡ = ሾܾ(ݔ)ሿሼݍሽ (2.25)
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The matrix ሾܾ(ݔ)ሿ represents the force-interpolation functions and can be regarded also as 
an equilibrium transformation matrix between section forces ሼ(ݔ)ݏሽ and basic forces ሼݍሽ. In the 
presence of element loads, the internal forces represent the particular solution of the differential 
equations in Equation (2.24), which only need to satisfy homogeneous boundary conditions. 
Denoting the particular solution ሼݏ௪(ݔ)ሽ, the equilibrium equation is: ሼ(ݔ)ݏሽ = ሾܾ(ݔ)ሿሼݍሽ + ሼݏ௪(ݔ)ሽ (2.26)

 

Figure 2.4 (a) Element basic force system; (b) basic deformation system; (c) forces 
at the section level. 

The geometric compatibility of the frame element can be established with the principle of 
virtual forces as shown. 

ሽݒሽ்ሼݍሼߜ = න ௅ݔሽ݀(ݔ)ݏሼ݁ሽ்ሼߜ  (2.27)

where ሼݒሽ is the intra-element deformation vector shown in Figure 2.4. Using Equation (2.26) for 
the equilibrium relation of the virtual force system, ߜሼ(ݔ)ݏሽ = ሾܾ(ݔ)ሿߜሼݍሽ, and after substitution 
into Equation (2.27) gives the compatibility statement as: 

ሼݒሽ = නሾܾ(ݔ)ሿ்ሼ݁(ݔ)ሽ݀ݔ௅  (2.28)

In the force-based formulation (Spacone et al., 1996) we make use of the fact that the 
internal forces ሼ(ݔ)ݏሽ at a distance x for the end i of a two-node frame element are given as the 
product of the force-interpolation functions ሾܾ(ݔ)ሿ and the basic forces ሼݍሽ according to Equation 
(2.25). Note that these relations hold for any material response, as long as the equilibrium can be 
satisfied in the undeformed configuration (small displacements). The element deformations can 
then be established by the principle of virtual forces from Equation (2.28). This implies that the 
section deformations ሼ݁(ݔ)ሽ can be obtained from the section forces ሼ(ݔ)ݏሽ. However, the inverse 
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of this relation is available. Therefore, finding ሼ݁(ݔ)ሽ requires solving the following nonlinear 
system of equations: ሾܾ(ݔ)ሿሼݍሽ + ሼݏ௪(ݔ)ሽ − ൛ݏ൫݁(ݔ)൯ൟ = 0 (2.29)

This is a main difference with respect to the displacement-based element formulation, 
which is based in standard finite element approach where section deformations are estimated as 
the derivatives of an imposed displacement field. 

The force-based formulation uses the available exact static equilibrium equations between 
the end nodal forces, ሼݍሽ and the internal forces, ሼݏሽ. This results in constant axial load and linear 
bending moment distribution along the element length. On the other hand, the displacement-based 
formulation uses the principle of virtual displacements to formulate “weak” equilibrium between 
these two sets of forces, resulting in an error where the internal forces at each section are not in 
equilibrium with the element basic forces, if fine meshes are not implemented. Due to the enforced 
displacement field along the element length, the displacement-based element has constant axial 
deformation and linear curvature distribution. To properly represent nonlinear behavior of non-
prismatic elements, the displacement-based approach requires mesh refinement to overcome the 
restrictions in the axial deformation and curvature distribution, while the force-based approach 
requires the addition of more integration points but still using fewer elements. 

The solution of this nonlinear system requires establishing the change of the element 
deformations with ሼݍሽ. This change is reflected in the following expression: ߲ሼݒሽ߲ሼݍሽ = ߲߲ሼݍሽ නሾܾ(ݔ)ሿ்ሼ݁(ݔ)ሽ݀ݔ௅

଴ = නሾܾ(ݔ)ሿ்ሾ ௦݂(ݔ)ሿሾܾ(ݔ)ሿ݀ݔ௅
଴  (2.30)

where ሾ ௦݂(ݔ)ሿ is the section flexibility (inverse of section stiffness ሾ݇௦(ݔ)ሿ defined in Equation 
(2.23). Equation (2.30) depicts the tangent flexibility matrix ሾ ௧݂ሿ of the element. 

Equations (2.28) and (2.30) for the state determination of the distributed inelasticity 
elements involve integrals over the element length. These integrals are evaluated numerically as 
follows: 

න g(x)݀ݔ୐ ≈ ෍ ௡ூ௉(௜ݔ)௜݃ݓ
௜ୀଵ  (2.31)

Several quadrature rules are available to evaluate Equation (2.31). Section 2.3.7 describes 
the Gauss-Lobatto quadrature, which is used here. This rule is particularly suitable when it is 
important to include the ends of the element in the evaluation. This is indeed the case in earthquake 
engineering applications, where the largest inelastic deformations quite often take place at the 
element ends. Four points suffice for the integrals in Equations (2.28) and (2.30) as long as we are 
not interested in the effect of the midspan section. In the latter case, five integration points are 
recommended. 
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2.3.3 State determination of elements with force-based formulation 

Solving structural analysis problems requires determining the element basic forces, ሼݍሽ, given the 
element deformations, ሼݒሽ (element state determination). In force-based formulation elements this 
task is not as straightforward task as it is for displacement-based formulation elements. 

A complication of the force-based formulation is that there is not a direct relation between 
the element deformations and the basic forces, as shown in Equation (2.29). State determination 
of force-based elements requires nested iterative procedures to find equilibrium between the end 
deformations and the section deformations. Figure 2.5 shows the first iteration of this process. 

The force-based formulation is computationally more expensive in comparison with the 
displacement-based formulation. However, it guarantees exact equilibrium between the end forces 
of the element and those at the section level, allows representing a non-uniform curvature field 
along the element length, and allows a fewer number of elements to be used to converge to the 
exact solution. These three reasons justify the selection of the force-based formulation to model 
buckling of prismatic under tension/compression cycles. 

 

 

Figure 2.5 First iteration of force-based element state determination. 

2.3.4 Uniaxial stress-strain relationship of concrete 

For OpenSees modeling of column specimens, the material object used for confined and 
unconfined concrete is Concrete01. This is a uniaxial concrete model (Kent and Park, 1971; Scott 

ݒ = ଷݒଶݒଵݒ
௨ݒ = ݒ − ௥ݒ

଴ݍ = ݂ ିଵ ௨ݒ

(ݔ)ଵݏ = (ݔ)ܾ ଴ݍ

݁ଵ(ݔ)
௥ଵݒ = න (ݔ)ܾ ்௅

଴ ݁ଵ(ݔ) ݔ݀
௨ଵݒ = ݒ − ௥ଵݒ

ଵݍ = ଴ݍ + ݂ ିଵ ௨ଵݒ

Given element deformations

Find deformations residual 

If ሼݒ௨ሽ ≤ ݈݋ݐ → ሼݍሽ = ሼݍ଴ሽ 
Otherwise continue cycle 

And find element 
forces 

Find section deformations 
by iterations Find new resisting 

element deformations 

Calculate new 
deformations residual 

Calculate new element 
forces 

If ሼݒ௨ଵሽ ≤ ݈݋ݐ → ሼݍሽ = ሼݍଵሽ 
Otherwise iterate again 
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et al., 1980; Hognestard, 1951; Roy and Sozen, 1964) with degraded linear unloading/reloading 
stiffness according to the work of Karsan and Jirsa (1969) and no tensile strength. 

Equation (2.32) shows the concrete stress ௖݂ as a function of the given strain ߳௖ for 
Concrete01 model. 

௖݂ = ۔ۖەۖ
ۓ ௖݂ᇱ ቈ2߳௖߳଴ − ൬߳௖߳଴൰ଶ቉ ݎ݋݂ ߳௖ ≤ ߳଴

௖݂ᇱሾ1 − ܼ(߳௖ − ߳଴)ሿ ≥ 0.2 ௖݂ᇱ ݎ݋݂ ߳௖ > ߳଴
 (2.32)

In Equation (2.32), the peak stress value ௖݂ = ௖݂ᇱ occurs at a strain ߳଴. For this study ߳଴ is 
taken as 0.002 (unconfined concrete). Equation (2.33) defines the parameter Z. ܼ = 0.53 + 0.002 ௖݂ᇱ௖݂ᇱ − 1000 − ߳଴ (2.33)

where ௖݂ᇱ is in psi. 

2.3.5 Localization in force-based elements 

Modeling structures with a strain softening constitutive model is numerically challenging because 
the response is mesh dependent. Localization in displacement-based solid finite elements has been 
extensively studied in the past by, among several others, Bazant and Oh (1983), Bazant and Planas 
(1998) and De Borst (1994). The concept of constant fracture energy has been used to deal with 
localization and mesh sensitive response in continuum finite element analysis (Bazant and Oh, 
1983; Bazant and Planas, 1998). 

Force-based elements lose objectivity at local and global levels depending on the section 
constitutive behavior (Scott and Hamutcuoglu; 2008). Moreover, in force-based elements, strains 
localize at one integration point, which is a disadvantage in comparison to the displacement-based 
elements, where the displacement interpolation functions force localization within a single 
element. The number and placement of the integration points of the numerical integration scheme 
used for element integrals define not only the accuracy of the result but also the structural response 
during material softening (Coleman and Spacone, 2001). 

The concept of constant fracture energy can be applied to force-based elements that soften 
in compression, according to the work of Coleman and Spacone (2001). This is the approach 
followed in this study to regularize the force-based elements avoiding ill-posed solutions and 
mesh-dependent response. Equation (2.34) defines the fracture energy in compression ܩ௖ for the 
post-peak part of the compressive stress-strain relation of concrete. 

௖ܩ = න ௖݂݀ݑ௜ (2.34)
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where ௖݂ is the concrete stress and ݑ௜ is the inelastic displacement. Equation (2.34) represents the 
area under the post-peak portion of the compressive stress-displacement curve. Equation (2.34) 
can be also expressed in terms of stress and strain as shown next. 

௖ܩ = ℎ න ௖݂݀߳௜ (2.35)

where ℎ is a length scale. For smeared cracking models in nonlinear finite element analysis, ℎ 
represent the crack bandwidth (section 2.4.5). Here, for force-based elements ℎ becomes the length 
(weight) of the softening integration point. 

The constant fracture energy regularization is now applied to the material model defined 
in section 2.3.4. The pre-peak behavior is still given by Equation (2.32), with a post-peak behavior 
given by a linear softening branch until a stress of 0.2 ௖݂ᇱ is reached at a strain ߳ଶ଴, according to 
Figure 2.6. 

 

 

Figure 2.6 Fracture energy in Kent and Park (1971) relation. 

The value of ߳ଶ଴ must be calibrated according to Equation (2.36) to get a constant energy 
release. 

߳ଶ଴ = ௖0.6ܩ ௖݂ᇱℎ − 0.8 ௖݂ᇱܧ + ߳଴ (2.36)

Experimental tests (Feenstra, 1993) have shown that the total compressive fracture energy 
of concrete ranges from 10 to 25 Nmm mmଶ⁄  (0.06 and 0.14 kip in. in.ଶ⁄ ). According to Equation 
(2.36), the constitutive model must be calibrated for each integration point given that each point 
has a different weight. However, for analysis of out-of-plane instability in slender columns, only 
the weight of one integration point, located at the position where the plastic hinge is expected to 
form, is used to calculate ߳ଶ଴. 

௖݂ 

௖ℎܩ  

௖݂ᇱ 

0.2 ௖݂ᇱ ߳଴ ߳ଶ଴ ߳௖ 

ܧ
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2.3.6 Uniaxial stress-strain relationship of steel reinforcement 

The uniaxial Giuffré-Menegotto-Pinto (Menegotto et al. 1973, Filippou et al. 1983) steel material 
object with isotropic strain hardening is used to model reinforcement bars (Steel02 in OpenSees). 
This model is capable of representing the hysteretic behavior of steel reinforcement exhibiting the 
Bauschinger effect together with isotropic strain hardening. The constitutive response consists of 
one-dimensional stress-strain relations for branches between two subsequent load reversal points. 
The material state parameters are updated after each load reversal. The model is expressed in terms 
of a dimensionless stress ߪ∗ and a scaled strain ߳∗. ߳∗ = ߳ − ߳௥௡߳௬௡ାଵ − ߳௥௡ (2.37)

∗ߪ = ߪ − ௬௡ାଵߪ௥௡ߪ − ௥௡ (2.38)ߪ

where ߳∗ and ߪ∗ are expressed in the strain-stress coordinates of the last reversal point (߳௥௡, ߪ௥௡) 
and in the strain-stress coordinates of the updated yield point (߳௬௡ାଵ, ߪ௬௡ାଵ). Equation (2.39) shows 
the basic expression of the model. σ∗ = ܾ߳∗ + (1 − ܾ)߳∗൫1 + ߳∗ோ൯ଵோ (2.39)

where ܾ is the ratio of the strain hardening to the initial modulus and ܴ is the curvature parameter 
controlling the shape of the unloading/reloading cycles defined in Equation (2.40). ܴ = ܴ଴ − ଶܣ௣௠௔௫ߦଵܣ + ௣௠௔௫ (2.40)ߦ

In Equation (2.40) ܴ଴ is the initial curvature parameter and ߦ௣௠௔௫ is the maximum plastic 
excursion during a previous half-cycle. Equation (2.41) depicts the isotropic strain hardening. σ௦௛σ௬଴ = ଷܣ ቆ߳௠௔௫௧߳

௬଴ − ସቇ (2.41)ܣ

where σ௬଴ and ߳௬଴ are the initial yield stress and corresponding strain, ߳௠௔௫௧  is the maximum 
absolute total strain at the instant of strain reversal, and σ௦௛ is the stress shift in the linear yield 
asymptote for isotropic hardening. ܣଵ to ܣସ are material constants that require experimental 
determination. 

2.3.7 Quadrature rule for beam-column elements 

A wide range of numerical integration options are available in OpenSees to be used in force-based 
beam-column elements (Scott, 2011). Only the Gauss-Lobatto quadrature is used for this study, as 
described in the following. 
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The discrete forms for numerical evaluation of Equations (2.28) and (2.30) are: 

ሼݒሽ ≈ ෍ሾܾ(ݔ௜)ሿ்ሼ݁(ݔ௜)ሽݓ௜௡ூ௉
௜ୀଵ  (2.42)

ሾ ௧݂ሿ ≈ ෍ሾܾ(ݔ௜)ሿ்ሾ ௦݂(ݔ௜)ሿሾܾ(ݔ௜)ሿݓ௜௡ூ௉
௜ୀଵ  (2.43)

where ݊ܲܫ is the number of integration points along the element length, ݔ௜ is the location of each 
integration point within the element length and ݓ௜ is its associated weight. Distributed plasticity 
methods permit yielding at any integration point along the element length. 

Gauss-Lobatto integration is the default rule in OpenSees and the most used approach in 
force-based elements because it places an integration point at each end of the element, where 
bending moments are largest in the absence of interior element loads. The order of accuracy of this 
rule is 2݊ܲܫ − 3. 

Table 2.1 shows the locations of integration points and weights for the Gauss-Lobatto 
integration rule. 

Table 2.1 Gauss-Lobatto rule: integration points and weights for -1≤xi≤1. 

Number of 
integration points, 

nIP 
xi wi 

3 

0 
43 

±1 
13 

4 
±ඨ15 

56 

±1 
16 

5 

0 
3245 

±ඨ37 
4990 

±1 
110 
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2.4 NONLINEAR FINITE ELEMENTS 

2.4.1 Introduction 

The use of force-based nonlinear beam-column elements in OpenSees for buckling analysis is 
limited to axially loaded columns (section 2.3). In walls, buckling is a more complicated 
phenomena because it occurs locally at the boundary elements and does not necessarily propagate 
through the entire cross section. Therefore, the use of a single beam-column element located at the 
centroid of the cross section cannot accurately represent the complex behavior expected in a wall 
boundary. 

Two-dimensional or three-dimensional nonlinear finite element models can be used to 
perform buckling analysis in columns and walls. These models allow representing the local 
buckling expected in wall edges more accurately. For this case, the software TNO DIANA is used 
to perform nonlinear finite element analysis in buckled specimens. Geometric nonlinearity is 
considered using a Total Lagrange description. Different elements are considered for column and 
wall analyses. 

For columns, a four-node, three-side isoparametric solid pyramid element (TE12L) are 
used to model concrete. These elements have 12 degrees of freedom and use a linear interpolation 
polynomial for the translations. Therefore, the stress and strain distribution is constant over the 
element. Buckling modeling requires using several elements within the member thickness. This is 
computationally very expensive for the case of walls, where two dimensions (length and height) 
are much larger than the third one (thickness). For this reason, solid elements are not used to model 
buckling in walls. Instead, four-node, quadrilateral isoparametric curved shell elements (Q20SH) 
are selected instead. These elements are based on an isoparametric degenerated-solid approach by 
introducing two shell hypotheses: straight normal and zero normal stress. The first hypothesis 
assumes plane sections remain plane but not necessarily orthogonal to the reference surface (it 
includes shear deformation according to Reissner-Mindlin theory). The second hypothesis 
assumes that the normal stress component in the normal direction of a lamina basis is forced to 
zero. This formulation allows using several integration points within the element thickness, which 
is fundamental for buckling modeling. For comparison purposes, columns are also analyzed using 
Q20SH curved-shell elements. 

In DIANA, longitudinal reinforcing bars can be modeled as embedded reinforcement, 
which means that the bars do not have degrees of freedom of their own and their strains are 
computed from the displacement field of the mother elements (TE12L for columns, Q20SH for 
walls). Therefore, there is perfect bond between the reinforcement and the surrounding concrete. 
In this formulation the finite element mesh can be defined independently of the bar locations. 

2.4.2 Four-node isoparametric solid pyramid element (TE12L) 

The TE12L (Figure 2.7) is a four-node, three-side isoparametric solid pyramid element with three 
degrees of freedom per node (displacements in three orthogonal directions). This element is used 
here to study buckling of prismatic columns under tension-compression cycles. It is based on linear 
interpolation and numerical integration. 
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Figure 2.7 TE12L solid element (DIANA, 2014). 

The polynomials for the translations ݑ௫௬௭ can be expressed as: u௜(ߦ, ,ߟ (ߞ = ܽ଴ + ܽଵߦ + ܽଶߟ + ܽଷ(2.44) ߞ

These polynomials yield a constant strain and stress distribution over the element volume. 
This study uses the default integration scheme which is one point over the element volume. 

2.4.3 Four-node quadrilateral isoparametric curved shell elements (Q20SH) 

The Q20SH element (Figure 2.8) is a four-node quadrilateral isoparametric curved shell element 
with five degrees of freedom per node (displacements in three orthogonal directions and rotation 
around two orthogonal axes in the element plane). 

 

Figure 2.8 Q20SH curved shell element (DIANA, 2014). 

It is based on linear interpolation. The polynomials for the translations ݑ and the rotations ߶ can be expressed as: ݑ௜(ߦ, (ߟ = ܽ଴ + ܽଵߦ + ܽଶߟ + ܽଷ(2.45) ߟߦ

,ߦ)௜ߠ (ߟ = ܾ଴ + ܾଵߦ + ܾଶߟ + ܾଷߟߦ (2.46)
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Typically, for a rectangular element, these polynomials yield approximately the following 
strain and stress distribution in the element plane ݕݔ (ݖ axis perpendicular to the element plane). 
The strain ߳௫௫, the curvature ߶௫௫, the moment ݉௫௫, the membrane force ݊௫௫ and the shear force ݍ௫௭ are constant in ݔ direction and vary linearly in ݕ direction. The strain ߳௬௬, the curvature ߶௬௬, 
the moment ݉௬௬, the membrane force ݊௬௬ and the shear force ݍ௬௭ are constant in ݕ direction and 
vary linearly in ݔ direction. 

The in-plane lamina strains ߳௫௫, ߳௬௬ and ߛ௫௬ vary linearly in the thickness direction. The 
transverse shear strains ߛ௫௭ and ߛ௬௭ are forced to be constant in the thickness direction. A shear 
reduction factor is used to obtain an equivalent uniform shear stress, since the actual transverse 
shear stress varies parabolically over the thickness. For the case of thin shells (walls in this case), 
this factor is considered as 1.2, which is the default value used in TNO DIANA. This modification 
gives a constant shear stress that yields approximately at the same shear strain energy that the 
actual parabolic shear stress. 

The curved shell elements are based on isoparametric degenerated-solid approach by 
introducing two shell hypotheses: 

• Plane sections It assumes that plane sections remain plane, but not 
necessarily orthogonal to the reference surface. 

• Zero-normal-stress It assumes that the normal stress component in the 
normal direction of a lamina basis is forced to zero. 

For this study, the Q20SH quadrilateral element is numerically integrated using a 2x2 
Gauss scheme for in-plane integration (Figure 2.9). 

 

Figure 2.9 Gauss integration scheme 2x2 for Q20SH element. 

Figure 2.10 shows the enumeration of the integration points in the thickness direction for 
various schemes. Note that two-point integration is according to a Gauss rule. In any other case, a 
Simpson rule is applied. This study considers the Simpson rule with eleven integration points. 
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Figure 2.10 Thickness integration schemes for Q20SH element. 

2.4.4 Total strain crack model 

There are several approaches to model concrete fracture. In this study, the smeared crack model 
(Rashid 1968, Feenstra et al., 1991) is used. By this approach, the cracked solid is considered as a 
continuum. Therefore, the behavior of cracked concrete is described in terms of stress-strain 
relations and, upon cracking, the initial stress-strain relation is replaced by an orthotropic stress-
strain relation. The finite element mesh is then preserved, which makes this model computationally 
efficient. The concrete constitutive model can be based on different concepts like decomposed or 
total strain. The decomposed strain concept (De Borst et al. 1985, Rots 1988) is based on the 
decomposition of the strain into an elastic part and an inelastic part, ߳ = ߳௘௟ + ߳௖௥. In the total 
strain concept the stress is a function of the total strain and this is the approach followed here. 

The constitutive model based on total strain was developed along the lines of the modified 
compression field theory proposed by Vecchio and Collins (1986) and extended to 3D by Selvy 
and Vecchio (1993). The concrete constitutive behavior depends on the model adopted for the 
shear stress-strain relation. This results in different crack models, the fixed and the rotating 
smeared crack model. For this study, the rotating crack model embedded in a total strain concept 
is used. This model uses the coaxial stress-strain approach, in which the stress-strain relationships 
are evaluated in the principal directions of the strain vector, corresponding to the crack directions.  

The strain vector ൛߳௫௬௭ൟ in the global coordinate system xyz is updated according to: ൛߳௫௬௭ൟ௜ାଵ = ൛߳௫௬௭ൟ௜ + ∆൛߳௫௬௭ൟ௜ାଵ
 (2.47)

which is transformed to the strain vector in the crack directions nst with the strain transformation 
matrix ሾܶሿ. ሼ߳௡௦௧ሽ௜ାଵ = ሾܶሿ ∙ ൛߳௫௬௭ൟ௜ାଵ

 (2.48)

In the rotating crack model the strain transformation matrix depends on the current strain 

vector ቂܶ ቀ൛߳௫௬௭ൟ௜ାଵቁቃ. This transformation matrix is determined by calculating the eigenvectors 

of the strain tensor given by Equation (2.49). 

ሾܧሿ = ൥߳௫௫ ߳௫௬ ߳௫௭߳௬௫ ߳௬௬ ߳௬௭߳௭௫ ߳௭௬ ߳௭௭ ൩ (2.49)
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The eigenvalues are stored in the rotation matrix ሾܴሿ. 
ሾܴሿ = ሾሼ݊ሽ ሼݏሽ ሼݐሽሿ = ൥ܿ௫௡ ܿ௫௦ ܿ௫௧ܿ௬௡ ܿ௬௦ ܿ௬௧ܿ௭௡ ܿ௭௦ ܿ௭௧ ൩ (2.50)

where ܿ௫௡ =  .that is, the cosine between the x axis and the n axis ,(௫௡∅)ݏ݋ܿ

In the general 3D stress situation, the strain transformation matrix ሾܶሿ is calculated by 
substituting the appropriate values. 

ሾܶሿ =
ێێۏ
ێێێ
ۍ ܿ௫௡ଶܿ௫௦ଶܿ௫௧ଶ2ܿ௫௡ܿ௫௦2ܿ௫௦ܿ௫௧2ܿ௫௧ܿ௫௡

ܿ௬௡ଶܿ௬௦ଶܿ௬௧ଶ2ܿ௬௡ܿ௬௦2ܿ௬௦ܿ௬௧2ܿ௬௧ܿ௬௡

ܿ௭௡ଶܿ௭௦ଶܿ௭௧ଶ2ܿ௭௡ܿ௭௦2ܿ௭௦ܿ௭௧2ܿ௭௧ܿ௭௡

ܿ௫௡ܿ௬௡ܿ௫௦ܿ௬௦ܿ௫௧ܿ௬௧ܿ௫௡ܿ௬௦ + ܿ௬௡ܿ௫௦ܿ௫௦ܿ௬௧ + ܿ௬௦ܿ௫௧ܿ௫௧ܿ௬௡ + ܿ௬௧ܿ௫௡

ܿ௬௡ܿ௭௡ܿ௬௦ܿ௭௦ܿ௬௧ܿ௭௧ܿ௬௡ܿ௭௦ + ܿ௭௡ܿ௬௦ܿ௬௦ܿ௭௧ + ܿ௭௦ܿ௬௧ܿ௬௧ܿ௭௡ + ܿ௭௧ܿ௬௡

ܿ௭௡ܿ௫௡ܿ௭௦ܿ௫௦ܿ௭௧ܿ௫௧ܿ௭௡ܿ௫௦ + ܿ௫௡ܿ௭௦ܿ௭௦ܿ௫௧ + ܿ௫௦ܿ௭௧ܿ௭௧ܿ௫௡ + ܿ௫௧ܿ௭௡ۑۑے
ۑۑۑ
ې
 (2.51)

The constitutive model is formulated in the crack coordinate system as shown. ሼߪ௡௦௧ሽ௜ାଵ = ൛ߪ൫ሼ߳௡௦௧ሽ௜ାଵ൯ൟ (2.52)

The updated vector in the xyz coordinate system is given by: ൛ߪ௫௬௭ൟ௜ାଵ = ሾܶሿ் ∙ ሼߪ௡௦௧ሽ௜ାଵ (2.53)

The strain transformation matrix ሾܶሿ is given by the current strain transformation matrix ቂܶ ቀ൛߳௫௬௭ൟ௜ାଵቁቃ in the coaxial rotating concept. In a fixed concept the matrix is given by its value 

at incipient cracking. 

During loading the concrete is subjected to both tensile and compressive stress, which can 
result in cracking and crushing of the material. In the 3D concrete material, the deterioration due 
to cracking and crushing is monitored with six internal damage variables ߙ௞, collected in the vector ሼߙሽ. Internal variables k=1, 2 and 3 are monitoring the maximum strain, hence, are greater or equal 
zero, and variables k=4, 5 and 6 are monitoring the minimum strain and, hence, are smaller or 
equal zero (Figure 2.11). It is assumed that damage recovery is not possible and therefore the 
values of internal damage variables ߙ௞ are always increasing. 

 

Figure 2.11 Loading-unloading parameters. 
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The loading-unloading-reloading condition is monitored with the additional unloading 
constraints ݎ௞ (Figure 2.11), which model separately the stiffness degradation in tension and 
compression. The tension unloading constraints are: ݎ௞ = ቊ0 ݂݅ ߳௞௜ାଵ > ௞1ߙ ݂݅ ߳௞௜ାଵ ≤ ,௞ߙ ݇ = 1,2,3 (2.54)

The compression unloading constraints are: ݎ௞ = ቊ0 ݂݅ ߳௞ିଷ௜ାଵ < ௞1ߙ ݂݅ ߳௞ିଷ௜ାଵ ≥ ,௞ߙ ݇ = 4,5,6 (2.55)

The internal variables vector is updated as shown: ሼߙሽ௜ାଵ = ሼߙሽ௜ାଵ + ሾܹሿ ∙ ∆ሼ߳ሽ (2.56)

The matrix ሾܹሿ is given by: ሾܹሿ = ൜ ௞ܹ,௞ = 1 − ௞ݎ ݇ = 1,2,3௞ܹ,௞ିଷ = 1 − ௞ݎ ݇ = 4,5,6  (2.57)

With the assumption of no damage recovery, the stress in direction j is given by: ߪ௝ = ௝݂(ሼߙሽ, ሼ߳௡௦௧ሽ) ∙ ݃௝(ሼߙሽ, ሼ߳௡௦௧ሽ) (2.58)

where ௝݂ is the uniaxial stress-strain relationship and ݃௝ is the loading-unloading function with 0 ≤ ݃௝ ≤ 1. If unloading and reloading are modeled with a secant approach, determined by the 
maximum and minimum strain in each crack direction, the loading-unloading function is given by: 

݃௝ = ۔ە
ۓ 1 − ∝௝− ௝߳ߙ௝ ݂݅ ௝߳ > 01 − ∝௝ାଷ− ௝߳ߙ௝ାଷ ݂݅ ௝߳ < 0 (2.59)

A secant stiffness matrix is considered to impose equilibrium between applied and resisting 
forces in an incremental-iterative solution scheme. This approach has proved to be robust and 
stable in reinforced concrete structures with extensive cracking. For tension, the secant stiffness 
terms in the j-th cracking direction are given by: ܧത௝ = ௝݂(ሼߙሽ, ሼ߳௡௦௧ሽ)∝௝  (2.60)

For compression, the terms are: ܧത௝ = ௝݂(ሼߙሽ, ሼ߳௡௦௧ሽ)∝௝ାଷ  (2.61)

The secant stiffness matrix indicated in Equation (2.62) is obtained in the principal 
coordinate system for and orthotropic material with zero Poisson’s ratio in all directions. 
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ሾܦሿ௦௘௖௔௡௧ =
ێێۏ
തଵ00000ܧۍێێ

തଶ0000ܧ0
തଷ000ܧ00

ଵଶ00ܩ000̅
ଶଷ0ܩ0000̅

ۑۑےଷଵܩ00000̅
(2.62) ېۑۑ

For the rotating crack model, the shear modulus ̅ܩଵଶ = ଶଷܩ̅ = ଷଵܩ̅ = 0. 
The Poisson effect of a material determines the lateral displacement of a specimen 

subjected to a uniaxial tensile or compressive loading. If these displacements are constrained a 
passive lateral confinement will act on the specimen. This effect is considered important in a 3D 
model of reinforced concrete structures. In the work of Selby and Vecchio (1993) this effect is 
modeled through a pre-strain concept in which the lateral expansion effects are accounted for with 
an additional external loading on the structure. This implies that the computational flow of the 
finite element engine is adapted to this method. The Poisson effect is taken into account via the 
equivalent uniaxial strain concept. In case of linear-elastic behavior the constitutive relationship 
in a 3D stress-strain situation is given by: 

ሼߪ௡௦௧ሽ = 1)ܧ + 1)(ߥ − (ߥ2 ൥1 − ߥ ߥ ߥߥ 1 − ߥ ߥߥ ߥ 1 − ൩ߥ ሼ߳௡௦௧ሽ (2.63)

This relationship is now expressed in terms of equivalent uniaxial strains as: 

ሼߪ௡௦௧ሽ = ൥ܧ 0 00 ܧ 00 0 ൩ܧ ሼ߳௡̃௦௧ሽ (2.64)

with the equivalent uniaxial strain vector ሼ߳௡̃௦௧ሽ defined by: 

൝߳ଵ̃߳ଶ̃߳ଷ̃ൡ =
ێێۏ
ێێێ
ۍ 1 − 1)ߥ + 1)(ߥ − (ߥ2 1)ߥ + 1)(ߥ − (ߥ2 1)ߥ + 1)(ߥ − 1)ߥ(ߥ2 + 1)(ߥ − (ߥ2 1 − 1)ߥ + 1)(ߥ − (ߥ2 1)ߥ + 1)(ߥ − 1)ߥ(ߥ2 + 1)(ߥ − (ߥ2 1)ߥ + 1)(ߥ − (ߥ2 1 − 1)ߥ + 1)(ߥ − ۑۑے(ߥ2

ۑۑۑ
ې ൝߳ଵ߳ଶ߳ଷൡ (2.65)

Rewriting Equation (2.65). ሼ߳௡̃௦௧ሽ = ሾܲሿሼ߳௡௦௧ሽ (2.66)

This concept is also applied to the nonlinear material model implemented in TNO DIANA. 
The stress vector in the principal coordinate system, Equation (2.52), is evaluated in terms of the 
equivalent uniaxial strain vector, ሼ߳௡̃௦௧ሽ, and not in terms of the principal strain vector, ሼ߳௡௦௧ሽ. The 
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equivalent uniaxial strain vector is simply determined when the principal strain vector and the 
(constant) Poisson's ratio are known. 

In a cracked state, the Poisson effect of a material ceases to exist. Stretching of a cracked 
direction no longer leads to contraction of the perpendicular directions. To model this 
phenomenon, an orthotropic formulation is adapted for Poisson's ratios. Similar to a damage 
formulation where the secant modulus reduces after cracking, the Poisson's ratios reduce at the 
same pace. Assuming that ߥ௬௭ = ௭௫ߥ௭௬ߥ = ௫௬ߥ௫௭ߥ = ௬௫ (2.67)ߥ

the matrix ሾܲሿ of Equation (2.66) is written as: 

ሾܲሿ =
ێێۏ
ێێێ
ۍ 1 − ′∆௬௭ଶߥ ௬௫ߥ + ′∆௬௭ߥ௭௫ߥ ௭௫ߥ + ௫௬ߥ′∆௭௬ߥ௬௫ߥ + ′∆௭௬ߥ௫௭ߥ 1 − ′∆௭௫ଶߥ ௭௬ߥ + ௫௭ߥ′∆௫௬ߥ௭௫ߥ + ′∆௬௭ߥ௫௬ߥ ௬௭ߥ + ′∆௬௫ߥ௫௭ߥ 1 − ′∆௫௬ଶߥ ۑۑے

ۑۑۑ
ې
 (2.68)

where ∆ᇱ= 1 − ௫௬ଶߥ − ௬௭ଶߥ − ௭௫ଶߥ − ௭௫ (2.69)ߥ௬௭ߥ௫௬ߥ2

For recomputation of the shear moduli both stiffnesses and Poisson's ratios are reduced. ܩ = 1)2ܧ + (2.70) (ߥ

2.4.5 Uniaxial stress-strain relationship of concrete 

The tensile behavior of reinforced concrete can be modeled using different approaches. For the 
total strain crack model, several softening functions based on fracture energy are implemented in 
DIANA. Tensile behavior which is not directly related to the fracture energy can also be modeled 
in DIANA within the total strain concept. For this study, a brittle behavior according to Figure 
2.12 is considered for concrete in tension. 
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Figure 2.12 Concrete stress-strain relationship in tension (DIANA, 2014). 

ACI 363R-92 (1992) recommends the following expression for the tensile strength of 
concrete having a compressive strength in the range of 3,000 to 12,000 psi (21 to 83 MPa). 

௧݂ = 7.4ඥ ௖݂ᇱ (2.71)

where ௖݂, is the concrete compressive strength (psi). 

In order to avoid the mesh dependence of the response when the concrete experiences 
softening in compression, a parabolic curve based on fracture energy formulation according to 
Feenstra (1993) is used to model its compressive behavior, according to Equation (2.72) and Figure 
2.13. 

௖݂ =
ەۖۖۖ
۔ۖ
ۓۖۖ ௖݂ᇱ 13 ߳௖߳଴ ଷ⁄             ݂݅ 0 ≤ ߳௖ < ߳଴ ଷ⁄  

௖݂ᇱ 13 ൭1 + 4 ቆ߳௖ − ߳଴ ଷ⁄߳଴ − ߳଴ ଷ⁄ ቇ − 2 ቆ߳௖ − ߳଴ ଷ⁄߳଴ − ߳଴ ଷ⁄ ቇଶ൱   ݂݅     ߳଴ ଷ⁄ ≤ ߳௖ < ߳଴ 
௖݂ᇱ 13 ቆ1 − ൬ ߳௖ − ߳଴߳௖௨ − ߳଴൰ଶቇ                                       ݂݅    ߳଴ ≤ ߳௖ <  ߳௖௨ 0                 ݂݅ ߳௖௨ ≤ ߳௖ 

 (2.72)

where ߳଴ ଷ⁄  is the strain at which one-third of the maximum compressive strength ௖݂ᇱ is reached, ߳଴ 
is the strain at stress ௖݂ᇱ, and ߳௖௨ is the strain at which the concrete is completely softened in 
compression. These three parameters are defined in Equations (2.73) to (2.75). ߳଴ ଷ⁄ = 13 ௖݂ᇱܧ௖ (2.73)

߳଴ = 53 ௖݂ᇱܧ௖ = 5߳଴ ଷ⁄  (2.74)

߳௖௨ = 32 ௖ℎܩ ௖݂ᇱ − ߳଴ (2.75)
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where ܩ௖ is the post-peak concrete compressive fracture energy and ℎ the crack bandwidth to be 
defined later. Both parameters govern the softening part of the curve defined in Equation (2.72). 
Experimental tests done by Feenstra (1993) showed that the compressive fracture energy of 
concrete ranges from 10 to 25 Nmm mmଶ⁄  (0.06 to 0.14 kip in. in.ଶ⁄ ). 

 

Figure 2.13 Concrete stress-strain relationship in compression (DIANA, 2014). 

This study considers default values for crack bandwidth given by Equation (2.76) for shell 
elements and Equation (2.77) for solid elements. ℎ = (2.76) ܣ2√

ℎ = √ܸయ
 (2.77)

where ܣ is the total area of the element and ܸ its volume. 

The strength and ductility of concrete under compressive stresses increase with increasing 
isotropic stress. Enhanced mechanical properties due to lateral confinement are considered directly 
in the determination of the uniaxial stress-strain relationship of confined concrete and it is an input 
for the TNO DIANA model. Lateral cracking effects in the uniaxial stress-strain relationship are 
not considered for this study. The modeling of shear behavior is only necessary in the fixed crack 
approach. Therefore, it is not considered here. 

2.4.6 Uniaxial stress-strain relationship of steel reinforcement 

The uniaxial Giuffré-Menegotto-Pinto model (Menegotto et al. 1973, Filippou et al. 1983) is 
used. Details of this model were presented in section 2.3.6. 
 

  

߳௖௨ ߳௖௨ ߳଴/ଷ
௖݂ᇱ3  

௖݂ᇱ 

௖݂ ߳௖ 

௖ℎܩ  
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3 Evaluation of Analytical Models for Global 
Instability in Column Tests 

3.1 INTRODUCTION 

Several tests have been done (Chai and Elayer, 1999; Creagh et al., 2010; Acevedo et al., 2010) 
with prismatic sections loaded under tension/compression cycles. The data from Chai and Elayer 
(1999) are especially relevant, as those tests gradually increased tensile and compressive strains 
until overall prism buckling occurred. These data were based on test of axial columns under large 
strain amplitudes expected in the plastic hinge region of a ductile reinforced concrete wall. This 
experimental program is presented in section 3.2. Subsequent sections apply analytical models to 
simulate the observed responses.  

3.2 EXPERIMENTAL PROGRAM 

Fourteen reinforced concrete column specimens were tested under an axial reversed cyclic tension 
and compression. The column specimens were mounted vertically in a steel reaction frame where 
a quasi-static axial force was applied to the specimen using a double acting actuator. Figure 3.1 
shows a photograph of the test setup for the specimen. With the exception of two specimens, the 
loading cycle consisted of an initial half-cycle of axial tensile strain followed by compression half 
cycle with a nominal target compressive strain 1/7 of the axial tensile strain unless the compression 
cycle was limited by the capacity of the actuator [approximately 185 kips (823 kN)]. In the other 
two specimens, the target compressive strain was increased to 1/5 of the axial tensile strain. A load 
cycle is considered to be stable if the target compressive strain or the compression capacity of the 
actuator can be reached in three successive cycles without developing an excessive out-of-plane 
displacement in the specimen. 

Figure 3.2 shows the reinforcement details for the test specimens. The test specimens were 
4 x 8 in. rectangular in cross section (102 x 203 mm), with height-to-thickness ratios ܮ଴ ܾ⁄ = 11.75, 
14.75, and 17.75. The length of the specimen ܮ଴ included the 5.5-in. (140-mm) steel brackets used 
for connection to the actuator. Two longitudinal reinforcement area ratios, namely, 2.1 and 3.8 
percent, were investigated and provided by six No. 3 or six No. 4 deformed bars. A cover of 0.5 
in. (12.7 mm) was used for the longitudinal reinforcement. Transverse ties fabricated from ¼ in. 
(6.4 mm) diameter cold drawn smoothed bars were provided at a spacing of six times the 
longitudinal bar diameter, i.e., 2.25 in. (57 mm) for No. 3 bars, and 3 in. (76 mm) for No. 4 bars. 
The close spacing of the transverse ties was intended to simulate the well-confined condition in 
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the end regions of ductile walls and to prevent the local buckling of the longitudinal bars. To ensure 
a proper transfer of the actuator force to the specimen, six 3/8 in. (9.5 mm) diameter all thread rods 
with a 10 in. (254 mm) anchorage length were added to the two ends of the specimen to increase 
the tensile capacity at the connection. In addition to the all-thread rods, two sets of steel plates, 2.5 
in. (64 mm) wide by 1 in. (25 mm) thick, were used to externally confine the concrete in the end 
regions so that the transfer of the longitudinal bar forces to the concrete would not result in a local 
bond failure for the longitudinal reinforcement. 

 

Figure 3.1 Experimental test setup. 

 

Figure 3.2 Reinforcement details for test specimens (1 in. = 25.4 mm). 
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Table 3.1 summaries the matrix for the test program. 

Table 3.1 Test matrix. 

Height-to-thickness 
ratio L0/b 

Longitudinal reinforcement 
ratio, percent 

Transverse steel spacing, 
in. (mm) 

No. of specimens 
tested 

11.75 2.1 2.25 (57) 1 

11.75 3.8 3.0 (76) 1 

14.75 2.1 2.25 (57) 3 

14.75 3.8 3.0 (76) 3 

17.75 2.1 2.25 (57) 3 

17.75 3.8 3.0 (76) 3 

3.3 MATERIAL PROPERTIES 

A normal weight concrete with an unconfined compressive strength of f’c = 4,950 psi (34.1 MPa) 
was used for all specimens. The yield strengths of the longitudinal reinforcement were fy = 51.8 
and 66.0 ksi (357 and 455 MPa) for No. 3 and No. 4 bars, respectively, and the yield strength of 
the transverse ties was fy = 99.0 ksi (683 MPa). 

3.4 EVALUATION OF FORCE-BASED ELEMENTS AND NONLINEAR FINITE 
ELEMENT MODELS 

Chai and Elayer (1999) provides detailed information regarding the experimental response of four 
column specimens (height to thickness ratios ܮ଴ ܾ⁄ =14.75 and 17.75 with longitudinal 
reinforcement ratios ߩ = 2.1% and 3.8%). This information is used to evaluate the numerical 
models of global instability developed in OpenSees and TNO DIANA. 

3.4.1 Sensitivity analysis to key parameters 

3.4.1.1 Sensitivity in OpenSees forced-based elements model 

Strain localization in force-based elements causes the response to be mesh-dependent. A procedure 
for material regularization according to the work of Coleman and Spacone (2001) was presented 
in section 2.3.5. Material regularization allows maintaining objectivity of the structural response 
independent of the number of integration points selected for analysis. To evaluate this procedure, 
one of the columns tested by Chai and Elayer (1999) is selected and analyzed using four force-
based elements with four, five and six integration points per element according to the Gauss-
Lobatto quadrature presented in section 2.3.7. The two limits values for compressive fracture 
energy presented by Feenstra (1993) are considered for analysis: 10 and 25 Nmm mmଶ⁄  (0.06 and 
0.14 kip in. in.ଶ⁄ ). The column ID is 4WC3_1 with height-to-thickness ratio ܮ଴ ܾ⁄ = 14.75 and 
longitudinal reinforcement ratio ߩ = 2.1%. Figure 3.3 depicts the typical OpenSees model. 
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Figure 3.3 OpenSees model for column instability. 

Table 3.2 presents the concrete strain ߳ଶ଴ at a stress 0.2 ௖݂ᇱ for all analyzed cases obtained 
using Equation (2.36). 

Table 3.2 Strain for Kent and Park model (1971) according to Equation (2.36). 

 ૙ࡸ
(in.) ࢉࢌᇱ  (psi) ࢉࡱ (psi) 

Number 
of 

elements 

Number of 
integration 
points, nIP 

Integration 
point weight, ࢏࢝ h (in.) ࢉࡳ  ൬࢔࢏.࢔࢏ ࢖࢏࢑.૛ ൰ ࣕ૛૙ 

59 4,950 4,000,000 4 4 1/6 1.23 0.06 0.017
59 4,950 4,000,000 4 5 1/10 0.74 0.06 0.027
59 4,950 4,000,000 4 6 1/15 0.49 0.06 0.040
59 4,950 4,000,000 4 4 1/6 1.23 0.14 0.040
59 4,950 4,000,000 4 5 1/10 0.74 0.14 0.066
59 4,950 4,000,000 4 6 1/15 0.49 0.14 0.099

From Table 2.1, the weight of each integration point ݓ௜ is calculated for a normalized 
domain of length 2. Therefore, the summation of all ݓ௜ for a given element must be 2. 

In Table 3.2, ݓ௜ is the weight of the integration point where the plastic hinge is expected 
to form. For this case, the plastic hinge is located at the column midheight. Therefore, ݓ௜ is 
calculated for the integration point located at the element edge. The corresponding weight of the 

4 nonlinearBeamColumn 
elements with fibers 
n-points Gauss-Lobatto 

11x1 fibers (short direction 
only) 

P(t) 
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integration point in the real domain of length ܮ଴ 4⁄  is called ℎ, which is an equivalent concept to 
the crack bandwidth defined for finite element analysis using smeared cracking models. 

Figure 3.4 shows the concrete constitutive model for all analyzed cases. It is observed how 
the softening branch of the curve flattens when the number of integration points is increased to 
prevent failure localization. 

 

Figure 3.4 Kent and Park model (1971) for analyzed cases with material 
regularization according to Equation (2.36). 

Figure 3.5a shows crushing in one of the column edges at the midheight. This indicates 
that buckling was a failure mode that followed edge crushing under flexural-compressive force 
during out of plane displacement. Figure 3.5b shows a buckled specimen with height-to-thickness 
ratio ܮ଴ ܾ⁄ = 14.75. The horizontal cracks were uniform in the center portion of the specimen 
outside the end-regions. The horizontal crack spacing corresponds to the transverse reinforcement 
spacing. This suggests that the presence of the transverse reinforcement created localized stresses 
leading to crack initiation. 
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Figure 3.5 (a) Crushing of concrete at midheight of one of the column specimens; (b) 
buckled shape for column with L0⁄b=14.75, after Chai and Elayer (1999). 

Figure 3.6 shows the experimental response of the column specimen 4WC3_1 (height to 
thickness ratio ܮ଴ ܾ⁄ =14.75 with longitudinal reinforcement ratio ߩ = 2.1%). Figure 3.6a shows 
a plot of the nominal axial strain versus axial force and Figure 3.6b shows a plot the nominal axial 
strain versus maximum out-of-plane displacement normalized by the column width ܾ. To keep the 
plot format used by Chai and Elayer (1999), compression variables have positive sign and tension 
variables have negative sign. During the test, the nominal axial strain was determined by averaging 
the displacements over a 15 in. (381 mm) length in the center portion of the specimen, and the out-
of-plane displacement was determined by the average of two displacements measured at the 
midheight of the specimen. 

 

Figure 3.6 Column 4WC3_1 experimental response L0⁄b=14.75, ρ=2.1%.  

(a) (b) 
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In Figure 3.6, a stable response was obtained for the specimen at low levels of axial tensile 
strain. For peak tensile strains up to -0.0133, the normalized out-of-plane displacements were less 
than 0.05. For the final cycle to the peak tensile strain close to -0.015, a rapid increase in the out-
of-plane displacement occurred especially after reloading to tensile strain of -0.005. The rapid 
increase in the out-of-plane displacement was due to yielding in both layers of reinforcement at 
that strain level. The large increase in the out-of-plane displacement led to eventual closure of the 
cracks followed by crushing of the concrete edge in compression. 

As indicated in section 2.2, lateral instability during crack closure initiates because the 
application point of the external force may not coincide with the centroid of the resistant force in 
the reinforcement, due to unavoidable irregularities in the placement of the reinforcement (Paulay 
and Priestley, 1993). To obtain this behavior in a numerical model, it is required to introduce some 
eccentricity to trigger the out-of-plane displacement. There are several ways to model this 
eccentricity, and for this study what was done is to reduce by 1 ksi the yielding stress of one layer 
of reinforcement. This is an arbitrary reduction of the yielding stress and later analyses will show 
that selecting a different value does not affect the structural response 

Figure 3.7 compares the analytical results of all cases presented in Table 3.2 with the 
experimental response. First of all, it is observed that the structural response obtained from analysis 
does not change when the number of integration points increases. Therefore, regularizing the 
concrete material using the constant fracture energy concept allows getting a mesh-independent 
structural response at least for the considered cases. 

   

Figure 3.7 Column 4WC3_1, experimental versus analytical response for different 
number of integration points and compressive fracture energy. 

Figure 3.7a shows a good agreement between the analytical and experimental curves of 
nominal axial strain versus axial force. Figure 3.7b shows that the OpenSees model tends to 
overestimate the normalized lateral displacement in the cycles before failure. Even for normalized 
lateral displacements of more than 0.2, during crack closure the column is able to recover its 
original undeformed shape without crushing the edge where the first contact between cracked 
surfaces occurs. Moreover, global instability occurs at a lower peak tensile strain of -0.0133. The 

(a) (b) 
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peak tensile strain during the last test cycle was -0.0161. Therefore, OpenSees models 
underestimate the peak tensile strain. 

 

Figure 3.8 Column 4WC3_1, experimental versus analytical curvature distribution for 
different number of integration points and compressive fracture energy. 

Figure 3.8 depicts a comparison between the experimental and analytical out-of-plane 
curvature distribution over the element height for column 4WC3_1, considering the cases 
presented in Table 3.2. The experimental curve was plotted for the center portion of the specimen 
of 40 in. (1016 mm). All curves are determined right before buckling failure. The experimental 
curve shows that the maximum curvature at the column midheight was 0.0044 1 in.⁄  (1.75 ∙10ିସ  1 mm⁄ ). The curvature in the end regions is likely affected by the steel plates used to confine 
concrete and avoid local bond failure in transfer bars. As will be shown later, this stiffening effect 
occurs only in the case of columns with ܮ଴ ܾ⁄ = 14.75 and it is negligible in longer columns. The 
analytical curves show that a mesh-independent structural response is successfully achieved by 
regularizing the concrete material considering constant fracture energy (Coleman and Spacone, 
2001). Therefore, for the following analyses only one case will be considered: four elements with 
four integrations points on each one according to Gauss Lobatto quadrature and a constant fracture 
energy of 18 N mm ݉݉ଶ⁄  (0.1 kip in. in.ଶ⁄ ), value at the middle of the plausible range introduced 
by Feenstra (1993). The stiffening effect in the end regions can be achieved by modifying the 
material properties of the first and last element of the mesh. However, introducing even minor 
modifications causes numerical problems in the OpenSees model affecting the response presented 
in Figure 3.7. Therefore, this is not considered in this study. 

To trigger the out-of-plane displacement during axial loading it was necessary to introduce 
an eccentricity in the column cross section. This was achieved by reducing in 1 ksi the yielding 
stress of one later of reinforcement. This is an arbitrary value considered small enough to not affect 
the axial response presented in Figure 3.7. A study was conducted to evaluation how the analytical 
response is affected if a different yielding stress reduction is used. Figure 3.9a compares the 
experimental and analytical nominal axial strain versus axial force and Figure 3.9b compares the 
nominal axial strain versus normalized out-of-plane displacement. The model used to obtain the 
analytical curves considers four elements with four Gauss Lobatto integration points on each one 
and fracture energy of 0.1 kip in. in.ଶ⁄ . Several yielding stress reductions were considered in order 
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to study the influence of this parameter in the structural response: 0.1, 0.3, 0.5, 0.7 and 1ksi. Figure 
3.10 compares the out-of-plane curvature distribution over the column height for the test and these 
five analysis cases. For this range of yielding stress reduction, it can be observed that the structural 
response remains unchanged. 

 

Figure 3.9 Column 4WC3_1, experimental versus analytical response for different 
reduction in yielding stress of one reinforcement layer. 

 

Figure 3.10 Column 4WC3_1, experimental versus analytical curvature distribution for 
different reduction in yielding stress of one reinforcement layer. 

3.4.1.2 Sensitivity in DIANA 2D finite element model 

Two-dimensional finite element models are now implemented in the software DIANA to analyze 
Chai and Elayer (1999) columns. The models consider Q20SH curved shell elements as described 

(a) (b) 
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in section 2.4.3. Support conditions include restrained translations in three orthogonal directions 
at the base and two horizontal directions at the top. A prescribed cyclic vertical displacement is 
imposed at the top, according to test conditions. Eleven integration points are considered in the 
thickness direction. The number of integration points is selected to match the number of fibers 
used in the OpenSees force-based elements. Detailed theoretical background of these models has 
been provided in section 2.4. 

In order to achieve a mesh-independent structural response, concrete is modeled using a 
regularized material described in section 2.4.5, which is based on constant compressive fracture 
energy. Two cases are analyzed: ܩ௖ =0.06 and 0.14 kip in. in.ଶ⁄ , which are the limit values 
reported by Feenstra (1993). The eccentricity required to trigger out of plane displacement is 
obtained by reducing the yielding stress of one layer of reinforcement in 1 ksi as the case of force-
based elements. A mesh sensitivity study is conducted for 4WC3_1 considering different element 
sizes as described in Figure 3.11. 

 

 

Figure 3.11 DIANA 2D models using Q20SH curved shell elements: a) mesh with hmax= 
2in., a) mesh with hmax= 1 in. and c) mesh with hmax=0.5 in. 

Figure 3.12 compares the experimental results with the analytical results obtained from six 
cases: maximum element size of 2, 1, and 0.5 in. with fracture energy of 0.06 and 0.14 kip in. in.ଶ⁄ . 
It can be observed that the analytical structural response does not change when element size 
decreases, which seems to indicate that using a constant fracture energy material for concrete is an 
appropriate approach to avoid strain localization and mesh dependency of the response. Figure 
3.12a shows that the analytical responses accurately represent the test results. Figure 3.12b shows 
that the models overestimate the normalized lateral displacement in the cycles before failure and 

(a) (b) (c) 
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underestimate the tensile strain before failure. This trend was also observed in the OpenSees 
models used for sensitivity analysis in section 3.4.1.1. Moreover, careful comparison between 
OpenSees and DIANA results (Figure 3.7 and Figure 3.12) shows that both analytical results are 
almost identical. 

 

Figure 3.12 Column 4WC3_1, experimental versus analytical response for different 
mesh size and compressive fracture energy. 

The analytical curvature distribution over the column height is mesh and fracture energy 
independent, as shown in Figure 3.13. Again, results are identical to those obtained from OpenSees 
force-based elements shown in Figure 3.8. 

 

Figure 3.13 Column 4WC3_1 experimental versus analytical curvature distribution for 
different mesh size and compressive fracture energy. 

(a) (b) 
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Figure 3.14 shows the out-of-plane displacement before failure for compressive strain 
energy of 0.14 kip in. in.ଶ⁄  (upper bound of the plausible range) and for the three meshes analyzed. 
It is observed the mesh-independency of the displacement field. 

 

Figure 3.14 Column 4WC3_1 out-of-plane displacement (in.) before failure for Gc = 
0.14 kip in./in.2 with a) hmax= 2in., b) hmax= 1 in. and c) hmax=0.5 in. 

3.4.2 Experimental versus analytical response 

In this section the four specimens tested by Chai and Elayer (1999), for which detail information 
was provided, are analyzed. These specimens are: 4WC3_1 (ܮ଴ ܾ⁄ =14.75 with ߩ = 2.1%), 
4WC4_2 (ܮ଴ ܾ⁄ =14.75 with ߩ = 3.8%), 5WC3_2 (ܮ଴ ܾ⁄ =17.75 with ߩ = 2.1%) and 5WC4_3 
଴ܮ) ܾ⁄ =17.75 with ߩ = 3.8%). The parameters considered for analysis are: constant fracture 
energy ܩ௖ = 0.1 kip in. in.ଶ⁄ , yielding stress reduction ∆ ௬݂ =1 ksi in one layer of reinforcement, 
four elements with Gauss Lobatto integration points per element in OpenSees models, mesh with 
maximum element size ℎ௠௔௫ = 1 in. in DIANA 2D and 3D models. The first specimen 4WC3_1 
was used for sensitivity analysis in the previous sections. However, for completeness, this 
specimen is also analyzed for this specific set of parameters. Table 3.3 shows the regularized strain 
at a stress of 0.2 ௖݂ᇱ needed to regularize the OpenSees concrete material. 

Table 3.3 Strain for Kent and Park model (1971) according to Equation (2.36). 

Specimen ࡸ૙ 
(in.) 

ᇱࢉࢌ  
(psi) ࢉࡱ (psi) 

Number 
of 

elements 

Number of 
integration 
points, nIP 

Integration 
point 

weight, ࢏࢝ 
h 

(in.) ࢉࡳ  ൬࢔࢏.࢔࢏ ࢖࢏࢑.૛ ൰ ࣕ૛૙ 

4WC3_1 59 4,950 4,000,000 4 4 1/6 1.23 0.10 0.029
4WC4_2 59 4,950 4,000,000 4 4 1/6 1.23 0.10 0.029
5WC3_2 71 4,950 4,000,000 4 4 1/6 1.48 0.10 0.024
5WC4_3 71 4,950 4,000,000 4 4 1/6 1.48 0.10 0.024

Figure 3.15 shows the experimental and analytical nominal axial strain versus axial force 
and nominal axial strain versus normalized lateral displacement for 4WC3_1 specimen. Analytical 

(a) (b) (c) 
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curves are obtained from three models: OpenSees force-based elements, DIANA 2D and 3D 
models. Figure 3.16 shows the experimental and analytical curvature distribution over the 
specimen height. Analytical values are plotted for OpenSees and DIANA 2D models. For the last 
case, curved shell elements do not allow getting the curvatures as a direct output, and there were 
obtained from vertical strains measured at the first and last integration points in the thickness 
direction, considering linear strain profile in that direction. 

The sensitivity analysis showed that the structural response is mesh-independent when a 
constant fracture energy material is used, and it is also insensitive to any change in the fracture 
energy within the considered range. The analytical responses obtained for all models are identical 
to the corresponding ones obtained during the sensitivity studies, which is an expected result. The 
response obtained from OpenSees and DIANA 2D models are identical. Both of them 
underestimate by 17% the maximum tensile strain that triggers buckling during load reversal (-
0.00133 from models versus -0.0016 from test), both overestimate the maximum out-of-plane 
displacement during each cycle and reproduce the maximum curvature at the column midheight 
right before failure with some stiffening in the end regions. DIANA 3D model gives a better 
approximation of the experimental response. For this case, the maximum tensile strain is obtained 
exactly, and even though there is still some overestimation of the out-of-plane displacement during 
cycles, its magnitude is lower than the obtained from the other models. 

 

Figure 3.15 Column 4WC3_1, experimental versus analytical response (L0/b = 14.75, 
ρ = 2.1%). 

(a) (b) 
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Figure 3.16 Column 4WC3_1, experimental versus analytical curvature distribution 
(L0/b = 14.75, ρ = 2.1%). 

Figure 3.17 and Figure 3.18 show the response of 4WC4_2 specimen (height-to-thickness 
ratio ܮ଴ ܾ⁄ = 14.75 and longitudinal reinforcement ratio ߩ = 3.8%). With an increased 
longitudinal reinforcement ratio, a smaller peak tensile strain was required to cause a large out-of-
plane displacement and failure of the specimen. This is an expected result from Equation (2.20). 
The failure mode is similar to the observed in the previous specimen, yielding in compression of 
the reinforcement layers and crushing of the concrete edge where the first contact during crack 
closure occurs. As in the previous case, the analytical response obtained from OpenSees and 
DIANA 2D models are almost identical. Both models closely reproduce the nominal axial strain 
versus axial force curve. However, they underestimate the maximum tensile strain prior instability 
during load reversal by 20% and overestimate the normalized lateral displacement during each 
cycle and the column capacity to recover its original shape during crack closure without crushing 
the edge. Regarding the curvature distribution of Figure 3.18, OpenSees and DIANA 2D models 
reproduce well the peak at the column midheight. DIANA 3D model does not underestimate the 
maximum tensile strain before buckling, and the approximation of the out-of-plane displacement 
during all cycles is better in comparison to the one obtained from OpenSees and DIANA 2D 
models. 
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Figure 3.17 Column 4WC4_2, experimental versus analytical response (L0/b = 14.75, 
ρ = 3.8%). 

 

Figure 3.18 Column 4WC4_2, experimental versus analytical curvature distribution 
(L0/b = 14.75, ρ = 3.8%). 

Figure 3.19 shows the response of 5WC3_2 specimen which has an increased height-to-
thickness ratio of ܮ଴ ܾ⁄ = 17.75 and a longitudinal reinforcement ratio of ߩ = 2.1%. According 
to the experimental data of Figure 3.19b, the maximum tensile strain required to buckle the column 
in compression during load reversal is -0.014. As expected, this value is smaller than -0.016, which 
is the required value to buckle a column with the same reinforcement ratio but a smaller 
slenderness (Figure 3.15). For this case, the analytical response of the three models is very similar. 
All of them underestimate the peak tensile strain prior buckling by 13% and overestimate the 
maximum out-of-plane displacement at each cycle. However, this overestimation is lower for the 

(a) (b) 
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case of DIANA 3D model. Figure 3.20 shows no difference between the analytical estimations of 
curvature distribution obtained from OpenSees and DIANA 2D models. It is observed that the 
stiffening effect in the specimen ends tends to disappear for the case of longer columns, which 
improves the analytical estimations in comparison to the obtained for the previous cases. 

 

Figure 3.19 Column 5WC3_2, experimental versus analytical response (L0/b = 17.75, 
ρ = 2.1%). 

 

Figure 3.20 Column 5WC3_2, experimental versus analytical curvature distribution 
(L0/b = 17.75, ρ = 2.1%). 

Figure 3.21 shows the response of 5WC4_3 specimen (ܮ଴ ܾ⁄ = 17.75 and ߩ = 3.8%). 
With an increase in the longitudinal reinforcement, the peak tensile strain to cause failure of the 
specimen decreased to -0.012. As before, the best analytical approximation is obtained from 
DIANA 3D model for which the maximum tensile strain prior buckling is exactly obtained. The 

(a) (b) 
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three models show some overestimation in the maximum out-of-plane displacement during each 
cycle. However, DIANA 3D model is the one that reproduces the experimental maximum out-of-
plane displacement more closely. For this case, OpenSees and DIANA 2D models behave almost 
identically. Similarly to the previous specimens, both underestimate the maximum tensile strain 
before buckling. For this case this underestimation is 26%. Figure 3.22 shows very good analytical 
approximations of the experimental curvature distribution right before failure, from both OpenSees 
and DIANA 2D models. 

 

Figure 3.21 Column 5WC4_3, experimental versus analytical response (L0/b = 17.75, 
ρ = 3.8%). 

 

Figure 3.22 Column 5WC4_3, experimental versus analytical curvature distribution 
(L0/b = 17.75, ρ = 3.8%). 

(a) (b) 
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3.5 EVALUATION OF SIMPLIFIED MECHANICS OF GLOBAL INSTABILITY 

The simplified mechanics of global instability introduced in section 2.2 is now evaluated using the 
experimental data and the analytical data obtained from OpenSees and DIANA models. First, 
values of the maximum tensile strain prior buckling ߳ ௦௠ are estimated for each specimen according 
to Table 3.4. 

Table 3.4 Parameters for buckling simplified mechanics. 

Specimen ࡸ૙ ⁄࢈  

Material Properties, 
psi  Column Slenderness ࢈ ⁄࢛ࢎ࢑  

ᇱࢉࢌ ࢓࢙ࣕ ࣄ ࣈ m ࣋   
(psi) 

  ࢟ࢌ
(psi) 

4WC3_1 14.75 4,950 51,800 0.07 2% 0.22 0.189 0.83 0.012 
4WC4_2 14.75 4,950 66,000 0.07 4% 0.49 0.123 0.81 0.010 
5WC3_2 17.75 4,950 51,800 0.06 2% 0.22 0.189 0.83 0.010 
5WC4_3 17.75 4,950 66,000 0.06 4% 0.49 0.123 0.81 0.008 

In Table 3.4 all specimens had pin-ended boundary conditions (݇ =1). The values of ߳௦௠ 
obtained from tests are now compared with the corresponding values obtained from the simplified 
mechanics and the numerical models presented in sections 2.3 and 2.4. 

Table 3.5 Comparison between experimental and analytical values of ࣕ࢓࢙. 

Specimen ࣕ࢓࢙ 
test 

 ࢓࢙ࣕ
OpenSees 

ઢࣕ࢓࢙
% 

 ࢓࢙ࣕ
DIANA 2D 

ઢࣕ࢓࢙
% 

 ࢓࢙ࣕ
DIANA 3D 

ઢࣕ࢓࢙
% 

 ࢓࢙ࣕ
simplified 
mechanics 

ઢࣕ࢓࢙ 
% 

4WC3_1 0.016 0.013 -17% 0.013 -17% 0.016 0% 0.012 -25% 
4WC4_2 0.014 0.012 -20% 0.012 -20% 0.014 0% 0.010 -30% 
5WC3_2 0.014 0.012 -13% 0.012 -13% 0.012 -13% 0.010 -28% 
5WC4_3 0.012 0.009 -26% 0.009 -26% 0.012 0% 0.008 -32% 

The DIANA 3D finite element model produces strain estimates that are closest to those 
measured during the tests. The other models (DIANA 2D finite elements, OpenSees and simplified 
mechanics of section 2.2 consistently underestimate the strain needed to buckle the column under 
load reversal. The highest relative difference is observed for the case of the simplified mechanics 
theory. OpenSees models using force-based elements with fibers and DIANA 2D finite element 
models give identical accuracy.  

Chai and Elayer (1999) reported values of ߳௦௠ from additional tests. The results of 
Equation (2.20) and the test results are are plotted simultaneously in Figure 3.23. 
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Figure 3.23 Calculated and measured maximum tensile strains according to Equation 
(2.20), a) ρ = 2.1% and b) ρ = 3.8%. 

The parameter ߦ defined in Equation (2.20) is inconvenient for preliminary design, and ඥߦ = 0.5 (mid-value in the practical range) may be considered in order to further simplify 
Equation (2.20). Therefore Equation (2.20) becomes: ܾ௖௥݇ℎ௨ = 0.7ඥ߳௦௠ − 0.005 (3.1)

This simple expression can be easily incorporated in design regulations and used for 
preliminary design purposes. Equation (3.1) is now plotted with the results of all the column tests 
reported by Chai and Elayer (1999). 

 

Figure 3.24 Comparison between calculated and measured maximum tensile strains 
according to Equation (3.1). 

The results suggest that Equation (3.1) is a reasonable approximation to describe behavior 
of uniformly loaded prisms. 

  

(a) (b) 
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4 Global Instability of Boundary Elements in 
Slender Walls 

4.1 INTRODUCTION 

The derivation of the simplified model of global instability shown in section 2.2 is based on a 
prismatic column subjected to tension/compression cycles, where the axial force and the axial 
strain are uniform along the column height. Studies presented in section 3.5 showed that this model 
is a reasonable approximation of uniformly loaded slender columns. 

Instability analysis of boundary elements in slender walls requires considering other 
aspects that influence the response. Figure 4.1a depicts a typical slender wall in a multistory 
building. The moment diagram shown next to each elevation illustrates the demand over a wall 
that interacts with a frame. Buckling is expected to occur where the maximum demand is. For this 
case, given the wall geometry and an assumed nearly constant moment demand over the first story 
height, it is reasonable to assume that buckling will occur at the first story, and the plastic hinge 
length will be no less than the first story height. This is even more reasonable for the case of 
residential buildings in Chile (section 6), where walls have typically a setback at the first story due 
to architectural requirements (known as “flag walls”), and hinging is expected to extend over the 
entire first story. For out-of-plane analysis, it is also a reasonable assumption to consider fixed 
support conditions at the top and bottom of the first story, given that the wall is continuous beyond 
that story. For this case, the axial demand over boundary elements is expected to be constant or 
close to constant, and the simplified theory is a good representation of the mechanics that governs 
the problem. However, the wall also has a strain gradient along its length, which might tend to 
brace the boundary element preventing buckling. This effect is not being considered by the 
simplified mechanics model of section 2.2 and will be evaluated in section 4.3. 

In Figure 4.1b depicts a wall with a taller first story, which is not uncommon in buildings 
and industrial facilities. Here, we can still assume fixed support conditions at the top and bottom 
of the first story for out-of-plane displacement. However, the moment cannot be assumed constant 
anymore, and the plastic hinge is not expected to extend over the entire first story. The shape of 
the moment diagram was chosen to clearly illustrate that in some cases the moment gradient over 
the first story height is relevant and the assumption of constant axial demand over boundary 
elements can lead to an underestimation of the maximum tensile strain required to buckle the 
boundary element during load reversal, and therefore an over-conservative design for buckling 
prevention. The effect of strain gradients along the length and height of the wall are analyzed in 
sections 4.2. 
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Figure 4.1 Slender multistory wall and moment diagram over the height: a) 
M ≈ constant at first story, b) M varies linearly at first story. 

4.2 EFFECT OF STRAIN GRADIENT ALONG THE BOUNDARY ELEMENT 
HEIGHT 

Prismatic sections under uniform tension/compression cycles are the cases that have been studied 
analytically and experimentally in the past (Paulay and Priestley, 1993; Chai and Elayer, 1999; 
Parra and Moehle, 2014). In some specific cases, this assumption leads to a reasonable estimation 
of the onset of out-of-plane instability, as described in section 4.1. However, in the more general 
case, strain gradients along the wall length and height are expected to influence the onset of out-
of-plane instability in slender walls. 

The influence of strain or force gradients along the wall length and height are now studied 
separately. In this section, the effect of the force variation along the wall height is evaluated using 
one-dimensional OpenSees models of isolated boundary elements, as shown in Figure 4.2. The 
force variation is intended to represent the variation of the flexural compression force over wall 
height due to the presence of a moment gradient. Each boundary element is modeled using ten 
nonlinear beam-column elements with fibers, force-based formulation and corotational 
transformation for nonlinear geometry. Nonlinear material models are those described in sections 
2.3.4, 2.3.5 and 2.3.6. Currently the corotational transformation in OpenSees does not deal with 
element loads and these are ignored during the analysis. Therefore, the axial load is applied through 
point forces at the nodes. This vertical load pattern is selected to obtain a specific axial force 

(a) (b) 
M M 
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diagram, as shown in Figure 4.2b to f. Several axial force diagrams are considered to evaluate how 
the variation of the axial force over the height affects the onset of out-of-plane instability in isolated 
boundary elements under cyclic loading. The column is subjected to tension/compression cycles 
by multiplying the vertical load pattern by a unique variable factor (positive for compressive 
loading and negative for tensile loading). The boundary element is fixed at the base, and the 
rotation and horizontal displacements are restrained at the top. 

 

 

Figure 4.2 Slender wall boundary element: a) OpenSees model with ten force-based 
elements; b) axial force gradient with α = 1, c) α = 0.8, d) α = 0.5, e) α = 0.25 

and f) α = 0, where α = Na-top  ⁄ Na-bottom. 

Five boundary elements are analyzed: Chai and Elayer’s specimens 4WC3_1 (slenderness ܮ଴ ܾ⁄ = 14.75 and longitudinal steel ratio ߩ = 2.1%), 4WC4_2 (ܮ଴ ܾ⁄ = 14.75 and ߩ = 3.8%), 
5WC3_2 (ܮ଴ ܾ⁄ = 17.75 and ߩ = 2.1%) and 5WC4_3 (ܮ଴ ܾ⁄ = 17.75 and ߩ = 3.8%), where ܮ଴ 
is the specimen unsupported height. All these specimens were tested under pinned boundary 
conditions (top and bottom). According to Figure 4.2a, this analysis considers restrained rotations 
at the top and bottom. Therefore, the unsupported height ℎ௨ for OpenSees models is 2ܮ଴, in order 
to get the same effective slenderness (݇ℎ௨ ܾ⁄ , with ݇ = 0.5 for fixed-fixed boundary conditions). 
The last boundary element considered for this study has slenderness ℎ௨ ܾ⁄ = 50 with longitudinal 
steel ratio ߩ = 2.1%. This case may be found in industrial facilities, where longer unsupported 
heights are not unusual. 

Na-max Na-max Na-max Na-max Na-max 

Na-max 0.8Na-max 0.5Na-max 0.25Na-max 0 

(a) (b) (c) (d) (e) (f) 
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The boundary elements are analyzed considering incremental tension cycles according to 
Figure 4.3, where the top vertical displacement is plotted. The peak vertical displacement is 
increased in 0.1 in. increments until reaching buckling failure during load reversal. 

 

Figure 4.3 Incremental tension cycles for OpenSees analysis of boundary elements. 

According to Figure 4.2, five cases of axial force profile are considered for each boundary 
element. For each case, four plots are provided: average axial strain (top vertical displacement 
divided by the element height) versus axial force at the base, the axial strain over the height 
normalized by the yielding strain at the point of maximum vertical displacement prior buckling 
during load reversal, the normalized axial force over the element height and a comparison between 
the out-of-plane displacement normalized by its maximum value for two cases: theoretical sine 
shape obtained from simplified mechanics for the case of uniform strain profile and the OpenSees 
buckled shape. Figure 4.4 shows the analysis results for the specimen 4WC3_1 with constant axial 
load over the height (Figure 4.4c). For this case, the buckled shape obtained from OpenSees 
matches exactly the theoretical shape presented in Equation (2.1) (Figure 4.4d). The maximum 
tensile strain prior buckling during load reversal is 0.013, close to seven times the yielding strain ߳௬. This value is constant along the element height.  

When the axial load is changed to a non-uniform profile like the one shown in Figure 4.5c, 
where the ratio between the axial load at the top and bottom of the element is ߙ = 0.8,  the buckled 
shape obtained from analysis does not correspond to the theoretical buckled shape assumed in the 
derivation of the simplified mechanics. The maximum lateral displacement is not at the column 
mid-height anymore, it is now at a lower position close to 0.4ℎ௨ (Figure 4.5d). A second 
observation is related to the strain demand for the tensile peak prior buckling during load reversal 
(Figure 4.5b). This demand is not constant over the height anymore. Moreover, the maximum 
tensile strain at the element base increases with respect to the corresponding value obtained for the 
case of constant axial force. As shown in Figure 4.6 to Figure 4.8, the maximum lateral 
displacement shifts towards the base when the value of ߙ is reduced from one (Figure 4.2b) to zero 
(Figure 4.2f), while the maximum tensile strain increases. This behavior was also observed in the 
other four boundary elements analyzed. These results are presented in Appendix A. 
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Figure 4.4 Specimen 4WC3_1, α = 1: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

 

Figure 4.5 Specimen 4WC3_1 (hu⁄b = 29.5 and ρ = 2.1%) for α = 0.8: a) average axial 
strain versus axial force at the base, b) normalized axial strain, c) 

normalized axial force, d) normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 4.6 Specimen 4WC3_1 (hu⁄b = 29.5 and ρ = 2.1%) for α = 0.5: a) average axial 
strain versus axial force at the base, b) normalized axial strain, c) 

normalized axial force, d) normalized buckled shape. 

 

Figure 4.7 Specimen 4WC3_1 (hu⁄b = 29.5 and ρ = 2.1%) for α = 0.25: a) average axial 
strain versus axial force at the base, b) normalized axial strain, c) 

normalized axial force, d) normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 4.8 Specimen 4WC3_1 (hu⁄b = 29.5 and ρ = 2.1%) for α = 0: a) average axial 
strain versus axial force at the base, b) normalized axial strain, c) 

normalized axial force, d) normalized buckled shape. 

According to section 2.2, the most important parameter for the evaluation of the onset of 
out of plane instability is the maximum tensile strain prior buckling during load reversal. This 
value has been theoretically and experimentally obtained for uniformly loaded prisms and now has 
been analytically obtained for several axial load profiles, demonstrating that the results of the 
simplified theory are over-conservative for cases where the assumption of constant axial 
force/strain over the height is not valid. Figure 4.9 shows the maximum tensile strain prior buckling 
normalized by the corresponding value for constant axial force over the height (ߙ = 1) versus ߙ, 
parameter that represents the axial force profile. 

For the analyzed cases, which correspond to very slender walls with typical steel ratios at 
boundary elements between 2% and 4%, it is proposed to use a linear relation between the ratio ߳௦௠ ߳௦௠(ఈୀଵ)⁄  and ߙ (Figure 4.9). This ratio can be used to improve the estimation of the maximum 
tensile strain prior buckling obtained from the simplified mechanics (section 2.2), now considering 
a non-uniform stress profile along the boundary element height. 

(a) (b) (c) (d) 
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Figure 4.9 Normalized  maximum tensile strain prior buckling during load reversal 
versus α (defined as α = Na-top ⁄ Na-bottom). 

Manipulating Equation (3.1) (obtained from the simplified mechanics for constant axial 
load), the tensile strain required to buckle the boundary element during load reversal is: ߳௦௠ = ൬ ܾ௖௥0.7݇ℎ௨൰ଶ + 0.005 (4.1)

For example, to estimate ߳௦௠ for a wall of slenderness ℎ௨ ܾ⁄ = 30, ݇ = 0.5 and ∝= 0.2, 
from Equation (4.1), ߳௦௠ = 0.014. This estimation can be improved considering the non-uniform 
load profile. From Figure 4.9, ߳௦௠ = ൫5 − 4(0.2)൯ 0.014 = 0.06, which is a more reasonable 
estimation of the maximum tensile strain expected at the base of the boundary element prior 
buckling during load reversal. 

4.3 EFFECT OF STRAIN GRADIENT ALONG THE WALL LENGTH 

In this section, the response of an isolated boundary element is compared with the response of 
corresponding walls (identical boundary elements details) of different lengths, in order to study 
the influence on instability of the strain gradient of the vertical strains along the wall length. Two-
dimensional finite elements models of several fictitious walls are built and analyzed using the 
software TNO DIANA, based on the details of Chai and Elayer’s column 4WC4_2 (slenderness ܮ଴ ܾ⁄ = 14.75 and longitudinal steel ratio ߩ = 3.8%). Figure 4.10 presents a typical wall 
elevation, where the left boundary element is labeled B.E. #1 and the right boundary element is 
B.E. #2. Translations in the direction orthogonal to the wall plane and rotations around the x-axis 
are restrained at the top and bottom to represent the wall continuity expected in a typical multistory 
wall. Considering these fixed-fixed support conditions, the wall height is ℎ௨ =  ଴ isܮ ଴, whereܮ2
59 in., unsupported height of the specimen 4WC4_2 (tested under pinned-pinned support 
conditions). Bending moments and shear forces are applied and controlled to obtain a target axial 
force profile over the height of B.E. #1. The objective of this study is to determine the maximum 
tensile strain in B.E. #1 required to buckle it during load reversal, for several cases. Analyses of 

߳௦௠ = (5 −  ௦௠(ఈୀଵ)߳(ߙ4
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walls of several lengths provide valuable information regarding the influence of the location of the 
neutral axis on the onset of lateral instability. 

Regarding the variation of the axial force in B.E. #1 along the height, two cases are 
analyzed: constant axial force and linear variation with ∝= 0.8. Regarding the loading protocol, 
boundary loads that compress B.E. #2 are incrementally applied (Figure 4.9) until reaching a target 
upwards displacement at the top of B.E. #1. After this point, the boundary loads are gradually 
removed. This analysis is repeated by increasing the target upwards displacement at the top of B.E. 
#1 until reaching the minimum value needed to buckle it during unloading. 

 

Figure 4.10 Typical wall elevation and loading detail. 

Figure 4.11 shows the typical reinforcement, where the details of specimens 4WC4_2 are 
used in boundary elements. Two layers of vertical and horizontal reinforcement are provided for 
shear, considering a steel ratio of 0.0025, minimum required by Chapter 18 of ACI 318-14. The 
wall length varies according to the parameter ݊. For the case shown in Figure 4.11, ݊ = 3. The 
finite element models consider a larger thickness for B.E. #2 to prevent its failure prior reaching 
the required tensile strain to buckle B.E. #1 during load reversal. 

2L0 

x 

y 
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Figure 4.11 Reinforcement details in typical cross section. 

The walls are analyzed using curved shell elements with embedded reinforcement and the 
following parameters: constant fracture energy ܩ௖ = 0.1 kip in. in.ଶ⁄ , yielding stress reduction ∆ ௬݂ =1 ksi in one layer of reinforcement and Q20SH meshes with maximum element size ℎ௠௔௫ = 
2 in. Figure 4.12 shows a typical model. 

 

 

Figure 4.12 Typical FEM DIANA  model (hu⁄b = 29.5, Lw = 48 in.). 
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4.3.1 Constant Axial Force in Boundary Elements along the Height 

This section presents the analysis results of six walls with lengths varying from 40.5 to. 123 in., 
all of them with identical details at boundary elements, corresponding to the details of specimen 
4WC4_2 (Chai and Elayer, 1999). For this case the axial force profile at B.E. #1 is constant over 
the height. 

The isolated specimen 4WC4_2 was analyzed in OpenSees using nonlinear beam-column 
elements with fibers, for several axial force profiles. Figure A.1 shows the results for constant 
axial force over the height. The maximum tensile strain prior buckling during load reversal is ߳௦௠ = 5߳௬, uniform over the specimen height. The theoretical sine shape assumed in the derivation 
of the simplified mechanics (section 2.2) and the OpenSees buckled shape match perfectly. 

Figure 4.13 presents five plots with the analysis results for the wall with length ܮ௪ = 40.5 
in. Figure 4.13a and b show the undeformed wall and the buckled shape. Figure 4.13c and d present 
the strain demand over the boundary element height and wall length, at the point of maximum 
vertical strain prior buckling during load reversal. The strain profile over the height is normalized 
by the yielding strain. Figure 4.13e shows the normalized out-of-plane displacement along the wall 
length at the height where its maximum value was calculated. Figure 4.14 to Figure 4.18 present 
the same information for the other five walls. 

For all cases the neutral axis depth is small when the maximum tensile strain prior buckling 
is reached in B.E. #1, and almost the entire cross section is in tension. Therefore, the extension of 
the tension zone for the analyzed cases ranges from 10ݐ௪ to 30ݐ௪. Results of this analysis show 
that in walls where the axial force is constant over the boundary element height with tension zones 
extending over 10ݐ௪ or more at the point of maximum tensile strain, the value of ߳௦௠ is almost 
insensitive to the location of the neutral axis. For the six analyzed cases, this value is close to 5߳௬, 
which is the value calculated for the isolated boundary element in OpenSees. The distribution of 
the out-of-plane displacements along the wall length obtained for each wall (Figure 4.13e to Figure 
4.18e) shows that there is not a specific portion of the wall were the lateral displacement 
concentrates. Lateral instability involves a significant length of the wall in all cases. Only the 
longest wall of Figure 4.18e (ܮ௪ =123 in.) shows a small portion next to B.E. #2 that does not 
seem to be affected by the lateral instability. Analysis results for the cases presented here and those 
presented in section 4.2 and Appendix A for isolated columns suggest that the maximum tensile 
strain prior buckling ߳௦௠ is more influenced by the axial force distribution along the boundary 
element height rather than the variation of vertical strain along the wall length, for tension zones 
longer than 10ݐ௪, which is a very typical case in real buildings. Similar studies are presented in 
section 4.3.2 for walls with variable axial force over the height of B.E. #1. 
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Figure 4.13 Wall with  boundary element 4WC4_2 and Lw = 40.5 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.14 Wall with  boundary element 4WC4_2 and Lw = 48 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.15 Wall with boundary element 4WC4_2 and Lw = 55.5 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.16 Wall with boundary element 4WC4_2 and Lw = 63 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.17 Wall with boundary element 4WC4_2 and Lw = 78 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.18 Wall with boundary element 4WC4_2 and Lw = 123 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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4.3.2 Linear Variation of Axial Force in Boundary Elements along the Height 

This section presents the analysis results of walls where there is a linear variation in the axial force 
along B.E. #1 height. The value of ߙ, which is the ratio between the top and bottom axial force at 
B.E. #1, is 0.8. The analysis includes five walls with length ranging from 40.5 to 78 in, all of them 
with details at boundary elements identical to those in specimen 4WC4_2 (Chai and Elayer, 1999). 

Figure A.2 shows the results of OpenSees analysis for the isolated specimen 4WC4_2 
under variable axial force along the height with ߙ = 0.8. For this case, the distribution of 
normalized axial vertical strain at the point of maximum vertical displacement prior buckling is 
not uniform anymore. Its maximum value, close to ߳௦௠ = 13߳௬, is located at the specimen base. 
The buckled shape does not match the theoretical sine shape used in the simplified mechanics of 
section 2.2. The peak horizontal displacement is located in a lower position, close to 0.3ℎ௨. Figure 
4.19 to Figure 4.23 present the analysis results for these five walls following the same format of 
section 4.3.1. Here, the vertical strain gradient along the wall length is shown for a cross section 
located at 40 in. over the wall base. For the analyzed cases, the extension of the tension zone at the 
point of maximum vertical strain in B.E. #1 prior buckling during load reversal, ranges from 8ݐ௪ 
to 18ݐ௪. Analysis results show that the value of ߳ ௦௠ at the base of B.E. #1 changes with the position 
of the neutral axis. From Figure 4.19c to Figure 4.23c, ߳௦௠ decreases from 20߳௬ to 13߳௬, which 
is the value obtained from OpenSees analysis of the isolated boundary element, as the tension zone 
at the peak tensile strain prior buckling increases from 8ݐ௪ to 14ݐ௪. For the first analyzed case 
(Figure 4.19), there is a 54% increment in ߳௦௠ with respect to the value obtained from OpenSees. 
This increment decreases quickly to 7% when the tension zone reaches 12ݐ௪. Similar to the 
observations made in section 4.3.1, for these cases there is also a significant portion of the wall 
length involved in the out-of-plane instability. 
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Figure 4.19 Wall with  boundary element 4WC4_2 and Lw = 40.5 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.20 Wall with boundary element 4WC4_2 and Lw = 48 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.21 Wall with boundary element 4WC4_2 and Lw = 55.5 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.22 Wall with  boundary element 4WC4_2 and Lw = 63 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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Figure 4.23 Wall with boundary element 4WC4_2 and Lw = 78 in.: a) undeformed 
shape, b) buckled shape, c) normalized tensile strain along the boundary 

element height at the tensile peak prior buckling, d) vertical strain 
gradient along the length at the tensile peak prior buckling, e) normalized 

lateral displacement along the wall length at buckling. 
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4.4 SUMMARY OF STRAIN GRADIENT EFFECTS 

The key parameter for the evaluation of the onset of out of plane instability in slender walls is the 
maximum tensile strain at the boundary element prior buckling during load reversal (߳௦௠), and this 
value can be safely estimated from the simplified mechanics presented in section 2.2. The 
mechanics was formulated for columns under uniform tension/compression cycles. For walls 
where the assumption of uniform strain along the boundary element height is reasonable, like the 
case of the “flag walls” in Chilean buildings, the analysis presented in section 4.3.1 suggests that 
the effect of the strain gradient along the wall length can be safely neglected for a typical case of 
a wall longer than 10ݐ௪. 

A second case occurs when there is a strain gradient along the wall length and the boundary 
element height. For this case, the assumptions behind the simplified mechanics lead to a 
considerable underestimation of ߳௦௠, and then an over-conservative estimation of the minimum 
wall thickness required to prevent this from happening. There are several cases in practice where 
we can face this situation, and it is prudent to reduce the over conservatism in the design. The 
actual value of ߳௦௠ is higher than the one obtained from the simplified mechanics due to effects of 
those two strain gradients, and these effects have been studied in sections 4.2 and 4.3. Results of 
the analyzed cases suggest that the gradient of axial force along the boundary element height is far 
more important than the strain gradient along the wall length. Section 4.2 showed that there is a 
quick increase in the value of ߳௦௠ as the axial force profile changes from uniform to triangular. 
For this last case ߳௦௠ is more than five times the value obtained for a uniform axial load profile. It 
is proposed to increase the value of ߳௦௠ obtained from the simplified mechanics by a factor that 
depends linearly on the axial force profile in the flexural compression zone, which relates to the 
moment profile, in order to reduce the over conservatism of the simplified mechanics for these 
cases. 

Section 4.3 showed that there is also an effect in the value of ߳௦௠ caused by the strain 
gradient along the wall length. For short walls, ߳௦௠ increases, especially when the gradient along 
the height is non-uniform. When the force profile over height is uniform, the gradient along the 
length does not seem to change the response obtained from analysis of an isolated boundary 
element. 

The magnitude of the increment caused by the gradient over the height is much higher than 
the effect of the gradient along the length, which quickly decreases as the wall becomes longer. In 
these analyzed cases, for tension zones of more than 12ݐ௪ the increment in ߳௦௠ is only 7%. It is 
proposed for pre-design purposes to neglect the effect of the strain gradient along the wall length, 
which seems reasonable for typical wall geometries observed in practice, and to consider only the 
effect of axial force gradients along the boundary element height, increasing the value of ߳௦௠ 
accordingly. 
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5 Global Instability in Wall Tests 

5.1 INTRODUCTION 

Prior the Chile earthquake in 2010, out-of-plane instability in slender walls was observed in a few 
laboratory tests. In this chapter, the experimental programs of the Portland Cement Association 
(Oesterle et. al, 1976) and Thomsen and Wallace (2004), both with wall specimens that showed 
apparent buckling, are used to evaluate the analytical models for global instability introduced in 
section 2. Studies include estimations of strain demands for all the specimens tested by Thomsen 
and Wallace (two rectangular walls and two T-shaped walls, one of them buckled during the test), 
and the buckled rectangular specimen R2 of the Portland Cement Association program. The strain 
demands at ultimate drift are estimated following three approaches: direct extrapolation from data 
obtained at lower drift ratios (when data at ultimate drift are not available), a plastic hinge method, 
and two-dimensional nonlinear finite element models. Finally, OpenSees fibers models and the 
simplified buckling mechanics are used for evaluation of global instability. 

5.2 SIMPLIFIED METHODS FOR THE ESTIMATION OF STRAIN DEMANDS 

There are several approaches to analytically estimate the strain profile at the base of a wall and 
therefore the maximum tensile strain prior load reversal at boundary elements, starting from 
nonlinear analysis for an isolated wall of even a complete building to simplified methods of 
analysis. Simplified methods were preferred for analysis of buildings in Chile. Two approaches 
are presented here based on analysis of isolated walls: numerical integration of curvatures and a 
plastic hinge model. 
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Figure 5.1 Wall flexural deformations: (a) elevation, loading and drift; (b) curvatures. 

Figure 5.1a depicts a wall with an inverse triangular load pattern applied laterally. The 
curvature distribution over the height is shown in Figure 5.1b. The lateral displacement at wall top ߜ௨ can be obtained from integration of the curvature diagram according to Equation (5.1). Note 
that this expression includes only wall flexure, and ignores displacement due to shear deformations 
and slip of reinforcement from the base anchorage. ߜ௨ = න ߶(ℎ)(ℎ௪ − ℎ)݀ℎ௛ೢ଴  

(5.1)

where ℎ௪ is the wall height and ߶(ℎ) is the curvature distribution. Equation (5.1) can be 
numerically integrated using a suitable quadrature. For this research, the Gauss-Lobatto quadrature 
is used (section 2.3.7). Then, Equation (5.1) becomes: 

௨ߜ = ෍ ߶(ℎ௜)(ℎ௪ − ℎ௜)ݓ௜ே௜௉
௜ୀଵ  

(5.2)

where ܰ݅ܲ is the number of integration points, ℎ௜ is the location of the integration point ݅ and ݓ௜ 
is the weight of this integration point. The curvature at the first integration point ߶(ℎଵ) at the wall 
base for a given target displacement ߜ௨ can be obtained from Equation (5.2). Starting from ߶(ℎଵ) 
it is straightforward to obtain ߳ ௦௠ from section analysis, assuming that plane sections remain plane. 

A second simplified method to obtain the relation between the top displacement and the 
curvature at the wall base is the plastic hinge approach, according to Figure 5.2. 
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Figure 5.2 Wall flexural deformations: (a) elevation, loading and drift; (b) moments; 
(c) curvatures. 

Given the model of Figure 5.2, the displacement at the top of the wall is approximated by 
Equation (5.3) (modified from Wallace and Moehle, 1993). ߜ௨ = 1140 ߶௬ℎ௪ଶ + ൫߶௨ − ߶௬൯݈௣ ൬ℎ௪ − ݈௣2 ൰ 

(5.3)

Equation (5.4) shows the relation between the top displacement ߜ௨ and the maximum 
curvature at the wall base ߶௨ for the plastic hinge approach, when the lateral load is applied only 
at the wall top, which is the case of tested walls presented in Chapter 5. ߜ௨ = 13 ߶௬ℎ௪ଶ + ൫߶௨ − ߶௬൯݈௣ ൬ℎ௪ − ݈௣2 ൰ 

(5.4)

Where ߶௬ is the yielding curvature and ݈௣ is the plastic hinge length, usually considered 
one half of the wall length ݈௪. Rearranging terms of Equation (5.4). ߶௨ = 1݈௣ ൬ℎ௪ − ݈௣2 ൰ ൬ߜ௨ − 13 ߶௬ℎ௪ଶ ൰ + ߶௬ 

(5.5)

If ߜ௨ = ℎ௪, where DR is the roof drift ratio, then Equation (5.5) can be expressed as: ߶௨ ܴܦ = ℎ௪݈௣ ൬ℎ௪ − ݈௣2 ൰ ൬ܴܦ − 13 ߶௬ ℎ௪൰ + ߶௬ 
(5.6)

Equation (5.6) expresses the curvature at the wall base as a function of the roof drift ratio. 
A simpler equation considers the top displacement to be due solely to rotation in the assumed 
plastic hinge zone, according to Figure 5.3 and Equation (5.7). This approach provides a suitable 
approximation for cases in which most of the curvature is at the base. Suitable examples include 
prismatic walls in which large inelastic curvatures occur at the base and nonprismatic walls with 
reduced sections at the plastic hinge region. This last case (called “flag walls”) is very typical in 
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residential buildings in Chile. According to the approach, the curvature distribution of Figure 5.2 
is replaced by a simplified distribution shown in Figure 5.3, where all the elastic curvatures are 
ignored except those within the plastic hinge. To compensate the low estimate of the wall 
displacement capacity for a given maximum curvature, the plastic hinge is located centered at the 
wall base. For this model, the curvature ߶௨ is expressed by Equation (5.7). 

 

Figure 5.3 Wall flexural deformations: (a) elevation, loading and drift, (b) moments, 
(c) curvatures. ߶௨ = ௣݈ ܴܦ  

(5.7)

5.3 THOMSEN AND WALLACE WALL TESTS 

5.3.1 Experimental Program 

Thomsen and Wallace (2004) conducted a combined experimental and analytical investigation to 
evaluate a displacement-based approach (Wallace and Moehle 1992; Wallace 1994) used to assess 
wall-detailing requirements. The laboratory test program included six wall specimens, 
approximately quarter-scale, including three with rectangular cross section (one with an opening), 
two with T-shaped cross section, and one with barbell-shaped cross section with an opening. 
Figure 5.4 shows the overall geometry of the test specimens. The walls were 12 ft (3.66 m) tall 
and 4 in. (102 mm) thick, with web and flange lengths of 4 ft (1.22 m). Floor slabs were provided 
at 3 ft (0.91 m) intervals over the height of the T-shaped walls. 
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Figure 5.4 Overall geometry of specimens (a) RW1/RW2; (b) TW1/TW2 (1 in. = 25.4 
mm). 

A prototype building, representing a multistory office building in an area of high seismicity 
was used to assist in determining the wall geometry and reinforcing details for the testing program. 
The prototype rectangular wall is 16 in. (406 mm) thick and 16 ft (4.88 m) long with ten No. 11 
(Ab = 1.56in.2; 1000 mm2) boundary vertical bars and No. 5 (Ab = 0.31in.2; 200 mm2) vertical and 
horizontal web reinforcement spaced at 12 in. (305 mm). Similar reinforcing quantities are used at 
the boundaries and within the webs for the T-shaped walls. The wall specimens tested were 
approximately one-quarter scale representations of the prototype walls. Boundary vertical steel 
consisted of eight No. 3 (Ab = 0.11in.2; 71 mm2) bars, whereas web bars were deformed No. 2 (Ab 
= 0.049 in.2; 32 mm2). Areas of boundary and web steel were selected to be roughly equivalent to 
1/16 (square of the scale factor) of those for the prototype walls so as to produce a similar neutral 
axis depth relative to the wall length in comparison with the prototype walls. The depth of the 
neutral axis for an axial load of 0.10Agf’c and an extreme fiber compression strain of 0.003 is 9.7 
in. or 0.20lw (246 mm) for the rectangular wall specimens. Neutral axis depths for an extreme fiber 
strain of 0.003 are 2 in. or 0.042lw (51 mm) and 24.5 in. or 0.51lw (670 mm) for the flange in 
compression and tension, respectively, for the T-shaped wall specimens loaded parallel to the stem 
of the T. 

Detailing requirements at the boundaries of the wall specimens were evaluated using the 
displacement-based design approach presented by Wallace (1994, 1995). In this approach, the 
design displacement is related to the curvature and strain demands at the critical section, and 
special transverse reinforcement is provided over the length of the wall cross section where the 
compression strain exceeds a critical value, typically taken as 0.003. A design roof drift equal to 
1.5% of the wall height, or 2.16 in. (55 mm) was selected to determine the required transverse 
reinforcement at the wall boundaries for the test specimens. This drift was selected because it 
represents a reasonable upper bound drift level for structural wall buildings (Wallace and Moehle 
1992), and more importantly for the test program, because transverse reinforcement was required 

(a) (b) 
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at the wall boundaries (that is the extreme fiber compression strain exceeded the critical strain of 
0.003). For a lower design drift, the lateral drift capacity of all the specimens would be limited by 
buckling of longitudinal reinforcement due to the relatively large spacing of the transverse 
reinforcement. The next figures show the cross sections of the test walls. 

 

Figure 5.5 Walls RW1 and RW2 reinforcing details (1 in. = 25.4 mm). 

 

Figure 5.6 Wall TW1 reinforcing details (1 in. = 25.4 mm). 
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Figure 5.7 Wall TW2 reinforcing details (1 in. = 25.4 mm). 

Design compressive strengths were 4,000 psi (27.6 MPa); however, strengths at the time 
of testing ranged from 4,150 to 8,460 psi (28.7 to 58.4 MPa) with mean compressive strengths at 
the base of the wall specimens (0 to 3 ft; 0 to 914 mm) of 4,580, 4,925, 6,330, and 6,050 psi (31.6, 
34.0, 43.6, and 41.7 MPa) for specimens RW1, RW2, TW1, and TW2, respectively. Three types 
of reinforcing steel were used in this study: (1) typical Grade 60 (414 MPa) deformed No. 3 (9.5 
mm) bars for longitudinal reinforcement, (2) deformed No. 2 (6.4 mm) bars for uniformly 
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distributed horizontal and vertical web reinforcement, and (3) 3/16 in. (4.75 mm) diameter smooth 
wire for boundary transverse reinforcement. The boundary transverse reinforcement was heat 
treated to produce material properties similar to those of Grade 60 (414 MPa) reinforcing steel. 
For comparison between analytical and experimental strain profiles, analytical models consider 
measured material properties of each specimen. 

The wall specimens were tested in an upright position, as shown in Figure 5.8. A specially 
fabricated steel load transfer assembly was used to transfer both axial and lateral loads to the wall 
specimen. An axial load of approximately 0.10Agf’c was applied at the top of the wall by hydraulic 
jacks mounted on top of the load transfer assembly. The axial stress was maintained constant 
throughout the duration of each test. Cyclic lateral displacements were applied to the walls by a 
125 kip (556 kN) hydraulic actuator mounted horizontally to a reaction wall 12 ft (3.66 m) above 
the base of the wall. Out-of-plane support was provided to prevent twisting of the wall during 
testing. 

 

Figure 5.8 Specimen test setup – RW1 and RW2. 

Figure 5.9 shows the displacement history applied to RW2. The displacement history for 
RW1 was similar to RW2, except that the four additional cycles at 1% and 1.5% drift were not 
applied after applying the first two cycles at 1.5% drift. Displacement histories for TW1 and TW2 
are identical to RW2. 
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Figure 5.9 Applied displacement history. 

5.3.2 Experimental and Analytical Response 

Strain profiles at the base of specimens were not available for ultimate drift ratios (only available 
for wall TW1). In order to study the onset of out-of-plane instability, it is required to estimate this 
profile and three analytical approaches are followed for this purpose: nonlinear finite element 
model in TNO DIANA, a plastic hinge approach and direct extrapolation of strains using the 
experimental values at lower drifts. Figure 5.10 shows the TNO DIANA models used for this 
study. These models consist of curved shell elements with embedded reinforcement (full bonding), 
total strain crack model for concrete and Giuffré-Menegotto-Pinto (Menegotto et al. 1973, Filippou 
et al. 1983) material for steel. Modeling details were provided in section 2.4. 

                               

 

Figure 5.10 TNO DIANA finite element models, a) RW1 and RW2, b) TW1 and c) TW2. 
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The plastic hinge approach requires estimation of the moment-curvature relations at the 
wall base. These curves are obtained using the software XTRACT based on material properties 
indicated in section 5.3.1. Figure 5.11 presents the relation for each wall specimen. 

 

Figure 5.11 Moment-curvature diagrams for specimens obtained from XTRACT 
(1 in. = 25.4 mm; 1 ft-kips = 1.36 kN-m). 

5.3.2.1 Rectangular Specimen RW1 

Figure 5.12 shows the experimental lateral load versus lateral displacement curve. For comparison, 
the analytical curve obtained from the TNO DIANA model is also shown. There is a good 
agreement between the experimental curve and the curve obtained from finite elements analysis. 

 

Figure 5.12 Experimental and analytical response for wall RW1 (1 kip = 4.45 kN, 
1 in. = 25.4 mm). 

Figure 5.13 presents a comparison between experimental and TNO DIANA analytical 
strain profiles for three drift ratios: 1.0%, 1.5% and 2.0%. As indicated before, the experimental 
strain profile at the ultimate drift ratio of 2.5% is not available and an analytical estimation will be 
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considered. One advantage of finite element models is that plane sections do not need to remain 
plane. From Figure 5.13, the finite element model underestimates the maximum tensile strain at 
the wall boundary for all drift ratios. This is somewhat unexpected given that slip of reinforcement 
from the foundation is not accounted for in the analytical model. 

 

Figure 5.13 Measured strain versus analysis strain distribution from TNO DIANA 
nonlinear finite element model (1 in. = 25.4 mm). 

Figure 5.14 compares measured and calculated strain profiles using the plastic hinge 
approach according to Equation (5.4), considering a plastic hinge length of ݈௪ 2⁄ , where ݈௪ is the 
wall length. The approach considers that plane sections remains plane. However, the analysis strain 
distribution shows good accuracy with respect to the experimental values, and for this case there 
is no underestimation of the maximum tensile strain at the wall boundary. Figure 5.14 also includes 
an analytical estimation of the strain profile at the ultimate drift ratio of 2.5%. For this case the 
maximum tensile strain at the wall boundary is close to 0.04. 

 

Figure 5.14 Measured strain versus analysis strain distribution plastic hinge 
approach lp=0.5lw (1 in. = 25.4 mm). 
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A third approach to estimate the maximum tensile strain at the wall boundary is 
extrapolation from experimental values obtained at lower drift ratios. Figure 5.15 shows the 
maximum tensile strain at the wall boundary versus drift ratio, analytical values up to 2% drift 
ratio and a second order polynomial fit, which allows to extrapolate the strain at a higher drift ratio. 
From Figure 5.15, the estimated maximum tensile strain at the ultimate drift ratio of 2.5% is 
slightly higher than 0.04, which approximately matches the value previously obtained from the 
plastic hinge approach (Figure 5.14). 

 

Figure 5.15 Maximum tensile strain at wall boundary versus drift ratio, test values and 
polynomial fit. 

5.3.2.2 Rectangular Specimen RW2 

Figure 5.16 shows the experimental lateral load versus lateral displacement curve and the curve 
obtained from finite element analysis. The analytical curve is an excellent representation of the 
response measured during the test. 

 

Figure 5.16 Experimental and analytical response for wall RW2 (1 kip = 4.45 kN, 
1 in. = 25.4 mm). 
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The vertical strain profile at the wall base is first estimated from the finite element model. 
Figure 5.17 shows a comparison between experimental an analytical strain profiles (obtained from 
the TNO DIANA model) at three drift ratios: 1%, 1.5% and 2%. Strains at the ultimate drift ratio 
were not available and an analytical estimation will be used to evaluate the onset of out-of-plane 
instability. 

 

Figure 5.17 Measured strain versus analysis strain distribution from TNO DIANA 
nonlinear finite element model (1 in. = 25.4 mm). 

From Figure 5.17 it is observed that the finite element model underestimates the maximum 
tensile strain at the wall boundary for all drift ratios. Finite element analysis of specimen RW1 
also showed similar behavior. The second approach used to estimate the strain demand at the wall 
base is the plastic hinge approach. Figure 5.18 compares measured and calculated strain profiles 
using the plastic hinge approach with a plastic hinge length equal to ݈௪ 2⁄ , where ݈௪ is the wall 
length. The approach overestimates the maximum tensile strain at the wall boundary for all drift 
ratios. Figure 5.18 also shows an analytical estimation of the strain profile at the ultimate drift ratio 
of 2.5%. For this case, the maximum tensile strain is 0.04 at the wall boundary. 
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Figure 5.18 Measured strain versus analysis strain distribution plastic hinge 
approach lp = 0.5 lw (1 in. = 25.4 mm). 

Finally, according to Figure 5.19, the estimated value for the maximum tensile strain at the 
wall boundary obtained from extrapolation of data at lower drift ratios is 0.035. 

 

Figure 5.19 Maximum tensile strain at wall boundary versus drift ratio, test values and 
polynomial fit. 

5.3.2.3 T-shaped Specimen TW1 

Even though measured strains at the ultimate drift ratio of 1.5% were available for this specimen, 
analytical estimations of strain profiles are obtained in order to evaluate the accuracy of the models 
used for these studies. Figure 5.20 shows the experimental cyclic response, where positive 
load/displacement corresponds to the case of wall flange in compression. The analytical response 
obtained from the finite element model is also shown. For this case, the large spacing of hoops and 
crossties at the wall stem (Figure 5.6) allowed buckling of all boundary bars (and some web bars) 
to occur, which caused brittle failure. The finite element model considers full bonding between 
reinforcement bars and concrete and does not model bar buckling. This can explain why the 
analytical response does not fit well the experimental response for this particular wall. 
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Figure 5.20 Experimental and analytical response for wall TW1 (1 kip = 4.45 kN, 
1 in. = 25.4 mm). 

Figure 5.21 shows a comparison between measured strain profiles and analysis estimations 
obtained from the nonlinear finite element model. There is a good estimation of the strain profile 
at the wall base for all drift ratio. 
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Figure 5.21 Measured strain versus analysis strain distribution from TNO DIANA 
nonlinear finite element model, a) flange in compression, b) flange in 

tension (1 in. = 25.4 mm). 

Figure 5.22 compares measured and calculated strain profiles using the plastic hinge 
approach (lp=0.5lw), according to section 5.2. Even though the accuracy of the analytical strain 
distribution is not as good as for the case of rectangular walls and it seems to overestimate the 
maximum tensile strain at the wall stem for all drift levels, the approximation is acceptable 
considering the simplicity of the model. This over-prediction of the strain profile may be partially 
attributable to the assumption in the analytical model that the entire flange is effective in both 
compression and tension. 
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Figure 5.22 Experimental and plastic hinge (lp = 0.5 lw) strain profiles for wall TW1 (a) 
flange in compression; (b) flange in tension (1 in. = 25.4 mm). 

5.3.2.4 T-shaped Specimen TW2 

Figure 5.23 shows the experimental and analytical (finite element model) lateral load 
versus lateral displacement response for wall TW2. 

 

Figure 5.23 Experimental and analytical response for wall TW1 (1 kip = 4.45 kN, 
1 in. = 25.4 mm). 

Figure 5.24 compares the measured strain profiles and analysis estimations obtained from 
the nonlinear finite element model. There is a small underestimation of the maximum tensile strain 
at the wall stem when the flange is in compression for all drift ratios. 
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Figure 5.24 Measured strain versus analysis strain distribution from TNO DIANA 
nonlinear finite element model, a) flange in compression, b) flange in 

tension (1 in. = 25.4 mm). 

Figure 5.25 compares measured and calculated strain profiles using the plastic hinge 
approach (lp=0.5lw). The analysis strain distribution shows good accuracy with respect to the 
experimental values when the flange is in compression. For the case of flange in tension, there is 
a slight overestimation of the maximum tensile strain for all drift levels. The plastic hinge approach 
gives remarkable predictions of strain profiles considering the simplicity of its formulation. 
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Figure 5.25 Experimental and plastic hinge (lp = 0.5 lw) strain profiles for wall TW2 (a) 
flange in compression; (b) flange in tension (1 in. = 25.4 mm). 

Figure 5.25 also includes an estimation of the strain profile at 2.5% drift ratio, using the 
plastic hinge approach. The estimated maximum tensile strain at the wall stem is close to 0.05. 

Figure 5.26 shows the extrapolation of the maximum tensile strain at the wall stem from 
the data obtained at lower drift ratios. At 2.5% drift ratio, the strain is slightly over 0.05. Thomsen 
and Wallace reported drift ratios up to 3% for this specimen, for which the estimated value of the 
tensile strain is close to 0.07. 

(a) 

(b) 
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Figure 5.26 Maximum tensile strain at wall boundary versus drift ratio, test values and 
polynomial fit. 

5.3.3 Evaluation of the Onset of Out-of-Plane Instability 

Figure 5.27 shows some pictures of the damaged boundary regions for all four specimens. 

 

Figure 5.27 Specimens failure, after Thomsen and Wallace (1995) (a) RW1 (b) RW2 (c) 
TW1 (d) TW2. 
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Some highlights of the response observed during the tests for these four specimens are now 
presented (Thomsen and Wallace, 2004). For specimen RW1, two cycles at 2.0% lateral drift were 
completed prior to significant loss in lateral load capacity at approximately 2.5% drift due to 
buckling of longitudinal reinforcement. This failure mode was anticipated given the relatively 
large spacing (8db) of the hoops and crossties at the wall boundary. Behavior of specimen RW2 
was very similar to RW1, except lateral load capacity was maintained even after two complete 
cycles at 2.5% lateral drift. The improved behavior is attributed to the closer spacing of the hoops 
(5.33db) at the wall boundaries, which delayed the onset of buckling of the longitudinal 
reinforcement. ACI 318-99 uses a maximum hoop/crosstie spacing of 6db to suppress buckling of 
vertical bars. Spacing of special boundary element transverse reinforcement exceeded this limit 
for RW1 and TW1 (8db), was slightly less than this for RW2 (5.33db), and considerably less than 
this for TW2 (4db). For TW1, as a result of the poor detailing provided at the boundary of the web 
opposite the flange, the lateral load capacity dropped suddenly at an applied lateral drift of 
approximately 1.25%. The loss in lateral load capacity is attributed to the large spacing of 
transverse reinforcement used at the wall boundary, which was inadequate to suppress buckling of 
the longitudinal reinforcement. Transverse reinforcement at the boundary opposite the flange was 
placed at a closer spacing and over an increased depth of the cross section for Specimen TW2 
compared with specimen TW1 and it did not experience a loss of lateral load capacity until the 
second and third cycles at a lateral drift level of approximately 2.5%. The test was stopped midway 
through the first cycle at a lateral drift level of 3.0%. Under displacements that cause compression 
in the wall web, the entire web boundary element began to experience an out-of-plane stability 
failure at approximately 0.75% lateral drift. 

The most important parameter for the evaluation of the onset of out-of-plane instability is 
the maximum tensile strain at the base of the wall boundary required to buckle it during load 
reversal. The simplified mechanics of global instability presented in section 2.2 was derived for a 
prismatic column, fixed at the top and bottom, subjected to uniform tension/compression cycles. 
As a first step in this buckling evaluation, OpenSees models of isolated boundary elements are 
used to estimate the tensile strain prior buckling. Each boundary element is modeled using ten 
(RW1 and RW2) or twelve (TW1 and TW2) nonlinear beam-column elements with fibers, force-
based formulation and corotational transformation for nonlinear geometry. Nonlinear material 
models are those described in sections 2.3.4, 2.3.5 and 2.3.6. Material regularization is considered 
according to section 2.3.5. Axial forces are applied as point forces at the nodes. Rectangular 
specimens RW1 and RW2 are supported at the base and top only. A fixed support at the base and 
a roller support at the top are reasonable analysis assumptions. The case of T-shaped walls is 
different. The slabs provide intermediate lateral support and this is considered for analysis. Figure 
5.28 depicts the OpenSees models, where the axial force profile along the height is also shown. 
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Figure 5.28 OpenSees models for slender wall boundaries: a) TW1 and TW2, b) RW1 
and RW2. 

The boundary elements are analyzed considering incremental tension cycles similar to 
those shown in Figure 4.3. The peak vertical displacement is increased in 0.1 in. increments until 
reaching buckling failure during load reversal. Strain profiles at ultimate drift ratios, analytically 
estimated in sections 5.3.2.1 and 5.3.2.2, showed that compressive strain at wall boundaries is 
higher than the concrete spalling strain. Therefore, this buckling analysis is performed with the 
core section only (2.5 x 6 in. for specimens RW1, RW2 and TW1, 2.5 x 16 in. for specimen TW2). 
Figure 5.29 shows the instability analysis results for wall RW1. Figure 5.29a shows the average 
strain versus axial force at the base, Figure 5.29b is the tensile strain normalized by the yielding 
strain over the height at the peak prior buckling, Figure 5.29c is the axial load normalized by its 
maximum value over the height and Figure 5.29d is the OpenSees buckled shape. The red line 
represents the theoretical buckled shape from the simplified mechanics (fixed-fixed support and 
uniform strain profile), shown for comparison. Figure 5.30 to Figure 5.32 present the same 
information for the other specimens. 

(a) (b) 
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Figure 5.29 Boundary element of wall RW1: a) average axial strain versus axial force 
at the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

 

Figure 5.30 Boundary element of wall RW2: a) average axial strain versus axial force 
at the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 5.31 Boundary element of wall TW1: a) average axial strain versus axial force 
at the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

 

Figure 5.32 Boundary element of wall TW2: a) average axial strain versus axial force 
at the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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For the evaluation of the onset of out-of-plane instability, it is required to compare first the 
maximum tensile strain at the base of the wall boundary measured (or estimated) from tests and 
the value needed to buckle the element according to the OpenSees modeling (߳௦௠). For walls RW1 
and RW2, ߳௦௠ ≈ 22߳௬, which is close to 0.046. Estimated strains are 0.04 for these walls, lower 
but very close to the required value to buckle the wall. However, buckling was not observed for 
these two cases, and buckling of longitudinal reinforcement triggered the failure, probably due to 
the spacing of the hoops and crossties at the wall boundaries. For wall TW1, ߳௦௠ ≈ 30߳௬ or 0.06. 
The maximum measured strain was 0.02, not close to the required value to buckle the wall. For 
this case, early failure was triggered by poor detailing of confinement steel at the wall stem. For 
wall TW2, ߳௦௠ ≈ 40߳௬ or 0.08. The estimated value at the ultimate drift ratio close to 3% is 0.07. 
This value is very close to the required strain to buckle the wall boundary and this was the failure 
mode observed during the test (Figure 5.27d). 

For the T-shaped walls, where slabs were provided at intermediate points along the height, 
the analytical buckled shape (Figure 5.31d and Figure 5.32d) indicates that buckling occurs at the 
first story and the shape is similar to the theoretical solution obtained from analysis of the first 
story only under fixed-fixed support conditions. This is also observed in the damage region of 
TW2 shown in Figure 5.27d. The strain demand along the first story height is not constant, as 
shown in Figure 5.32b, but neglecting the strain variability it is possible to estimate ߳௦௠ directly 
from the simplified buckling mechanics considering that the cover has been spalled off. Table 5.1 
presents the material and section properties for buckling evaluation according to the simplified 
mechanics. Table 5.2 presents the results of this analysis for T-shaped walls. 

Table 5.1 Properties for buckling calculation (1 in. = 25.4 mm; 1 psi = 0.007 MPa). 

Wall 

Material 
Properties, psi  

Dimensions, in. 
BE Area of 

Longitudinal 
Steel As, in.2 

Width, 
b 

Length, 
lw 

Height, 
H 

hu 
BE 

Length, 
lb 

Stirrup 
Clear 

Cover, c f'c fy 

RW1 4,580 61,250 4.0 48 144 144 8 0.4 0.88 

RW2 4,925 61,250 4.0 48 144 144 8 0.4 0.88 

TW1 6,330 61,250 4.0 48 144 32 8 0.4 0.88 

TW2 6,050 61,250 4.0 48 144 32 18 0.4 0.98 

Table 5.2 Analysis of T-shaped walls from simplified mechanics, cover spalled off. 

Wall 
Wall Slenderness 

bc/khu ρ m ξ κ ࣕ࢓࢙ 

TW1 0.18 4% 0.40 0.14 1 0.05 
TW2 0.18 2% 0.20 0.20 1 0.07 

Values of ߳௦௠ estimated from the simplified mechanics are 0.05 for TW1 and 0.07 for wall 
TW2. These values are similar to those obtained from OpenSees modeling (0.06 and 0.08). 
Therefore, the simplified mechanics estimates ߳ ௦௠ with a reasonable accuracy (in comparison with 
more sophisticated models) when the support conditions can be assumed as fixed and the strain 
profile along the height is constant or close to constant. Now, the question is if the buckling theory 
can be used in a case where the supports are not fixed-fixed and the strain profiles deviate 



99 

appreciably from constrant strain. This is the case of the rectangular walls RW1 and RW2. If the 
theory is applied directly assuming constant strain along the full height (144 in.), the estimated 
values of ߳௦௠ are quite low, as shown in Table 5.3. 

Table 5.3 Analysis of rectangular walls from simplified mechanics, cover spalled off. 

Wall 
Wall Slenderness 

bc/khu ρ m ξ κ εsm 

RW1 0.03 4% 0.55 0.11 1 0.006 
RW2 0.03 4% 0.51 0.12 1 0.006 

Values of ߳௦௠ estimated in Table 5.3 are not realistic because the strain profile is not even 
close to constant along the wall full height. The influence of the axial force profile along the height 
in the onset of out-of-plane instability was studied in section 4.2, and Figure 4.9 proposed a linear 
relation to increase the value of ߳௦௠ obtained from the simplified mechanics is such cases. 
However, the analyzed cases were several axial force profiles in columns with fixed supports at 
the top and bottom. Neglecting the change in ߳௦௠ caused by the top support, it is possible to apply 
Figure 4.9 directly in Table 5.3, and the estimated value for ߳௦௠ is 5 ∙ 0.006 = 0.03. This value is 
a conservative estimation of ߳௦௠ = 0.045, obtained from the OpenSees modeling with the proper 
boundary conditions. This analysis suggests that Figure 4.9 can be used to obtain a conservative 
estimation of ߳௦௠ even for cases where rotation at the top is not restrained. 
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5.4 PORTLAND CEMENT ASSOCIATION WALL TESTS 

5.4.1 Experimental Program 

Oesterle et al. (1976) conducted a combined experimental and analytical investigation to develop 
design criteria for reinforced concrete structural walls in earthquake resistant buildings. The 
primary purpose of the investigation was to determine the ductility, energy dissipation and strength 
of the walls. As a part of the experimental program, reversing loads were applied to isolated walls. 
The results of nine tests were presented. One of the rectangular specimens (R2) experienced out 
of plane buckling (after thirty-five loading cycles) at an average drift ratio of 2.8%. Only this case 
will be presented and analyzed in this section. Test specimens were approximately 1/3-scale 
representations of full-size walls, although no specific prototype walls were modeled. Controlled 
variables included in the tests were the shape of the wall cross section, the amount of main flexural 
reinforcement and the amount of hoop reinforcement around the main flexural reinforcement. In 
addition, one wall was subjected to monotonic loading and one wall was repaired and retested. 
Table 5.4 provides a summary of test specimen details. 

Table 5.4 Summary of test specimens. 

Specimen Shape 
Reinforcement (%) 

ρf ρh ρn ρs 
R1 Rectangular 1.47 0.31 0.25 - 

R2 Rectangular 4.00 0.31 0.25 2.07 

B1 Barbell 1.11 0.31 0.29 - 

B3 Barbell 1.11 0.31 0.29 1.28 

B4 (monotonic loading) Barbell 1.11 0.31 0.29 1.28 

B2 Barbell 3.67 0.63 0.29 - 

B5 Barbell 3.67 0.63 0.29 1.35 

B5R (repaired specimen) Barbell 3.67 0.63 0.29 1.35 

F1 Flanged 3.89 0.71 0.3 - 

Where: 

 ௙ Ratio of main flexural reinforcement area to gross concrete area ofߩ •
boundary element 

 ௛ Ratio of horizontal shear reinforcement area to gross concrete area ofߩ •
a vertical section of wall web 

 ௡ Ratio of vertical web reinforcement area to gross concrete area of aߩ •
horizontal section of wall web 

 ௦ Ratio of effective volume of confinement reinforcement to the volumeߩ •
of core in accordance with Equation A.4 of ACI 318-71 
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Figure 5.33 shows the dimensions of test specimens. 

 

Figure 5.33 Nominal dimensions of test specimens with rectangular cross section 
(1 ft = 0.30 m). 

In proportioning the walls, the design moment was calculated following procedures in the 
ACI Building Code. Strain hardening of the steel was neglected. Horizontal shear reinforcement 
was provided so that the calculated design moment would be developed. Shear reinforcement was 
provided to satisfy the ACI Building Code. Design yield stress of the steel was 60 ksi (414 MPa) 
and design concrete strength was 6,000 psi (41.4 MPa). The test specimens were constructed in 
six vertical lifts. Each specimen was loaded as a vertical cantilever with forces applied through the 
top slab. The test specimens were loaded in a series of increments. Each increment consisted of 
three complete reversed cycles. About three increments of force were applied prior to initial 
yielding. Subsequent to initial yielding, loading was controlled by deflections in 1 in. increments. 
Free vibration tests were conducted at selected stages as the number and magnitude of loading 
increments applied to the specimen increased. These tests were carried out to determine the 
frequency and damping characteristics of the walls. Figure 5.33 shows the overall dimensions of 
specimen R2. The boundary element was taken to extend 7.5 in. (191 mm) from each end of the 
wall. The percentage of flexural reinforcement shown in Table 5.4 was chosen to give a section 
moment capacity corresponding to high nominal shear stress. Nominal vertical web reinforcement 
provided in the wall was 0.25% of the gross concrete area of the horizontal wall section. This is 
the minimum amount permitted by the 1971 ACI Building Code. Once the nominal vertical 
reinforcement percentage were selected, bar sizes and locations were determined based on 
modeling and construction requirements. The moment capacity of the section was calculated 
according to Section 10.2 of the 1971 ACI Building Code. Design yield stress of the steel was 
taken as 60 ksi, and design concrete strength was taken as 6,000 psi. Strain hardening of the steel 
was neglected for section design. The vertical reinforcement was continuous from the base block 

15’ – 0” 

2’ – 0” 

4’ – 0”

10’ – 0”

6’ – 3”

4”

8”

4’ – 0” 

7’ – 9”

Top Slab

Base Block 



102 

to the bottom of the top slab. The vertical bars were lap spliced with the top slab bars in the top 32 
in. (0.81 m) of the wall. Horizontal shear reinforcement was designed to develop the calculated 
ACI nominal moment capacity. The shear design was made according to Section 11.16 of the 1971 
ACI Building Code. The horizontal reinforcement was placed at a constant spacing over the height 
of the wall. Horizontal steel in the boundary elements (rectangular hoop and supplementary 
crosstie reinforcement) were provided in accordance with Section A.6.4 of the 1971 ACI Building 
Code. This confinement was placed at a spacing of 1.33 in. (34 mm) over the first 6 ft (1.83 m) of 
the wall. Ordinary column ties were used over the remaining height of the wall. Anchorage for the 
horizontal steel was provided by embedment in the boundary elements plus a standard 90° hook 
around the outer main flexural steel. 

Figure 5.34 shows the reinforcing details. Confinement reinforcement was detailed 
according to Section A.6.4.3 of the 1971 ACI Building Code. A ten bar diameter extension was 
used on all confinement steel hooks. Each end of the supplementary crossties had a 180-degree 
hook. 

 

Figure 5.34 Wall R2 reinforcing details (1 in. = 25.4 mm). 

The concrete compressive strength was determined from compressive tests on 6x12-in. (152x305 
mm) cylinders. No. 4 bars conforming to ASTM A615 Grade 60 designation were used as 
reinforcement. Deformed 6 mm hot rolled bars with properties similar to Grade 60 were also used. 
Measured properties of the materials are: 

• Concrete 

o f’c = 6,700 psi (46 MPa) 

• Steel (No. 4 bars) 

o fu = 102.7 ksi (708 MPa) 

o fy = 65.3 ksi (450 MPa) 

• Steel (6mm bars) 

o fu = 100.2 ksi (691 MPa) 

o fy = 77.6 ksi (535 MPa) 
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Figure 5.35 shows the apparatus used for walls testing. 

 

Figure 5.35 Wall testing apparatus. 

Each test specimen was post-tensioned to the floor using eight 1-3/8 in. (34.9 mm) diameter 
stress steel bars. Loads were applied to the specimen as a vertical cantilever with concentrated 
forces at the top. Hydraulic rams on each side of the specimen alternately applied force to first one 
side and then the other side of the top slab. Reactions from the applied loads were transferred to 
the test floor through a large infilled reaction frame. For specimen R2, the test consisted of 39 
loading cycles. Figure 5.36 shows the applied displacement history. 

 

Figure 5.36 Applied displacement history (1 in. = 25.4 mm). 
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5.4.2 Experimental and Analytical Response 

Complete measured strain profiles at the base of the specimen were not available for drift ratios 
higher than 0.6%. Two models are used to estimate those demands: TNO DIANA finite elements 
model (details provided in section 2.4) and a plastic hinge model (according to Figure 5.2). Figure 
5.37 presents the TNO DIANA model. This model consists of curved shell elements with 
embedded reinforcement (full bonding), total strain crack model for concrete and Giuffré-
Menegotto-Pinto (Menegotto et al. 1973, Filippou et al. 1983) material for steel. Modeling details 
were provided in section 2.4. 

 

Figure 5.37 TNO DIANA finite element model for wall R2. 

Figure 5.38 shows the experimental lateral load versus lateral displacement response and the 
analytical response obtained from the finite elements model. Analysis was conducted until Cycle 
32, a 4 in. (101.6 mm) deflection cycle, at which point lateral bracing was added to the test set-up 
at 3 ft-6 in. above the wall base, in order to restrain the out-of-plane displacement observed at the 
wall boundary. Up to this point, there is a good agreement between the measured and the analytical 
estimation of the response. 



105 

 

Figure 5.38 Experimental and analytical response for wall R2 (1 kip = 4.45 kN, 
1 in. = 25.4 mm). 

Figure 5.39 shows the moment-curvature relation considered for the plastic hinge model. This 
relation was obtained from XTRACT, considering measured material properties according to 
section 5.4.1. 

 

Figure 5.39 Moment-curvature relation for wall R2 (1 in. = 25.4 mm; 1 in-
kips = 0.11 kN-m). 

Figure 5.40 shows the measured strain profile at the base of wall R2 for 0.60% drift ratio. 
Strain values at higher drift ratios were not available and they are analytically estimated from finite 
element modeling and the plastic hinge approach, where the plastic hinge length is taken as ݈௪ 2⁄ . 
The figure shows estimations at 0.8%, 1.5% and 2.0% drift ratio from both models. Finite element 
analysis was conducted until Cycle 32, 2.2% drift ratio cycle, when lateral support was added to 
restrain out-of-plane displacement at the wall edge. Figure 5.40 also shows an estimation of the 
strain profile at the maximum measured drift ratio of 2.8% drift ratio. This estimation is obtained 
only from the plastic hinge model. Both analytical estimations of strains are accurate in comparison 
with the measured strains at 0.6% drift ratio. At higher drifts, estimations of strains are consistently 
lower for the finite elements model. 
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Figure 5.40 Measured and analytical strain distribution at the base of wall R2. 

Figure 5.41a shows the deformed shape of wall R2, obtained from DIANA analysis, at the 
point where lateral bracing was added at 42 in. over the wall base (after Cycle 32, a 4 in. deflection 
cycle). Figure 5.41b shows the out-of-plane displacement at the wall edge for this point and for 
the first peak of Cycle 28 (a 1 in. deflection cycle). 

        

 

Figure 5.41 a) Analytical estimation of the deformed shape of wall R2 at the point 
where lateral bracing was added to the test set-up, b) out-of-plane-

displacement along the height at the wall edge. 
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5.4.3 Evaluation of the Onset of Out-of-Plane Instability 

Some highlights of the response observed during the test are now presented (Oesterle et al., 1976). 
First indication of crushing of the outer shell at the base of the wall had been noted in Cycle 22. A 
notable increase in spalling and flaking along the horizontal cracks was observed during the 3 in. 
deflection cycles. During Cycle 28, a 1 in. (25.4 mm) deflection cycle, bowing of the compression 
end was observed. The compression boundary element was 0.25 in. (6.4 mm) out of plane at a 
point 3 ft-6 in. (1.1 m) above the base. Although this bowing progressed further with each cycle 
the load carrying capacity of the wall remained stable. After Cycle 32, the compression end of the 
wall was 3 in. (76.2 mm) out of plane at point 3 ft-6 in. (1.1 m) above the base. Figure 5.42 shows 
the specimen after Cycle 32. The test was stopped after Cycle 32 and lateral bracing was added to 
the test step-up. From Figure 5.41, analytical estimations for the out-of-plane displacement at the 
wall edge at 42 in. over the base are 0.6 in. for Cycle 28 and 4 in. for Cycle 32. Both values are 
reasonably close to the reported values. 

An omni-direction ball caster was placed against the face of the each boundary element at 
a level 3 ft-6 in. (1.1 m) above the base. This simulated lateral support at approximately the first 
story height. The test was continued with the third 4 in. (101.6 mm) deflection Cycle 33. 
Considerable grinding and spalling along web cracks occurred during the 4 in. deflection cycles. 
Also, the end hooks of several horizontal bars started to open during the 4 in. cycles. In Cycle 35, 
a large out of plane displacement of the compression zone within the lower 3 ft-6 in. (1.1 m) height 
was observed and the load carrying capacity of the wall decreased. The maximum negative load 
in the third cycle of the 5 in. (127.0 mm) deflection increment was 79% of the maximum in the 
first cycle. Several bars fractures in Cycle 37 and out of plane displacement of the compression 
zones progressed further. Considerable crushing and loss of concrete occurred in subsequent cycles 
and the load carrying capacity continued to decrease. The specimen sustained at least 80% of the 
maximum measured load through 14 complete inelastic cycles. The last inelastic loading increment 
in which the load was sustained at or above 80% of the maximum for all 3 cycles was at ±4 in. 
(±101.6 mm). 

 

Figure 5.42 Lateral displacement of compression zone after 4 in. deflection in wall R2. 

The lateral support at the first story level was not present during the major portion of the 
test. Therefore, the onset of out-of-plane instability is analyzed without considering this 
intermediate support. The maximum tensile strain required to buckle the wall boundary during 
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load reversal (߳௦௠) is first estimated from an OpenSees model (see Figure 5.28b). Figure 5.43 
shows the analysis results. 

 

 

Figure 5.43 Boundary element of wall R2: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

The analysis considers spalling in the region close to the wall base prior to buckling, which 
is consistent with reported observations. According to Figure 5.43b, it is required to have a vertical 
strain at the base of the wall boundary close to ߳௦௠ ≈ 8߳௬, or 0.02 to buckle the boundary during 
load reversal. The estimated value for the maximum tensile strain at the wall boundary (Figure 
5.40) before Cycle 33 is higher than 8߳௬, and therefore the onset of buckling is an expected 
response, as observed during the test and in the finite elements model. If the simplified mechanics 
is applied directly assuming constant strain along the full height (180 in.), the estimated value of ߳௦௠ is low, as shown in Table 5.6. 

If we apply Figure 4.9 directly in Table 5.6, the estimated value for ߳௦௠ is 5·0.005=0.025, 
close to 0.02 obtained from the more accurate OpenSees model. The analysis suggests that Figure 
4.9 can be used to improve the estimation of ߳௦௠. 

Table 5.5 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa). 

Wall 

Material 
Properties, psi  

Dimensions, in. BE Area of 
Longitudinal 
Steel As, in.2 

Width, 
b 

Length, 
lw 

Story 
Height, 

H 
hu 

BE 
Length, 

lb 

Stirrup 
Clear 

Cover, c f'c fy 

R2 6,700 65,300 4.0 75 180 180 8 0.5 1.18 

(a) (b) (c) (d) 
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Table 5.6 Analysis of R2 from simplified mechanics, cover spalled off. 

Wall 
Wall Slenderness 

bc/khu ρ m ξ κ ࣕ࢓࢙ 

R2 0.02 7% 0.72 0.10 1 0.005 
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6 Global Instability in Slender Walls of Chilean 
Buildings 

6.1 INTRODUCTION 

Prior 2010, lateral buckling in slender walls and columns had been observed only in a few 
laboratory tests. Following the 2010 Chile earthquake, buckling in slender walls was reported in 
two residential buildings. Both experienced severe post-earthquake damage. Relative to other 
types of damage in walls, cases of documented overall wall buckling behavior in Chile were 
relatively few and often associated with significant residual drift in the building (ATC-94, 2014). 
This chapter presents detailed studies carried on three Chilean buildings (Buildings #1, #2 and #3). 
Buckling was reported in some walls of Buildings #1 and #2. Building #3 collapsed during the 
2010 Chile earthquake, and for this case an evaluation of the onset of lateral buckling is performed 
to determine if buckling was one of the multiple causes that triggered collapse. Modal response 
spectrum analysis is used to estimate the roof drift ratio of Buildings #1 and #2, using linear fixed-
base models developed in ETABS. Results of linear analyses reported by others (Tanyeri, 2014; 
Hilson, 2014) are used to estimate the roof drift ratio of Building #3. Several models of isolated 
walls are considered for estimation of strain demands at the first story to perform an evaluation of 
the onset of lateral buckling, using the simplified mechanics theory presented in section 2.2. These 
studies are fundamental to determine the failure mechanism in slender walls that experienced out-
of-plane instability in actual buildings. Later, recommendations for the improvement for current 
design standards are made based on these studies. 

6.2 BUILDING #12 

6.2.1 Building Description 

Building #1 is located in San Pedro de la Paz, Chile. The structure was severely damaged following 
the 2010 Maule earthquake. The building was designed during 2007-2008 and constructed in 2009. 
It has fifteen stories and two subterranean levels. The seismic force-resisting system is composed 
of reinforced concrete walls of 7.87 in. (200 mm) typical thickness. The gravity force-resisting 
system comprises the reinforced concrete walls plus some interior reinforced concrete columns. 
The typical story height is 8.37 ft (2.55 m). There are some discontinuities in the vertical members 

                                                 
 
2 Data for Building #1 obtained from DICTUC reports (2010). 
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in the first story with respect to the upper stories. For example, walls K and Ñ (and other walls) 
step back from the building perimeter by approximately 6.5 ft (2 m), resulting in reduced wall 
length in the first story compared with typical stories above (walls of this configuration are is 
commonly known as “flag walls”). The building sustained a variety of apparent damage during 
the 2010 earthquake, with main damage characterized by wall crushing in the first story or in 
subterranean levels. Some walls, and in particular the first story wall along line Ñ, showed apparent 
out-of-plane buckling (Figure 1.1). Figure 6.1 shows the typical plan view and Figure 6.2 shows 
the first-story plan view. 

 

Figure 6.1 Building #1 – Typical plan view. 
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Figure 6.2 Building #1 – First story plan view. 

6.2.2 Loads and Design Standards 

Gravity and seismic loads were calculated following the Chilean standards NCh 1537 Of. 1986 
and NCh 433 Of. 1996. Table 6.1 shows the calculated gravity loads. For the seismic mass 50% 
of live load is considered. 

Table 6.1 Gravity loads for Building #1. 

Floor Slab thickness, in. (mm) Dead Load, psf (kPa) Live Load, psf (kPa) 

-2 7.87 (200) 112.99 (5.41) 10.03 (0.48) 

-1 7.87 (200) 112.99 (5.41) 10.03 (0.48) 

1 5.91 (150) 87.09 (4.17) 10.03 (0.48) 

2 to 14 5.91 (150) 87.09 (4.17) 10.03 (0.48) 

Roof 5.91 (150) 87.09 (4.17) 10.03 (0.48) 
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Reinforced concrete members were designed according to ACI 318 (2005). Parameters 
considered in seismic design according to NCh 433. Of. 1996 are: building category C, seismic 
zone 3, soil type 3 and 5% damping ratio. Standard NCh 433. Of. 1996 defines the response 
spectrum for design according to Equations (6.1) to (6.3). ܵఈ = ∗ܴߙ଴ܣܫ  (6.1)

ߙ = 1 + 4.5 ቀ ௡ܶܶ଴ቁ௣
1 + ቀ ௡ܶܶ଴ቁଷ  

(6.2)

ܴ∗ = 1 + ܶ∗0.1 ଴ܶ + ܶ∗ܴ଴ 
(6.3)

Where: 

• ܵఈ Pseudo acceleration 

• I Importance factor, equal to 1 for building category C 

 ଴ Peak ground acceleration, equal to 0.4 g for seismic zone 3ܣ •

• g Acceleration of gravity 386 in./s2 (9.81 m/s2) 

• ௡ܶ Mode nth vibration period (s) 

• ଴ܶ Soil dependent parameter, equal to 0.75 (s) for soil type III 

• p Soil dependent parameter, equal to 1 for soil type III 

• ܶ∗ Vibration period of the mode with highest equivalent mass in the 
analysis direction (s) 

• ܴ଴ Response modification factor = 11 

Figure 6.3 presents the design response spectrum without response modification factor 
(ܴ∗ = 1). 

 

Figure 6.3 NCh 433 Of. 1996 elastic response spectrum (for R*=1). 
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6.2.3 Nominal and Measured Material Properties 

The nominal material properties specified by design are: concrete H30 confidence interval 90%, 
maximum compressive strength in cubic specimen 4,350 psi (30 MPa) and reinforcement steel 
A63-42H, tensile strength fu = 91 ksi (630 MPa), yield strength fy = 60 ksi (420 MPa). Table 6.2 
shows the f’c required for each concrete grade according to the Chilean standard NCh 430 Of. 2008. 

Table 6.2 NCh 430 Of. 2008 conversion table. 

Concrete grade (NCh170 confidence interval 90%) f'c, psi (Mpa) 

H20 2,320 (16) 

H25 2,900 (20) 

H30 3,630 (25) 

H35 4,350 (30) 

H40 5,080 (35) 

H45 5,800 (40) 

Therefore, for this case f’c = 3,630 psi (25 MPa). Concrete real strength was determined 
from tests following the Chilean standards NCh 1171/1 Of.2001 and NCh 1171/2 Of.2001. Table 
6.3 quantifies those tests. Table 6.4 and Table 6.5 indicate the dimensions of cores and the location 
where they were obtained. Table 6.6 shows the results of the compressive strength tests. 

Table 6.3 Building #1 tests (DICTUC, 2010). 

Test Quantity

Compressive strength 12 

Thickness determination 12 

Density determination 12 

Detailed visual inspection 12 

Table 6.4 Dimensions of cores (DICTUC, 2010). 

Core 
Height, 

in (mm)* 
Diameter, 
in (mm) 

Slenderness 
Unit weight, 
pcf (kg/m3) 

TH01 6.9 (174) 4 (101) 1,72 148 (2375) 

TH02 6.8 (173) 4 (101) 1,71 147 (2353) 

TH03 5.2 (132) 4 (101) 1,31 148 (2376) 

TH04 6.8 (173) 4 (101) 1,71 145 (2326) 

TH05 4.1 (104) 4 (101) 1,03 149 (2386) 

TH06 7 (179) 4 (101) 1,77 146 (2344) 

TH07 6.3 (161) 4 (101) 1,59 148 (2370) 

TH08 4.6 (118) 4 (101) 1,17 146 (2340) 

TH09 7 (179) 4 (101) 1,77 147 (2357) 

TH10 6.9 (174) 4 (101) 1,72 145 (2315) 

TH11 4.3 (110) 4 (101) 1,09 145 (2327) 

TH12 6.5 (166) 4 (101) 1,64 141 (2266) 

(*) Height includes surface preparation of top and bottom of the cylinder prior testing. 
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Table 6.5 Locations where cores were obtained (DICTUC, 2010). 

Core Position 

TH01 Wall level -2, axis K between 3-5, 4.43 ft (1.35 m) from 3 and 3.61 ft (1.10 m) from floor level. 

TH02 Wall level -1, axis 5 between C-G, 4.87 ft (1.48 m) from C and 2.20 ft (0.67 m) from floor level. 

TH03 Wall level -1, axis L between 11-14, 3.94 ft (1.20 m) from 14 and 1.97 ft (0.60 m) from floor level. 

TH04 Wall level 1, axis U between 5-9, 4.27 ft (1.30 m) from 9 and 3.12 ft (0.95 m) from floor level. 

TH05 Wall level 1, axis 11 between G-U, 21.65 ft (6.60 m) from U and 3.84 ft (1.17 m) from floor level. 

TH06 Column level 1, axis F between 12-14, 3.77 ft (1.15 m) from 14 and 4.27 ft (1.30 m) from floor level. 

TH07 Wall level 2, axis 12 between ZZ-U, 12.14 ft (3.70 m) from ZZ and 3.44 ft (1.05 m) from floor level. 

TH08’ Slab level 1, axis U-V between 8-9, 0.98 ft (0.30 m) from U and 2.62 ft (0.80 m) from 9. 

TH09 Wall level 4, axis Q between 5-1, 9.84 ft (3.00 m) from 1 and 3.94 ft (1.20 m) from floor level. 

TH10 Wall level 6, axis 5 between A-G, 10.33 ft (3.15 m) from A and 3.02 ft (0.92 m) from floor level. 

TH11’ Slab level 9, axes E-G between 9-12, 9.02 ft (2.75 m) from G and 4.53 ft (1.38 m) from 12. 

TH12’ Wall level 13, axis 5 between U-ZZ, 11.32 ft (3.45 m) from ZZ and 4.43 ft (1.35 m) from floor level. 

Table 6.6 Measured concrete compressive strength (DICTUC, 2010). 

Core 
Maximum Load, 

lb (kN) 
Core compressive 

strength, psi (MPa) 
Cylinder compressive 

strength, psi (MPa) 
Cubic compressive 
strength, psi (MPa) 

TH01 116,451 (518) 9,384 (64.7) 9,384 (64.7) 10,109 (69.7) 

TH02 100,265 (446) 8,079 (55.7) 8,079 (55.7) 8,804 (60.7) 

TH03 99,141 (441) 7,977 (55.0) 7,977 (55.0) 8,702 (60.0) 

TH04 97,117 (432) 7,818 (53.9) 7,818 (53.9) 8,543 (58.9) 

TH05 108,133 (481) 8,702 (60.0) 8,702 (60.0) 9,427 (65.0) 

TH06 90,598 (403) 7,295 (50.3) 7,295 (50.3) 8,021 (55.3) 

TH07 115,552 (514) 9,311 (64.2) 9,311 (64.2) 10,037 (69.2) 

TH08 76,435 (340) 6,150 (42.4) 5,598 (38.6) 6,324 (43.6) 

TH09 109,482 (487) 8,818 (60.8) 8,818 (60.8) 9,543 (65.8) 

TH10 71,040 (316) 5,714 (39.4) 5,598 (38.6) 6,324 (43.6) 

TH11 70,365 (313) 5,671 (39.1) 5,047 (34.8) 5,773 (39.8) 

TH12 67,443 (300) 5,424 (37.4) 5,279 (36.4) 6,005 (41.4) 

Chilean standard NCh 1171/1 Of. 2001 specifies the use of a slenderness modification 
factor to obtain the cylinder compressive strengths from the core compressive strengths ( ௖݂ᇱ ଵܭ= ௖݂௢௥௘), according to Table 6.7. These factors have been considered in Table 6.6. 
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Table 6.7 Modification factor according to Chilean standard NCh 1171/1 Of. 2001. 

Slenderness (h/d) Factor K1 

2.00 1.00 

1.75 0.98 

1.50 0.96 

1.25 0.93 

1.00 0.87 

Following the 2010 Chile earthquake, one wall apparently buckled in the first story of 
Building #1 (Figure 1.1). As response in the first story was the primary interest, linear and 
nonlinear models were assembled based on the compressive strength obtained from a first-story 
core. Periods would not be much affected by using an alternative value for compressive strength. 
Therefore, the cubic compressive strength is considered as 8,000 psi (55 MPa), cylinder strength f’c = 7,300 psi (50 MPa), and the elasticity modulus is Ec = 4,800 ksi (33,000 MPa). For linear 
analysis, the effective flexural and axial rigidity (including cracking) is used, according to ASCE 
41 (2006), section 6.3.1.2: walls-cracked 0.5Ec Ig (flexural) and 0.4Ec Aw (shear), columns 0.3Ec Ig 
(flexural) and 0.4Ec Aw (shear), slabs 1/3Ec Ig (flexural). Kent and Park (1971) unconfined concrete 
model is used for nonlinear analysis. Measured reinforcement properties from coupons from the 
building are tensile strength fu = 110 ksi (759 MPa) and yield strength fy = 73.4 ksi (506 MPa). 

6.2.4 Soil Properties 

Layers of the foundation soil reported by the project geotechnical engineer (EMPRO, 2007) are: 

• H-1 From 0.0 ft to 18.0 ft (0.00m-5.50m) 

• H-2 From 18.0 ft to 34.4 ft (5.50m-10.50m) 

• H-3 From 34.4 ft to 38.1 ft (10.50m-11.60m) 

• H-4 From 38.1 ft to 50.7 ft (11.60m-15.45m) 

• H-5 From 50.7 ft to 52.2 ft (15.45m-15.90m) 

• H-6 From 52.2 ft to 65.8 ft (15.90m-20.06m) 

Table 6.8 indicates the soil parameters for each layer. According to the Chilean standard 
NCh 433 Of. 1996, the soil classifies as type III for seismic zone 3. 

Table 6.8 Soil properties per layer (EMPRO, 2007). 

 H-1 H-2 H-3 H-4 H-5 H-6 

USCS classification SP,SM SP ML SP ML SP 

Fines (%) <12% 3 84 1 57 3 

Plasticity index NP NP NP NP NP NP 

Solids specific weight (Gs) 2.7 2.77 2.53 2.7 2.61 2.76 

Nspt, blows/ft >40 29 to 73 9 57 to 62 13 >60 

Internal friction angle 38 38 - 40 - 42 

Effective cohesion, psi (MPa) 0 0 - 0 0 0 
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6.2.5 Recorded Ground Motion 

Instruments recorded the ground acceleration during the 2010 Chile earthquake at a nearby station 
(Colegio Concepción, San Pedro de la Paz) owned by the Seismological Service at the Department 
of Geophysics at the University of Chile (GUC). The station is located at 0.8 miles (1.3 km) from 
the building site and this is the available record closest to the building site. Ramirez and Vivallos 
(2009) described the type of soil of the area where the building is located as alluvial deposits of 
the Bio-Bio River, fine to medium sands with little silt, with some layers of coastal sand deposits 
and anthropogenic filling on top. The soil classifies as type 3 according to the Chilean standard 
NCh433 Of. 1996 (section 6.2.2). Figure 6.4 to Figure 6.6 show the acceleration records for the 
three measured directions. 

 

Figure 6.4 Corrected ground motion east-west direction (1 in. = 25.4 mm). 

 

Figure 6.5 Corrected ground motion north-south direction (1 in. = 25.4 mm). 
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Figure 6.6 Corrected ground motion up-down direction (1 in. = 25.4 mm). 

Figure 6.7 to Figure 6.9 show the pseudo acceleration, pseudo velocity, and the 
displacement response spectrum (2% damping ratio). 

 

Figure 6.7 Pseudo acceleration spectrum. 

 

Figure 6.8 Pseudo velocity spectrum (1 in. = 25.4 mm). 
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Figure 6.9 Displacement spectrum (1 in. = 25.4 mm). 

The first mode period in the east-west direction, estimated from an ETABS linear model 
in section 6.2.7, is ܶ =  This period is based in several assumptions regarding material .ݏ 0.57
properties and loads. In Figure 6.7 it can be observed that the calculated period falls in the valley 
of the east-west spectrum, and a large peak is observed at ܶ~0.76 ݏ. Therefore, a sensitivity 
analysis should be done regarding the first-mode period and its influence on the calculated 
structure response. According to Figure 6.9, in the east-west direction the peak spectral 
displacement is between 9.8-15.8 in. (250-400 mm) for the reasonable building period range. 
Therefore, the maximum roof drift ratio is close to ܴܦ = 1.43%. This assumes that peak 
displacement response of the nonlinearly responding building is the same as that of the building 
with linear-elastic properties. 

Figure 6.10 compares the calculated pseudo-acceleration spectrum (2% damping ratio) and 
the NCh 433 Of. 1996 design spectrum (R*=1). It is observed that the design pseudo-accelerations 
are largely exceeded in the east-west direction within the plausible period range. 

 

Figure 6.10 Pseudo acceleration spectrum comparison. 

Figure 6.11 presents a tripartite plot for the three recorded directions. 
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Figure 6.11 Tripartite plot for east-west, north-south and up-down motion 
(1 in. = 25.4 mm). 

From Figure 6.11 for the period range 0.57 ݏ ≤ ܶ ≤  the structure is in the ݏ 0.76
displacement preserved zone, and therefore the maximum roof drift ratio obtained from linear 
analysis is expected to be close to the nonlinear maximum drift ratio. 

6.2.6 Damage Reported Following the 2010 Chile Earthquake 

The main building post-earthquake damage is described in this section (DICTUC, 2010). Even 
though no major exterior damage is apparent, the floors cantilevering from the walls to form 
balconies showed obvious sagging. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.12 Exterior views: (a) east view; (b) axis A; (c) west view; (d) axis Zz (after 
DICTUC, 2010). 

Severe damage, which affects the structure stability, was observed from the second 
subterranean level to the first story, in walls oriented east-west between axes 12 and 14. In general 
terms, this entire line of walls failed in one of those stories. Repetitive damages were observed 
from the second to the fourteenth story, but these did not appear in the judgment of the author to 
affect the structure stability. Finally, in the fifteenth story and in the mechanical room, damage 
increases due to the changes on the lateral force-resisting system. 

The main damage in the second subterranean level is concentrated in two walls. Damaged 
concrete has been removed and supplementary reinforcement cages have been added adjacent to 
the original wall sections. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.13 Damage in second subterranean level: (a) axis P, between axes 12 and 14; 
(b) detail of axis P; (c) axis L, between axes 11 and 14; (d) axis G, between 

axes 7 and 10 (after DICTUC, 2010). 

Similar damage was observed in the first subterranean level. There were two failures in 
walls located in axis V and F, between 14 and 12. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.14 Damage in first subterranean level: (a) axis V, between axes 12 and 14; (b) 
detail of axis V; (c) axis F, between axes 12 and 14; (d) detail of axis F 

(after DICTUC, 2010). 

In the first story, two specific failures types were observed. The wall in axis Ñ, between 
axes 3 and 4, had apparent compressive failure. Note that axis Ñ wall had an irregularity (indicated 
in Figure 6.22) in this story that could have been a contributing factor. The axis J wall, between 
axes 6 and 9, also had a compressive failure. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.15 First story damage: (a) axis Ñ, between axes 3 and 5; (b) detail of axis Ñ; 
(c) axis J, between axes 6 and 8; (d) detail of axis J (after DICTUC, 2010). 

Another important damage was located in axis U, between axes 5 and 9. This wall had a 
compressive failure. This failure was consistent with the predominant east-west direction of the 
earthquake. It should be noticed that this is an L-shaped wall (flange in axis 5), so the flange may 
have had an influence in the failure mode. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.16 First story damage: (a) axis U, between axes 5 and 9; (b) detail of axis U; 
(c) axis U, between axes 5 and 9; (d) axis 5, between axes U and Y (after 

DICTUC, 2010). 

At the four corners of the building, in the first story, there are walls of non-uniform 
thickness (200/300 mm). Failures can be observed in the section of thickness change. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.17 First story damage: (a) axis C, between axes 13 and 14; (b) axis C, 
between axes 13 and 14; (c) axis C, slab damage; (d) axis C, between axes 
3 and 4; (e) axis Y, between axes 3 and 4; (f) axis Y, between axes 13 and 

14 (after DICTUC, 2010). 

  



127 

Connections between walls and slabs sustained damage as shown next. 

 
(a) 

 
(b) 

Figure 6.18 Second story damage in axis C, between 13 and 14: (a) view 1; (b) view 2 
(after DICTUC, 2010). 

6.2.7 ETABS Model for Building #1 

The onset of out-of-plane instability in slender walls of Building #1 is analyzed using nonlinear 
models of isolated walls. For the analysis of isolated walls, it is required first to estimate the 
displacement demand at the roof. This demand is estimated from a response spectrum analysis of 
the full building using the software ETABS. Figure 6.19 shows the linear fixed-base model for 
Building #1. 

 

Figure 6.19 ETABS model for Building #1. 
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Table 6.9 presents the periods and modal participating mass ratios for the first ten modes 
of the building. 

Table 6.9 Modal analysis output for Building #1. 

Mode Period (s) Modal mass ratio
east-west direction 

Modal mass ratio 
north-south direction 

1 0.78 0.18 0.00

2 0.57 60.19 0.02

3 0.47 0.02 60.16

4 0.19 0.00 0.18

5 0.18 0.05 0.01

6 0.15 0.14 0.05

7 0.14 11.92 0.07

8 0.13 2.26 0.42

9 0.12 0.60 1.43

10 0.11 0.20 10.04

From Table 6.9, the second mode (period ܶ =  has the highest effective modal mass (ݏ 0.57
in east-west direction, and the third mode (period ܶ =  has the highest effective modal mass (ݏ 0.47
in north-south direction. As noted in section 6.2.5, according to the elastic response spectrum of 
the nearby recorded ground motion, lateral displacement is sensitive to the vibration period, with 
peak displacement occurring for fundamental period ܶ =  In order to evaluate the worst .ݏ 0.76
case scenario, the seismic mass was increased in the model to achieve this target period of ܶ  Modifying the stiffness properties could have done this as an alternative approach. The .ݏ 0.76=
building modal analysis output is then modified as shown in Table 6.10. 

Table 6.10 Modal analysis output for Building #1 with increased seismic mass. 

Mode Period (s) Modal mass ratio
east-west direction 

Modal mass ratio 
north-south direction 

1 1.05 0.18 0.00

2 0.76 60.19 0.02

3 0.63 0.02 60.16

4 0.26 0.00 0.19

5 0.18 14.02 0.00

6 0.17 0.12 1.02

7 0.16 0.00 11.24

8 0.10 0.02 0.88

9 0.09 13.43 1.55

10 0.08 1.59 13.13

Section 6.2.8 presents the analysis results of nonlinear models of isolated walls, all of them 
oriented in the east-west direction. To proceed with those analyses, it was necessary to estimate 
first the maximum displacement that the building experienced during the earthquake. Figure 6.20 
shows the maximum lateral displacement over the height in the east-west direction for the building 
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with increased seismic mass, which is the worst case scenario regarding the demand of lateral 
displacement. 

 

Figure 6.20 Maximum lateral displacement, east-west direction (1 in. = 25.4 mm). 

From Figure 6.20 the maximum roof drift ratio is 1.4%, which is consistent with the first 
estimation presented in section 6.2.5. 

6.2.8 Nonlinear Models of Isolated Walls 

An evaluation of the onset of out-of-plane instability requires an estimation of the maximum strain 
demand at the wall base. Two walls of Building #1, both oriented in the east-west direction, are 
analyzed using nonlinear models of isolated walls. Figure 6.21 shows the selected walls in a plan 
view. Wall Ñ is the only one that showed apparent buckling following the 2010 Chile earthquake 
(Figure 1.1). The other wall was selected because of its proximity to wall Ñ (within 12 ft) and 
because it did not show appreciable post-earthquake damage at the first story. This observation 
can be used bound the analysis results. 

-2

0

2

4

6

8

10

12

14

0 5 10 15 20

S
to

ry

u (in)



130 

 

Figure 6.21 Analyzed walls for Building #1. 

Nonlinear analysis of isolated walls includes integration of curvatures along the height and 
a plastic hinge approach according to Figure 5.3. Only for wall Ñ the analysis also includes a 
PERFORM 3D nonlinear model. These isolated models are used to estimate strain profiles at the 
base for buckling evaluation. 

6.2.8.1 Analysis of Wall in Axis Ñ 

Several analyses were performed for the wall with the most obvious buckling as pictured in Figure 
1.1. Figure 6.22 shows an elevation view of wall Ñ. 

Wall K 

Wall Ñ 
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Figure 6.22 Elevation view of wall Ñ, dimensions in cm (1 cm = 0.39 in.). 

Figure 6.23 shows the tributary area (typical floor) considered for the model of the isolated wall. 

 

Figure 6.23 Tributary area at level 2-14 (typical floor). 
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Table 6.11 indicates total load at each floor. 

Table 6.11 Gravity load per floor wall Ñ. 

Floor Area, ft2 (m2) Dead Load, kips (kN) Live Load, kips (kN) 

-2 400.80 (37.24) 45.15 (200.84) 4.10 (18.24) 

-1 400.80 (37.24) 45.15 (200.84) 4.10 (18.24) 

1 248.10 (23.05) 21.60 (96.08) 2.54 (11.30) 

2 to 14 284.70 (26.45) 24.78 (110.23) 2.92 (12.98) 

Roof 339.60 (31.55) 29.56 (131.49) 3.48 (15.48) 

The axial load at the first story bottom level is P= 863 kips (3839 kN). Therefore P/Agf’c=0.05. 

6.2.8.1.1.1 Curvature Integration Approach 
The procedure indicated in section 5.2 is followed. The simplified model has concentrated 
nonlinearity in the first story, and linear elastic behavior is assumed in the other stories. This is 
reasonable considering the wall has a relatively weak first story due to a setback. For the first story, 
the moment curvature relation is calculated with XTRACT. For the upper stories, the cracked 
properties indicated in ASCE 41 (2006) are used. Figure 6.24 shows the section properties 
considered in the XTRACT model. 

 

Figure 6.24 XTRACT model section properties for wall Ñ (1 in. = 25.4 mm, bars 
diameter in mm). 
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Figure 6.25 shows the moment-curvature relations for the flange in compression and in 
tension. 

 

Figure 6.25 Moment-curvature relations axial load N=863 kips (1 in. = 25.4 mm; 
1 in. - kips = 0.11 kN-m). 

The lateral force pattern used for this analysis is inverted triangular. The total force was 
increased until reaching the target drift of 1.43%, the value obtained from linear analysis of the 
entire building. For the case of the flange in compression, the target displacement is reached 
without crushing in concrete or fracture in steel. Figure 6.26 shows the normalized moment and 
curvature over the height for this case. 

 

Figure 6.26 (a) Normalized moment; (b) curvature for flange in compression. 

As expected, the curvature demand is concentrated in the first story. (Note that the 
calculated curvature distribution shows a sharp spike toward the base level, indicating that the 
calculated strain and curvature may be sensitive to minor variations in the deformation or moment 
demands. A plastic hinge model is used later in this chapter to reduce the sensitivity of the result. 
For the case of flange in tension, Figure 6.27 shows the normalized moment and curvature over 
the height. For this case, concrete at the wall stem crushes at a drift ratio of 0.49%. 
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Figure 6.27 (a) Normalized moment; (b) curvature for flange in tension. 

Figure 6.28 shows the calculated section strain profiles, under the assumption that plane 
sections remain plane. 

 

Figure 6.28 Strain profiles for wall Ñ from curvature integration: (a) flange in 
compression; (b) flange in tension. 

Figure 6.28a shows that for the case of the flange in compression, the target drift ratio of 
1.43% is reached without concrete crushing at the wall flange or bar fracture at the wall stem, and 
the maximum tensile strain at the wall boundary is 0.03. Figure 6.28b shows that for the flange in 
tension, the ultimate state is triggered by concrete crushing at the wall stem, when the maximum 
compressive strain reaches 0.004. The roof drift ratio at this point is 0.49%. At this drift ratio, 
Figure 6.28a shows a maximum tensile strain at the wall stem of 0.01 when the flange is in 
compression. These estimations of strain profiles at the wall base will be used later in section 6.2.9 
for the evaluation of the onset of out-of-plane instability. 

6.2.8.1.2 Plastic Hinge Approach 
As was indicated in section 6.2.8.1.1.1, the wall has a relatively weak first story due to a setback. 
The nonlinear behavior will be concentrated here, and the contribution to the top displacement of 
the elastic deformation in the upper stories is expected to be small in comparison to the contribution 
given by the first story nonlinearity. A simplified plastic hinge approach according to Figure 5.3 
is appropriate to model this behavior. For the case of the flange in compression, the curvature at 
1.43% drift ratio is given by ߶௨ = 1.43% (0.5 ∙ 235)⁄ = 1.22 ∙ 10ିସ in.ିଵ. For the flange in 
tension, the ultimate state is triggered by concrete crushing at the wall stem, at a curvature ߶௨ =
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4.36 ∙ 10ିହ in.ିଵ and the estimated drift ratio is DR = ߶௨ ݈௣ = 4.36 ∙ 10ିହ ∙ 0.5 ∙ 235 = 0.51%. 
Figure 6.29 shows the calculated section strain profiles. 

 

Figure 6.29 Strain profiles for wall Ñ from plastic hinge approach: (a) flange in 
compression; (b) flange in tension. 

The strain profiles obtained from both approaches (curvature integration and plastic hinge) 
are very similar. There is only a minor difference in the value of drift ratio at which concrete 
crushing is triggered at the wall stem. 

6.2.8.1.3 PERFORM 3D Model 
Only for this wall, a non-linear fixed-base model was developed using PERFORM 3D. Two 
different analyses are performed: 

a) Non-linear response history analysis. The seismic mass is calculated by 
tributary areas considering 50% of the live load. A factor is applied over the 
seismic load to get 1.43% roof drift ratio (maximum value estimated from 
ETABS model of the building). The ground motion is defined in section 6.2.5. 

b) Pushover analysis. An inverted triangular lateral force pattern is applied. A 
pushover analysis is performed until reaching a roof drift ratio of 1.43%. 

From these two analyses it is possible to estimate strain profiles at the wall base. Figure 
6.30 shows the base-overturning moment versus roof drift ratio for the nonlinear response history 
analysis. 
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Figure 6.30 Nonlinear response history analysis – base overturning moment v/s roof 
drift ratio (1 in.-kips = 0.11 kN-m). 

Figure 6.31 and Figure 6.32 show calculated section strain profiles from nonlinear response 
history and pushover analyses. Strain profiles are shown for the drift ratio that crushes the wall 
stem in compression and for the target drift ratio of 1.43% when the wall stem is in tension. 

 

Figure 6.31 Strain profiles for wall Ñ from nonlinear response history analysis: (a) 
flange in compression; (b) flange in tension. 

 

 Figure 6.32 Strain profiles for wall Ñ from pushover analysis: (a) flange in 
compression; (b) flange in tension. 
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Both figures show the strain profile at 1.43% drift ratio when the flange is in compression. 
For this case, the maximum tensile strain at the wall stem is close 0.03 for the dynamic analysis 
and 0.04 for the pushover analysis. Both analyses showed crushing at the wall stem for lower drifts 
(close to 0.60%). At this drift ratio, when the flange is in compression, the tensile strain at the wall 
stem is 0.01. 

6.2.8.2 Analysis of Wall in Axis K 

Figure 6.33 shows the elevation of wall K. For this wall, curvature integration and the 
plastic hinge approach are used to estimate strain profiles at the base. 

 

Figure 6.33 Elevation view of wall K, dimensions in cm (1 cm = 0.39 in.). 

Figure 6.34 shows the tributary area for gravity loads (typical floor). 
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Figure 6.34 Tributary area at level 2-14 (typical floor). 

Table 6.12 gives the total gravity load per floor for wall K. 

Table 6.12 Gravity load per floor wall K. 

Floor Area, ft2 (m2) Dead Load, kips (kN) Live Load, kips (kN) 

-2 368.34 (34.22) 41.49 (184.56) 3.77 (16.77) 

-1 368.34 (34.22) 41.49 (184.56) 3.77 (16.77) 

1 275.98 (25.64) 24.02 (106.85) 2.83 (12.59) 

2 to 14 303.90 (28.23) 26.45 (117.66) 3.11 (13.83) 

Roof 249.29 (23.16) 21.70 (96.53) 2.55 (11.34) 

The axial load at the first story bottom level is P = 633 kips (2816 kN). Therefore, P/Agf’c 
= 8.5%. 
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6.2.8.2.1 Curvature Integration Approach 
This analysis follows the procedure introduced in section 6.2.8.1.1.1. Figure 6.35 shows the section 
properties used in the XTRACT model. 

 

Figure 6.35 XTRACT model section properties for wall K (1 in. = 25.4 mm, bars 
diameter in mm). 

Figure 6.36 shows the moment-curvature relation. 

 

Figure 6.36 Moment-curvature relation axial load N=633 kips (1 in. = 25.4 mm; 
1 in. - kips = 0.11 kN-m). 

The lateral load pattern is also inverted triangular and was increased until reaching 1.43% 
drift ratio, target value obtained from ETABS. Figure 6.37 plots the normalized moment and 
curvature over the building height. 
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Figure 6.37 (a) Normalized moment; (b) curvature. 

As expected, all the curvature demand is concentrated in the first story. Again the 
calculated curvature distribution shows a sharp spike toward the base level, indicating that the 
calculated strain and curvature may be sensitive to minor variations in the deformation or moment 
demands. Analysis showed that crushing at the wall boundary occurs at a drift ratio of 0.63% and 
a compressive strain of 0.004. For this drift, Figure 6.38 shows the calculated section strain profile. 
The maximum tensile strain at the opposite wall boundary is 0.008. 

 

Figure 6.38 Strain profile for wall K from curvature integration. 

6.2.8.2.2 Plastic Hinge Approach 
A simplified plastic hinge approach according to Figure 5.3 is now used. The ultimate state is 
triggered by concrete crushing at the wall boundary, at a curvature ߶௨ = 8.47 ∙ 10ିହ in.ିଵ. 
Therefore, the estimated drift ratio is DR = ߶௨ ݈௣ = 8.47 ∙ 10ିହ ∙ 0.5 ∙ 134 = 0.57%. 
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Figure 6.39 shows the calculated section strain profiles at the drift ratio that crushes the 
wall boundary in compression. The estimated value for the maximum tensile strain in the opposite 
boundary is 0.008. 

 

Figure 6.39 Strain profile for wall K from plastic hinge approach. 

6.2.9 Evaluation of the Onset of Out-Of-Plane Instability 

The simplified mechanics of section 2.2 represents a prismatic column under uniform 
tension/compression cycles and fixed supports at the top and bottom. The most important 
parameter for the evaluation of instability is the maximum tensile strain required to buckle the 
element during load reversal. Analysis of sections 4 and 5.3.3 showed that the simplified 
mechanics model can be used for cases where the strain profile is nearly uniform strain over the 
height, and the effect of the strain distribution along the length of the wall is not relevant when the 
wall length is more than 10ݐ௪. The analyzed walls typically have a setback at the first story by 
architectural requirements. For these cases, it is reasonable to assume that the plastic hinge extends 
over the first story height and therefore the strain demand is constant or close to constant along the 
first story height. Moreover, similar cases (see TW2 in section 5.3.3) show that the boundary 
element buckles like a fixed-fixed element at the first story. For this reason, the simplified 
mechanics is used here to evaluate the onset of out-of-plane instability. Table 6.13 shows the 
properties used in buckling calculation for these two walls. 

Table 6.13 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa). 

Wall 

Material 
Properties, psi  

Dimensions, in. BE Area of 
Longitudinal Steel 

As, in.2 
Width, 

b 
Length, 

lw 

Story 
Height, 

H 
hu 

BE 
Length, 

lb 

Stirrup 
Clear 

Cover, c f'c fy 

Ñ 7,300 73,400 7.9 235 94 94 9 0.8 3.04 
K 7,300 73,400 7.9 133 94 94 9 0.8 2.36 

Table 6.14 shows the buckling calculation for these walls, considering that spalling does 
not occur before buckling. Therefore, the total wall width (ܾ௪) is considered. 
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Table 6.14 Buckling calculation when spalling does not occur. 

Wall 
Wall Slenderness 

b/khu ρ m ξ κ ࣕ࢓࢙ 

Ñ 0.17 4% 0.41 0.14 0.78 0.034 
K 0.17 3% 0.32 0.16 0.79 0.039 

Table 6.15 shows the buckling calculation for these walls, when spalling precedes 
buckling. Therefore, the core width (ܾ௖) is considered. 

Table 6.15 Buckling calculation when spalling precedes buckling. 

Wall 
Core Width, 

bc 
Wall Slenderness 

bc/khu ρ m ξ κ ࣕ࢓࢙ 

Ñ 4.4 0.09 7% 0.74 0.09 1 0.013 
K 4.5 0.10 6% 0.56 0.11 1 0.015 

For wall Ñ, different values of ߳௦௠ were obtained from different analyses, according to 
Table 6.16. 

Table 6.16 Boundary bar tensile strain for different analyses in wall Ñ. 

Analysis ࣕ࢓࢙
PERFORM 3D nonlinear response history analysis 0.03

PERFORM 3D pushover analysis DR=1.43% 0.04

Numerical integration of curvatures DR=1.43% 0.03

Simplified plastic hinge DR=1.43% 0.03

For the buckled wall Ñ, all the models produce similar conclusions, presented in Figure 
6.40. For lateral loading that puts the flange in tension, the stem crushes for roof drift ratio of 
approximately 0.5%. According to Table 6.14, a prior peak tensile strain of ߳ ௦௠ ≈ 0.03 is required 
to soften the wall sufficiently to cause out-of-plane buckling in the previously intact wall stem. To 
reach this peak of ߳௦௠ ≈ 0.03, however, requires roof drift ratio around 1.4%. Although this drift 
ratio is plausible given the response spectrum for the site, it is approximately three times the drift 
ratio required to crush the wall stem. Therefore, it seems much more likely that the wall crushed 
first for loading that put the stem in compression, and the damaged section then buckled out of 
plane. If it is assumed that spalling of cover concrete leaves an intact core, Table 6.15 indicates 
that the reduced section would be prone to out-of-plane buckling at the roof drift ratio close to 
0.5%. 

Rectangular wall K is located immediately adjacent to wall Ñ (Figure 6.21). Therefore, it 
is reasonable to conclude that the walls were subjected to nearly identical displacement histories. 
This wall experienced minor failure in the boundary, apparently due to compression. As with wall 
Ñ, the wall has a setback at the first story (Figure 6.33). Simplified models integrating curvature 
over height, including a plastic-hinge model, were used to study likely strain demands in the first 
story, using the same approach as was used for wall Ñ. According to these models, crushing of the 
wall boundary is expected for roof drift ratio of approximately 0.6% as shown in Figure 6.40 
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(slightly larger than the value required for wall Ñ). Maximum tensile strain is approximately 0.008 
at this drift ratio. According to Table 6.14, a prior peak tensile strain of ߳௦௠ ≈ 0.04 is required to 
soften the wall sufficiently to cause out-of-plane buckling after spalling. These combined results 
indicate that crushing of the wall boundary would be expected to precede wall buckling. As noted, 
the wall sustained minor concrete crushing, with no evidence of out-of-plane buckling. The 
damage state for wall K suggests that the wall did not undergo drifts significantly exceeding 0.6% 
(onset of crushing). Thus, it seems even less likely that wall Ñ could have reached lateral drifts 
required for buckling to control the behavior. 

 

Figure 6.40 Interpretation of wall Ñ analysis. 
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6.3 BUILDING #23 

6.3.1 Building Description 

Building #2 is located in Santiago, Chile. The structure was severely damaged following the 2010 
Maule earthquake. The building was designed in 2006 and constructed in 2009. It has twenty 
stories and four subterranean levels. Its total plan area is approximately 220,660 ft2 (20,500 m2). 
The gravity and seismic force-resisting system are composed of reinforced concrete walls of 6.69 
in. (170 mm) typical thickness. The typical story height is 8.27 ft (2.52 m). Figure 6.41 shows the 
typical plan view. 

 

Figure 6.41 Building #2 – Typical plan view. 

The damage is mainly concentrated in the first subterranean level, in walls indicated in 
Figure 6.42. 

 

Figure 6.42 Building #2 – Damaged walls in the first subterranean level. 

                                                 
 
3 Data for Building #2 obtained from DICTUC reports (2010 and 2012). 
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6.3.2 Loads and Design Standards 

Gravity and seismic loads were calculated following the Chilean standards NCh 1537 Of. 1986 
and NCh 433 Of. 1996. Reinforced concrete members were designed according to ACI 318 (2005). 
Table 6.17 shows the calculated gravity loads. For the seismic mass, 50% of live load is considered. 

Table 6.17 Gravity loads per floor. 

Floor Slab thickness, in. (mm) Dead Load, psf (kPa) Live Load, psf (kPa) 

-4 to -1 7.09 (180) 102.00 (4.88) 10.03 (0.48) 

1 to 20 5.51 (140) 82.00 (3.93) 10.03 (0.48) 

The parameters used in the building seismic design according to NCh 433. Of. 1996 are: 
building category C (importance factor I =1), seismic zone 2 (ܣ଴ = 0.3݃), soil type II ( ଴ܶ = ݌ ,ݏ0.30 = 1.5) and 5% damping ratio. Equations were previously defined in section 6.2.2. Figure 6.43 
presents the elastic response spectrum without response modification factor (ܴ∗ = 1). 

 

Figure 6.43 NCh 433 Of. 1996 elastic response spectrum (for R*=1). 

6.3.3 Nominal and Measured Material Properties 

According to the building design documents, the nominal material properties are: concrete H25 
confidence interval 90%, maximum compressive strength in cubic test specimen 3,600 psi (25 
MPa) and reinforcement steel A63-42H, tensile strength fu= 91 ksi (630 MPa), yield strength fy = 
60 ksi (420 MPa). From Table 6.2, the cylinder compressive strength is f’c= 2,900 psi (20 MPa). 
For this analysis, real material properties (DICTUC, 2012) are used instead of nominal properties. 
Concrete compressive strength is determined from cores testing. 

Two buckled walls are analyzed in this section: Walls O and K2. Compressive strengths 
for both walls at the first subterranean level, where out-of-plane instability occurred, are f’c = 3,800 
psi (25.9 MPa) for wall O and f’c = 4,100 psi (28.5 MPa) for wall K2. For linear analysis, the 
effective flexural and axial rigidity (including cracking) is used, according to ASCE 41 (2006). 
Values of effective stiffness were indicated in section 6.2.3. Kent and Park (1971) unconfined 
concrete model is used for nonlinear analysis. Measured reinforcement properties from coupons 
from the building are tensile strength fu = 110 ksi (759 MPa) and yield strength fy = 73.3 ksi (506 
MPa). 



146 

6.3.4 Recorded Ground Motion 

Instruments recorded the ground acceleration during the 2010 Chile earthquake in several locations 
in Santiago. Three stations close to the building site, operated by University of Chile, are located 
in Santiago-Centro, La Florida and Peñalolén (records available in terremotos.ing.uchile.cl). The 
highest displacement demands are obtained for the Santiago-Centro record. This station is the 
closest to the building site and it is located at 3.1 miles (5 km). The soil type is expected to be 
similar in both sites, type II according to the Chilean standard NCh 433 Of. 1996. Therefore, the 
Santiago-Centro record is selected for analysis. Figure 6.44 to Figure 6.46 show the acceleration 
records for the three measured directions. 

 

Figure 6.44 Corrected ground motion east-west direction (1 in. = 25.4 mm). 

 

Figure 6.45 Corrected ground motion north-south direction (1 in. = 25.4 mm). 
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Figure 6.46 Corrected ground motion up-down direction (1 in. = 25.4 mm). 

Figure 6.47 to Figure 6.49 show the pseudo acceleration, pseudo velocity, and the 
displacement response spectrum (2% damping ratio). 

 

Figure 6.47 Pseudo acceleration spectrum. 

 

Figure 6.48 Pseudo velocity spectrum (1 in. = 25.4 mm). 
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Figure 6.49 Displacement spectrum (1 in. = 25.4 mm). 

From a ETABS linear analysis model of the building (section 6.3.6), the first-mode period 
in the east-west direction is ܶ =  This period is based on several assumptions regarding .ݏ 1.56
material properties and loads. According to Figure 6.49, in the east-west direction the peak spectral 
displacement is close to 7.5 in. (190 mm) for the reasonable building period range. Therefore, an 
estimated value for the maximum roof drift ratio is 0.60%. Figure 6.50 shows a comparison 
between the computed PSA spectrum (2% damping ratio) and the NCh 433 Of. 1996 design 
spectrum (R*=1). The computed PSA spectrum exceeds the design spectrum at all periods. 

 

Figure 6.50 Pseudo acceleration spectrum comparison. 

Figure 6.51 shows a tripartite plot for the three recorded directions. 
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Figure 6.51 Tripartite plot for east-west, north-south and up-down motion 
(1 in. = 25.4 mm). 

From Figure 6.51, for ܶ =  the (first-mode period in the east-west direction) ݏ 1.56
structure is in the displacement preserved zone, and therefore the maximum roof drift ratio 
obtained from linear analysis is expected to be close to the nonlinear maximum drift ratio. 

6.3.5 Damage Reported Following the 2010 Chile Earthquake 

The main post-earthquake damage of Building #2 (DICTUC, 2010) is described in this section. 
Figure 6.52 shows exterior views of the building. 
 

 
(a) 

 
(b) 

Figure 6.52 Exterior views of Building #2: (a) west face; (b) north face (after DICTUC, 
2010). 

The main damage is concentrated in the first subterranean level, in six walls in the east/west 
direction, as pictured in Figure 6.53. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6.53 Damaged walls in first subterranean level: (a) axis K2; (b) axis O; (c) axis 
Q3; (d) axis S; (e) axis T2; (f) axis 7 (after DICTUC, 2010). 

Second to fourth subterranean levels do not show damage. In the first story, only minor 
damage is observed. In the second story, there is one damaged wall, as shown in Figure 6.54. 
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(a) 

 
(b) 

Figure 6.54 Damaged walls in second story, axis J: (a) view 1; (b) view 2 (after 
DICTUC, 2010). 

6.3.6 ETABS Model for Building #2 

The onset of out-of-plane instability in slender walls of Building #2 is analyzed using nonlinear 
models of isolated walls. For the analysis of isolated walls, it is required first to estimate the 
displacement demand at the roof. This is achieved through a model of the building in ETABS and 
response spectrum analysis. Figure 6.55 shows the linear fixed-base model for Building #2. 

 

Figure 6.55 ETABS model for Building #2. 

Table 6.18 shows the building modes periods and modal participating mass ratios. 
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Table 6.18 Modal analysis output for Building #2. 

Mode Period (s) Modal mass ratio
east-west direction 

Modal mass ratio 
north-south direction 

1 1.56 0.01 52.76

2 1.25 1.06 1.70

3 0.75 51.94 0.10

4 0.31 0.04 19.08

5 0.28 0.25 0.02

6 0.21 12.27 0.09

7 0.16 0.33 8.76

8 0.13 0.12 3.24

9 0.11 10.58 0.04

10 0.09 0.45 5.85

11 0.06 18.22 0.74

12 0.05 0.17 5.93

From Table 6.18, the third-mode has the highest effective modal mass in building 
longitudinal direction (north-south, ܶ =  and the first-mode has the highest effective modal ,(ݏ 0.75
mass in transverse direction (east-west, ܶ =  The two analyzed walls are both oriented in .(ݏ 1.56
the east-west direction. Figure 6.56 shows the maximum lateral displacement over the height for 
the east-west direction. 

 

Figure 6.56 Maximum lateral displacement, east-west direction (1 in. = 25.4 mm). 
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Therefore, the estimated value for the maximum roof drift ratio is 0.64%, close to the 
estimation presented in section 6.3.4. 

6.3.7 Nonlinear Models of Isolated Walls 

An evaluation of the onset of out-of-plane instability requires an estimate of the maximum strain 
demand at the wall base. Two walls of Building #2 oriented in the east-west direction, are analyzed 
using nonlinear models of isolated walls. Figure 6.57 shows the selected walls in a plan view. Both 
walls (O and K2) showed apparent buckling following the 2010 Chile earthquake, as shown in 
Figure 6.53a and b. 

 

Figure 6.57 Analyzed walls for Building #2. 

For this analysis, only the plastic hinge approach, according to Figure 5.3, is used to 
estimate strain profiles at the base for buckling evaluation. 

6.3.7.1 Analysis of Wall in Axis O 

Figure 6.58 shows an elevation view of wall O. 

Wall K2 Wall O 
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Figure 6.58 Elevation view of wall O, dimensions in cm (1 cm = 0.39 in.). 

In this case, the setback is located at the first subterranean level, buckling was reported at 
this level (section 6.3.5), and therefore the hinge location for the plastic hinge model is considered 
at the first subterranean level. This simplified model considers the wall as a cantilever column with 
fixed base at the bottom of the first subterranean level. Therefore, a small lateral displacement is 
allowed at the grade level. 
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Figure 6.59 shows the section properties for XTRACT model. 

 

Figure 6.59 XTRACT model section properties for wall O (1 in. = 25.4 mm, bars 
diameter in mm). 

Figure 6.60 shows the moment-curvature relations for the flange in compression and in tension. 

 

Figure 6.60 Moment-curvature relations axial load N= 2048 kips (1 in. = 25.4 mm; 
1 in. – kips = 0.11 kN-m). 

The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.6% 
is ߶௨ = 0.6% (0.5 ∙ 189.8)⁄ = 6.32 ∙ 10ିହ in.ିଵ. Figure 6.61 shows the calculated strain profiles. 
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Figure 6.61 Strain profiles for wall O from plastic hinge approach: (a) flange in 
compression; (b) flange in tension. 

Figure 6.61b shows the strain profile at the wall base for the case of the wall stem in 
compression at 0.3% roof drift ratio, the limit at which concrete crushing occurs at the stem. This 
indicates that estimated maximum roof drift ratio of 0.6% cannot be reached without crushing the 
wall stem first. Figure 6.61a shows the strain profile at the wall base at 0.3%, 0.5% and 0.6% roof 
drift ratio, for the lateral load that compresses the wall flange. For this case, the maximum tensile 
strain at the wall stem is close to 0.01 when the maximum roof drift ratio is reached and 0.004 for 
the drift that causes failure at the wall stem when the load acts in the opposite direction. 

6.3.7.2 Analysis of Wall in Axis K2 

Figure 6.62 shows an elevation of wall K2. As in wall O, the simplified model considers the wall 
as a cantilever column with fixed base at the bottom of the first subterranean level and the plastic 
hinge located at this level. 
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Figure 6.62 Elevation view of wall K2, dimensions in cm (1 cm = 0.39 in.). 

Figure 6.63 shows the section properties for XTRACT model. 

 

Figure 6.63 XTRACT model section properties for wall K2 (1 in. = 25.4 mm, bars 
diameter in mm). 
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Figure 6.64 shows the XTRACT moment-curvature relation. 

 

Figure 6.64 Moment-curvature relation axial load N= 562 kips (1 in. = 25.4 mm; 
1 in. – kips = 0.11 kN-m). 

The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.6% 
is ߶௨ = 0.6% (0.5 ∙ 111.7)⁄ = 1.07 ∙ 10ିସ in.ିଵ. Section analysis shows that the ultimate state is 
triggered by concrete crushing at the wall boundary for a curvature of ߶௨ = 8.19 ∙ 10ିହ in.ିଵ and 
a drift ratio of DR = ߶௨ ݈௣ = 8.19 ∙ 10ିହ ∙ 0.5 ∙ 112 = 0.5%. Figure 6.65 shows the strain profile 
at 0.5% drift ratio. The maximum tensile strain at the wall boundary when the opposite boundary 
crushes in compression is 0.005. 

 

Figure 6.65 Strain profile for wall K2 from plastic hinge approach. 

6.3.8 Evaluation of the Onset of Out-of-Plane Instability 

Table 6.19 shows the material and section properties used in the analysis of the onset of out-of-
plane instability. Table 6.20 and Table 6.21 present the buckling calculations from the simplified 
mechanics of section 2.2, for intact cover and spalled off cover prior to buckling. 
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The simplified mechanics is used here for buckling evaluation under the assumption that 
the strain demand over the height of the first subterranean level is close to constant, which seems 
to be reasonable given the geometry of the walls. According to Table 6.20, to buckle the previously 
intact walls O and K2 requires a maximum tensile strain close to 0.01 prior load reversal. This 
value can be reached at the stem of wall O at a drift ratio of 0.6% (Figure 6.61a). 

In wall K2, analysis shows that reaching this strain is not possible without crushing the 
boundary first (Figure 6.65). Wall K2 analysis suggests that buckling was a secondary failure mode 
after the cover is spalled off, which occurs at a drift ratio close to 0.5%. When the onset of buckling 
is evaluated after the cover is spalled off, Table 6.21 indicated that reaching a tensile strain of 
0.007 at the wall boundary is enough to buckle it during load reversal, and the estimated strain 
demand is 0.005 (Figure 6.65), which is close to the required strain. For wall O, at 0.5% drift ratio, 
the estimated value for the maximum tensile strain at the stem is 0.008, more than the required 
value to buckle the stem after the cover is spalled off according to Table 6.21. Figure 6.61b 
indicates that spalling at the stem of wall O occurs at a drift ratio of 0.3%. 

Therefore, similar conclusions are obtained from the analysis of Buildings #1 and #2. 
Analyses suggest buckling of slender walls in Chilean buildings was a secondary failure model 
that followed crushing of the wall boundary. For Building #2, this likely occurred at a drift ratio 
close to 0.5% or 0.6%. 

Table 6.19 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa). 

Wall 

Material 
Properties, psi  

Dimensions, in. BE Area of 
Longitudinal 
Steel As, in.2 

Width, 
b 

Length, 
lw 

Story 
Height, 

H 
hu 

BE 
Length, 

lb 

Stirrup 
Clear 

Cover, c f'c fy 

K2 4,100 73,300 7.9 190 126 126 10 0.8 6.47 
O 3,800 73,300 7.9 112 126 126 22 0.8 15.27 

Table 6.20 Buckling calculation when spalling does not occur. 

Wall ρ m ξ κ ࣕ࢓࢙ 

K2 8% 1.43 0.06 0.78 0.012 
O 9% 1.72 0.05 0.79 0.011 

Table 6.21 Buckling calculation when spalling precedes buckling. 

Wall 
Wall Slenderness 

bc/khu ρ m ξ κ ࣕ࢓࢙ 

K2 0.07 14% 2.56 0.04 1 0.007 
O 0.07 15% 2.97 0.03 1 0.007 
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6.4 BUILDING #34 

6.4.1 Building Description 

Alto Rio building was located in the city of Concepción, Chile. The structure collapsed following 
the 2010 Maule earthquake, as pictured in Figure 6.66. The building was designed between 2006 
and 2007 and its construction was completed in 2009. It had rectangular plan with fifteen stories 
in the south end and twelve stories in the north end (stepped elevation at the roof level), and two 
subterranean levels. The maximum building height was 125 ft (38 m), the typical story height of 
8.2 ft (2.5 m) with first story height of 9.8 ft (3 m). Each subterranean plan area was 11,140 ft2 
(1,035 m2). Plan area of a typical story was 5,170 ft2 (480 m2). The structure comprised reinforced 
concrete slabs of 5.9 in. (150 mm) thickness with structural walls of 7.9 in. (200 mm) typical 
thickness. The building foundation was a reinforced concrete slab of 32 in. (800 mm) thickness. 

 

Figure 6.66 Collapse of Alto Rio building following 2010 Maule earthquake, after 
IDIEM (2010). 

  

                                                 
 
4 Data for Building #3 obtained from IDIEM reports (2010). 
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Figure 6.67 shows the plan view of a typical story. Figure 6.68 shows the plan view of the 
first story, where failure apparently triggering the collapse occurred in the short direction of the 
building. 

 

Figure 6.67 Alto Rio building – Plan view of typical story. 

 

Figure 6.68 Alto Rio building – Plan view of first story. 

6.4.2 Loads and Design Standards 

Gravity and seismic loads were calculated following the Chilean standards NCh 1537 Of. 1986 
and NCh 433 Of. 1996. Reinforced concrete members were designed according to ACI 318 (2005). 
The parameters used in the building seismic design according to NCh 433. Of. 1996 are: building 
category C (importance factor I=1), seismic zone 3 (ܣ଴ = 0.4݃), soil type II ( ଴ܶ = ݌ ,ݏ0.30 =1.5) and 5% damping ratio. Equations were previously defined in section 6.2.2. Figure 6.69 shows 
the elastic response spectrum without response modification factor (ܴ∗ = 1). 
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Figure 6.69 NCh 433 Of. 1996 elastic response spectrum (for R*=1). 

6.4.3 Nominal and Measured Material Properties 

Specified concrete grades, according to the building design documents, are: H30 in foundations, 
H30 from the second subterranean level up to the second level above grade and H25 for the rest of 
the building. Chilean standard NCH420 Of. 2008 defines the cylinder strength ௖݂ᇱ for each case, 
and those values were indicated in Table 6.2. For this case, ௖݂ᇱ=2,900 psi (20 MPa) for H25 
concrete, and 3,630 psi (25 MPa) for H30 concrete. The reinforcement steel grade is A63-42H, 
nominal tensile strength fu = 91 ksi (630 MPa) and nominal yield strength fy = 60 ksi (420 MPa). 
For the evaluation of the onset of out-of-plane instability from the simplified mechanics, real 
material properties (IDIEM, 2010) are used instead of nominal properties. Reinforcement steel 
properties were measured from coupons (Table 6.22) and concrete compressive strengths were 
determined from cores testing (Table 6.23). 
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Table 6.22 Measured reinforcement steel strength at first story (IDIEM, 2010). 

Bar Location 
Diameter, in. 

(mm) 
Yielding, psi 

(Mpa) 
Fracture, psi 

(Mpa) 
Elongation 

(%) 

1 Story 1, axis 8-A 1(25) 61,496(424) 105,442(727) 17.5 

2 Story 1, axis 8-A 1(25) 67,007(462) 106,023(731) 19 

3 Story 1, axis 13-A 0.9(22) 69,038(476) 112,114(773) 17.5 

4 Story 1, axis 13-A 0.9(22) 70,633(487) 109,213(753) 17 

5 Story 1, axis 13-A 0.9(22) 69,908(482) 109,939(758) 19 

6 Story 1, axis 13-A 0.7(18) 69,038(476) 108,488(748) 18 

7 Story 1, axis 13-A 0.6(16) 98,481(679) 111,099(766) 9.5 

8 Story 1, axis 20a-B-C 0.6(16) 70,778(488) 111,824(771) 19.5 

9 Story 1, axis 20a-B-C 0.5(12) 70,198(484) 102,107(704) 14 

10 Story 1, axis 11-C 0.9(22) 70,633(487) 109,939(758) 17.5 

11 Story 1, axis 5-A 0.7(18) 66,862(461) 97,610(673) 14 

14 Story 1, axis 8-A 0.3(8) 72,954(503) 106,748(736) 12 

16 Story 1, axis 11-C-B 0.9(22) 69,908(482) 109,939(758) 16 

18 Story 1, axis 17-A 0.6(16) 75,710(522) 114,000(786) 14.5 

20 Story 1, axis 20-A 0.6(16) 68,603(473) 100,366(692) 16.5 

21 Story 1, axis 20-A 0.6(16) 72,229(498) 102,397(706) 16 

22 Story 1, axis 24-C 1(25) 70,633(487) 101,381(699) 18 

23 Story 1, axis 24-C 1(25) 68,893(475) 100,801(695) 20.5 

24 Story 1, axis 24-A 1(25) 66,427(458) 106,603(735) 17.5 

25 Story 1, axis 24-A 1(25) 63,236(436) 106,023(731) 16 

26 Story 1, axis 24-A 1.1(28) 58,305(402) 97,030(669) 17.5 

27 Story 1, axis 24-A 0.6(16) 72,229(498) 102,397(706) 16.5 

28 Story 1, axis 26-A 0.7(18) 67,443(465) 106,748(736) 18 

29 Story 1, axis 33-A 1(25) 65,847(454) 105,442(727) 20 

30 Story 1, axis 33-A 1(25) 68,168(470) 99,496(686) 19 

31 Story 1, axis 33-A 1(25) 66,427(458) 98,336(678) 18 

34 Story 1, axis 33-C-B 0.7(18) 69,618(480) 107,328(740) 17.5 

35 Story 1, axis 33-C-B 0.7(18) 68,023(469) 105,587(728) 20 

36 Story 1, axis C-33-26 1(25) 68,168(470) 101,381(699) 19.5 

37 Story 1, axis 35-C 0.4(10) 85,717(591) 107,473(741) 10.5 

Table 6.23 Measured concrete compressive strength at first story (IDIEM, 2010). 

Core Location 
Core compressive 

strength, psi 
(Mpa) 

Cylinder 
compressive 

strength, psi (Mpa) 

Cubic compressive 
strength, psi (Mpa) 

T1 Story 1, axis 8 B-C 6,301(43.4) (*) (*) 
T2 Story 1, axis E 5-8 4395(30.3) 4153(28.6) 4,864(33.5) 
T3 Story 1, axis C 8-11 6,585(45.4) (*) (*) 
T4 Story 1, axis 20a A-C 6,059(41.8) (*) (*) 
T5 Story 1, axis 24 A-B 6,514(44.9) (*) (*) 
T10 Story 1, axis 5 I-G 5,874(40.5) (*) (*) 
T11 Story 1, axis E 2-5 7,325(50.5) (*) (*) 
T25 Story 1, axis A 17-20 6,329(43.6) (*) (*) 

(*) Not reported. 
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The evaluation of the onset of out-of-plane instability is performed for three walls, all 
oriented in the building short direction, in axes 8, 13 and 20, between axes D and I. Instability is 
expected to occur at the first story. Therefore, for analysis, measured material properties at the first 
story are considered. Reinforced bars used in wall stems had diameters 0.9 in. (22 mm) and 0.7 in. 
(18 mm). The average measured yielding stress these bars was 69 ksi (476 MPa). Analysis of the 
wall in axis 8 considers the concrete compressive strength measured in core T1 of 6.3 ksi (43 
MPa). For walls in axes 8 and 20, analysis is performed considering the concrete compressive 
strength measured in core T4 of 6.0 ksi (41 MPa). For all cases, strength reduction factors due to 
core slenderness are negligible. 

6.4.4 Recorded Ground Motion 

Instruments recorded the ground acceleration during the 2010 Chile earthquake in Colegio 
Inmaculada Concepción, located in downtown Concepción at 0.7 miles (1.2 km) from the building 
site. This station, operated by University of Chile, is the closest to the building site (record 
available in terremotos.ing.uchile.cl). The site where the record was obtained and the building site 
are located in the same type of soil, alluvial deposits of the Bio-Bio river (Ramirez and Vivallos, 
2009), and ground motions are expected to be similar. The ground motion measured in downtown 
Concepción is considered for analysis. Figure 6.70 to Figure 6.72 show the acceleration records 
for the three measured directions, where the east-west direction corresponds to the transverse 
(short) direction of the building. 

 

Figure 6.70 Corrected ground motion east-west direction (1 in. = 25.4 mm). 
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Figure 6.71 Corrected ground motion north-south direction (1 in. = 25.4 mm). 

 

Figure 6.72 Corrected ground motion up-down direction (1 in. = 25.4 mm). 

Figure 6.73 to Figure 6.75 show the pseudo acceleration, pseudo velocity, and the 
displacement response spectrum, calculated for 2% damping ratio. 

 

Figure 6.73 Pseudo acceleration spectrum. 
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Figure 6.74 Pseudo velocity spectrum (1 in. = 25.4 mm). 

 

Figure 6.75 Displacement spectrum (1 in. = 25.4 mm). 

Table 6.24 shows the building vibration periods reported by Tanyeri (2014). Values were 
obtained from a linear elastic model of the complete structure using the software ETABS. The 
model considered effective flexural stiffness of 0.5ܧ௖ܫ௚ according to ASCE 41-06, where ܧ௖ is the 
concrete Young’s modulus of 4,470 psi (31 MPa) and ܫ௚ is the second moment of inertia of the 
gross section. The Young’s modulus ܧ௖ was calculated from ACI318 considering measured 
strength obtained from core tests (IDIEM, 2010). The seismic mass considered 25% of the live 
load. The model included flexibility of walls and columns extending below the grade level, but 
lateral translational degrees of freedom were fixed at the lowest subterranean level. 

  



167 

Table 6.24 Calculated vibration periods, after Tanyeri (2014). 

Mode Period (s) Direction 

1 0.81 Tranverse 

2 0.71 Longitudinal 

3 0.58 Torsional 

4 0.19 Longitudinal 

5 0.17 Transverse 

6 0.14 Torsional 

Tanyeri (2014) reported roof drift ratios of 0.7% in the building transverse direction and 
0.46% in the longitudinal direction, both obtained from response spectrum analysis with 2.5% 
damping ratio, considering the ground motion recorded in downtown Concepción. Analyses of 
Chilean buildings in this research consider 2% damping ratio for response spectrum analysis. From 
Figure 6.75, for the reasonable period range in the transverse direction (where the three selected 
walls are oriented), the estimated displacement of a SDOF system is 8 in. This gives an estimation 
of the roof drift ratio of 0.85%, the value considered for this study. This is consistent with the roof 
drift ratio reported by Hilson (2014). 

Figure 6.76 shows a comparison between the computed PSA spectrum (2% damping ratio) 
and the NCh 433 Of. 1996 design spectrum (R*=1). The computed PSA spectrum exceeds the 
design spectrum at many periods. 

 

Figure 6.76 Pseudo acceleration spectrum comparison. 

Figure 6.77 shows a tripartite plot for the three recorded directions. 
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Figure 6.77 Tripartite plot for east-west, north-south and up-down motion 
(1 in. = 25.4 mm). 

From Figure 6.77, for ܶ =  the (first-mode period in the east-west direction) ݏ 0.81
structure is in the displacement preserved zone, and therefore the maximum roof drift ratio 
estimated from linear analysis (0.85%) is expected to be close to the nonlinear maximum drift 
ratio. 

6.4.5 Damage Reported Following the 2010 Chile Earthquake 

The building collapsed completely during the 2010 Chile earthquake. This section presents 
highlights of the damage observed during post-earthquake inspection (IDIEM, 2010), with special 
focus on walls in axes 8, 13 and 20, all oriented in the building short direction (east-west). These 
are the walls selected to perform an evaluation of out-of-plane instability. Figure 6.78a and b show 
two post-earthquake views of building, both taken from the north side. Inspection showed that the 
podium level was the critical level of the structure and the building upper portion rigidly 
overturned in the east direction and collapsed, with the west side of the building subjected to high 
tensile forces and the east to high compressive forces (Tanyeri, 2014). When the building 
collapsed, its east side impacted the wall located at the perimeter of the subterranean level, which 
seems to have caused the fracture at the ninth level of the building, as pictured in Figure 6.78. 
Inspection of the foundation did not show significant damage. 
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(a) (b) 

Figure 6.78 Collapse of Alto Rio building, a) view from the north side towards east, b) 
view from the north side towards west (after IDIEM, 2010). 

In axis 8, the failure was observed at the base of the first story, near the intersection with 
axis A. Then the failure surface climbed to a height of 16 in. (0.4 m) over the base and progressed 
horizontally until axis B, where it climbed diagonally again until axis C and then declined 
gradually towards the base (Figure 6.79a). Figure 6.79b shows lap splice failure at the intersection 
of axes 8 and A. Figure 6.79c shows compressive failure in axis 8 between axes A and B. Figure 
6.79d shows lap splice failure and bar fracture at the intersection of axes 8 and C. 

     

 (a) (b) 
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Figure 6.79 Damage in axis 8 (after IDIEM, 2010). 

In axis 13, the failure was observed at 71 in. (1.8 m) above the base at the first story, near 
the intersection with axis A. Then the failure surface declined gradually towards the base until a 
height of 32 in. (0.8 m) and progressed further to the base until reaching axis C (Figure 6.80). 
Figure 6.80e shows that the concrete at the intersection of axes 13 and A was completely crushed 
due to large compressive force and poor lateral confinement. 

   

 

(c) (d) 

(a) (b) 
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Figure 6.80  Damage in axis 13 (after IDIEM, 2010). 

Failure in the wall located in axis 20 occurred at a height of 55 in. (1.4 m) above the base 
at the first story, near axis A (Figure 6.81). The top portion of this wall showed heavy damage 
consistent to out-of-plane loading (IDIEM, 2010). 

(c) (d) 

(e) 
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Figure 6.81  Damage in axis 20 (after IDIEM, 2010). 

Based on post-earthquake inspection, IDIEM (2010) sketched the observed damage in axes 
8, 13, and 20 (Figure 6.82). 

(a) (b) 

(c) 
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Figure 6.82 Sketch of damage: a) axis 8, b) axis 13, c) axis 20 (after IDIEM, 2010). 

  

(a) (b) 

(c) 
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6.4.6 Nonlinear Models of Isolated Walls 

Three walls of Alto Rio building at the first story, all of them oriented in the east-west direction, 
are analyzed using nonlinear models of isolated walls. Figure 6.83 shows the selected walls in a 
plan view. 

 

Figure 6.83 Analyzed walls for Alto Rio building. 

This analysis is conducted considering the plastic hinge model introduced in Figure 5.3. 

6.4.6.1 Analysis of Wall in Axis 8, between Axis D and I 

Figure 6.84 shows an elevation view of axis 8. At the first story, this wall was continuous along 
the entire building width. Above the first story, a stack of corridor openings of 4 ft (1.2 m) width 
divided it into two separate walls connected only by floor slabs, without coupling beams. Structural 
drawings show that the wall had a small flange of 3 ft (0.9 m) width at the intersection with axes 
A and I, starting at the first story (axis A) or the second story (axis I) and extending up to the 
building top. This flange prevented out-of-plane instability of the wall at the axis A edge. At axis 
I, the wall stepped back from the building perimeter by 1.3 ft (0.4 m) at the first story, and the 
flange was discontinued. Figure 6.82a presented a sketch with the post-earthquake damage in axis 
8, where damage was concentrated in the first story. It is noteworthy that the first story considered 
as a solid wall has strength and stiffness higher than upper stories. However, a failure surface can 
deviate from a horizontal plane, such that the first story wall can become the weak element 
supporting the set-back (or flag) wall above it. This plausibly explains the critical damage 
concentrated in that story. Consequently, the wall edge close to axis I could be especially prone to 
buckle, given that was subjected to large vertical strains. 

Wall 8 Wall 13 Wall 20 
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Figure 6.84 Elevation view of axis 8, dimensions in cm (1 cm = 0.39 in.). 

The plastic model model shown in Figure 5.3 is used to determine the strain demands at 
the base of the first story of the wall in axis 8, between axes D and I. This model considers only 
the top lateral displacement caused by the nonlinear behavior in the plastic hinge region, defined 
for this case at the first story. The moment-curvature relation used in the plastic hinge region is 
obtained from Hilson (2014), who defined a critical section at the first story. Figure 6.85 presents 
the first-story critical section and Figure 6.86 presents the corresponding moment-curvature 
relation for flange in compression and in tension. 
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Figure 6.85 Critical section at the first story for wall in axis 8, between axis D and I, 
dimensions in cm (1 cm = 0.39 in.), after Hilson, 2014. 

 

Figure 6.86 Moment-curvature relation for critical section at the first story and 
expected axial force (1 in. = 25.4 mm; 1 in-kips = 0.11 kN-m), after Hilson, 

2014. 
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For this model, the curvature demand at the base of the first story for the estimated 
maximum roof drift ratio of 0.85% is ߶௨ = 0.85% (0.5 ∙ 197)⁄ = 8.63 ∙ 10ିହ in.ିଵ. Figure 6.87 
shows the calculated strain profiles. 

 

Figure 6.87 Strain profiles for critical section of wall in axis 8, between axes D and I, 
from plastic hinge approach: (a) flange in compression; (b) flange in 

tension. 

Figure 6.87b shows the strain profile at the plastic hinge region for the case of the wall 
stem in compression at 0.64% roof drift ratio, the limit at which concrete crushing is calculated to 
occur in the stem (close to axis I). This seems to indicate that estimated maximum roof drift ratio 
of 0.85% cannot be reached without crushing the wall stem first. Figure 6.87a shows the strain 
profile at the wall base at 0.64% and 0.85% roof drift ratio, for the lateral load that compresses the 
wall flange. For this case, the maximum tensile strain in the wall stem is close to 0.017 when the 
maximum roof drift ratio is reached and 0.011 for the drift that causes crushing at the wall stem 
when the load acts in the opposite direction. 

6.4.6.2 Analysis of Wall in Axis 13, between Axis D and I 

Figure 6.88 shows an elevation of axis 13. This case is similar to axis 8, where only the wall edge 
close to axis I at the first story was susceptible to buckle, considering that a flange prevented this 
from occurring in axis I at any upper level starting at the second story. The wall edge located in 
axis A was not likely to buckle because of a flange that goes from the first story up to the roof. 
This analysis also considers a critical section between axis D and I at the first story, as shown in 
Figure 6.89. The moment-curvature relation obtained from Hilson (2014) and shown in Figure 
6.90 is used in the plastic hinge region to estimate the strain demands. 
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Figure 6.88 Elevation view of axis 13, dimensions in cm (1 cm = 0.39 in.). 

 

Figure 6.89 Critical section at the first story for wall in axis 13, between axis D and I, 
dimensions in cm (1 cm = 0.39 in.), after Hilson, 2014. 
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Figure 6.90 Moment-curvature relation for critical section at the first story and 
expected axial force (1 in. = 25.4 mm; 1 in-kips = 0.11 kN-m), after Hilson, 

2014. 

The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.85% 
is also ߶௨ = 8.63 ∙ 10ିହ in.ିଵ. Figure 6.91b shows the strain profile at the plastic hinge region for 
the case of the wall stem in compression at 0.56% roof drift ratio, the limit at which the wall edge 
close to axis I crushes according to this section analysis. Therefore, the estimated maximum roof 
drift ratio of 0.85% cannot be reached without crushing the wall stem first. Figure 6.91a shows the 
strain profile at 0.56% and 0.85% roof drift ratio, for the lateral load that compresses the flange of 
the critical section. For this case, the maximum tensile strain in the wall stem is 0.016 when the 
maximum roof drift ratio is reached and 0.011 for the drift that causes crushing at the wall stem 
when the load acts in the opposite direction. 

  

Figure 6.91 Strain profiles for critical section of wall in axis 13, between axes D and I, 
from plastic hinge approach: (a) flange in compression; (b) flange in 

tension. 
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6.4.6.3 Analysis of Wall in Axis 20, between Axis D and I 

Figure 6.92 shows an elevation of axis 20. In this case, similar to axes 8 and 13, the damage was 
concentrated in the first story, as sketched in Figure 6.82c. The wall in axis 20 had a door opening 
at the first story, between axes C and D. At this story, wall segments between axes D and I and 
axes A and C were connected by a 23.6in. x 7.9in. (0.6m x 0.2m) coupling beam. In upper stories, 
a longitudinal corridor separated both segments without coupling beams, and they were connected 
only by the slab. Figure 6.93 depicts the critical section at the first story. This critical section is 
considered for moment-curvature analysis, the calculated relation of which is presented in Figure 
6.94. Estimations of strain demands are obtained from section analysis and the plastic hinge model 
shown in Figure 5.3. As in the previous cases, only the wall stem in the first story close to axis I 
was succeptible to buckle. At any other level, a flange prevented this from occurring. 

 

Figure 6.92 Elevation view of axis 20, dimensions in cm (1 cm = 0.39 in.). 
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Figure 6.93 Critical section at the first story for wall in axis 20, between axis D and I, 
dimensions in cm (1 cm = 0.39 in.), after Hilson, 2014. 

 

Figure 6.94 Moment-curvature relation for critical section at the first story and 
expected axial force (1 in. = 25.4 mm; 1 in-kips = 0.11 kN-m), after Hilson, 

2014. 
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The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.85% 
is ߶௨ = 0.85% (0.5 ∙ 197)⁄ = 8.63 ∙ 10ିହ in.ିଵ. For this curvature, according to Figure 6.95a, the 
maximum tensile strain at the wall stem is 0.016. Section analysis showed that stem crushing 
occurs at a roof drift ratio of 0.70%. When the stem is tension, this drift ratio gives a maximum 
tensile strain of 0.013 (Figure 6.95a). 

  

Figure 6.95 Strain profiles for critical section of wall in axis 20, between axes D and I, 
from plastic hinge approach: (a) flange in compression; (b) flange in 

tension. 

6.4.7 Evaluation of the Onset of Out-of-Plane Instability 

Similar to the out-of-plane instability evaluation performed for buildings #1 and #2 (sections 6.1 
and 6.3), the simplified mechanics equation introduced in section 2.2 is considered here for the 
evaluation of the onset of instability in walls 8, 13 and 20 between axes D and I. The assumption 
behind this analysis is that the nonlinear behavior extended along the entire first story and the 
vertical strain demand along the edge close to axis I at this level was constant or close to constant, 
which seems to be a reasonable assumption from the reported post-earthquake damage (section 
6.4.5). 

Table 6.25 presents the materials properties and dimensions used on this evaluation. 
According to Table 6.26, to buckle a previously intact stem requires a maximum tensile strain 
close to 0.03 for the three walls. Moment-curvature analysis of the critical sections at the first story 
and the plastic hinge model indicated that the maximum tensile strain demand at the stem was 
close to a half of this value for all walls. Therefore, to buckle an intact wall does not seem to be 
possible given the estimated demands. However, section analysis of the three walls showed that 
crushing of the wall stem occurs for all cases at a drift ratios lower than the value estimated from 
linar analysis, and Table 6.27 shows that buckling of a reduced section, where the cover has been 
spalled off, requires a maximum tensile strain close to 0.013 for all cases. According to the models 
used in this section to estimate strain demands, it is possible to reach strains higher than this value 
right after crushing or during a subsequent cycle prior the maximum estimated drift ratio, and, 
therefore, instability of the reduced section cannot be ruled out as one of multiple explanations of 
the reported damage. 
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Table 6.25 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa). 

Wall 

Material 
Properties, psi  

Dimensions, in. BE Area of 
Longitudinal 
Steel As, in.2 

Width, 
b 

Length, 
lw 

Story 
Height, 

H 

hu 
(in.) 

BE 
Length, 

lb 

Stirrup 
Clear 

Cover, c f'c fy 

8-D,I 6,300 69,000 7.9 197 115 115 9 0.8 2.36 
13-D,I 6,000 69,000 7.9 197 115 115 9 0.8 2.36 
20-D,I 6,000 69,000 7.9 197 115 115 9 0.8 1.58 

Table 6.26 Buckling calculation when spalling does not occur. 

Wall ρ m ξ κ ࣕ࢓࢙ 

8-D,I 3% 0.35 0.15 0.81 0.028 
13-D,I 3% 0.36 0.15 0.81 0.027 
20-D,I 2% 0.24 0.18 0.82 0.032 

Table 6.27 Buckling calculation when spalling precedes buckling. 

Wall 
Wall Slenderness 

bc/khu ρ m ξ κ ࣕ࢓࢙ 

8-D,I 0.08 5% 0.57 0.11 1 0.013 
13-D,I 0.08 5% 0.60 0.11 1 0.013 
20-D,I 0.09 3% 0.39 0.14 1 0.015 
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7 Summary and Conclusions 

7.1 SUMMARY 

Chapter 1 introduced the problem of out-of-plane instability in slender boundary elements, 
presented a review of relevant prior studies, code requirements and current design practice. 
Chapter 1 also defined the research program objectives and scope. Chapter 2 introduced three 
models for analysis of out-of-plane instability: (a) a simplified mechanics theory for buckling of 
prismatic columns under uniform tension/compression cycles, based on concepts previously 
introduced by Paulay and Priestley (1993), (b) nonlinear beam-column elements with force-based 
formulation, currently implemented in OpenSees and later used for buckling analysis of prismatic 
columns under uniform and nonuniform tension/compression cycles, (c) nonlinear finite elements 
(implemented in the software TNO DIANA), shell and solid elements, based on a smeared 
cracking approach for concrete modeling and full bonding between concrete and reinforcement 
bars. These finite element models were later used for buckling analysis of columns and walls under 
cyclic loading. Chapter 3 presented an evaluation of the analytical models for global instability, 
introduced in Chapter 2, using the results of column tests (Chai and Elayer, 1999). Comparisons 
between different models and sensitivity studies for the variation of some key parameters were 
included. In Chapter 4, the effects of force/strain gradients along the wall height and length in the 
onset of out-of-plane instability were evaluated using OpenSees models for isolated boundary 
elements and TNO DIANA models for walls. Different cases were considered to provide insight 
of these effects. Chapter 6 applied the buckling models to the analysis of three buildings that 
showed some signs of wall instability during the 2010 Chile earthquake. For each building, the 
material properties and reported damage were summarized. Analytical models were used to 
estimate the peak roof displacements, and then the plausibility of wall instability being the primary 
cause of failure was assessed. 

7.2 CONCLUSIONS 

Based on the results reported herein, and within the limitations of the study parameters, the 
following conclusions are made: 

• Prior to 2010, lateral buckling of slender wall boundaries had been observed only in 
laboratory tests but not in actual buildings subjected to earthquake shaking. The 2010 Chile 
earthquake showed that buckling is a potential risk to slender walls that should be 
considered in the design process. 



185 

• The tendency of an intact wall to buckle under cyclic loading depends not only on the 
aspect ratio ℎ௨ ܾ⁄  of the wall boundary but also on the maximum tensile strain experienced 
by the member prior to axial compression. 

• A simplified mechanics model for buckling of prismatic sections under uniform 
tension/compression cycles has been introduced. Comparison with the results of reinforced 
prism (column) tests showed that the simplified mechanics model provides a good estimate 
of the conditions (slenderness and maximum prior tensile strain) required to initiate 
buckling of uniformly loaded prisms (columns). 

• Finite element models were developed to study the reversed cyclic buckling of reinforced 
prisms (columns). Both (a) force-based nonlinear beam-column elements with fibers and 
(b) nonlinear finite element models, both using the smeared cracking approach, were 
developed. It was shown that buckling of reinforced prisms (columns) subjected to cyclic 
lateral loading can be simulated using these nonlinear finite element models. 

• Analytical studies using finite elements were conducted to determine the effects on wall 
boundary instability of (a) strain gradients along the wall length and (b) strain/moment 
gradients along the wall height height. These studies showed that the effect of the gradient 
along the length can be neglected for walls longer than 10ݐ௪, which is the typical case of 
walls prone to buckle. The strain gradient along the height can have an important effect of 
improving the stability of the wall boundary.  

• In typical multistory buildings, the assumption of uniform strain along the unsupported 
height at the first story is often reasonable, and in such cases the onset of out-of-plane 
instability can be identified using expressions derived from the simplified mechanics 
model. The theory suggests that walls with one curtain of reinforcement are more 
vulnerable to lateral instability than walls with two curtains. 

• In some special cases, the moment gradient over the unsupported height can influence the 
buckling tendency of a wall in a building. In such buildings, the assumption of uniform 
axial demand over the height can lead to an underestimation of the maximum tensile strain 
required to buckle the boundary element during load reversal. The effects of moment 
gradient should be considered in such cases.  

• A correction factor for the simple mechanics model is proposed to enable estimation of the 
tendency for wall instability in walls having appreciable moment gradient over height. This 
factor increases the estimated maximum tensile strain that triggers buckling during load 
reversal. 

• Although it has been demonstrated that lateral buckling may occur in an intact wall without 
being preceded by crushing, it can also occur as a secondary failure mode after the onset 
of cover spalling. Complete cover spalling produces a smaller, more slender cross section 
with greater tendency to buckle, which can happen immediately after spalling or during 
subsequent cycles. 

• Analysis of slender walls in three damaged buildings in Chile suggests that the observed 
buckling was a secondary failure mode that followed crushing of the boundary element. 
Stems of T-shaped and L-shaped walls seem to be especially prone to buckle due to the 
high strain demands that occur during earthquakes, and special considerations should be 



186 

made to limit the slenderness ratio for these cases. Analysis of slender walls in one of the 
buildings indicates that buckling after initial spalling cannot be ruled out as one of the 
multiple explanations of the observed collapse.  

• Building codes should have a slenderness ratio limit for the intended hinge zone of special 
structural walls. The UBC (1997) limit of hu/b ≤ 16 is recommended for walls that 
maintain their concrete cover. The same limit could be applied to walls for which cover 
concrete has spalled. However, the limited evidence suggests that the hu/b limit should 
apply with b referring to the width of the confined core, which in ACI 318 is defined as bc. 

• Based on consideration of out-of-plane buckling, special structural walls should have two 
curtains of reinforcement within the intended hinge zone, regardless the shear or the wall 
thickness, considering that walls with two curtains are less vulnerable to out-of-plane 
instability. 
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Appendix A. Buckling in Isolated Boundary 
Elements with Non-uniform Axial 
Strain 

This appendix is complementary to section 4.2 and presents the results of OpenSees analyses for 
isolated columns under several axial force profiles. 

 

Figure A.1 Specimen 4WC4_2, α = 1: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

(a) (b) (c) (d) 
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Figure A.2 Specimen 4WC4_2, α = 0.8: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

Figure A.3 Specimen 4WC4_2, α = 0.5: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.4 Specimen 4WC4_2, α = 0.25: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

Figure A.5 Specimen 4WC4_2, α = 0: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.6 Specimen 5WC3_2, α = 1: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

 

Figure A.7 Specimen 5WC3_2, α = 0.8: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.8 Specimen 5WC3_2, α = 0.5: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

Figure A.9 Specimen 5WC3_2, α = 0.25: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.10 Specimen 5WC3_2, α = 0: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

 

Figure A.11 Specimen 5WC4_3, α = 1: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.12 Specimen 5WC4_3, α = 0.8: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

Figure A.13 Specimen 5WC4_3, α = 0.5: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.14 Specimen 5WC4_3, α = 0.25: a) average axial strain versus axial force at 
the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

Figure A.15 Specimen 5WC4_3, α = 0: a) average axial strain versus axial force at the 
base, b) normalized axial strain, c) normalized axial force, d) normalized 

buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.16 Boundary element with hu⁄b = 50, α = 1: a) average axial strain versus axial 
force at the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

Figure A.17 Boundary element with hu⁄b = 50, α = 0.8: a) average axial strain versus 
axial force at the base, b) normalized axial strain, c) normalized axial 

force, d) normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.18 Boundary element with hu⁄b = 50, α = 0.5: a) average axial strain versus 
axial force at the base, b) normalized axial strain, c) normalized axial 

force, d) normalized buckled shape. 

 

Figure A.19 Boundary element with hu⁄b = 50, α = 0.25: a) average axial strain versus 
axial force at the base, b) normalized axial strain, c) normalized axial 

force, d) normalized buckled shape. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure A.20 Boundary element with hu⁄b = 50, α = 0: a) average axial strain versus axial 
force at the base, b) normalized axial strain, c) normalized axial force, d) 

normalized buckled shape. 

 

(a) (b) (c) (d) 




