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Abstract
Stability of Reinforced Concrete Wall Boundaries
by
Pablo Fernando Parra Torres
Doctor of Philosophy in Engineering - Civil and Environmental Engineering
University of California, Berkeley
Jack P. Moehle, Chair

Structural (shear) walls are used worldwide to resist gravity and earthquake loads. In many
countries, structural walls commonly are constructed with a rectangular cross section, or a cross
section made up of interconnected rectangles, without an enlarged boundary element. In some
countries, design practice has resulted in walls that are more slender than those used in the past.
For example, in Chile and elsewhere it is not unusual to find rectangular wall edges having
thickness of 6 to 8 in. (150 to 200 mm), resulting in floor-to-floor slenderness ratios reaching
h, /b = 16 or greater. Such walls can be susceptible to overall wall buckling in which a portion of
the wall buckles out of the plane. The main objective of this research is to develop a methodology
for evaluation of the onset of lateral instability in reinforced concrete slender walls. First, a
simplified buckling mechanics solution for prismatic columns under inelastic tension/compression
cycles is presented and later evaluated using the results of column tests. Later, three numerical
models for buckling in columns are evaluated: nonlinear beam-column elements with fibers, and
two-dimensional and three-dimensional nonlinear finite element models. Wall boundaries have
strain gradient along the wall length, which would tend to brace the edge of the wall with the result
that the simplified mechanics solution may give an over-conservative estimation of the onset of
buckling. The theory may also be conservative for walls where the axial force in the boundary
elements is not constant along the unsupported height, as may occur where moment gradients
occur. To study these effects, analytical models of columns and walls are implemented. A simple
approach is proposed to reduce the over conservatism of the simplified mechanics in cases where
strain gradients cannot be neglected. Later, two-dimensional nonlinear finite element models are
used to analytically reproduce the experimental response of wall tests. These models are used to
estimate strain profiles for evaluation of the onset of lateral buckling in slender boundaries. Strain
profiles are also estimated from a plastic hinge model. Finally, three damaged buildings in Chile
are analyzed using linear models for the buildings and nonlinear models for isolated walls. Both
buildings had some buckled walls after the 2010 Maule earthquake. Based on these studies, it is
concluded that buckling in Chilean buildings most likely was a secondary failure that occurred
after initial crushing of the wall boundaries.
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1 Introduction

1.1 THE PROBLEM OF WALL BOUNDARY ELEMENT INSTABILITY

Design practices prior to the 1990s favored rectangular walls with enlarged boundary elements,
contributing to stability of the flexural compression zone. More recently, prevailing practices in
many countries favor rectangular sections without enlarged boundaries. The more slender flexural
compression zones can be susceptible to inelastic lateral buckling as shown in Figure 1.1.

Figure 1.1 Buckled wall in first story of Building #1 (DICTUC, 2010).

Figure 1.2 depicts a wall in a multistory building. A typical wall boundary will be subjected
to alternating tension and compression as a building responds to an earthquake. Compressive
loading acting over a wall boundary (Figure 1.2a, right edge in first story wall) may cause directly
failure due to out-of-plane instability, especially if very slender. Additionally, in walls subjected
to cyclic loading, buckling can also be strongly influenced by the magnitude of the tensile strain
experienced by the wall for prior loading in the opposite direction (Paulay and Priestley 1993, Chai
and Elayer 1999, Parra and Moehle 2014). This is because residual tensile strains in the previously
yielded longitudinal reinforcement leave the wall boundary with open cracks, resulting in reduced
lateral stiffness (Figure 1.2b, left edge of first story wall). Two failure modes are hypothesized.
One hypothesis is that tensile yielding for loading in one direction softens the boundary for
subsequent loading in the opposite direction, leading to lateral instability of an otherwise intact
wall. A second hypothesis is that the wall crushes first, leaving an even smaller, irregular and
probably unsymmetrical cross section, increasing the tendency for instability. This crushed section
may become immediately unstable or, alternatively, subsequent tension and compression cycles
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may lead to instability of the reduced cross section according to the first hypothesis, leading to a
secondary buckling failure. In such cases, the compression zone of a well confined slender wall
behaves basically as a plastic material with very low lateral stability (Moehle, 2014). Either type
of buckling can lead to critical loss of axial force capacity in the flexural compression zone of the
wall. The many questions surrounding the occurrence of wall instability led to the research that is
summarized in this dissertation.
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(a) Crack opening under tension cycle (b) Crack closing under compression cycle
Figure 1.2 Lateral instability of wall boundary previously yielded in tension (After

Chai and Elayer, 1999).

1.2 REVIEW OF PRIOR STUDIES

Prior 2010, out-of-plane buckling of columns and structural walls during cyclic loading had been
reported only in a few laboratory tests but not in an actual earthquake. In 2010, following the Mw
8.8 Maule Earthquake, out-of-plane buckling of slender walls was reported in two buildings in
Chile (Parra and Moehle, 2014). Damage associated with out-of-plane deformation of structural
wall boundaries was also observed following the Mw 7.1 New Zealand Earthquake in 2011
(Sritharan et al., 2014). These observations created a renewed interest in the practical aspects of
inelastic buckling of slender structural walls. As part of the research that ensued, several past
studies related to out-of-plane instability were identified as being particularly relevant.

In the 1970s, the Portland Cement Association (PCA) conducted a combined experimental
and analytical investigation to develop design criteria for seismically loaded structural walls
(Oesterle et. al, 1976). The testing program included two rectangular walls, six barbell walls and
one flanged wall, all of them under reversing lateral loading. Large out-of-plane displacement of
the boundary region was reported in one of the rectangular walls (specimen R2), followed by
failure induced by lateral instability. This was the first documented case of failure in a slender wall
due to out-of-plane buckling.

Goodsir (1985) conducted a testing program with the purpose of assessing the effects of
slenderness ratio and confinement of the flexural compression region on the hysteretic response of
structural walls. Approximately quarter-scale models were built and loaded with reversed cyclic
lateral forces. Failure due to out-of-plane-instability of the wall boundary was reported.



Paulay and Priestley (1993) postulated that the main cause of instability in wall boundaries
was the inelastic tensile steel strains imposed by preceding earthquake-induced displacements,
rather than excessive compressive strains. They developed a theoretical model for the prediction
of the onset of out-of-plane buckling, based on considerations of fundamental structural behavior.
Paulay and Priestley compared their model with the experimental response in walls obtained by
Goodsir (1985). Their work forms part of the basis of the simplified mechanics of wall instability
presented in the present research.

Chai and Elayer (1999) conducted a set of tests of reinforced concrete columns under
reversed cyclic axial tension and compression. Fourteen specimens were tested, with incremental
tension/compression cycles until buckling failure was reached. They also developed a model for
the prediction of the maximum tensile strain required to buckle a column during load reversal.

Thomsen and Wallace (2004) conducted an experimental and analytical study of reinforced
concrete structural walls with symmetrical and unsymmetrical cross sections, designed under a
displacement-based methodology. Four, approximately quarter-scale walls (two rectangular and
two T-shaped walls) where tested under constant axial load and reversed cyclic lateral
displacements. For one of the T-shaped walls (TW2) with closely spaced hoops at the wall
boundaries, failure due to global instability of the wall stem was reported.

Dashti, Dhakal, and Pampanin (2014) investigated the ability of finite element models in
predicting nonlinear behavior and failure patterns of reinforced concrete walls. The software TNO
DIANA with curved shell elements and embedded reinforcement was used for this purpose. They
reported that finite element models can simulate the response of structural walls at global and local
levels with reasonable accuracy, with failure patterns that include shear, flexure, flexure-shear, and
flexure-out-of-plane modes, depending on different parameters, particularly the shear-span ratio
of the specimens.

Rosso, Almeida, and Beyer (2015) report tests of two thin reinforced concrete walls with
single layers of vertical and horizontal reinforcement. The two walls were subjected to
unidirectional (in-plane) and bidirectional (in-plane and out-of-plane) loading, respectively.
Failure in both walls was triggered by out-of-plane instability of the boundary elements.

1.3 RELEVANT CODE REQUIREMENTS AND DESIGN PRACTICE

Provisions governing the slenderness of structural walls designed as compression members are
contained in Chapter 11 of ACI 318-14, Building Code Requirements for Structural Concrete and
Commentary (ACI, 2014). According to section 11.3.1 of ACI 318-14, for a given unsupported
wall height, h,, an empirical method limits wall slenderness ratios to h,/b <25, and
corresponding wall thicknesses to b > 4 inches, in which b is the thickness of the extreme flexural
compression fiber. Alternatively, walls can be designed by section 11.5.2 or analyzed by 11.8 of
ACI 318-14, in which case there are no minimum thickness requirements.

Previously, the Uniform Building Code (ICBO, 1997) required h,, /b < 16 for structural
walls providing lateral resistance in regions of highest seismicity. This provision was intended to
ensure lateral stability for wall boundaries. This provision was not carried forward into the
International Building Code (ICC, 2000) and subsequent editions.



Up through its 2011 edition, ACI 318 did not limit the slenderness of special structural
walls, that is walls intended to provide lateral force resistance in buildings assigned to the highest
seismic design categories. However, the 2014 edition of ACI 318 introduced slenderness
provisions for such walls. According to section 18.10.6.4(b), when special boundary elements are
required, the width of the flexural compression zone, b, along the special boundary element region,
including flange if present, shall be at least h, /16. This is a new requirement of ACI 318-14
introduced to prevent lateral instability failures of slender wall boundaries observed in recent
earthquakes (Wallace et al., 2012; Parra and Moehle, 2014; ATC-94, 2014). For walls with large
cover, where spalling of cover concrete would lead to a significantly reduced section, ACI 318-14
recommends considering a larger thickness for the boundary element.

ACI 318-14, section 11.7.2.3 requires two curtains of reinforcement for walls thicker than
10 inches. Additionally, section 18.10.2.2 requires at least two curtains of reinforcement in walls
having a factored design shear force V, > ZACV/l\/ﬁ or h,/l, = 2 where h,, and [, refer to
height and length of the entire wall, A, is the web area (equal to wall length, [,,, times wall web
thickness, b,,), 1 is a modification factor for lightweight aggregate concrete, and f_ is the specified
compressive strength of the concrete (psi). Otherwise one curtain of reinforcement is permitted.
These provisions are intended to improve stability of wall boundaries.

Prior to the 1990s, common design and construction practice used enlarged boundary
elements that provided inherent stability against overall wall buckling. Current practice embeds
the boundary element within the rectangular cross-section. According to NIST GCR 11-917-11,
Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide
for Practicing Engineers (NIST, 2011), 8 inches is a practical lower limit on thickness for special
structural walls; however, construction quality and wall performance are generally improved if the
thickness is at least 12 inches where special boundary elements are used, and at least 10 inches
elsewhere. Thinner wall sections are permitted by ACI 318, and are not uncommon in the United
States or other countries that use ACI 318 as a basis.

Eurocode 8 (2004) specifies minimum wall thickness of 8 inches (200mm) for confined
parts of walls. Moreover, if the length of the confined part does not exceed the larger of 2b and
0.21,,, b should be at least h,,/15. Otherwise, b should be at least h,,/10. According to NZ 3101
(2006), the thickness of the wall boundary over the height of the plastic hinge but not less than the
full height of the first story shall be at least:

_ arkpnB(hy /Ly + 2)1y,

b
" 1700,/%,

(1.1)

in which a,. = 1 for walls with two curtains of longitudinal reinforcement and 1.25 for walls with
one curtain, f = 7 for ductile plastic regions, k,,, = 1 except for long walls it can be defined as:

Ly
km = <1.0 12
™ (0.25 + 0.055 hy, /1)L, — (1.2)
plfy
= U = 0. 13
¢ =03 2.5fc’_01 (1.3)

The term p; refers to the local longitudinal reinforcement ratio in the wall boundary. These
equations result in wall slenderness ratio h,/b ranging from around 8 for slender, heavily
reinforced walls to around 30 for more squat, lightly reinforced walls.
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1.4 RESEARCH PROGRAM OBJECTIVES

This research addresses the key aspects involved in out-of-plane stability of reinforced concrete
wall boundaries during cyclic (earthquake) loading. The research program had the following
specific objectives:

e To develop a simplified buckling mechanics solution for evaluation of the onset of
out-of-plane  instability in slender columns subjected to inelastic
tension/compression cycles, and to evaluate its accuracy using the results of
previous column tests.

e To analytically study the onset of out-of-plane instability in column specimens
using three numerical models: force-based elements in OpenSees, and two-
dimensional and three-dimensional nonlinear finite elements in TNO DIANA.

e To study the effects of strain gradients along the length and height of a wall using
OpenSees and TNO DIANA models.

e To develop a simple method for the estimation of the onset of out-of-plane
instability in slender walls for constant and variable strain gradients along their
length and height.

e To analytically study the onset of out-of-plane instability in wall specimens using
two-dimensional nonlinear finite element models in TNO DIANA and a plastic
hinge model.

e To study two damaged buildings in Chile where wall buckling was observed
following the 2010 Maule earthquake, to explore the failure mechanism in buckled
walls, and to provide recommendations for the improvement of current design
practices of slender walls. To study one collapsed building in Chile, following the
2010 earthquake, to determine if buckling was one of the causes that triggered the
observed failure.

1.5 ORGANIZATION OF REPORT AND SCOPE

Chapter 1 introduces the study of out-of-plane instability in columns and slender walls. Chapter 2
presents the main theoretical background of four models for out-of-plane instability: simplified
buckling mechanics, OpenSees force-based elements with fibers, and TNO DIANA finite element
models using shell and solid elements. Chapter 3 presents an evaluation of each analytical model
by comparison with the results of column tests. These studies include sensitivity analysis of the
response for the variation of some key parameters. Chapter 4 studies the influence of a variable
strain profile along the wall length and unsupported height in the onset of out-of-plane instability
of slender walls. Chapter 5 evaluates the onset of out-of-plane instability in wall tests using
different models (nonlinear finite elements, nonlinear beam-column elements, and simplified
approaches). Chapters 6 presents analysis results for two buildings where walls showed apparent
damage due to buckling following the 2010 Maule earthquake and one building that collapsed
following the same earthquake. For Building #1, analyses include an ETABS linear model of the
full structure and two approaches for the analysis of isolated walls: a PERFORM 3D model and a
simplified nonlinear models. Building #2 is also analyzed using ETABS. Nonlinear analysis of
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isolated walls considers only simplified methods for this case. For Building #3, results of linear
analysis of the full building (Tanyeri, 2014) are considered for this research. Simplified nonlinear
models are used here to analyze isolated walls. For buckling evaluation, the simplified mechanics
is used for the three buildings. These analyses provide data from which to assess the likelihood of
failure being triggered by concrete crushing or by wall lateral instability. Chapter 7 presents a
summary of the findings of the study and Appendix A presents analysis results of OpenSees
models used to determine buckling in columns for different axial force profiles.



2 Analytical Models for Global Instability

21  INTRODUCTION

Figure 1.2 presented a typical multistory wall, where the foundation, floor diaphragms, and roof
diaphragm provide lateral support at every story level. Thus, the unsupported height of the wall
boundary can be taken equal to the story clear height, h,,. An effective length kh, can be defined
based on the rotational restraints at the different floor levels. In the present analysis, which is
concerned with very slender walls, it may be reasonable to consider the wall to be fixed at top and
bottom of the clear height. Accordingly, ks taken equal to 0.5. If the boundary yields in tension,
a cracked section is produced, with crack width dependent on the amplitude of the reinforcement
tensile strain €, during the tension excursion. In a previously yielded wall, crack closure under
deformation reversal may require yielding of the longitudinal reinforcement in compression. In a
wall with two curtains of reinforcement, any slight asymmetry in the reinforcement is likely to
result in one curtain yielding before the other, leading to out-of-plane curvature and a tendency to
buckle out of plane. In a wall with one curtain of reinforcement, out-of-plane curvature occurs
even more readily. Whether the wall remains stable depends on the amplitude of the prior tensile
strain €, and the slenderness ratio h, /b of the wall. As a design approximation, the critical
slenderness ratio can be related to the maximum prior tensile strain €q,,, as will be shown later. In
this research different procedures are used to estimate €, in laboratory tested walls (Oesterle et
al., 1976; Thomsen and Wallace, 2004) and walls in two Chilean buildings (Buildings #1 and #2).
The estimated tensile strain values are compared with the limit given by the buckling theory
developed in section 2.2. This enables an assessment of whether the walls are likely to have
buckled prior to concrete crushing.

2.2 SIMPLIFIED MECHANICS OF GLOBAL INSTABILITY!

Consider the wall shown in Figure 2.1. Wall lateral buckling is constrained by the story clear height
(Figure 2.1a). We assume the wall has been flexed previously such that the boundary yields in
tension (Figure 2.1b), with a unit length (measured in the horizontal direction) of the boundary
element developing tension force T, maximum tensile stress f,;,, and tensile strain €g,,. Upon
deformation reversal, just before the boundary element yields in compression, the longitudinal
reinforcement will have unloaded by strain €; = f;,/E; and reloaded in compression to —e,,

!'In the following theoretical development, some concepts introduced by Paulay and Priestley (1993) and Chai and
Elayer (1999) are followed.
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ignoring the Bauschinger effect, such that the residual tensile strain is approximately €,..; =
€sm— fsm/Es — €,. To simplify the model, the residual tensile strain is approximated as €5 =
€sm — 0.005. Invariably, one curtain of reinforcement will yield before the other, producing the
curvature shown in Figure 2.1d, and out-of-plane displacement as illustrated in Figure 2.1a and
Figure 2.1c. Whether the boundary remains stable depends on magnitude of the lateral
displacement 6,4, relative to the wall thickness b, which relates to the maximum previous tensile
strain €g,, and the resulting curvature as illustrated in Figure 2.1c.
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Figure 2.1 Lateral instability of wall boundary previously yielded in tension, partly
after Paulay and Priestley (1993).

To estimate conditions for stability, we first approximate the effective length (height). For
a multi-story wall with length [, not less than the first-story clear height h,, it is reasonable to
assume that the flexural plastic hinge extends over the height of the first story. Assuming fixity at
top and bottom, the effective length in Figure 2.1a is kh,, = 0.5h,,. Examining the effective length
more closely (Figure 2.1c) and assuming a simple harmonic buckled shape, we can express the
lateral displacement as:

8(X) = Spax -sin( a ) @.1)

khy

Computing the second derivative of Equation (2.1).

5" (X) = —Bpa (%)2 sin (-7 (22)

Now Equation (2.2) is evaluated at the element midheight to obtain the maximum

curvature.
., (kh T \? (2.3)
5 <Tu> = Gmax = ~Omax (k_lu)



The maximum lateral displacement is defined as §,,,, = &b in Figure 2.1c. Therefore, the
relation between §,,,,, and the maximum curvature ¢,,,, 1S:

kh,

oy = &b = (T)Z (2.4)

As indicated before, the residual tensile strain is approximated as €,.5 = €gy, — 0.005.
Therefore, from Figure 2.1d the maximum curvature is:

€sm — 0.005 (2.5)
bmax = T
Combining Equation (2.4) and (2.5):
b = €sm — 0.005 (khu>2 (2.6)
B d s

Equilibrium of forces and moments in the free-body diagram of Figure 2.1d result in the

following two expressions:

ZF=0—>C=CC+CS 2.7)

> M =05 ceh=Cob (2.8)
From Equation (2.8) we obtain:

- g C. (2.9)

In Equation (2.8), moments are taken about the centerline, such that moments of
longitudinal reinforcement compressive force resultants (assumed equal) cancel. Assuming
longitudinal reinforcement is stressed to f, and assuming the concrete compressive force C, is

represented by the usual rectangular stress block with depth f8; ¢ and average stress 0.85f_, we can

write:

Cs = pbf, (2.10)
C. = 0.85f/B;c (2.11)
From Figure 2.1d:
b 1 (2.12)
yb = 27 §ﬁ1c



Then Equation (2.11) can be expressed as:
C.=085f/(1—-2y)b (2.13)

Substituting Equation (2.9), Equation (2.10) and (2.13) in Equation (2.7):

go.ss £(1 = 2p)b = 0.85 £/(1 — 2y)b + pbf, (2.14)

Manipulating Equation (2.14) we obtain:

1 & m
Z—yl=+¢&)+2(1+—)=0 2.15
v (2 5) 3 (1+555) 219
in whichm = pf, /f/ is the mechanical reinforcement ratio.

Equation (2.16) shows the solutions of the quadratic equation:

G () —2(1+gm) 16
2

To have a real solution and stability, the term in the radical must be positive. Then:

(%+€)2 > 26 (14 o) (2.17)

Rearranging terms of Equation (2.17):

-1+ ) +320 2.18)

In order to meet Equation (2.18), the upper bound of ¢ is given by the smallest solution of
the quadratic equation. Therefore:

2
c<os( 142 J(zm) 4 2.19)

0.85 ./\0.85 0.85

Equation (2.19) was originally introduced by Paulay and Priestley (1993). From Figure
2.1d, d = kb. From Equation (2.6), defining the width b as the critical width b, and solving for
b/kh, results in:

ber _ 1 |€gm — 0.005 (2.20)
kh, = %3 '
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The main variables appearing in Equation (2.20) are slenderness ratio kh, /b, maximum
tensile strain €y, in longitudinal reinforcement, effective depth parameter k for longitudinal
reinforcement, and . Parameter k can be found from d = kb, where it is noted that k = 0.8 for
thin walls with two curtains of reinforcement and 0.5 for walls with single layer of reinforcement.
From this, it is clear that walls with two curtains of longitudinal reinforcement are inherently more
stable than walls with a single curtain.

Parameter ¢ relates to the mechanical reinforcement ratio as shown in Equation (2.19). The
somewhat complex expression for this parameter makes it inconvenient for preliminary design.

For practical construction, 0.4 < \/E < 0.6. By selecting typical values, a more practical
preliminary design tool might be developed.

Equation (2.20) is plotted in Figure 2.2 for the two practical limit values of \/E , k= 0.8,
and considering fixed-fixed boundary conditions (k =0.5). The strain corresponding to fracture of
the boundary element longitudinal reinforcement represents a practical upper bound for strain in
the reinforcement. Considering the effects of low-cycle fatigue, the fracture strain of reinforcement
bars depends on the number of cycles and the strain range €, of each cycle (Coffin, 1954; Manson,
1953; Brown and Kunnath, 2004). For earthquake loading, a commonly accepted maximum tensile
strain is 0.05 (Moehle, 2014). Therefore, the practical range of strain indicated in Figure 2.2 is
limited by 0.05. Also shown in the figure is the limiting slenderness ratio of h,/b = 16, as
specified in the 1997 Uniform Building Code. If this slenderness limit is considered, the maximum
useable tensile strain before buckling in compression ranges from 0.025 to 0.05.

50
\
|
.2 40 K
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= —.[E=06
~— N
g 530 <
[T N
= 20 = ——
8 il
~— o .
g= UBC/97 limit ——
S 10 al —-
¢ =04
0
0.00 0.01 0.02 0.03 0.04 0.05
Maximum tensile strain, €,
Figure 2.2 Critical slenderness ratio as a function of maximum tensile strain.

The preceding derivation is based on an idealized wall boundary subjected to uniform
compressive strain. Actual wall boundaries have strain gradient along the wall length, which would
tend to brace the edge of the wall. This suggests that the preceding results should be conservative
for actual wall boundaries.
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2.3 NONLINEAR BEAM-COLUMN ELEMENTS WITH FORCE-BASED
FORMULATION

2.3.1 Introduction

Two approaches are usually followed to perform nonlinear analysis of frame structures:
concentrated plasticity and distributed inelasticity elements. For the case of concentrated plasticity
elements, inelastic deformations take place at predetermined locations at the element ends. For the
case of distributed inelasticity elements, nonlinearity is defined at the sectional level. The element
is modeled with a number of controlling sections and then the inelastic behavior is integrated to
obtain the global inelasticity of the structure. Therefore, there is no need to predefine the regions
where nonlinear excursions can occur.

One way of computing the section response is by discretizing it using fibers, with each
fiber following a uniaxial nonlinear material behavior. By this approach, the model does not
require calibration of the moment-curvature relation. However, reproducing flexure-shear
interaction can be challenging.

Two formulations are normally used in distributed inelasticity elements: displacement-
based and the force-based formulations. For this study, force-based beam-column elements with
fibers and nonlinear geometry are considered to model buckling of prismatic sections under
tension/compression loading. Open Systems for Earthquake Engineering Simulation (OpenSees)
is used as the analysis platform. The use of OpenSees force-based elements here is limited to the
buckling analysis of columns. For walls, where buckling does not involve the entire cross section
and is limited to the boundary elements region, a different approach using nonlinear finite element
methods is considered, as described in section 2.4. Frame analyses are performed in the buckling
plane only.

2.3.2 Two-dimensional element formulation

The basic principles of distributed inelasticity elements with force-based formulation in 2D
problems are presented next (Filippou and Fenves, 2004). Section level analysis is a crucial step,
since the material nonlinear behavior is introduced at this level using uniaxial constitutive
relationships of the form o, = g, (€,) for each fiber. The strain and stress are functions of the
position x along the element axis and the position within the cross sections specified in local
coordinates y and z. The axial strain at point M in Figure 2.3 can be written as the product of two
functions:

exry ) =1 N0l = @ 0New) @.21)

where {e(x)} is the section deformations vector (€, = axial strain at coordinate origin; ¢,(x) =
curvature about z-axis) and {a;(y)} represents the strain distribution at section x according to
Bernoulli’s assumption of plane sections remaining plane.
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Figure 2.3 Cross section with coordinates axes.

Section forces vector is defined as:

{s()} = { I\I/IVZ((xx))} = [! {fy} o, (ex)dA (2.22)

where N is the axial force and M, is the moment about the z-axis. The area integral of Equation
(2.22) is evaluated numerically using fiber discretization in the y-direction. The same approach is
used to evaluate Equation (2.23). The section stiffness matrix [ky(x)] is defined as the partial
derivative of the section forces {s(x)} with respect to section deformations {e(x)}, as shown next:

s} _ [ (119
ksG] = S = f {}52 @, 2.23)

The differential equations of equilibrium for a frame element in the undeformed
configuration are:

ON 92M,
§+Wx(x) b ez

in which w, and w,, are the axial and transverse components of the distributed element load.

—wy (x) (2.24)

Figure 2.4 shows the basic force system of a 2D beam-column element {q} =
[91 92 q3]T, which comprises an axial load and two end moments. In the basic system the shear
forces depend on the end moments and provide equilibrium. The basic deformations {v} =
[V1 V2 v3]T comprise one axial deformation and two rotations of the end nodes. These flexural
deformations are measured relative to the element chord in the deformed configuration.

Using the basic forces {q} (Figure 2.4) as boundary values of the problem to obtain the
statement of equilibrium:

{s(x)}—{M(x)}—[o (E-1) %]{gz = b1} (2:29)
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The matrix [b(x)] represents the force-interpolation functions and can be regarded also as
an equilibrium transformation matrix between section forces {s(x)} and basic forces {gq}. In the
presence of element loads, the internal forces represent the particular solution of the differential
equations in Equation (2.24), which only need to satisfy homogeneous boundary conditions.
Denoting the particular solution {s,, (x)}, the equilibrium equation is:

{s(x)} = [b){q} + {sw(x)} (2.26)
(@) ,ﬁ ® i (©
L T «V%I n
i N
N
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>< v2‘\“ X
> (q:+q3)/L l
—m—1 [ | —-—
Y‘b q>
q; q;
Figure 2.4 (a) Element basic force system; (b) basic deformation system; (c) forces

at the section level.

The geometric compatibility of the frame element can be established with the principle of
virtual forces as shown.

5(q) (v} = j 5(e}T {s(x)}dx (2.27)

where {v} is the intra-element deformation vector shown in Figure 2.4. Using Equation (2.26) for
the equilibrium relation of the virtual force system, §{s(x)} = [b(x)]5{q}, and after substitution
into Equation (2.27) gives the compatibility statement as:

(v} = f GO fe(0)}dx (2.28)

L

In the force-based formulation (Spacone et al., 1996) we make use of the fact that the
internal forces {s(x)} at a distance x for the end i of a two-node frame element are given as the
product of the force-interpolation functions [b(x)] and the basic forces {q} according to Equation
(2.25). Note that these relations hold for any material response, as long as the equilibrium can be
satisfied in the undeformed configuration (small displacements). The element deformations can
then be established by the principle of virtual forces from Equation (2.28). This implies that the
section deformations {e(x)} can be obtained from the section forces {s(x)}. However, the inverse
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of this relation is available. Therefore, finding {e(x)} requires solving the following nonlinear
system of equations:

[bCOHa} + {5 ()} — {s(e(®))} = 0 (2.29)

This is a main difference with respect to the displacement-based element formulation,
which is based in standard finite element approach where section deformations are estimated as
the derivatives of an imposed displacement field.

The force-based formulation uses the available exact static equilibrium equations between
the end nodal forces, {q} and the internal forces, {s}. This results in constant axial load and linear
bending moment distribution along the element length. On the other hand, the displacement-based
formulation uses the principle of virtual displacements to formulate “weak” equilibrium between
these two sets of forces, resulting in an error where the internal forces at each section are not in
equilibrium with the element basic forces, if fine meshes are not implemented. Due to the enforced
displacement field along the element length, the displacement-based element has constant axial
deformation and linear curvature distribution. To properly represent nonlinear behavior of non-
prismatic elements, the displacement-based approach requires mesh refinement to overcome the
restrictions in the axial deformation and curvature distribution, while the force-based approach
requires the addition of more integration points but still using fewer elements.

The solution of this nonlinear system requires establishing the change of the element
deformations with {gq}. This change is reflected in the following expression:

L

L
RV
e f @I eColdx = [B@ITHIb@I (230)

0

o) _
o{q}

where [f;(x)] is the section flexibility (inverse of section stiffness [k;(x)] defined in Equation
(2.23). Equation (2.30) depicts the tangent flexibility matrix [f;] of the element.

Equations (2.28) and (2.30) for the state determination of the distributed inelasticity
elements involve integrals over the element length. These integrals are evaluated numerically as
follows:

nlp
[ 80ddx = wigtx) @31
L i=1

Several quadrature rules are available to evaluate Equation (2.31). Section 2.3.7 describes
the Gauss-Lobatto quadrature, which is used here. This rule is particularly suitable when it is
important to include the ends of the element in the evaluation. This is indeed the case in earthquake
engineering applications, where the largest inelastic deformations quite often take place at the
element ends. Four points suffice for the integrals in Equations (2.28) and (2.30) as long as we are
not interested in the effect of the midspan section. In the latter case, five integration points are
recommended.
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2.3.3 State determination of elements with force-based formulation

Solving structural analysis problems requires determining the element basic forces, {q}, given the
element deformations, {v} (element state determination). In force-based formulation elements this
task is not as straightforward task as it is for displacement-based formulation elements.

A complication of the force-based formulation is that there is not a direct relation between
the element deformations and the basic forces, as shown in Equation (2.29). State determination
of force-based elements requires nested iterative procedures to find equilibrium between the end
deformations and the section deformations. Figure 2.5 shows the first iteration of this process.

The force-based formulation is computationally more expensive in comparison with the
displacement-based formulation. However, it guarantees exact equilibrium between the end forces
of the element and those at the section level, allows representing a non-uniform curvature field
along the element length, and allows a fewer number of elements to be used to converge to the
exact solution. These three reasons justify the selection of the force-based formulation to model
buckling of prismatic under tension/compression cycles.

Given element deformations

ZA
_ {v} = {UZ} |
If {vul}. st ol - {q}._ {g.} U3 Find deformations residual
Otherwise iterate agalr/ \
{91} = {q0} + [f] Hvws} {v.} = {v} - {v}
Calculate new elementT LAnd find element
forces forces
v} = v} —{v1} {90} = [f1 H{wu}
Calculate new
deformations residual \/ If {v,} < tol - {q} = {q0}
i Otherwise continue cycle
(v} = f [b(0)]T {e,(x)}dx {s1(x)} = [b(x)]{q0}
0
. . Find section deformations
Find new re51st1§g\ e} | by iterations
element deformations
Figure 2.5 First iteration of force-based element state determination.

2.3.4 Uniaxial stress-strain relationship of concrete

For OpenSees modeling of column specimens, the material object used for confined and
unconfined concrete is Concrete01. This is a uniaxial concrete model (Kent and Park, 1971; Scott
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et al., 1980; Hognestard, 1951; Roy and Sozen, 1964) with degraded linear unloading/reloading
stiffness according to the work of Karsan and Jirsa (1969) and no tensile strength.

Equation (2.32) shows the concrete stress f. as a function of the given strain €, for
Concrete01 model.

ﬁ:chlze_?_C_;)Zl fore. < ¢

Lfc’[l —Z(e,—€y)] = 0.2f! fore.> ¢,

In Equation (2.32), the peak stress value f. = f,/ occurs at a strain €,. For this study €, is
taken as 0.002 (unconfined concrete). Equation (2.33) defines the parameter Z.

(2.32)

;- 0.5
~ 3+ 0.002f (2.33)
F7—1000 €0

where f, is in psi.

2.3.5 Localization in force-based elements

Modeling structures with a strain softening constitutive model is numerically challenging because
the response is mesh dependent. Localization in displacement-based solid finite elements has been
extensively studied in the past by, among several others, Bazant and Oh (1983), Bazant and Planas
(1998) and De Borst (1994). The concept of constant fracture energy has been used to deal with
localization and mesh sensitive response in continuum finite element analysis (Bazant and Oh,
1983; Bazant and Planas, 1998).

Force-based elements lose objectivity at local and global levels depending on the section
constitutive behavior (Scott and Hamutcuoglu; 2008). Moreover, in force-based elements, strains
localize at one integration point, which is a disadvantage in comparison to the displacement-based
elements, where the displacement interpolation functions force localization within a single
element. The number and placement of the integration points of the numerical integration scheme
used for element integrals define not only the accuracy of the result but also the structural response
during material softening (Coleman and Spacone, 2001).

The concept of constant fracture energy can be applied to force-based elements that soften
in compression, according to the work of Coleman and Spacone (2001). This is the approach
followed in this study to regularize the force-based elements avoiding ill-posed solutions and
mesh-dependent response. Equation (2.34) defines the fracture energy in compression G, for the
post-peak part of the compressive stress-strain relation of concrete.

Ge = f fedu; (2.34)

17



where f_ is the concrete stress and u; is the inelastic displacement. Equation (2.34) represents the
area under the post-peak portion of the compressive stress-displacement curve. Equation (2.34)
can be also expressed in terms of stress and strain as shown next.

G, =h f f.de; (2.35)

where h is a length scale. For smeared cracking models in nonlinear finite element analysis, h
represent the crack bandwidth (section 2.4.5). Here, for force-based elements h becomes the length
(weight) of the softening integration point.

The constant fracture energy regularization is now applied to the material model defined
in section 2.3.4. The pre-peak behavior is still given by Equation (2.32), with a post-peak behavior
given by a linear softening branch until a stress of 0.2f; is reached at a strain €,,, according to
Figure 2.6.

a
A .
h
0.2f; |/ ‘
1 -
€o €20 €c

Figure 2.6 Fracture energy in Kent and Park (1971) relation.

The value of €,, must be calibrated according to Equation (2.36) to get a constant energy
release.

_ G _08f
20 =06f/h E O

(2.36)

Experimental tests (Feenstra, 1993) have shown that the total compressive fracture energy
of concrete ranges from 10 to 25 Nmm/mm? (0.06 and 0.14 Kip in./in.?). According to Equation
(2.36), the constitutive model must be calibrated for each integration point given that each point
has a different weight. However, for analysis of out-of-plane instability in slender columns, only
the weight of one integration point, located at the position where the plastic hinge is expected to
form, is used to calculate €.
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2.3.6 Uniaxial stress-strain relationship of steel reinforcement

The uniaxial Giuffré-Menegotto-Pinto (Menegotto et al. 1973, Filippou et al. 1983) steel material
object with isotropic strain hardening is used to model reinforcement bars (Steel02 in OpenSees).
This model is capable of representing the hysteretic behavior of steel reinforcement exhibiting the
Bauschinger effect together with isotropic strain hardening. The constitutive response consists of
one-dimensional stress-strain relations for branches between two subsequent load reversal points.
The material state parameters are updated after each load reversal. The model is expressed in terms
of a dimensionless stress o™ and a scaled strain €*.

. €—€r
. o— ol

where €* and ¢* are expressed in the strain-stress coordinates of the last reversal point (€}, o)
and in the strain-stress coordinates of the updated yield point (6;”’1, 037*'1). Equation (2.39) shows
the basic expression of the model.

i} ., (@ -=Db)"
0" = be' +———— (2.39)
(1+€eF)R

where b is the ratio of the strain hardening to the initial modulus and R is the curvature parameter
controlling the shape of the unloading/reloading cycles defined in Equation (2.40).

A max

2P (2.40)

S

In Equation (2.40) R is the initial curvature parameter and $p'®* is the maximum plastic

excursion during a previous half-cycle. Equation (2.41) depicts the isotropic strain hardening.

t
o €
=, < max _ A4> (2.41)
Oyo €yo

where 0y, and €, are the initial yield stress and corresponding strain, €l qx 18 the maximum
absolute total strain at the instant of strain reversal, and oy, is the stress shift in the linear yield

asymptote for isotropic hardening. A; to A, are material constants that require experimental
determination.

2.3.7 Quadrature rule for beam-column elements
A wide range of numerical integration options are available in OpenSees to be used in force-based

beam-column elements (Scott, 2011). Only the Gauss-Lobatto quadrature is used for this study, as
described in the following.
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The discrete forms for numerical evaluation of Equations (2.28) and (2.30) are:

nilpP

(v}~ ) G (eCew

nipP

il = ) G TG,

i=1

(2.42)

(2.43)

where nIP is the number of integration points along the element length, x; is the location of each
integration point within the element length and w; is its associated weight. Distributed plasticity

methods permit yielding at any integration point along the element length.

Gauss-Lobatto integration is the default rule in OpenSees and the most used approach in
force-based elements because it places an integration point at each end of the element, where
bending moments are largest in the absence of interior element loads. The order of accuracy of this

rule is 2nIP — 3.

Table 2.1 shows the locations of integration points and weights for the Gauss-Lobatto

integration rule.

Table 2.1 Gauss-Lobatto rule: integration points and weights for -1<xi<1.
Number of
integration points, Xi w;
nlP
o 2
3
3
s | 2
3
+ 1 5
-J5 | 6
4
-
6
0o | %
45
3 |49
5 =
* 7 |90
+1 —
10
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2.4 NONLINEAR FINITE ELEMENTS

2.4.1 Introduction

The use of force-based nonlinear beam-column elements in OpenSees for buckling analysis is
limited to axially loaded columns (section 2.3). In walls, buckling is a more complicated
phenomena because it occurs locally at the boundary elements and does not necessarily propagate
through the entire cross section. Therefore, the use of a single beam-column element located at the
centroid of the cross section cannot accurately represent the complex behavior expected in a wall
boundary.

Two-dimensional or three-dimensional nonlinear finite element models can be used to
perform buckling analysis in columns and walls. These models allow representing the local
buckling expected in wall edges more accurately. For this case, the software TNO DIANA is used
to perform nonlinear finite element analysis in buckled specimens. Geometric nonlinearity is
considered using a Total Lagrange description. Different elements are considered for column and
wall analyses.

For columns, a four-node, three-side isoparametric solid pyramid element (TE12L) are
used to model concrete. These elements have 12 degrees of freedom and use a linear interpolation
polynomial for the translations. Therefore, the stress and strain distribution is constant over the
element. Buckling modeling requires using several elements within the member thickness. This is
computationally very expensive for the case of walls, where two dimensions (length and height)
are much larger than the third one (thickness). For this reason, solid elements are not used to model
buckling in walls. Instead, four-node, quadrilateral isoparametric curved shell elements (Q20SH)
are selected instead. These elements are based on an isoparametric degenerated-solid approach by
introducing two shell hypotheses: straight normal and zero normal stress. The first hypothesis
assumes plane sections remain plane but not necessarily orthogonal to the reference surface (it
includes shear deformation according to Reissner-Mindlin theory). The second hypothesis
assumes that the normal stress component in the normal direction of a lamina basis is forced to
zero. This formulation allows using several integration points within the element thickness, which
is fundamental for buckling modeling. For comparison purposes, columns are also analyzed using
Q20SH curved-shell elements.

In DIANA, longitudinal reinforcing bars can be modeled as embedded reinforcement,
which means that the bars do not have degrees of freedom of their own and their strains are
computed from the displacement field of the mother elements (TE12L for columns, Q20SH for
walls). Therefore, there is perfect bond between the reinforcement and the surrounding concrete.
In this formulation the finite element mesh can be defined independently of the bar locations.

2.4.2 Four-node isoparametric solid pyramid element (TE12L)

The TE12L (Figure 2.7) is a four-node, three-side isoparametric solid pyramid element with three
degrees of freedom per node (displacements in three orthogonal directions). This element is used
here to study buckling of prismatic columns under tension-compression cycles. It is based on linear
interpolation and numerical integration.
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Figure 2.7 TE12L solid element (DIANA, 2014).

The polynomials for the translations u,,,, can be expressed as:

u;(§,m,0) = ag + a;§ + an + asg (2.44)

These polynomials yield a constant strain and stress distribution over the element volume.
This study uses the default integration scheme which is one point over the element volume.

2.4.3 Four-node quadrilateral isoparametric curved shell elements (Q20SH)

The Q20SH element (Figure 2.8) is a four-node quadrilateral isoparametric curved shell element
with five degrees of freedom per node (displacements in three orthogonal directions and rotation
around two orthogonal axes in the element plane).

4

2

Figure 2.8 Q20SH curved shell element (DIANA, 2014).

It is based on linear interpolation. The polynomials for the translations u and the rotations
¢ can be expressed as:

w;(§,m) = ap + a;§ + axn + azén (2.45)

0;($,m) = by + by & + byn + b3én (2.46)
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Typically, for a rectangular element, these polynomials yield approximately the following
strain and stress distribution in the element plane xy (z axis perpendicular to the element plane).
The strain €,,, the curvature ¢,,, the moment m,,, the membrane force n,, and the shear force
(- are constant in x direction and vary linearly in y direction. The strain €,,,, the curvature ¢,,,,,
the moment m,,,,, the membrane force n,,, and the shear force gy, are constant in y direction and
vary linearly in x direction.

The in-plane lamina strains €y, €y, and yy, vary linearly in the thickness direction. The
transverse shear strains y,, and y,,, are forced to be constant in the thickness direction. A shear
reduction factor is used to obtain an equivalent uniform shear stress, since the actual transverse
shear stress varies parabolically over the thickness. For the case of thin shells (walls in this case),
this factor is considered as 1.2, which is the default value used in TNO DIANA. This modification
gives a constant shear stress that yields approximately at the same shear strain energy that the
actual parabolic shear stress.

The curved shell elements are based on isoparametric degenerated-solid approach by
introducing two shell hypotheses:

e Plane sections It assumes that plane sections remain plane, but not
necessarily orthogonal to the reference surface.

e  Zero-normal-stress It assumes that the normal stress component in the
normal direction of a lamina basis is forced to zero.

For this study, the Q20SH quadrilateral element is numerically integrated using a 2x2
Gauss scheme for in-plane integration (Figure 2.9).

- e
1 — 1 =
axes 2X2
Figure 2.9 Gauss integration scheme 2x2 for Q20SH element.

Figure 2.10 shows the enumeration of the integration points in the thickness direction for
various schemes. Note that two-point integration is according to a Gauss rule. In any other case, a
Simpson rule is applied. This study considers the Simpson rule with eleven integration points.
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Figure 2.10 Thickness integration schemes for Q20SH element.

2.4.4 Total strain crack model

There are several approaches to model concrete fracture. In this study, the smeared crack model
(Rashid 1968, Feenstra et al., 1991) is used. By this approach, the cracked solid is considered as a
continuum. Therefore, the behavior of cracked concrete is described in terms of stress-strain
relations and, upon cracking, the initial stress-strain relation is replaced by an orthotropic stress-
strain relation. The finite element mesh is then preserved, which makes this model computationally
efficient. The concrete constitutive model can be based on different concepts like decomposed or
total strain. The decomposed strain concept (De Borst et al. 1985, Rots 1988) is based on the
decomposition of the strain into an elastic part and an inelastic part, € = €% + €°". In the total
strain concept the stress is a function of the total strain and this is the approach followed here.

The constitutive model based on total strain was developed along the lines of the modified
compression field theory proposed by Vecchio and Collins (1986) and extended to 3D by Selvy
and Vecchio (1993). The concrete constitutive behavior depends on the model adopted for the
shear stress-strain relation. This results in different crack models, the fixed and the rotating
smeared crack model. For this study, the rotating crack model embedded in a total strain concept
is used. This model uses the coaxial stress-strain approach, in which the stress-strain relationships
are evaluated in the principal directions of the strain vector, corresponding to the crack directions.

The strain vector {nyz} in the global coordinate system xyz is updated according to:

{Exyz}i+1 = {Exyz}i + A{Exyz}i+1 (2.47)

which is transformed to the strain vector in the crack directions nst with the strain transformation
matrix [T].

. i+1
{ense} ™ = [T] '{Exyz} (2.48)
In the rotating crack model the strain transformation matrix depends on the current strain

vector [T ({exyz}lﬂ)]. This transformation matrix is determined by calculating the eigenvectors
of the strain tensor given by Equation (2.49).

€xx €Exy €xz
] (2.49)

[E] = [ny €yy €Eyz
€zx €zy €3z
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The eigenvalues are stored in the rotation matrix [R].

Cxn Cxs Cxt
[Rl =T[{n} {s} {8]= [Cyn Cys  Cyt (2.50)
Czn Czs  Czt

where ¢,;,, = cos(D,,,), that is, the cosine between the x axis and the » axis.

In the general 3D stress situation, the strain transformation matrix [T] is calculated by
substituting the appropriate values.

2
Cyn

2 2
Cxn 2 Czn CxnCyn CynCzn ConCxn
C % S Cys szs Cxs Cys Cys Czs Cz5Cyxs
2 CxtC CyeC
_ C)%t Cyt C;t xttyt yttzt CotCxt 25]
[T] = CxnCys + CynC CynCzs + CzpC + (2.51)
2CxnCys zcyncys 20, Cps  XMEYS yntxs Cynlzs zntys CznCxs T CxnCzs
ZstCxt chscyt zczsczt CxsCyt + CysCuxt CysCzt + CzsCyt CzsCxt T CxsCzt
2CxtCen  2c .C 2C,:Cppy  CxtCym + CytCan CytCan + C2tCyn CztCaxn T CxtCan
L yttyn :
The constitutive model is formulated in the crack coordinate system as shown.
i+1 — i+1
{Onse} ™ = {U({enst} )} (2.52)
The updated vector in the xyz coordinate system is given by:
i+1 .
— T . i+1
{00y} = [T]" {Onse} (2.53)

The strain transformation matrix [T] is given by the current strain transformation matrix
i+1\] . . . o .
[T ({exyz} )] in the coaxial rotating concept. In a fixed concept the matrix is given by its value
at incipient cracking.

During loading the concrete is subjected to both tensile and compressive stress, which can
result in cracking and crushing of the material. In the 3D concrete material, the deterioration due
to cracking and crushing is monitored with six internal damage variables ay, collected in the vector
{a}. Internal variables k=1, 2 and 3 are monitoring the maximum strain, hence, are greater or equal
zero, and variables k=4, 5 and 6 are monitoring the minimum strain and, hence, are smaller or
equal zero (Figure 2.11). It is assumed that damage recovery is not possible and therefore the
values of internal damage variables a;, are always increasing.

o

[ |

o h

]

T; =lar_;; =0

T4z =0  rj4z=1

Figure 2.11 Loading-unloading parameters.
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The loading-unloading-reloading condition is monitored with the additional unloading
constraints 73, (Figure 2.11), which model separately the stiffness degradation in tension and
compression. The tension unloading constraints are:

ro =10 U e M k=123 (2.54)
1 ife' <ay

The compression unloading constraints are:

0 ifefi<
=10 Vs <@g (2.55)
1 ifels=ag

The internal variables vector is updated as shown:
{3t = {a}*! + (W] - Ae) (2.56)
The matrix [W] is given by:

Wk,k =1- 1% k= 1,2,3

wl= {Wk,k_g =1-7rn k=456 (2.57)

With the assumption of no damage recovery, the stress in direction j is given by:
o; = fi{a}, {ense}) - g;({a}, {€nst}) (2.58)

where f; is the uniaxial stress-strain relationship and g; is the loading-unloading function with
0 < g; < 1. If unloading and reloading are modeled with a secant approach, determined by the
maximum and minimum strain in each crack direction, the loading-unloading function is given by:

X;— €;
(1-—/—— ife>o0
aj
5=1 wele 2.59)

o8 €
L ~-IE I ife <0
j+3

A secant stiffness matrix is considered to impose equilibrium between applied and resisting
forces in an incremental-iterative solution scheme. This approach has proved to be robust and
stable in reinforced concrete structures with extensive cracking. For tension, the secant stiffness
terms in the j-#h cracking direction are given by:

_ fi{a} {ense})

E = J = t (2.60)
For compression, the terms are:

GG 6

X413

The secant stiffness matrix indicated in Equation (2.62) is obtained in the principal
coordinate system for and orthotropic material with zero Poisson’s ratio in all directions.
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E, 0 0 0 0 0
0 E, 9 0 0 0
_lo o E; O 0 0
[D]Secant - O O 0 _12 _O 0 (262)
0O 0 0 0 Gy3 _O
Lo 0 o0 0 0 Gzl

For the rotating crack model, the shear modulus G;, = G,3 = G3; = 0.

The Poisson effect of a material determines the lateral displacement of a specimen
subjected to a uniaxial tensile or compressive loading. If these displacements are constrained a
passive lateral confinement will act on the specimen. This effect is considered important in a 3D
model of reinforced concrete structures. In the work of Selby and Vecchio (1993) this effect is
modeled through a pre-strain concept in which the lateral expansion effects are accounted for with
an additional external loading on the structure. This implies that the computational flow of the
finite element engine is adapted to this method. The Poisson effect is taken into account via the
equivalent uniaxial strain concept. In case of linear-elastic behavior the constitutive relationship
in a 3D stress-strain situation is given by:

E 1-v v v
{onst} = 1 +v)(1—2v) [ z 1 ;V ) Zv] {€nst} (2.63)

This relationship is now expressed in terms of equivalent uniaxial strains as:

E 0 O
{O-nst}= 0 E O {énst} (2.64)
0 0 E

with the equivalent uniaxial strain vector {&,;} defined by:

1—v v %
A+vVA-2v) 1+v)1-2v) (1+4+v)(1-2v)

! v 1—v v €1
{‘fz} 1A +v)A-=-2v) A+v)A-2v) A+v)A-2v) {Z} (2.65)
v 4 1—v

(1+v)(1-2v) A+v)(A-2v) (A+v)(1-—2v)]

Rewriting Equation (2.65).

{€nst} = [Pl{ens:} (2.66)

This concept is also applied to the nonlinear material model implemented in TNO DIANA.
The stress vector in the principal coordinate system, Equation (2.52), is evaluated in terms of the
equivalent uniaxial strain vector, {€,;}, and not in terms of the principal strain vector, {€,,s;}. The
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equivalent uniaxial strain vector is simply determined when the principal strain vector and the
(constant) Poisson's ratio are known.

In a cracked state, the Poisson effect of a material ceases to exist. Stretching of a cracked
direction no longer leads to contraction of the perpendicular directions. To model this
phenomenon, an orthotropic formulation is adapted for Poisson's ratios. Similar to a damage
formulation where the secant modulus reduces after cracking, the Poisson's ratios reduce at the
same pace. Assuming that

VyZ = VZy
Vax = Vxz (2.67)
ny = Vyx

the matrix [P] of Equation (2.66) is written as:

1-vg, Vyx + VaxVyz  Vax + VyyVyzy]
A A A’
2
[P] — ny +A1fxzvzy 1 _A:/zx sz +Avlzxvxy (2.68)
Vaz T VayVyz  Vyz + VazVyy 1-vg
A A A
where

N=1—=vE — Vi, — Vi — 2VyyVy Vg (2.69)

For recomputation of the shear moduli both stiffnesses and Poisson's ratios are reduced.

E

“=2am

(2.70)

2.4.5 Uniaxial stress-strain relationship of concrete

The tensile behavior of reinforced concrete can be modeled using different approaches. For the
total strain crack model, several softening functions based on fracture energy are implemented in
DIANA. Tensile behavior which is not directly related to the fracture energy can also be modeled
in DIANA within the total strain concept. For this study, a brittle behavior according to Figure
2.12 is considered for concrete in tension.
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E —»
Figure 2.12 Concrete stress-strain relationship in tension (DIANA, 2014).

ACI 363R-92 (1992) recommends the following expression for the tensile strength of
concrete having a compressive strength in the range of 3,000 to 12,000 psi (21 to 83 MPa).

fo = 7.4Jf (2.71)

where f/ is the concrete compressive strength (psi).

In order to avoid the mesh dependence of the response when the concrete experiences
softening in compression, a parabolic curve based on fracture energy formulation according to
Feenstra (1993) is used to model its compressive behavior, according to Equation (2.72) and Figure
2.13.

(.1 € .
. 560/3 if 0<e.<e€g
1 €. —€ €. — € 2
(144 c 0/3 -2 c 0/3 ; < <
f;‘ = < f;‘ 3( + <60 - 60/3 60 - 60/3 lf EO/3 - EC 60 (272)
[1 EC _EO 2 .
f;-g 1-(m> lf EOSEC< €cu
\ 0 if € <e€.

where €3 is the strain at which one-third of the maximum compressive strength f;' is reached, €,
is the strain at stress f., and €., is the strain at which the concrete is completely softened in
compression. These three parameters are defined in Equations (2.73) to (2.75).

1f!
€o/3 = §E—Cc (2.73)
5f)
60 = §E_C = 560/3 (274)
_3 6 (2.75)

€cu _fh_fc’_ €o
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where G, is the post-peak concrete compressive fracture energy and h the crack bandwidth to be
defined later. Both parameters govern the softening part of the curve defined in Equation (2.72).
Experimental tests done by Feenstra (1993) showed that the compressive fracture energy of
concrete ranges from 10 to 25 Nmm/mm? (0.06 to 0.14 Kip in./in.?).

\f
€cu €cu  €o/3
EC
R
Ge 3
h
f'C/

Figure 2.13 Concrete stress-strain relationship in compression (DIANA, 2014).

This study considers default values for crack bandwidth given by Equation (2.76) for shell
elements and Equation (2.77) for solid elements.

h =24 (2.76)
h=3V (2.77)

where A4 is the total area of the element and V its volume.

The strength and ductility of concrete under compressive stresses increase with increasing
isotropic stress. Enhanced mechanical properties due to lateral confinement are considered directly
in the determination of the uniaxial stress-strain relationship of confined concrete and it is an input
for the TNO DIANA model. Lateral cracking effects in the uniaxial stress-strain relationship are
not considered for this study. The modeling of shear behavior is only necessary in the fixed crack
approach. Therefore, it is not considered here.

2.4.6 Uniaxial stress-strain relationship of steel reinforcement

The uniaxial Giuffré-Menegotto-Pinto model (Menegotto et al. 1973, Filippou et al. 1983) is
used. Details of this model were presented in section 2.3.6.
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3 Evaluation of Analytical Models for Global
Instability in Column Tests

3.1  INTRODUCTION

Several tests have been done (Chai and Elayer, 1999; Creagh et al., 2010; Acevedo et al., 2010)
with prismatic sections loaded under tension/compression cycles. The data from Chai and Elayer
(1999) are especially relevant, as those tests gradually increased tensile and compressive strains
until overall prism buckling occurred. These data were based on test of axial columns under large
strain amplitudes expected in the plastic hinge region of a ductile reinforced concrete wall. This
experimental program is presented in section 3.2. Subsequent sections apply analytical models to
simulate the observed responses.

3.2 EXPERIMENTAL PROGRAM

Fourteen reinforced concrete column specimens were tested under an axial reversed cyclic tension
and compression. The column specimens were mounted vertically in a steel reaction frame where
a quasi-static axial force was applied to the specimen using a double acting actuator. Figure 3.1
shows a photograph of the test setup for the specimen. With the exception of two specimens, the
loading cycle consisted of an initial half-cycle of axial tensile strain followed by compression half
cycle with a nominal target compressive strain 1/7 of the axial tensile strain unless the compression
cycle was limited by the capacity of the actuator [approximately 185 kips (823 kN)]. In the other
two specimens, the target compressive strain was increased to 1/5 of the axial tensile strain. A load
cycle is considered to be stable if the target compressive strain or the compression capacity of the
actuator can be reached in three successive cycles without developing an excessive out-of-plane
displacement in the specimen.

Figure 3.2 shows the reinforcement details for the test specimens. The test specimens were
4 x 8 in. rectangular in cross section (102 x 203 mm), with height-to-thickness ratios L, /b= 11.75,
14.75, and 17.75. The length of the specimen L, included the 5.5-in. (140-mm) steel brackets used
for connection to the actuator. Two longitudinal reinforcement area ratios, namely, 2.1 and 3.8
percent, were investigated and provided by six No. 3 or six No. 4 deformed bars. A cover of 0.5
in. (12.7 mm) was used for the longitudinal reinforcement. Transverse ties fabricated from % in.
(6.4 mm) diameter cold drawn smoothed bars were provided at a spacing of six times the
longitudinal bar diameter, i.e., 2.25 in. (57 mm) for No. 3 bars, and 3 in. (76 mm) for No. 4 bars.
The close spacing of the transverse ties was intended to simulate the well-confined condition in
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the end regions of ductile walls and to prevent the local buckling of the longitudinal bars. To ensure
a proper transfer of the actuator force to the specimen, six 3/8 in. (9.5 mm) diameter all thread rods
with a 10 in. (254 mm) anchorage length were added to the two ends of the specimen to increase
the tensile capacity at the connection. In addition to the all-thread rods, two sets of steel plates, 2.5
in. (64 mm) wide by 1 in. (25 mm) thick, were used to externally confine the concrete in the end
regions so that the transfer of the longitudinal bar forces to the concrete would not result in a local

bond failure for the longitudinal reinforcement.

Figure 3.1 Experimental test setup.
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Figure 3.2 Reinforcement details for test specimens (1 in. = 25.4 mm).
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Table 3.1 summaries the matrix for the test program.

Table 3.1 Test matrix.

Height-to-thickness Longitudinal reinforcement Transverse steel spacing, No. of specimens
ratio Lo/b ratio, percent in. (mm) tested
11.75 21 2.25(57) 1
11.75 3.8 3.0(76) 1
14.75 2.1 2.25 (57) 3
14.75 3.8 3.0(76) 3
17.75 21 2.25(57) 3
17.75 3.8 3.0(76) 3

3.3 MATERIAL PROPERTIES

A normal weight concrete with an unconfined compressive strength of £z = 4,950 psi (34.1 MPa)
was used for all specimens. The yield strengths of the longitudinal reinforcement were £, = 51.8
and 66.0 ksi (357 and 455 MPa) for No. 3 and No. 4 bars, respectively, and the yield strength of
the transverse ties was £, = 99.0 ksi (683 MPa).

3.4 EVALUATION OF FORCE-BASED ELEMENTS AND NONLINEAR FINITE
ELEMENT MODELS

Chai and Elayer (1999) provides detailed information regarding the experimental response of four
column specimens (height to thickness ratios Ly/b =14.75 and 17.75 with longitudinal
reinforcement ratios p = 2.1% and 3.8%). This information is used to evaluate the numerical
models of global instability developed in OpenSees and TNO DIANA.

3.4.1 Sensitivity analysis to key parameters
3.4.1.1 Sensitivity in OpenSees forced-based elements model

Strain localization in force-based elements causes the response to be mesh-dependent. A procedure
for material regularization according to the work of Coleman and Spacone (2001) was presented
in section 2.3.5. Material regularization allows maintaining objectivity of the structural response
independent of the number of integration points selected for analysis. To evaluate this procedure,
one of the columns tested by Chai and Elayer (1999) is selected and analyzed using four force-
based elements with four, five and six integration points per element according to the Gauss-
Lobatto quadrature presented in section 2.3.7. The two limits values for compressive fracture
energy presented by Feenstra (1993) are considered for analysis: 10 and 25 Nmm/mm? (0.06 and
0.14 kip in./in.?). The column ID is 4WC3_1 with height-to-thickness ratio L,/b = 14.75 and
longitudinal reinforcement ratio p = 2.1%. Figure 3.3 depicts the typical OpenSees model.
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Figure 3.3 OpenSees model for column instability.

Table 3.2 presents the concrete strain €, at a stress 0.2f, for all analyzed cases obtained
using Equation (2.36).

Table 3.2 Strain for Kent and Park model (1971) according to Equation (2.36).

Number Number of Integration o

L, _— . . . . . . kip in.

(in.) fe (psi) E. (psi) of mtfegratlon point weight, | h(in.) | G, ( inZ ) €20
elements points, nIP w; '

59 4,950 4,000,000 4 4 1/6 1.23 0.06 0.017

59 4,950 4,000,000 4 5 1/10 0.74 0.06 0.027

59 4,950 4,000,000 4 6 1/15 0.49 0.06 0.040

59 4,950 4,000,000 4 4 1/6 1.23 0.14 0.040

59 4,950 4,000,000 4 5 1/10 0.74 0.14 0.066

59 4,950 4,000,000 4 6 1/15 0.49 0.14 0.099

From Table 2.1, the weight of each integration point w; is calculated for a normalized
domain of length 2. Therefore, the summation of all w; for a given element must be 2.

In Table 3.2, w; is the weight of the integration point where the plastic hinge is expected
to form. For this case, the plastic hinge is located at the column midheight. Therefore, w; is
calculated for the integration point located at the element edge. The corresponding weight of the
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integration point in the real domain of length L, /4 is called h, which is an equivalent concept to
the crack bandwidth defined for finite element analysis using smeared cracking models.

Figure 3.4 shows the concrete constitutive model for all analyzed cases. It is observed how
the softening branch of the curve flattens when the number of integration points is increased to
prevent failure localization.

6
4
= Ge=0.06-NIP4 T
S | [ e Ge=0.06-NIP5 T
&
A Ge=0.06-NIP6
- - - - Gc=0.14-NIP4
————— Gc=0.14-NIP5
— - — Gc=0.14-NIP6
0 1 |
0 0.002 0.004 0.006 0.008 0.01
€c
Figure 3.4 Kent and Park model (1971) for analyzed cases with material

regularization according to Equation (2.36).

Figure 3.5a shows crushing in one of the column edges at the midheight. This indicates
that buckling was a failure mode that followed edge crushing under flexural-compressive force
during out of plane displacement. Figure 3.5b shows a buckled specimen with height-to-thickness
ratio Ly/b = 14.75. The horizontal cracks were uniform in the center portion of the specimen
outside the end-regions. The horizontal crack spacing corresponds to the transverse reinforcement
spacing. This suggests that the presence of the transverse reinforcement created localized stresses
leading to crack initiation.
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Figure 3.5

(a) Crushing of concrete at midheight of one of the column specimens; (b)

buckled shape for column with Loeb=14.75, after Chai and Elayer (1999).

Figure 3.6 shows the experimental response of the column specimen 4WC3 1 (height to
thickness ratio Ly/b =14.75 with longitudinal reinforcement ratio p = 2.1%). Figure 3.6a shows
a plot of the nominal axial strain versus axial force and Figure 3.6b shows a plot the nominal axial
strain versus maximum out-of-plane displacement normalized by the column width b. To keep the
plot format used by Chai and Elayer (1999), compression variables have positive sign and tension
variables have negative sign. During the test, the nominal axial strain was determined by averaging
the displacements over a 15 in. (381 mm) length in the center portion of the specimen, and the out-
of-plane displacement was determined by the average of two displacements measured at the

midheight of the specimen.
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In Figure 3.6, a stable response was obtained for the specimen at low levels of axial tensile
strain. For peak tensile strains up to -0.0133, the normalized out-of-plane displacements were less
than 0.05. For the final cycle to the peak tensile strain close to -0.015, a rapid increase in the out-
of-plane displacement occurred especially after reloading to tensile strain of -0.005. The rapid
increase in the out-of-plane displacement was due to yielding in both layers of reinforcement at
that strain level. The large increase in the out-of-plane displacement led to eventual closure of the
cracks followed by crushing of the concrete edge in compression.

As indicated in section 2.2, lateral instability during crack closure initiates because the
application point of the external force may not coincide with the centroid of the resistant force in
the reinforcement, due to unavoidable irregularities in the placement of the reinforcement (Paulay
and Priestley, 1993). To obtain this behavior in a numerical model, it is required to introduce some
eccentricity to trigger the out-of-plane displacement. There are several ways to model this
eccentricity, and for this study what was done is to reduce by 1 ksi the yielding stress of one layer
of reinforcement. This is an arbitrary reduction of the yielding stress and later analyses will show
that selecting a different value does not affect the structural response

Figure 3.7 compares the analytical results of all cases presented in Table 3.2 with the
experimental response. First of all, it is observed that the structural response obtained from analysis
does not change when the number of integration points increases. Therefore, regularizing the
concrete material using the constant fracture energy concept allows getting a mesh-independent
structural response at least for the considered cases.
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Figure 3.7 Column 4WC3_1, experimental versus analytical response for different

number of integration points and compressive fracture energy.

Figure 3.7a shows a good agreement between the analytical and experimental curves of
nominal axial strain versus axial force. Figure 3.7b shows that the OpenSees model tends to
overestimate the normalized lateral displacement in the cycles before failure. Even for normalized
lateral displacements of more than 0.2, during crack closure the column is able to recover its
original undeformed shape without crushing the edge where the first contact between cracked
surfaces occurs. Moreover, global instability occurs at a lower peak tensile strain of -0.0133. The

37



peak tensile strain during the last test cycle was -0.0161. Therefore, OpenSees models
underestimate the peak tensile strain.
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Figure 3.8 Column 4WC3_1, experimental versus analytical curvature distribution for

different number of integration points and compressive fracture energy.

Figure 3.8 depicts a comparison between the experimental and analytical out-of-plane
curvature distribution over the element height for column 4WC3 1, considering the cases
presented in Table 3.2. The experimental curve was plotted for the center portion of the specimen
of 40 in. (1016 mm). All curves are determined right before buckling failure. The experimental
curve shows that the maximum curvature at the column midheight was 0.0044 1/in. (1.75 -
10~* 1/mm). The curvature in the end regions is likely affected by the steel plates used to confine
concrete and avoid local bond failure in transfer bars. As will be shown later, this stiffening effect
occurs only in the case of columns with Ly/b = 14.75 and it is negligible in longer columns. The
analytical curves show that a mesh-independent structural response is successfully achieved by
regularizing the concrete material considering constant fracture energy (Coleman and Spacone,
2001). Therefore, for the following analyses only one case will be considered: four elements with
four integrations points on each one according to Gauss Lobatto quadrature and a constant fracture
energy of 18 N mm/mm? (0.1 kip in./in.?), value at the middle of the plausible range introduced
by Feenstra (1993). The stiffening effect in the end regions can be achieved by modifying the
material properties of the first and last element of the mesh. However, introducing even minor
modifications causes numerical problems in the OpenSees model affecting the response presented
in Figure 3.7. Therefore, this is not considered in this study.

To trigger the out-of-plane displacement during axial loading it was necessary to introduce
an eccentricity in the column cross section. This was achieved by reducing in 1 ksi the yielding
stress of one later of reinforcement. This is an arbitrary value considered small enough to not affect
the axial response presented in Figure 3.7. A study was conducted to evaluation how the analytical
response is affected if a different yielding stress reduction is used. Figure 3.9a compares the
experimental and analytical nominal axial strain versus axial force and Figure 3.9b compares the
nominal axial strain versus normalized out-of-plane displacement. The model used to obtain the
analytical curves considers four elements with four Gauss Lobatto integration points on each one
and fracture energy of 0.1 Kip in./in.2. Several yielding stress reductions were considered in order
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to study the influence of this parameter in the structural response: 0.1, 0.3, 0.5, 0.7 and 1ksi. Figure
3.10 compares the out-of-plane curvature distribution over the column height for the test and these
five analysis cases. For this range of yielding stress reduction, it can be observed that the structural
response remains unchanged.
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Figure 3.9 Column 4WC3_1, experimental versus analytical response for different

reduction in yielding stress of one reinforcement layer.
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Figure 3.10 Column 4WC3_1, experimental versus analytical curvature distribution for
different reduction in yielding stress of one reinforcement layer.
3.4.1.2 Sensitivity in DIANA 2D finite element model

Two-dimensional finite element models are now implemented in the software DIANA to analyze
Chai and Elayer (1999) columns. The models consider Q20SH curved shell elements as described
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in section 2.4.3. Support conditions include restrained translations in three orthogonal directions
at the base and two horizontal directions at the top. A prescribed cyclic vertical displacement is
imposed at the top, according to test conditions. Eleven integration points are considered in the
thickness direction. The number of integration points is selected to match the number of fibers
used in the OpenSees force-based elements. Detailed theoretical background of these models has
been provided in section 2.4.

In order to achieve a mesh-independent structural response, concrete is modeled using a
regularized material described in section 2.4.5, which is based on constant compressive fracture
energy. Two cases are analyzed: G, =0.06 and 0.14 Kip in./in.2, which are the limit values
reported by Feenstra (1993). The eccentricity required to trigger out of plane displacement is
obtained by reducing the yielding stress of one layer of reinforcement in 1 ksi as the case of force-
based elements. A mesh sensitivity study is conducted for 4WC3 1 considering different element
sizes as described in Figure 3.11.

(b) (©)

Figure 3.11 DIANA 2D models using Q20SH curved shell elements: a) mesh with hmax=
2in., a) mesh with hmax= 1 in. and c) mesh with hmax=0.5 in.

Figure 3.12 compares the experimental results with the analytical results obtained from six
cases: maximum element size of 2, 1, and 0.5 in. with fracture energy of 0.06 and 0.14 kip in./in.2.
It can be observed that the analytical structural response does not change when element size
decreases, which seems to indicate that using a constant fracture energy material for concrete is an
appropriate approach to avoid strain localization and mesh dependency of the response. Figure
3.12a shows that the analytical responses accurately represent the test results. Figure 3.12b shows
that the models overestimate the normalized lateral displacement in the cycles before failure and
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underestimate the tensile strain before failure. This trend was also observed in the OpenSees
models used for sensitivity analysis in section 3.4.1.1. Moreover, careful comparison between
OpenSees and DIANA results (Figure 3.7 and Figure 3.12) shows that both analytical results are
almost identical.
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Figure 3.12 Column 4WC3_1, experimental versus analytical response for different
mesh size and compressive fracture energy.

The analytical curvature distribution over the column height is mesh and fracture energy
independent, as shown in Figure 3.13. Again, results are identical to those obtained from OpenSees
force-based elements shown in Figure 3.8.
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Figure 3.13 Column 4WC3_1 experimental versus analytical curvature distribution for
different mesh size and compressive fracture energy.
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Figure 3.14 shows the out-of-plane displacement before failure for compressive strain
energy of 0.14 Kip in./in.? (upper bound of the plausible range) and for the three meshes analyzed.
It is observed the mesh-independency of the displacement field.
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3.4.2 Experimental versus analytical response

In this section the four specimens tested by Chai and Elayer (1999), for which detail information
was provided, are analyzed. These specimens are: 4WC3 1 (Ly/b =14.75 with p = 2.1%),
4WC4 2 (Ly/b =14.75 with p = 3.8%), SWC3 2 (Ly/b =17.75 with p = 2.1%) and 5SWC4 3
(Lo/b =17.75 with p = 3.8%). The parameters considered for analysis are: constant fracture
energy G, = 0.1 kip in./in.?, yielding stress reduction Af;, =1 ksi in one layer of reinforcement,
four elements with Gauss Lobatto integration points per element in OpenSees models, mesh with
maximum element size h,,4, = 1 in. in DIANA 2D and 3D models. The first specimen 4WC3 1
was used for sensitivity analysis in the previous sections. However, for completeness, this
specimen is also analyzed for this specific set of parameters. Table 3.3 shows the regularized strain
at a stress of 0.2f, needed to regularize the OpenSees concrete material.

Table 3.3 Strain for Kent and Park model (1971) according to Equation (2.36).
. L, fL . Number Plumber: of Integt:atlon h kip in.
Specimen | . . E (psi) of integration point . G. |—— €20
(in.) | (psi) ) . (in.) “\ in?
elements | points, nIP | weight, w;
4WC3_1 59 | 4,950 | 4,000,000 4 4 1/6 1.23 0.10 0.029
4WC4_2 59 | 4,950 | 4,000,000 4 4 1/6 1.23 0.10 0.029
5WC3_2 71 | 4,950 | 4,000,000 4 4 1/6 1.48 0.10 0.024
5WC4_3 71 | 4,950 | 4,000,000 4 4 1/6 1.48 0.10 0.024

Figure 3.15 shows the experimental and analytical nominal axial strain versus axial force
and nominal axial strain versus normalized lateral displacement for 4WC3 1 specimen. Analytical
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curves are obtained from three models: OpenSees force-based elements, DIANA 2D and 3D
models. Figure 3.16 shows the experimental and analytical curvature distribution over the
specimen height. Analytical values are plotted for OpenSees and DIANA 2D models. For the last
case, curved shell elements do not allow getting the curvatures as a direct output, and there were
obtained from vertical strains measured at the first and last integration points in the thickness
direction, considering linear strain profile in that direction.

The sensitivity analysis showed that the structural response is mesh-independent when a
constant fracture energy material is used, and it is also insensitive to any change in the fracture
energy within the considered range. The analytical responses obtained for all models are identical
to the corresponding ones obtained during the sensitivity studies, which is an expected result. The
response obtained from OpenSees and DIANA 2D models are identical. Both of them
underestimate by 17% the maximum tensile strain that triggers buckling during load reversal (-
0.00133 from models versus -0.0016 from test), both overestimate the maximum out-of-plane
displacement during each cycle and reproduce the maximum curvature at the column midheight
right before failure with some stiffening in the end regions. DIANA 3D model gives a better
approximation of the experimental response. For this case, the maximum tensile strain is obtained
exactly, and even though there is still some overestimation of the out-of-plane displacement during
cycles, its magnitude is lower than the obtained from the other models.
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Figure 3.15 Column 4WC3_1, experimental versus analytical response (Lo/b = 14.75,
p=2.1%).
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Figure 3.16 Column 4WC3_1, experimental versus analytical curvature distribution
(Lo/b =14.75, p=2.1%).

Figure 3.17 and Figure 3.18 show the response of 4WC4 2 specimen (height-to-thickness
ratio Lo/b = 14.75 and longitudinal reinforcement ratio p = 3.8%). With an increased
longitudinal reinforcement ratio, a smaller peak tensile strain was required to cause a large out-of-
plane displacement and failure of the specimen. This is an expected result from Equation (2.20).
The failure mode is similar to the observed in the previous specimen, yielding in compression of
the reinforcement layers and crushing of the concrete edge where the first contact during crack
closure occurs. As in the previous case, the analytical response obtained from OpenSees and
DIANA 2D models are almost identical. Both models closely reproduce the nominal axial strain
versus axial force curve. However, they underestimate the maximum tensile strain prior instability
during load reversal by 20% and overestimate the normalized lateral displacement during each
cycle and the column capacity to recover its original shape during crack closure without crushing
the edge. Regarding the curvature distribution of Figure 3.18, OpenSees and DIANA 2D models
reproduce well the peak at the column midheight. DIANA 3D model does not underestimate the
maximum tensile strain before buckling, and the approximation of the out-of-plane displacement
during all cycles is better in comparison to the one obtained from OpenSees and DIANA 2D
models.
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Figure 3.19 shows the response of SWC3_ 2 specimen which has an increased height-to-
thickness ratio of Ly/b = 17.75 and a longitudinal reinforcement ratio of p = 2.1%. According
to the experimental data of Figure 3.19b, the maximum tensile strain required to buckle the column
in compression during load reversal is -0.014. As expected, this value is smaller than -0.016, which
is the required value to buckle a column with the same reinforcement ratio but a smaller
slenderness (Figure 3.15). For this case, the analytical response of the three models is very similar.
All of them underestimate the peak tensile strain prior buckling by 13% and overestimate the
maximum out-of-plane displacement at each cycle. However, this overestimation is lower for the
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Column 4WC4_2, experimental versus analytical curvature distribution
(Lo/b =14.75, p = 3.8%).
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case of DIANA 3D model. Figure 3.20 shows no difference between the analytical estimations of
curvature distribution obtained from OpenSees and DIANA 2D models. It is observed that the
stiffening effect in the specimen ends tends to disappear for the case of longer columns, which
improves the analytical estimations in comparison to the obtained for the previous cases.
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Figure 3.19 Column 5WC3_2, experimental versus analytical response (Lo/b = 17.75,

p=2.1%).
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Figure 3.20 Column 5WC3_2, experimental versus analytical curvature distribution
(Lo/b =17.75, p=2.1%).

Figure 3.21 shows the response of 5SWC4 3 specimen (Ly/b = 17.75 and p = 3.8%).
With an increase in the longitudinal reinforcement, the peak tensile strain to cause failure of the
specimen decreased to -0.012. As before, the best analytical approximation is obtained from
DIANA 3D model for which the maximum tensile strain prior buckling is exactly obtained. The
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three models show some overestimation in the maximum out-of-plane displacement during each
cycle. However, DIANA 3D model is the one that reproduces the experimental maximum out-of-
plane displacement more closely. For this case, OpenSees and DIANA 2D models behave almost
identically. Similarly to the previous specimens, both underestimate the maximum tensile strain
before buckling. For this case this underestimation is 26%. Figure 3.22 shows very good analytical
approximations of the experimental curvature distribution right before failure, from both OpenSees
and DIANA 2D models.
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Figure 3.21 Column 5WC4_3, experimental versus analytical response (Lo/b = 17.75,

p=3.8%).
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Figure 3.22 Column 5WC4_3, experimental versus analytical curvature distribution
(Lo/b =17.75, p = 3.8%).
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3.5 EVALUATION OF SIMPLIFIED MECHANICS OF GLOBAL INSTABILITY

The simplified mechanics of global instability introduced in section 2.2 is now evaluated using the
experimental data and the analytical data obtained from OpenSees and DIANA models. First,
values of the maximum tensile strain prior buckling €, are estimated for each specimen according
to Table 3.4.

Table 3.4 Parameters for buckling simplified mechanics.

Material Properties,

Specimen Lo /b psi Column Slenderness P m I3 " €
; b/kh,
fe fy
(psi) (psi)
4WC3 1 14.75 4,950 51,800 0.07 2% 0.22 0.189 | 0.83 | 0.012
4WC4 2 14.75 4,950 66,000 0.07 4% 0.49 0.123 | 0.81 | 0.010
S5WC3 2 17.75 4,950 51,800 0.06 2% 0.22 0.189 | 0.83 | 0.010
SW(C4 3 17.75 4,950 66,000 0.06 4% 0.49 0.123 | 0.81 | 0.008

In Table 3.4 all specimens had pin-ended boundary conditions (k =1). The values of €4,
obtained from tests are now compared with the corresponding values obtained from the simplified
mechanics and the numerical models presented in sections 2.3 and 2.4.

Table 3.5 Comparison between experimental and analytical values of €,,.
Esm
Specimen f;g;: Op:;?ees Af/:m D|A€|\S|K 2D Af/:m DIAel\iZ 3D Af/:m simplified Af/:m
mechanics
4WC3_ 1 | 0.016 0.013 -17% 0.013 -17% 0.016 0% 0.012 -25%
4WC4 2 | 0.014 0.012 -20% 0.012 -20% 0.014 0% 0.010 -30%
SWC3 2 | 0.014 0.012 -13% 0.012 -13% 0.012 -13% 0.010 -28%
5WC4 3 | 0.012 0.009 -26% 0.009 -26% 0.012 0% 0.008 -32%

The DIANA 3D finite element model produces strain estimates that are closest to those
measured during the tests. The other models (DIANA 2D finite elements, OpenSees and simplified
mechanics of section 2.2 consistently underestimate the strain needed to buckle the column under
load reversal. The highest relative difference is observed for the case of the simplified mechanics
theory. OpenSees models using force-based elements with fibers and DIANA 2D finite element
models give identical accuracy.

Chai and Elayer (1999) reported values of €, from additional tests. The results of
Equation (2.20) and the test results are are plotted simultaneously in Figure 3.23.
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Figure 3.23 Calculated and measured maximum tensile strains according to Equation
(2.20), a) p=2.1% and b) p = 3.8%.

The parameter ¢ defined in Equation (2.20) is inconvenient for preliminary design, and
\/E = 0.5 (mid-value in the practical range) may be considered in order to further simplify
Equation (2.20). Therefore Equation (2.20) becomes:

bCT

ehe = 07\ = 0.005 3.1)

This simple expression can be easily incorporated in design regulations and used for
preliminary design purposes. Equation (3.1) is now plotted with the results of all the column tests
reported by Chai and Elayer (1999).
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Figure 3.24 Comparison between calculated and measured maximum tensile strains
according to Equation (3.1).

The results suggest that Equation (3.1) is a reasonable approximation to describe behavior
of uniformly loaded prisms.
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4 Global Instability of Boundary Elements in
Slender Walls

41 INTRODUCTION

The derivation of the simplified model of global instability shown in section 2.2 is based on a
prismatic column subjected to tension/compression cycles, where the axial force and the axial
strain are uniform along the column height. Studies presented in section 3.5 showed that this model
is a reasonable approximation of uniformly loaded slender columns.

Instability analysis of boundary elements in slender walls requires considering other
aspects that influence the response. Figure 4.1a depicts a typical slender wall in a multistory
building. The moment diagram shown next to each elevation illustrates the demand over a wall
that interacts with a frame. Buckling is expected to occur where the maximum demand is. For this
case, given the wall geometry and an assumed nearly constant moment demand over the first story
height, it is reasonable to assume that buckling will occur at the first story, and the plastic hinge
length will be no less than the first story height. This is even more reasonable for the case of
residential buildings in Chile (section 6), where walls have typically a setback at the first story due
to architectural requirements (known as “flag walls™), and hinging is expected to extend over the
entire first story. For out-of-plane analysis, it is also a reasonable assumption to consider fixed
support conditions at the top and bottom of the first story, given that the wall is continuous beyond
that story. For this case, the axial demand over boundary elements is expected to be constant or
close to constant, and the simplified theory is a good representation of the mechanics that governs
the problem. However, the wall also has a strain gradient along its length, which might tend to
brace the boundary element preventing buckling. This effect is not being considered by the
simplified mechanics model of section 2.2 and will be evaluated in section 4.3.

In Figure 4.1b depicts a wall with a taller first story, which is not uncommon in buildings
and industrial facilities. Here, we can still assume fixed support conditions at the top and bottom
of the first story for out-of-plane displacement. However, the moment cannot be assumed constant
anymore, and the plastic hinge is not expected to extend over the entire first story. The shape of
the moment diagram was chosen to clearly illustrate that in some cases the moment gradient over
the first story height is relevant and the assumption of constant axial demand over boundary
elements can lead to an underestimation of the maximum tensile strain required to buckle the
boundary element during load reversal, and therefore an over-conservative design for buckling
prevention. The effect of strain gradients along the length and height of the wall are analyzed in
sections 4.2.
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Figure 4.1 Slender multistory wall and moment diagram over the height: a)
M = constant at first story, b) M varies linearly at first story.

4.2 EFFECT OF STRAIN GRADIENT ALONG THE BOUNDARY ELEMENT
HEIGHT

Prismatic sections under uniform tension/compression cycles are the cases that have been studied
analytically and experimentally in the past (Paulay and Priestley, 1993; Chai and Elayer, 1999;
Parra and Moehle, 2014). In some specific cases, this assumption leads to a reasonable estimation
of the onset of out-of-plane instability, as described in section 4.1. However, in the more general
case, strain gradients along the wall length and height are expected to influence the onset of out-
of-plane instability in slender walls.

The influence of strain or force gradients along the wall length and height are now studied
separately. In this section, the effect of the force variation along the wall height is evaluated using
one-dimensional OpenSees models of isolated boundary elements, as shown in Figure 4.2. The
force variation is intended to represent the variation of the flexural compression force over wall
height due to the presence of a moment gradient. Each boundary element is modeled using ten
nonlinear beam-column elements with fibers, force-based formulation and corotational
transformation for nonlinear geometry. Nonlinear material models are those described in sections
2.3.4, 2.3.5 and 2.3.6. Currently the corotational transformation in OpenSees does not deal with
element loads and these are ignored during the analysis. Therefore, the axial load is applied through
point forces at the nodes. This vertical load pattern is selected to obtain a specific axial force
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diagram, as shown in Figure 4.2b to f. Several axial force diagrams are considered to evaluate how
the variation of the axial force over the height affects the onset of out-of-plane instability in isolated
boundary elements under cyclic loading. The column is subjected to tension/compression cycles
by multiplying the vertical load pattern by a unique variable factor (positive for compressive
loading and negative for tensile loading). The boundary element is fixed at the base, and the

rotation and horizontal displacements are restrained at the top.
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Figure 4.2

Slender wall boundary element: a) OpenSees model with ten force-based
elements; b) axial force gradient with a=1, ¢) = 0.8, d) = 0.5, e) o= 0.25

and f) a=0, where = Na-top /Na-bottom.

Five boundary elements are analyzed: Chai and Elayer’s specimens 4WC3 1 (slenderness
Lo/b = 14.75 and longitudinal steel ratio p = 2.1%), 4WC4 2 (L,/b = 14.75 and p = 3.8%),
5WC3 2 (Ly/b =17.75 and p = 2.1%) and 5WC4 3 (L,/b = 17.75 and p = 3.8%), where L,
is the specimen unsupported height. All these specimens were tested under pinned boundary
conditions (top and bottom). According to Figure 4.2a, this analysis considers restrained rotations
at the top and bottom. Therefore, the unsupported height h,, for OpenSees models is 2L, in order
to get the same effective slenderness (kh, /b, with k = 0.5 for fixed-fixed boundary conditions).
The last boundary element considered for this study has slenderness h,, /b = 50 with longitudinal

steel ratio p = 2.1%. This case may be found in industrial facilities, where longer unsupported
heights are not unusual.
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The boundary elements are analyzed considering incremental tension cycles according to
Figure 4.3, where the top vertical displacement is plotted. The peak vertical displacement is
increased in 0.1 in. increments until reaching buckling failure during load reversal.

2 1 I T 1 I T 1 I T

15F

Vertical displacement at top (in.)

0 2 4 6 8 10 12 14 16 18 20 22
Step

Figure 4.3 Incremental tension cycles for OpenSees analysis of boundary elements.

According to Figure 4.2, five cases of axial force profile are considered for each boundary
element. For each case, four plots are provided: average axial strain (top vertical displacement
divided by the element height) versus axial force at the base, the axial strain over the height
normalized by the yielding strain at the point of maximum vertical displacement prior buckling
during load reversal, the normalized axial force over the element height and a comparison between
the out-of-plane displacement normalized by its maximum value for two cases: theoretical sine
shape obtained from simplified mechanics for the case of uniform strain profile and the OpenSees
buckled shape. Figure 4.4 shows the analysis results for the specimen 4WC3 1 with constant axial
load over the height (Figure 4.4c). For this case, the buckled shape obtained from OpenSees
matches exactly the theoretical shape presented in Equation (2.1) (Figure 4.4d). The maximum
tensile strain prior buckling during load reversal is 0.013, close to seven times the yielding strain
€,. This value is constant along the element height.

When the axial load is changed to a non-uniform profile like the one shown in Figure 4.5¢,
where the ratio between the axial load at the top and bottom of the element is « = 0.8, the buckled
shape obtained from analysis does not correspond to the theoretical buckled shape assumed in the
derivation of the simplified mechanics. The maximum lateral displacement is not at the column
mid-height anymore, it is now at a lower position close to 0.4h, (Figure 4.5d). A second
observation is related to the strain demand for the tensile peak prior buckling during load reversal
(Figure 4.5b). This demand is not constant over the height anymore. Moreover, the maximum
tensile strain at the element base increases with respect to the corresponding value obtained for the
case of constant axial force. As shown in Figure 4.6 to Figure 4.8, the maximum lateral
displacement shifts towards the base when the value of « is reduced from one (Figure 4.2b) to zero
(Figure 4.2f), while the maximum tensile strain increases. This behavior was also observed in the
other four boundary elements analyzed. These results are presented in Appendix A.
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Figure 4.8 Specimen 4WC3_1 (hub = 29.5 and p = 2.1%) for o= 0: a) average axial
strain versus axial force at the base, b) normalized axial strain, c)
normalized axial force, d) normalized buckled shape.

According to section 2.2, the most important parameter for the evaluation of the onset of
out of plane instability is the maximum tensile strain prior buckling during load reversal. This
value has been theoretically and experimentally obtained for uniformly loaded prisms and now has
been analytically obtained for several axial load profiles, demonstrating that the results of the
simplified theory are over-conservative for cases where the assumption of constant axial
force/strain over the height is not valid. Figure 4.9 shows the maximum tensile strain prior buckling
normalized by the corresponding value for constant axial force over the height (¢ = 1) versus «,
parameter that represents the axial force profile.

For the analyzed cases, which correspond to very slender walls with typical steel ratios at
boundary elements between 2% and 4%, it is proposed to use a linear relation between the ratio
€sm/ €sm(a=1) and a (Figure 4.9). This ratio can be used to improve the estimation of the maximum
tensile strain prior buckling obtained from the simplified mechanics (section 2.2), now considering
a non-uniform stress profile along the boundary element height.
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Figure 4.9 Normalized maximum tensile strain prior buckling during load reversal

versus o (defined as a = Na-top/Na-bottom)-

Manipulating Equation (3.1) (obtained from the simplified mechanics for constant axial
load), the tensile strain required to buckle the boundary element during load reversal is:

2

Ber
_ 4.1
Csm (0.7khu) 0.005 D

For example, to estimate €, for a wall of slenderness h, /b = 30, k = 0.5 and «= 0.2,
from Equation (4.1), €5, = 0.014. This estimation can be improved considering the non-uniform
load profile. From Figure 4.9, €, = (5 - 4(0.2)) 0.014 = 0.06, which is a more reasonable
estimation of the maximum tensile strain expected at the base of the boundary element prior
buckling during load reversal.

4.3 EFFECT OF STRAIN GRADIENT ALONG THE WALL LENGTH

In this section, the response of an isolated boundary element is compared with the response of
corresponding walls (identical boundary elements details) of different lengths, in order to study
the influence on instability of the strain gradient of the vertical strains along the wall length. Two-
dimensional finite elements models of several fictitious walls are built and analyzed using the
software TNO DIANA, based on the details of Chai and Elayer’s column 4WC4 2 (slenderness
Lo/b = 14.75 and longitudinal steel ratio p = 3.8%). Figure 4.10 presents a typical wall
elevation, where the left boundary element is labeled B.E. #1 and the right boundary element is
B.E. #2. Translations in the direction orthogonal to the wall plane and rotations around the x-axis
are restrained at the top and bottom to represent the wall continuity expected in a typical multistory
wall. Considering these fixed-fixed support conditions, the wall height is h,, = 2L, where L is
59 in., unsupported height of the specimen 4WC4 2 (tested under pinned-pinned support
conditions). Bending moments and shear forces are applied and controlled to obtain a target axial
force profile over the height of B.E. #1. The objective of this study is to determine the maximum
tensile strain in B.E. #1 required to buckle it during load reversal, for several cases. Analyses of
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walls of several lengths provide valuable information regarding the influence of the location of the
neutral axis on the onset of lateral instability.

Regarding the variation of the axial force in B.E. #1 along the height, two cases are
analyzed: constant axial force and linear variation with oc= 0.8. Regarding the loading protocol,
boundary loads that compress B.E. #2 are incrementally applied (Figure 4.9) until reaching a target
upwards displacement at the top of B.E. #1. After this point, the boundary loads are gradually
removed. This analysis is repeated by increasing the target upwards displacement at the top of B.E.
#1 until reaching the minimum value needed to buckle it during unloading.

YR

B.E.#1 B.E.#2
210

SR,
N /M

|
L
W

X |

Figure 4.10 Typical wall elevation and loading detail.

Figure 4.11 shows the typical reinforcement, where the details of specimens 4WC4 2 are
used in boundary elements. Two layers of vertical and horizontal reinforcement are provided for
shear, considering a steel ratio of 0.0025, minimum required by Chapter 18 of ACI 318-14. The
wall length varies according to the parameter n. For the case shown in Figure 4.11, n = 3. The
finite element models consider a larger thickness for B.E. #2 to prevent its failure prior reaching
the required tensile strain to buckle B.E. #1 during load reversal.
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Figure 4.11 Reinforcement details in typical cross section.

The walls are analyzed using curved shell elements with embedded reinforcement and the
following parameters: constant fracture energy G, = 0.1 Kkip in./in.2, yielding stress reduction
Af, =1 ksi in one layer of reinforcement and Q20SH meshes with maximum element size h.,q, =
2 in. Figure 4.12 shows a typical model.

Figure 4.12 Typical FEM DIANA model (hub = 29.5, Ly = 48 in.).
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4.3.1 Constant Axial Force in Boundary Elements along the Height

This section presents the analysis results of six walls with lengths varying from 40.5 to. 123 in.,
all of them with identical details at boundary elements, corresponding to the details of specimen
4WC4 2 (Chai and Elayer, 1999). For this case the axial force profile at B.E. #1 is constant over
the height.

The isolated specimen 4WC4 2 was analyzed in OpenSees using nonlinear beam-column
elements with fibers, for several axial force profiles. Figure A.1 shows the results for constant
axial force over the height. The maximum tensile strain prior buckling during load reversal is
€sm = 5€y, uniform over the specimen height. The theoretical sine shape assumed in the derivation
of the simplified mechanics (section 2.2) and the OpenSees buckled shape match perfectly.

Figure 4.13 presents five plots with the analysis results for the wall with length L, = 40.5
in. Figure 4.13a and b show the undeformed wall and the buckled shape. Figure 4.13c and d present
the strain demand over the boundary element height and wall length, at the point of maximum
vertical strain prior buckling during load reversal. The strain profile over the height is normalized
by the yielding strain. Figure 4.13e shows the normalized out-of-plane displacement along the wall
length at the height where its maximum value was calculated. Figure 4.14 to Figure 4.18 present
the same information for the other five walls.

For all cases the neutral axis depth is small when the maximum tensile strain prior buckling
is reached in B.E. #1, and almost the entire cross section is in tension. Therefore, the extension of
the tension zone for the analyzed cases ranges from 10¢,, to 30t,,. Results of this analysis show
that in walls where the axial force is constant over the boundary element height with tension zones
extending over 10t,, or more at the point of maximum tensile strain, the value of €, is almost
insensitive to the location of the neutral axis. For the six analyzed cases, this value is close to 5¢,,
which is the value calculated for the isolated boundary element in OpenSees. The distribution of
the out-of-plane displacements along the wall length obtained for each wall (Figure 4.13e to Figure
4.18e) shows that there is not a specific portion of the wall were the lateral displacement
concentrates. Lateral instability involves a significant length of the wall in all cases. Only the
longest wall of Figure 4.18e (L,, =123 in.) shows a small portion next to B.E. #2 that does not
seem to be affected by the lateral instability. Analysis results for the cases presented here and those
presented in section 4.2 and Appendix A for isolated columns suggest that the maximum tensile
strain prior buckling €, is more influenced by the axial force distribution along the boundary
element height rather than the variation of vertical strain along the wall length, for tension zones
longer than 10t,,, which is a very typical case in real buildings. Similar studies are presented in
section 4.3.2 for walls with variable axial force over the height of B.E. #1.
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Wall with boundary element 4WC4_2 and Lw = 40.5 in.: a) undeformed

shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized

lateral displacement along the wall length at buckling.
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Figure 4.14 Wall with boundary element 4WC4_2 and Lw = 48 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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Figure 4.17 Wall with boundary element 4WC4_2 and Lw = 78 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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Figure 4.18 Wall with boundary element 4WC4_2 and Lw = 123 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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4.3.2 Linear Variation of Axial Force in Boundary Elements along the Height

This section presents the analysis results of walls where there is a linear variation in the axial force
along B.E. #1 height. The value of @, which is the ratio between the top and bottom axial force at
B.E. #1, is 0.8. The analysis includes five walls with length ranging from 40.5 to 78 in, all of them
with details at boundary elements identical to those in specimen 4WC4 2 (Chai and Elayer, 1999).

Figure A.2 shows the results of OpenSees analysis for the isolated specimen 4WC4 2
under variable axial force along the height with @ = 0.8. For this case, the distribution of
normalized axial vertical strain at the point of maximum vertical displacement prior buckling is
not uniform anymore. Its maximum value, close to €5, = 13€,, is located at the specimen base.
The buckled shape does not match the theoretical sine shape used in the simplified mechanics of
section 2.2. The peak horizontal displacement is located in a lower position, close to 0.3h,,. Figure
4.19 to Figure 4.23 present the analysis results for these five walls following the same format of
section 4.3.1. Here, the vertical strain gradient along the wall length is shown for a cross section
located at 40 in. over the wall base. For the analyzed cases, the extension of the tension zone at the
point of maximum vertical strain in B.E. #1 prior buckling during load reversal, ranges from 8t,,
to 18t,,. Analysis results show that the value of €, at the base of B.E. #1 changes with the position
of the neutral axis. From Figure 4.19c¢ to Figure 4.23c, €, decreases from 20¢,, to 13€,, which
is the value obtained from OpenSees analysis of the isolated boundary element, as the tension zone
at the peak tensile strain prior buckling increases from 8t,, to 14t,,. For the first analyzed case
(Figure 4.19), there is a 54% increment in €, with respect to the value obtained from OpenSees.
This increment decreases quickly to 7% when the tension zone reaches 12t,,. Similar to the
observations made in section 4.3.1, for these cases there is also a significant portion of the wall
length involved in the out-of-plane instability.
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Figure 4.19 Wall with boundary element 4WC4_2 and Lw = 40.5 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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Figure 4.20 Wall with boundary element 4WC4_2 and Lw = 48 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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Figure 4.21 Wall with boundary element 4WC4_2 and Lw = 55.5 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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Figure 4.22 Wall with boundary element 4WC4_2 and Lw = 63 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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Figure 4.23 Wall with boundary element 4WC4_2 and Lw = 78 in.: a) undeformed
shape, b) buckled shape, c) normalized tensile strain along the boundary
element height at the tensile peak prior buckling, d) vertical strain
gradient along the length at the tensile peak prior buckling, €) normalized
lateral displacement along the wall length at buckling.
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4.4 SUMMARY OF STRAIN GRADIENT EFFECTS

The key parameter for the evaluation of the onset of out of plane instability in slender walls is the
maximum tensile strain at the boundary element prior buckling during load reversal (€s,,), and this
value can be safely estimated from the simplified mechanics presented in section 2.2. The
mechanics was formulated for columns under uniform tension/compression cycles. For walls
where the assumption of uniform strain along the boundary element height is reasonable, like the
case of the “flag walls” in Chilean buildings, the analysis presented in section 4.3.1 suggests that
the effect of the strain gradient along the wall length can be safely neglected for a typical case of
a wall longer than 10¢t,,.

A second case occurs when there is a strain gradient along the wall length and the boundary
element height. For this case, the assumptions behind the simplified mechanics lead to a
considerable underestimation of €, and then an over-conservative estimation of the minimum
wall thickness required to prevent this from happening. There are several cases in practice where
we can face this situation, and it is prudent to reduce the over conservatism in the design. The
actual value of €, is higher than the one obtained from the simplified mechanics due to effects of
those two strain gradients, and these effects have been studied in sections 4.2 and 4.3. Results of
the analyzed cases suggest that the gradient of axial force along the boundary element height is far
more important than the strain gradient along the wall length. Section 4.2 showed that there is a
quick increase in the value of €, as the axial force profile changes from uniform to triangular.
For this last case €, is more than five times the value obtained for a uniform axial load profile. It
is proposed to increase the value of €, obtained from the simplified mechanics by a factor that
depends linearly on the axial force profile in the flexural compression zone, which relates to the
moment profile, in order to reduce the over conservatism of the simplified mechanics for these
cases.

Section 4.3 showed that there is also an effect in the value of €, caused by the strain
gradient along the wall length. For short walls, €, increases, especially when the gradient along
the height is non-uniform. When the force profile over height is uniform, the gradient along the
length does not seem to change the response obtained from analysis of an isolated boundary
element.

The magnitude of the increment caused by the gradient over the height is much higher than
the effect of the gradient along the length, which quickly decreases as the wall becomes longer. In
these analyzed cases, for tension zones of more than 12t,, the increment in €, is only 7%. It is
proposed for pre-design purposes to neglect the effect of the strain gradient along the wall length,
which seems reasonable for typical wall geometries observed in practice, and to consider only the
effect of axial force gradients along the boundary element height, increasing the value of €,
accordingly.
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5 Global Instability in Wall Tests

5.1 INTRODUCTION

Prior the Chile earthquake in 2010, out-of-plane instability in slender walls was observed in a few
laboratory tests. In this chapter, the experimental programs of the Portland Cement Association
(Oesterle et. al, 1976) and Thomsen and Wallace (2004), both with wall specimens that showed
apparent buckling, are used to evaluate the analytical models for global instability introduced in
section 2. Studies include estimations of strain demands for all the specimens tested by Thomsen
and Wallace (two rectangular walls and two T-shaped walls, one of them buckled during the test),
and the buckled rectangular specimen R2 of the Portland Cement Association program. The strain
demands at ultimate drift are estimated following three approaches: direct extrapolation from data
obtained at lower drift ratios (when data at ultimate drift are not available), a plastic hinge method,
and two-dimensional nonlinear finite element models. Finally, OpenSees fibers models and the
simplified buckling mechanics are used for evaluation of global instability.

5.2 SIMPLIFIED METHODS FOR THE ESTIMATION OF STRAIN DEMANDS

There are several approaches to analytically estimate the strain profile at the base of a wall and
therefore the maximum tensile strain prior load reversal at boundary elements, starting from
nonlinear analysis for an isolated wall of even a complete building to simplified methods of
analysis. Simplified methods were preferred for analysis of buildings in Chile. Two approaches
are presented here based on analysis of isolated walls: numerical integration of curvatures and a
plastic hinge model.
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Figure 5.1 Wall flexural deformations: (a) elevation, loading and drift; (b) curvatures.

Figure 5.1a depicts a wall with an inverse triangular load pattern applied laterally. The
curvature distribution over the height is shown in Figure 5.1b. The lateral displacement at wall top
6, can be obtained from integration of the curvature diagram according to Equation (5.1). Note
that this expression includes only wall flexure, and ignores displacement due to shear deformations
and slip of reinforcement from the base anchorage.

P (5.1)
6y = | ¢M)(hy —h)dh
0
where h,, is the wall height and ¢(h) is the curvature distribution. Equation (5.1) can be
numerically integrated using a suitable quadrature. For this research, the Gauss-Lobatto quadrature
is used (section 2.3.7). Then, Equation (5.1) becomes:

NiP (5.2)
8y = Z d(h)(hyy — hw;

where NiP is the number of integration points, h; is the location of the integration point i and w;
is the weight of this integration point. The curvature at the first integration point ¢(h;) at the wall
base for a given target displacement &, can be obtained from Equation (5.2). Starting from ¢ (h;)
it is straightforward to obtain €, from section analysis, assuming that plane sections remain plane.

A second simplified method to obtain the relation between the top displacement and the
curvature at the wall base is the plastic hinge approach, according to Figure 5.2.
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Figure 5.2 Wall flexural deformations: (a) elevation, loading and drift; (b) moments;

(c) curvatures.

Given the model of Figure 5.2, the displacement at the top of the wall is approximated by
Equation (5.3) (modified from Wallace and Moehle, 1993).

11 l 5.3
&y = E¢yh$v + (¢u - d)y)lp (hw - f) -3)

Equation (5.4) shows the relation between the top displacement §, and the maximum
curvature at the wall base ¢,, for the plastic hinge approach, when the lateral load is applied only
at the wall top, which is the case of tested walls presented in Chapter 5.

1 l 54
50 =505 + (90— 81y (hw —2) 4

Where ¢,, is the yielding curvature and L, is the plastic hinge length, usually considered
one half of the wall length [,,. Rearranging terms of Equation (5.4).

(8.5 0u3 ) + 0, )

¢u:—lp(hw—l7”>

If §,, = DR h,,, where DR is the roof drift ratio, then Equation (5.5) can be expressed as:

bu= s (OR= 50, h) 40, o

L, (hw _ 7’“)

Equation (5.6) expresses the curvature at the wall base as a function of the roof drift ratio.
A simpler equation considers the top displacement to be due solely to rotation in the assumed
plastic hinge zone, according to Figure 5.3 and Equation (5.7). This approach provides a suitable
approximation for cases in which most of the curvature is at the base. Suitable examples include
prismatic walls in which large inelastic curvatures occur at the base and nonprismatic walls with
reduced sections at the plastic hinge region. This last case (called “flag walls”) is very typical in
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residential buildings in Chile. According to the approach, the curvature distribution of Figure 5.2
is replaced by a simplified distribution shown in Figure 5.3, where all the elastic curvatures are
ignored except those within the plastic hinge. To compensate the low estimate of the wall
displacement capacity for a given maximum curvature, the plastic hinge is located centered at the
wall base. For this model, the curvature ¢,, is expressed by Equation (5.7).

) |- -
a ]]W
4, .. ‘ ) @,
< I lp:/ /2
(a) (b) (c)
Figure 5.3 Wall flexural deformations: (a) elevation, loading and drift, (b) moments,
(c) curvatures.
DR (5.7)

by = l_

p

5.3 THOMSEN AND WALLACE WALL TESTS

5.3.1 Experimental Program

Thomsen and Wallace (2004) conducted a combined experimental and analytical investigation to
evaluate a displacement-based approach (Wallace and Moehle 1992; Wallace 1994) used to assess
wall-detailing requirements. The laboratory test program included six wall specimens,
approximately quarter-scale, including three with rectangular cross section (one with an opening),
two with T-shaped cross section, and one with barbell-shaped cross section with an opening.
Figure 5.4 shows the overall geometry of the test specimens. The walls were 12 ft (3.66 m) tall
and 4 in. (102 mm) thick, with web and flange lengths of 4 ft (1.22 m). Floor slabs were provided
at 3 ft (0.91 m) intervals over the height of the T-shaped walls.
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Figure 5.4 Overall geometry of specimens (a) RW1/RW2; (b) TW1/TW2 (1 in. = 25.4
mm).

A prototype building, representing a multistory office building in an area of high seismicity
was used to assist in determining the wall geometry and reinforcing details for the testing program.
The prototype rectangular wall is 16 in. (406 mm) thick and 16 ft (4.88 m) long with ten No. 11
(A= 1.56in.2; 1000 mm?) boundary vertical bars and No. 5 (4= 0.31in.%; 200 mm?) vertical and
horizontal web reinforcement spaced at 12 in. (305 mm). Similar reinforcing quantities are used at
the boundaries and within the webs for the T-shaped walls. The wall specimens tested were
approximately one-quarter scale representations of the prototype walls. Boundary vertical steel
consisted of eight No. 3 (4»= 0.11in.%; 71 mm?) bars, whereas web bars were deformed No. 2 (4»
=0.049 in.?; 32 mm?). Areas of boundary and web steel were selected to be roughly equivalent to
1/16 (square of the scale factor) of those for the prototype walls so as to produce a similar neutral
axis depth relative to the wall length in comparison with the prototype walls. The depth of the
neutral axis for an axial load of 0.104./% and an extreme fiber compression strain of 0.003 is 9.7
in. or 0.20/w (246 mm) for the rectangular wall specimens. Neutral axis depths for an extreme fiber
strain of 0.003 are 2 in. or 0.042/w (51 mm) and 24.5 in. or 0.51/w (670 mm) for the flange in
compression and tension, respectively, for the T-shaped wall specimens loaded parallel to the stem
of the T.

Detailing requirements at the boundaries of the wall specimens were evaluated using the
displacement-based design approach presented by Wallace (1994, 1995). In this approach, the
design displacement is related to the curvature and strain demands at the critical section, and
special transverse reinforcement is provided over the length of the wall cross section where the
compression strain exceeds a critical value, typically taken as 0.003. A design roof drift equal to
1.5% of the wall height, or 2.16 in. (55 mm) was selected to determine the required transverse
reinforcement at the wall boundaries for the test specimens. This drift was selected because it
represents a reasonable upper bound drift level for structural wall buildings (Wallace and Moehle
1992), and more importantly for the test program, because transverse reinforcement was required
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at the wall boundaries (that is the extreme fiber compression strain exceeded the critical strain of
0.003). For a lower design drift, the lateral drift capacity of all the specimens would be limited by
buckling of longitudinal reinforcement due to the relatively large spacing of the transverse
reinforcement. The next figures show the cross sections of the test walls.
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Figure 5.7 Wall TW2 reinforcing details (1 in. = 25.4 mm).

Design compressive strengths were 4,000 psi (27.6 MPa); however, strengths at the time
of testing ranged from 4,150 to 8,460 psi (28.7 to 58.4 MPa) with mean compressive strengths at
the base of the wall specimens (0 to 3 ft; 0 to 914 mm) of 4,580, 4,925, 6,330, and 6,050 psi (31.6,
34.0, 43.6, and 41.7 MPa) for specimens RW1, RW2, TW1, and TW2, respectively. Three types
of reinforcing steel were used in this study: (1) typical Grade 60 (414 MPa) deformed No. 3 (9.5
mm) bars for longitudinal reinforcement, (2) deformed No. 2 (6.4 mm) bars for uniformly
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distributed horizontal and vertical web reinforcement, and (3) 3/16 in. (4.75 mm) diameter smooth
wire for boundary transverse reinforcement. The boundary transverse reinforcement was heat
treated to produce material properties similar to those of Grade 60 (414 MPa) reinforcing steel.
For comparison between analytical and experimental strain profiles, analytical models consider
measured material properties of each specimen.

The wall specimens were tested in an upright position, as shown in Figure 5.8. A specially
fabricated steel load transfer assembly was used to transfer both axial and lateral loads to the wall
specimen. An axial load of approximately 0.10A4/cwas applied at the top of the wall by hydraulic
jacks mounted on top of the load transfer assembly. The axial stress was maintained constant
throughout the duration of each test. Cyclic lateral displacements were applied to the walls by a
125 kip (556 kN) hydraulic actuator mounted horizontally to a reaction wall 12 ft (3.66 m) above
the base of the wall. Out-of-plane support was provided to prevent twisting of the wall during
testing.
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Figure 5.8 Specimen test setup — RW1 and RW2.

Figure 5.9 shows the displacement history applied to RW2. The displacement history for
RW1 was similar to RW2, except that the four additional cycles at 1% and 1.5% drift were not
applied after applying the first two cycles at 1.5% drift. Displacement histories for TW1 and TW2
are identical to RW2.
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Specimen: RW2
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Figure 5.9 Applied displacement history.

5.3.2 Experimental and Analytical Response

Strain profiles at the base of specimens were not available for ultimate drift ratios (only available
for wall TW1). In order to study the onset of out-of-plane instability, it is required to estimate this
profile and three analytical approaches are followed for this purpose: nonlinear finite element
model in TNO DIANA, a plastic hinge approach and direct extrapolation of strains using the
experimental values at lower drifts. Figure 5.10 shows the TNO DIANA models used for this
study. These models consist of curved shell elements with embedded reinforcement (full bonding),
total strain crack model for concrete and Giuffré-Menegotto-Pinto (Menegotto et al. 1973, Filippou
et al. 1983) material for steel. Modeling details were provided in section 2.4.
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Figure 5.10 TNO DIANA finite element models, a) RW1 and RW2, b) TW1 and c) TW2.
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The plastic hinge approach requires estimation of the moment-curvature relations at the
wall base. These curves are obtained using the software XTRACT based on material properties
indicated in section 5.3.1. Figure 5.11 presents the relation for each wall specimen.
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Figure 5.11 Moment-curvature diagrams for specimens obtained from XTRACT

(1 in. =25.4 mm; 1 ft-kips = 1.36 kN-m).

5.3.2.1 Rectangular Specimen RW1

Figure 5.12 shows the experimental lateral load versus lateral displacement curve. For comparison,
the analytical curve obtained from the TNO DIANA model is also shown. There is a good
agreement between the experimental curve and the curve obtained from finite elements analysis.

40

20

Lateral load (kips)

-20

-40

Figure 5.12

Z o oH
z 7 4 4
/// /7. ¢ s
Sl VY 7
7 P
iy /, /
e ’ Vi v
o // it
P S
/,/ /, //“:“;;ﬂ’
7 /// ==
//
/'} r7
5
-
=t - = = -Diana Model

Test

1 2 3

Lateral displacement (in.)

1in. =25.4 mm).

Experimental and analytical response for wall RW1 (1 kip = 4.45 kN,

Figure 5.13 presents a comparison between experimental and TNO DIANA analytical
strain profiles for three drift ratios: 1.0%, 1.5% and 2.0%. As indicated before, the experimental
strain profile at the ultimate drift ratio of 2.5% is not available and an analytical estimation will be
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considered. One advantage of finite element models is that plane sections do not need to remain
plane. From Figure 5.13, the finite element model underestimates the maximum tensile strain at
the wall boundary for all drift ratios. This is somewhat unexpected given that slip of reinforcement
from the foundation is not accounted for in the analytical model.
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Figure 5.14 compares measured and calculated strain profiles using the plastic hinge
approach according to Equation (5.4), considering a plastic hinge length of [,, /2, where [, is the
wall length. The approach considers that plane sections remains plane. However, the analysis strain
distribution shows good accuracy with respect to the experimental values, and for this case there
is no underestimation of the maximum tensile strain at the wall boundary. Figure 5.14 also includes
an analytical estimation of the strain profile at the ultimate drift ratio of 2.5%. For this case the
maximum tensile strain at the wall boundary is close to 0.04.
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Figure 5.14 Measured strain versus analysis strain distribution plastic hinge

approach /=0.5/, (1 in. = 25.4 mm).
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A third approach to estimate the maximum tensile strain at the wall boundary is
extrapolation from experimental values obtained at lower drift ratios. Figure 5.15 shows the
maximum tensile strain at the wall boundary versus drift ratio, analytical values up to 2% drift
ratio and a second order polynomial fit, which allows to extrapolate the strain at a higher drift ratio.
From Figure 5.15, the estimated maximum tensile strain at the ultimate drift ratio of 2.5% is
slightly higher than 0.04, which approximately matches the value previously obtained from the
plastic hinge approach (Figure 5.14).
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Figure 5.15 Maximum tensile strain at wall boundary versus drift ratio, test values and
polynomial fit.

5.3.2.2 Rectangular Specimen RW2

Figure 5.16 shows the experimental lateral load versus lateral displacement curve and the curve
obtained from finite element analysis. The analytical curve is an excellent representation of the
response measured during the test.
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Figure 5.16 Experimental and analytical response for wall RW2 (1 kip = 4.45 kN,
1in. =25.4 mm).
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The vertical strain profile at the wall base is first estimated from the finite element model.
Figure 5.17 shows a comparison between experimental an analytical strain profiles (obtained from
the TNO DIANA model) at three drift ratios: 1%, 1.5% and 2%. Strains at the ultimate drift ratio
were not available and an analytical estimation will be used to evaluate the onset of out-of-plane

instability.
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Figure 5.17 Measured strain versus analysis strain distribution from TNO DIANA
nonlinear finite element model (1 in. = 25.4 mm).

From Figure 5.17 it is observed that the finite element model underestimates the maximum
tensile strain at the wall boundary for all drift ratios. Finite element analysis of specimen RW1
also showed similar behavior. The second approach used to estimate the strain demand at the wall
base is the plastic hinge approach. Figure 5.18 compares measured and calculated strain profiles
using the plastic hinge approach with a plastic hinge length equal to [, /2, where [, is the wall
length. The approach overestimates the maximum tensile strain at the wall boundary for all drift
ratios. Figure 5.18 also shows an analytical estimation of the strain profile at the ultimate drift ratio
of 2.5%. For this case, the maximum tensile strain is 0.04 at the wall boundary.
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Figure 5.18 Measured strain versus analysis strain distribution plastic hinge
approach Ip = 0.5 Iv (1 in. = 25.4 mm).

Finally, according to Figure 5.19, the estimated value for the maximum tensile strain at the
wall boundary obtained from extrapolation of data at lower drift ratios is 0.035.
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Figure 5.19 Maximum tensile strain at wall boundary versus drift ratio, test values and
polynomial fit.

5.3.2.3 T-shaped Specimen TW1

Even though measured strains at the ultimate drift ratio of 1.5% were available for this specimen,
analytical estimations of strain profiles are obtained in order to evaluate the accuracy of the models
used for these studies. Figure 5.20 shows the experimental cyclic response, where positive
load/displacement corresponds to the case of wall flange in compression. The analytical response
obtained from the finite element model is also shown. For this case, the large spacing of hoops and
crossties at the wall stem (Figure 5.6) allowed buckling of all boundary bars (and some web bars)
to occur, which caused brittle failure. The finite element model considers full bonding between
reinforcement bars and concrete and does not model bar buckling. This can explain why the
analytical response does not fit well the experimental response for this particular wall.
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Figure 5.20
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Experimental and analytical response for wall TW1 (1 kip = 4.45 kN,

Figure 5.21 shows a comparison between measured strain profiles and analysis estimations
obtained from the nonlinear finite element model. There is a good estimation of the strain profile
at the wall base for all drift ratio.
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Figure 5.21 Measured strain versus analysis strain distribution from TNO DIANA

Figure 5.22 compares measured and calculated strain profiles using the plastic hinge
51w), according to section 5.2. Even though the accuracy of the analytical strain
distribution is not as good as for the case of rectangular walls and it seems to overestimate the
maximum tensile strain at the wall stem for all drift levels, the approximation is acceptable
simplicity of the model. This over-prediction of the strain profile may be partially
attributable to the assumption in the analytical model that the entire flange is effective in both

approach (/=0.

considering the

nonlinear finite element model, a) flange in compression, b) flange in
tension (1 in. = 25.4 mm).

compression and tension.
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Figure 5.22 Experimental and plastic hinge (/p = 0.5 Iw) strain profiles for wall TW1 (a)
flange in compression; (b) flange in tension (1 in. = 25.4 mm).

5.3.2.4 T-shaped Specimen TW2

Figure 5.23 shows the experimental and analytical (finite element model) lateral load
versus lateral displacement response for wall TW2.
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Figure 5.23 Experimental and analytical response for wall TW1 (1 kip = 4.45 kN,
1in. =25.4 mm).

Figure 5.24 compares the measured strain profiles and analysis estimations obtained from
the nonlinear finite element model. There is a small underestimation of the maximum tensile strain
at the wall stem when the flange is in compression for all drift ratios.
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Figure 5.24 Measured strain versus analysis strain distribution from TNO DIANA
nonlinear finite element model, a) flange in compression, b) flange in
tension (1 in. = 25.4 mm).

Figure 5.25 compares measured and calculated strain profiles using the plastic hinge
approach (/7=0.5/w). The analysis strain distribution shows good accuracy with respect to the
experimental values when the flange is in compression. For the case of flange in tension, there is
a slight overestimation of the maximum tensile strain for all drift levels. The plastic hinge approach
gives remarkable predictions of strain profiles considering the simplicity of its formulation.

91



0.05
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02

Strain(in.fin.)

Distance Along Web (in.)

- - 0.75% (experimental) - & - 1.0% (experimental) --& - 1.5% (experimental)
—+— 0.75% (analytical) —=— 1.0% (analytical) —a— 1.5% (analytical)
—e— 2.5%(analytical)

(a)

0.04
003
£ 0.02 |
c
= 0.01
0.00

-0.01 =%

-0.02
0 12 24 36 48
Distance Along Web (in.)

(i

Strai

- ¢ - 0.75% (experimental) - 4 - 1.0% (experimental) --& - 1.5% (experimental)
—— 0.75% (analytical) —=— 1.0% (analytical) —&— 1.5% (analytical)
—e— 2.5%(analytical)

(b)

Figure 5.25 Experimental and plastic hinge (I = 0.5 Iv) strain profiles for wall TW2 (a)
flange in compression; (b) flange in tension (1 in. = 25.4 mm).

Figure 5.25 also includes an estimation of the strain profile at 2.5% drift ratio, using the
plastic hinge approach. The estimated maximum tensile strain at the wall stem is close to 0.05.

Figure 5.26 shows the extrapolation of the maximum tensile strain at the wall stem from
the data obtained at lower drift ratios. At 2.5% drift ratio, the strain is slightly over 0.05. Thomsen
and Wallace reported drift ratios up to 3% for this specimen, for which the estimated value of the

tensile strain is close to 0.07.
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Figure 5.26 Maximum tensile strain at wall boundary versus drift ratio, test values and
polynomial fit.

5.3.3 Evaluation of the Onset of Out-of-Plane Instability

Figure 5.27 shows some pictures of the damaged boundary regions for all four specimens.

c) “ ' (d)

Figure 5.27 Specimens failure, after Thomsen and Wallace (1995) (a) RW1 (b) RW2 (c)
TW1 (d) TW2.
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Some highlights of the response observed during the tests for these four specimens are now
presented (Thomsen and Wallace, 2004). For specimen RW 1, two cycles at 2.0% lateral drift were
completed prior to significant loss in lateral load capacity at approximately 2.5% drift due to
buckling of longitudinal reinforcement. This failure mode was anticipated given the relatively
large spacing (8dbp) of the hoops and crossties at the wall boundary. Behavior of specimen RW2
was very similar to RW1, except lateral load capacity was maintained even after two complete
cycles at 2.5% lateral drift. The improved behavior is attributed to the closer spacing of the hoops
(5.33dp) at the wall boundaries, which delayed the onset of buckling of the longitudinal
reinforcement. ACI 318-99 uses a maximum hoop/crosstie spacing of 6 dp to suppress buckling of
vertical bars. Spacing of special boundary element transverse reinforcement exceeded this limit
for RW1 and TW1 (8db), was slightly less than this for RW2 (5.33db), and considerably less than
this for TW2 (4db). For TW1, as a result of the poor detailing provided at the boundary of the web
opposite the flange, the lateral load capacity dropped suddenly at an applied lateral drift of
approximately 1.25%. The loss in lateral load capacity is attributed to the large spacing of
transverse reinforcement used at the wall boundary, which was inadequate to suppress buckling of
the longitudinal reinforcement. Transverse reinforcement at the boundary opposite the flange was
placed at a closer spacing and over an increased depth of the cross section for Specimen TW2
compared with specimen TW1 and it did not experience a loss of lateral load capacity until the
second and third cycles at a lateral drift level of approximately 2.5%. The test was stopped midway
through the first cycle at a lateral drift level of 3.0%. Under displacements that cause compression
in the wall web, the entire web boundary element began to experience an out-of-plane stability
failure at approximately 0.75% lateral drift.

The most important parameter for the evaluation of the onset of out-of-plane instability is
the maximum tensile strain at the base of the wall boundary required to buckle it during load
reversal. The simplified mechanics of global instability presented in section 2.2 was derived for a
prismatic column, fixed at the top and bottom, subjected to uniform tension/compression cycles.
As a first step in this buckling evaluation, OpenSees models of isolated boundary elements are
used to estimate the tensile strain prior buckling. Each boundary element is modeled using ten
(RW1 and RW2) or twelve (TW1 and TW2) nonlinear beam-column elements with fibers, force-
based formulation and corotational transformation for nonlinear geometry. Nonlinear material
models are those described in sections 2.3.4, 2.3.5 and 2.3.6. Material regularization is considered
according to section 2.3.5. Axial forces are applied as point forces at the nodes. Rectangular
specimens RW1 and RW2 are supported at the base and top only. A fixed support at the base and
a roller support at the top are reasonable analysis assumptions. The case of T-shaped walls is
different. The slabs provide intermediate lateral support and this is considered for analysis. Figure
5.28 depicts the OpenSees models, where the axial force profile along the height is also shown.
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Figure 5.28 OpenSees models for slender wall boundaries: a) TW1 and TW2, b) RW1
and RW2,

The boundary elements are analyzed considering incremental tension cycles similar to
those shown in Figure 4.3. The peak vertical displacement is increased in 0.1 in. increments until
reaching buckling failure during load reversal. Strain profiles at ultimate drift ratios, analytically
estimated in sections 5.3.2.1 and 5.3.2.2, showed that compressive strain at wall boundaries is
higher than the concrete spalling strain. Therefore, this buckling analysis is performed with the
core section only (2.5 x 6 in. for specimens RW1, RW2 and TW1, 2.5 x 16 in. for specimen TW2).
Figure 5.29 shows the instability analysis results for wall RW1. Figure 5.29a shows the average
strain versus axial force at the base, Figure 5.29b is the tensile strain normalized by the yielding
strain over the height at the peak prior buckling, Figure 5.29c¢ is the axial load normalized by its
maximum value over the height and Figure 5.29d is the OpenSees buckled shape. The red line
represents the theoretical buckled shape from the simplified mechanics (fixed-fixed support and

uniform strain profile), shown for comparison. Figure 5.30 to Figure 5.32 present the same
information for the other specimens.
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Boundary element of wall RW1: a) average axial strain versus axial force
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Figure 5.31 Boundary element of wall TW1: a) average axial strain versus axial force
at the base, b) normalized axial strain, ¢) normalized axial force, d)
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Figure 5.32 Boundary element of wall TW2: a) average axial strain versus axial force
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For the evaluation of the onset of out-of-plane instability, it is required to compare first the
maximum tensile strain at the base of the wall boundary measured (or estimated) from tests and
the value needed to buckle the element according to the OpenSees modeling (€, ). For walls RW1
and RW2, €5, = 22€,,, which is close to 0.046. Estimated strains are 0.04 for these walls, lower
but very close to the required value to buckle the wall. However, buckling was not observed for
these two cases, and buckling of longitudinal reinforcement triggered the failure, probably due to
the spacing of the hoops and crossties at the wall boundaries. For wall TW1, €4, = 30€,, or 0.06.
The maximum measured strain was 0.02, not close to the required value to buckle the wall. For
this case, early failure was triggered by poor detailing of confinement steel at the wall stem. For
wall TW2, €5, = 40¢,, or 0.08. The estimated value at the ultimate drift ratio close to 3% is 0.07.
This value is very close to the required strain to buckle the wall boundary and this was the failure
mode observed during the test (Figure 5.27d).

For the T-shaped walls, where slabs were provided at intermediate points along the height,
the analytical buckled shape (Figure 5.31d and Figure 5.32d) indicates that buckling occurs at the
first story and the shape is similar to the theoretical solution obtained from analysis of the first
story only under fixed-fixed support conditions. This is also observed in the damage region of
TW2 shown in Figure 5.27d. The strain demand along the first story height is not constant, as
shown in Figure 5.32b, but neglecting the strain variability it is possible to estimate €, directly
from the simplified buckling mechanics considering that the cover has been spalled off. Table 5.1
presents the material and section properties for buckling evaluation according to the simplified
mechanics. Table 5.2 presents the results of this analysis for T-shaped walls.

Table 5.1 Properties for buckling calculation (1 in. = 25.4 mm; 1 psi = 0.007 MPa).
Material Dimensions, in. BE Area of
Properties, psi . s
Wall > . . BE Stirrup Longitudinal
Wl:th’ Lerlngth, Hei%ht, hy Length, = Clear Steel As, in.2
fe fy " Iy Cover, ¢
RWI1 | 4,580 @ 61,250 4.0 48 144 144 8 0.4 0.88
RW2 | 4,925 | 61,250 4.0 48 144 144 8 0.4 0.88
TWI1 | 6,330 | 61,250 4.0 48 144 32 8 0.4 0.88
TW2 | 6,050 | 61,250 4.0 48 144 32 18 0.4 0.98
Table 5.2 Analysis of T-shaped walls from simplified mechanics, cover spalled off.
Wall Slenderness
Wall be/khe p m E K €m
TWI1 0.18 4% | 040  0.14 | 1 | 0.05
TW2 0.18 2% | 020 020 1| 0.07

Values of €, estimated from the simplified mechanics are 0.05 for TW1 and 0.07 for wall
TW2. These values are similar to those obtained from OpenSees modeling (0.06 and 0.08).
Therefore, the simplified mechanics estimates €, with a reasonable accuracy (in comparison with
more sophisticated models) when the support conditions can be assumed as fixed and the strain
profile along the height is constant or close to constant. Now, the question is if the buckling theory
can be used in a case where the supports are not fixed-fixed and the strain profiles deviate
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appreciably from constrant strain. This is the case of the rectangular walls RW1 and RW2. If the
theory is applied directly assuming constant strain along the full height (144 in.), the estimated
values of €, are quite low, as shown in Table 5.3.

Table 5.3 Analysis of rectangular walls from simplified mechanics, cover spalled off.
Wall Slenderness
Wall be/khu p m £ | x £sm
RWI1 0.03 4% | 0.55 1 0.11 | 1 0.006
RW2 0.03 4% | 0.51 | 0.12 | 1 0.006

Values of €, estimated in Table 5.3 are not realistic because the strain profile is not even
close to constant along the wall full height. The influence of the axial force profile along the height
in the onset of out-of-plane instability was studied in section 4.2, and Figure 4.9 proposed a linear
relation to increase the value of €y, obtained from the simplified mechanics is such cases.
However, the analyzed cases were several axial force profiles in columns with fixed supports at
the top and bottom. Neglecting the change in €, caused by the top support, it is possible to apply
Figure 4.9 directly in Table 5.3, and the estimated value for €, is 5+ 0.006 = 0.03. This value is
a conservative estimation of €,,, = 0.045, obtained from the OpenSees modeling with the proper
boundary conditions. This analysis suggests that Figure 4.9 can be used to obtain a conservative
estimation of €g,, even for cases where rotation at the top is not restrained.
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5.4 PORTLAND CEMENT ASSOCIATION WALL TESTS

5.4.1 Experimental Program

Oesterle et al. (1976) conducted a combined experimental and analytical investigation to develop
design criteria for reinforced concrete structural walls in earthquake resistant buildings. The
primary purpose of the investigation was to determine the ductility, energy dissipation and strength
of the walls. As a part of the experimental program, reversing loads were applied to isolated walls.
The results of nine tests were presented. One of the rectangular specimens (R2) experienced out
of plane buckling (after thirty-five loading cycles) at an average drift ratio of 2.8%. Only this case
will be presented and analyzed in this section. Test specimens were approximately 1/3-scale
representations of full-size walls, although no specific prototype walls were modeled. Controlled
variables included in the tests were the shape of the wall cross section, the amount of main flexural
reinforcement and the amount of hoop reinforcement around the main flexural reinforcement. In
addition, one wall was subjected to monotonic loading and one wall was repaired and retested.
Table 5.4 provides a summary of test specimen details.

Table 5.4

Specimen

R1
R2
Bl
B3
B4 (monotonic loading)
B2
BS
B5R (repaired specimen)
F1

Where:

Shape

Rectangular
Rectangular
Barbell
Barbell
Barbell
Barbell
Barbell
Barbell
Flanged

Summary of test specimens.

Reinforcement (%)

Pr
1.47

4.00

Pn
0.31

0.31
0.31
0.31
0.31
0.63
0.63
0.63
0.71

P
0.25

0.25
0.29
0.29
0.29
0.29
0.29
0.29
0.3

P

2.07

1.28
1.28

1.35
1.35

* pr  Ratio of main flexural reinforcement area to gross concrete area of

boundary element

e p,  Ratio of horizontal shear reinforcement area to gross concrete area of
a vertical section of wall web

e p, Ratio of vertical web reinforcement area to gross concrete area of a
horizontal section of wall web

e p, Ratio of effective volume of confinement reinforcement to the volume
of core in accordance with Equation A.4 of ACI 318-71
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Figure 5.33 shows the dimensions of test specimens.
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Figure 5.33 Nominal dimensions of test specimens with rectangular cross section
(1 ft =0.30 m).

In proportioning the walls, the design moment was calculated following procedures in the
ACI Building Code. Strain hardening of the steel was neglected. Horizontal shear reinforcement
was provided so that the calculated design moment would be developed. Shear reinforcement was
provided to satisty the ACI Building Code. Design yield stress of the steel was 60 ksi (414 MPa)
and design concrete strength was 6,000 psi (41.4 MPa). The test specimens were constructed in
six vertical lifts. Each specimen was loaded as a vertical cantilever with forces applied through the
top slab. The test specimens were loaded in a series of increments. Each increment consisted of
three complete reversed cycles. About three increments of force were applied prior to initial
yielding. Subsequent to initial yielding, loading was controlled by deflections in 1 in. increments.
Free vibration tests were conducted at selected stages as the number and magnitude of loading
increments applied to the specimen increased. These tests were carried out to determine the
frequency and damping characteristics of the walls. Figure 5.33 shows the overall dimensions of
specimen R2. The boundary element was taken to extend 7.5 in. (191 mm) from each end of the
wall. The percentage of flexural reinforcement shown in Table 5.4 was chosen to give a section
moment capacity corresponding to high nominal shear stress. Nominal vertical web reinforcement
provided in the wall was 0.25% of the gross concrete area of the horizontal wall section. This is
the minimum amount permitted by the 1971 ACI Building Code. Once the nominal vertical
reinforcement percentage were selected, bar sizes and locations were determined based on
modeling and construction requirements. The moment capacity of the section was calculated
according to Section 10.2 of the 1971 ACI Building Code. Design yield stress of the steel was
taken as 60 ksi, and design concrete strength was taken as 6,000 psi. Strain hardening of the steel
was neglected for section design. The vertical reinforcement was continuous from the base block
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to the bottom of the top slab. The vertical bars were lap spliced with the top slab bars in the top 32
in. (0.81 m) of the wall. Horizontal shear reinforcement was designed to develop the calculated
ACI nominal moment capacity. The shear design was made according to Section 11.16 of the 1971
ACI Building Code. The horizontal reinforcement was placed at a constant spacing over the height
of the wall. Horizontal steel in the boundary elements (rectangular hoop and supplementary
crosstie reinforcement) were provided in accordance with Section A.6.4 of the 1971 ACI Building
Code. This confinement was placed at a spacing of 1.33 in. (34 mm) over the first 6 ft (1.83 m) of
the wall. Ordinary column ties were used over the remaining height of the wall. Anchorage for the
horizontal steel was provided by embedment in the boundary elements plus a standard 90° hook
around the outer main flexural steel.

Figure 5.34 shows the reinforcing details. Confinement reinforcement was detailed
according to Section A.6.4.3 of the 1971 ACI Building Code. A ten bar diameter extension was
used on all confinement steel hooks. Each end of the supplementary crossties had a 180-degree

hook.
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Figure 5.34 Wall R2 reinforcing details (1 in. = 25.4 mm).

The concrete compressive strength was determined from compressive tests on 6x12-in. (152x305
mm) cylinders. No. 4 bars conforming to ASTM A615 Grade 60 designation were used as
reinforcement. Deformed 6 mm hot rolled bars with properties similar to Grade 60 were also used.
Measured properties of the materials are:

e Concrete
o fc=6,700 psi (46 MPa)
e Steel (No. 4 bars)
o fu=102.7 ksi (708 MPa)
o fy=65.3 ksi (450 MPa)
e Steel (bmm bars)
o fu=100.2 ksi (691 MPa)
o 1£=77.6ksi (535 MPa)
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Figure 5.35 shows the apparatus used for walls testing.
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Figure 5.35 Wall testing apparatus.

Each test specimen was post-tensioned to the floor using eight 1-3/8 in. (34.9 mm) diameter
stress steel bars. Loads were applied to the specimen as a vertical cantilever with concentrated
forces at the top. Hydraulic rams on each side of the specimen alternately applied force to first one
side and then the other side of the top slab. Reactions from the applied loads were transferred to
the test floor through a large infilled reaction frame. For specimen R2, the test consisted of 39
loading cycles. Figure 5.36 shows the applied displacement history.
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Figure 5.36 Applied displacement history (1 in. = 25.4 mm).
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5.4.2 Experimental and Analytical Response

Complete measured strain profiles at the base of the specimen were not available for drift ratios
higher than 0.6%. Two models are used to estimate those demands: TNO DIANA finite elements
model (details provided in section 2.4) and a plastic hinge model (according to Figure 5.2). Figure
5.37 presents the TNO DIANA model. This model consists of curved shell elements with
embedded reinforcement (full bonding), total strain crack model for concrete and Giuffré-
Menegotto-Pinto (Menegotto et al. 1973, Filippou et al. 1983) material for steel. Modeling details
were provided in section 2.4.

Figure 5.37 TNO DIANA finite element model for wall R2.

Figure 5.38 shows the experimental lateral load versus lateral displacement response and the
analytical response obtained from the finite elements model. Analysis was conducted until Cycle
32, a4 in. (101.6 mm) deflection cycle, at which point lateral bracing was added to the test set-up
at 3 ft-6 in. above the wall base, in order to restrain the out-of-plane displacement observed at the
wall boundary. Up to this point, there is a good agreement between the measured and the analytical
estimation of the response.
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Figure 5.38 Experimental and analytical response for wall R2 (1 kip = 4.45 kN,
1in. =25.4 mm).

Figure 5.39 shows the moment-curvature relation considered for the plastic hinge model. This
relation was obtained from XTRACT, considering measured material properties according to
section 5.4.1.
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Figure 5.39 Moment-curvature relation for wall R2 (1 in. = 25.4 mm; 1 in-
kips = 0.11 kN-m).

Figure 5.40 shows the measured strain profile at the base of wall R2 for 0.60% drift ratio.
Strain values at higher drift ratios were not available and they are analytically estimated from finite
element modeling and the plastic hinge approach, where the plastic hinge length is taken as [, /2.
The figure shows estimations at 0.8%, 1.5% and 2.0% drift ratio from both models. Finite element
analysis was conducted until Cycle 32, 2.2% drift ratio cycle, when lateral support was added to
restrain out-of-plane displacement at the wall edge. Figure 5.40 also shows an estimation of the
strain profile at the maximum measured drift ratio of 2.8% drift ratio. This estimation is obtained
only from the plastic hinge model. Both analytical estimations of strains are accurate in comparison
with the measured strains at 0.6% drift ratio. At higher drifts, estimations of strains are consistently
lower for the finite elements model.
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Figure 5.40 Measured and analytical strain distribution at the base of wall R2.

Figure 5.41a shows the deformed shape of wall R2, obtained from DIANA analysis, at the
point where lateral bracing was added at 42 in. over the wall base (after Cycle 32, a 4 in. deflection
cycle). Figure 5.41b shows the out-of-plane displacement at the wall edge for this point and for
the first peak of Cycle 28 (a 1 in. deflection cycle).
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Figure 5.41 a) Analytical estimation of the deformed shape of wall R2 at the point
where lateral bracing was added to the test set-up, b) out-of-plane-
displacement along the height at the wall edge.
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5.4.3 Evaluation of the Onset of Out-of-Plane Instability

Some highlights of the response observed during the test are now presented (Oesterle et al., 1976).
First indication of crushing of the outer shell at the base of the wall had been noted in Cycle 22. A
notable increase in spalling and flaking along the horizontal cracks was observed during the 3 in.
deflection cycles. During Cycle 28, a 1 in. (25.4 mm) deflection cycle, bowing of the compression
end was observed. The compression boundary element was 0.25 in. (6.4 mm) out of plane at a
point 3 ft-6 in. (1.1 m) above the base. Although this bowing progressed further with each cycle
the load carrying capacity of the wall remained stable. After Cycle 32, the compression end of the
wall was 3 in. (76.2 mm) out of plane at point 3 ft-6 in. (1.1 m) above the base. Figure 5.42 shows
the specimen after Cycle 32. The test was stopped after Cycle 32 and lateral bracing was added to
the test step-up. From Figure 5.41, analytical estimations for the out-of-plane displacement at the
wall edge at 42 in. over the base are 0.6 in. for Cycle 28 and 4 in. for Cycle 32. Both values are
reasonably close to the reported values.

An omni-direction ball caster was placed against the face of the each boundary element at
a level 3 t-6 in. (1.1 m) above the base. This simulated lateral support at approximately the first
story height. The test was continued with the third 4 in. (101.6 mm) deflection Cycle 33.
Considerable grinding and spalling along web cracks occurred during the 4 in. deflection cycles.
Also, the end hooks of several horizontal bars started to open during the 4 in. cycles. In Cycle 35,
a large out of plane displacement of the compression zone within the lower 3 ft-6 in. (1.1 m) height
was observed and the load carrying capacity of the wall decreased. The maximum negative load
in the third cycle of the 5 in. (127.0 mm) deflection increment was 79% of the maximum in the
first cycle. Several bars fractures in Cycle 37 and out of plane displacement of the compression
zones progressed further. Considerable crushing and loss of concrete occurred in subsequent cycles
and the load carrying capacity continued to decrease. The specimen sustained at least 80% of the
maximum measured load through 14 complete inelastic cycles. The last inelastic loading increment
in which the load was sustained at or above 80% of the maximum for all 3 cycles was at +4 in.
(£101.6 mm).

Figure 5.42 Lateral displacement of compression zone after 4 in. deflection in wall R2.

The lateral support at the first story level was not present during the major portion of the
test. Therefore, the onset of out-of-plane instability is analyzed without considering this
intermediate support. The maximum tensile strain required to buckle the wall boundary during
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load reversal (eg,;,) is first estimated from an OpenSees model (see Figure 5.28b). Figure 5.43
shows the analysis results.

-3
Lt 180 . 180 —— 180
o} £
? 160 | 1 160 ] 160 |
21 4
sk ] 140 | 1 140} 140 |
6| | 120 { 120} 120 |
. 8 £ 100 £ 100} £ 100 |
= L — b L —
Lot = 5 S
T 80 @ 80Ff T 80}
I I I
A2 F
60 { 1 60 60 |
14} ]
404 1 40} 40}
-16 |
18l ] 20 f 1 20 20
-20 : 0 _l : 0 0 -
200 0 200 0 10 20 o 1 2
N_ (kips) £ f € uu o

(a) (b) (c) (d)

Figure 5.43 Boundary element of wall R2: a) average axial strain versus axial force at
the base, b) normalized axial strain, ¢c) normalized axial force, d)
normalized buckled shape.

The analysis considers spalling in the region close to the wall base prior to buckling, which
is consistent with reported observations. According to Figure 5.43b, it is required to have a vertical
strain at the base of the wall boundary close to €5, = 8¢, or 0.02 to buckle the boundary during
load reversal. The estimated value for the maximum tensile strain at the wall boundary (Figure
5.40) before Cycle 33 is higher than 8¢, and therefore the onset of buckling is an expected
response, as observed during the test and in the finite elements model. If the simplified mechanics
is applied directly assuming constant strain along the full height (180 in.), the estimated value of
€sm 18 low, as shown in Table 5.6.

If we apply Figure 4.9 directly in Table 5.6, the estimated value for €, is 5-:0.005=0.025,
close to 0.02 obtained from the more accurate OpenSees model. The analysis suggests that Figure
4.9 can be used to improve the estimation of €g,,.

Table 5.5 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa).
Material Dimensions, in. BE Area of
Properties, psi . T
Wall . Story BE Stirrup Longitudinal
ngth’ Lelllgth’ Height, | hy, | Length, Clear Steel A,, in.2
fle fy v H In Cover, ¢
R2 | 6,700 | 65,300 4.0 75 180 180 8 0.5 1.18
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Table 5.6 Analysis of R2 from simplified mechanics, cover spalled off.

Wall Slenderness
Wall be/khy p m £ | x €sm

R2 0.02 7% | 072 | 0.10 | 1 0.005
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6 Global Instability in Slender Walls of Chilean
Buildings

6.1 INTRODUCTION

Prior 2010, lateral buckling in slender walls and columns had been observed only in a few
laboratory tests. Following the 2010 Chile earthquake, buckling in slender walls was reported in
two residential buildings. Both experienced severe post-earthquake damage. Relative to other
types of damage in walls, cases of documented overall wall buckling behavior in Chile were
relatively few and often associated with significant residual drift in the building (ATC-94, 2014).
This chapter presents detailed studies carried on three Chilean buildings (Buildings #1, #2 and #3).
Buckling was reported in some walls of Buildings #1 and #2. Building #3 collapsed during the
2010 Chile earthquake, and for this case an evaluation of the onset of lateral buckling is performed
to determine if buckling was one of the multiple causes that triggered collapse. Modal response
spectrum analysis is used to estimate the roof drift ratio of Buildings #1 and #2, using linear fixed-
base models developed in ETABS. Results of linear analyses reported by others (Tanyeri, 2014;
Hilson, 2014) are used to estimate the roof drift ratio of Building #3. Several models of isolated
walls are considered for estimation of strain demands at the first story to perform an evaluation of
the onset of lateral buckling, using the simplified mechanics theory presented in section 2.2. These
studies are fundamental to determine the failure mechanism in slender walls that experienced out-
of-plane instability in actual buildings. Later, recommendations for the improvement for current
design standards are made based on these studies.

6.2 BUILDING #12

6.2.1 Building Description

Building #1 is located in San Pedro de la Paz, Chile. The structure was severely damaged following
the 2010 Maule earthquake. The building was designed during 2007-2008 and constructed in 2009.
It has fifteen stories and two subterranean levels. The seismic force-resisting system is composed
of reinforced concrete walls of 7.87 in. (200 mm) typical thickness. The gravity force-resisting
system comprises the reinforced concrete walls plus some interior reinforced concrete columns.
The typical story height is 8.37 ft (2.55 m). There are some discontinuities in the vertical members

2 Data for Building #1 obtained from DICTUC reports (2010).
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in the first story with respect to the upper stories. For example, walls K and N (and other walls)
step back from the building perimeter by approximately 6.5 ft (2 m), resulting in reduced wall
length in the first story compared with typical stories above (walls of this configuration are is
commonly known as “flag walls”). The building sustained a variety of apparent damage during
the 2010 earthquake, with main damage characterized by wall crushing in the first story or in
subterranean levels. Some walls, and in particular the first story wall along line N, showed apparent
out-of-plane buckling (Figure 1.1). Figure 6.1 shows the typical plan view and Figure 6.2 shows
the first-story plan view.

®
|
|
|
N
1
I

-1

@
!
|

®

E
|
=

@
T
|

@ +—

| NI
{ —=
|
o — - ———]
I
@f__k_ __E___I_
|
|
=
B i
® L —fe=maasa ®
® ® } 2 ©

Figure 6.1 Building #1 — Typical plan view.
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Figure 6.2 Building #1 — First story plan view.

6.2.2 Loads and Design Standards

Gravity and seismic loads were calculated following the Chilean standards NCh 1537 Of. 1986
and NCh 433 Of. 1996. Table 6.1 shows the calculated gravity loads. For the seismic mass 50%
of live load is considered.

Table 6.1 Gravity loads for Building #1.
Floor | Slab thickness, in. (mm) | Dead Load, psf (kPa) | Live Load, psf (kPa)
-2 7.87 (200) 112.99 (5.41) 10.03 (0.48)
-1 7.87 (200) 112.99 (5.41) 10.03 (0.48)
1 5.91 (150) 87.09 (4.17) 10.03 (0.48)
2 to 14 5.91 (150) 87.09 (4.17) 10.03 (0.48)
Roof 5.91 (150) 87.09 (4.17) 10.03 (0.48)
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Reinforced concrete members were designed according to ACI 318 (2005). Parameters
considered in seismic design according to NCh 433. Of. 1996 are: building category C, seismic
zone 3, soil type 3 and 5% damping ratio. Standard NCh 433. Of. 1996 defines the response
spectrum for design according to Equations (6.1) to (6.3).

[Aja
a = R ) (6.1)
1445 (%) (6.2)
a= 3 03
In
1+ (To)
T* 6.3
0.1Ty + 5
0

Where:
e S, Pseudo acceleration
o I Importance factor, equal to 1 for building category C
e A, Peak ground acceleration, equal to 0.4 g for seismic zone 3
e g Acceleration of gravity 386 in./s? (9.81 m/s?)
e T, Moden'" vibration period (s)
e Ty Soil dependent parameter, equal to 0.75 (s) for soil type III
e p Soil dependent parameter, equal to 1 for soil type I1I

e T*  Vibration period of the mode with highest equivalent mass in the
analysis direction (s)

e R, Response modification factor = 11

Figure 6.3 presents the design response spectrum without response modification factor
(R*=1).
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Figure 6.3 NCh 433 Of. 1996 elastic response spectrum (for R*=1).
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6.2.3 Nominal and Measured Material Properties

The nominal material properties specified by design are: concrete H30 confidence interval 90%,
maximum compressive strength in cubic specimen 4,350 psi (30 MPa) and reinforcement steel
A63-42H, tensile strength £;= 91 ksi (630 MPa), yield strength £,= 60 ksi (420 MPa). Table 6.2
shows the fcrequired for each concrete grade according to the Chilean standard NCh 430 Of. 2008.

Table 6.2 NCh 430 Of. 2008 conversion table.
Concrete grade (NCh170 confidence interval 90%) | f5 psi (Mpa)
H20 2,320 (16)
H25 2,900 (20)
H30 3,630 (25)
H35 4,350 (30)
H40 5,080 (35)
H45 5,800 (40)

Therefore, for this case f== 3,630 psi (25 MPa). Concrete real strength was determined
from tests following the Chilean standards NCh 1171/1 Of.2001 and NCh 1171/2 Of.2001. Table
6.3 quantifies those tests. Table 6.4 and Table 6.5 indicate the dimensions of cores and the location
where they were obtained. Table 6.6 shows the results of the compressive strength tests.

Table 6.3 Building #1 tests (DICTUC, 2010).
Test Quantity

Compressive strength 12

Thickness determination 12

Density determination 12

Detailed visual inspection 12
Table 6.4 Dimensions of cores (DICTUC, 2010).

Core iIIlI(elillgIlIllt),* I;ila?lflt::; * | Slenderness E:;t(l?giﬁl;t)’

THOL | 6.9 (174) 4 (101) 1,72 148 (2375)
THO2 | 6.8 (173) 4 (101) 1,71 147 (2353)
THO3 | 5.2 (132) 4 (101) 1,31 148 (2376)
THO4 | 6.8 (173) 4 (101) 1,71 145 (2326)
THOS | 4.1 (104) 4 (101) 1,03 149 (2386)
THO6 = 7 (179) 4 (101) 1,77 146 (2344)
THO7 | 6.3 (161) 4 (101) 1,59 148 (2370)
THOS8 | 4.6 (118) 4 (101) 1,17 146 (2340)
THO9 = 7(179) 4 (101) 1,77 147 (2357)
TH10 | 6.9 (174) 4 (101) 1,72 145 (2315)
TH11 | 4.3 (110) 4 (101) 1,09 145 (2327)
TH12 | 6.5 (166) 4 (101) 1,64 141 (2266)

(*) Height includes surface preparation of top and bottom of the cylinder prior testing.
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THI12

Chilean standard NCh 1171/1 Of. 2001 specifies the use of a slenderness modification
factor to obtain the cylinder compressive strengths from the core compressive strengths (f, =

Table 6.5 Locations where cores were obtained (DICTUC, 2010).

Position
Wall level -2, axis K between 3-5, 4.43 ft (1.35 m) from 3 and 3.61 ft (1.10 m) from floor level.
Wall level -1, axis 5 between C-G, 4.87 ft (1.48 m) from C and 2.20 ft (0.67 m) from floor level.
Wall level -1, axis L between 11-14, 3.94 ft (1.20 m) from 14 and 1.97 ft (0.60 m) from floor level.
Wall level 1, axis U between 5-9, 4.27 ft (1.30 m) from 9 and 3.12 ft (0.95 m) from floor level.
Wall level 1, axis 11 between G-U, 21.65 ft (6.60 m) from U and 3.84 ft (1.17 m) from floor level.
Column level 1, axis F between 12-14, 3.77 ft (1.15 m) from 14 and 4.27 ft (1.30 m) from floor level.
Wall level 2, axis 12 between ZZ-U, 12.14 ft (3.70 m) from ZZ and 3.44 ft (1.05 m) from floor level.
Slab level 1, axis U-V between 8-9, 0.98 ft (0.30 m) from U and 2.62 ft (0.80 m) from 9.
Wall level 4, axis Q between 5-1, 9.84 ft (3.00 m) from 1 and 3.94 ft (1.20 m) from floor level.
Wall level 6, axis 5 between A-G, 10.33 ft (3.15 m) from A and 3.02 ft (0.92 m) from floor level.
Slab level 9, axes E-G between 9-12, 9.02 ft (2.75 m) from G and 4.53 ft (1.38 m) from 12.
Wall level 13, axis 5 between U-ZZ, 11.32 ft (3.45 m) from ZZ and 4.43 ft (1.35 m) from floor level.

Table 6.6 Measured concrete compressive strength (DICTUC, 2010).

Maximum Load, Core compressive Cylinder compressive Cubic compressive

1b (kN) strength, psi (MPa) strength, psi (MPa) strength, psi (MPa)
116,451 (518) 9,384 (64.7) 9,384 (64.7) 10,109 (69.7)
100,265 (446) 8,079 (55.7) 8,079 (55.7) 8,804 (60.7)
99,141 (441) 7,977 (55.0) 7,977 (55.0) 8,702 (60.0)
97,117 (432) 7,818 (53.9) 7,818 (53.9) 8,543 (58.9)
108,133 (481) 8,702 (60.0) 8,702 (60.0) 9,427 (65.0)
90,598 (403) 7,295 (50.3) 7,295 (50.3) 8,021 (55.3)
115,552 (514) 9,311 (64.2) 9,311 (64.2) 10,037 (69.2)
76,435 (340) 6,150 (42.4) 5,598 (38.6) 6,324 (43.6)
109,482 (487) 8,818 (60.8) 8,818 (60.8) 9,543 (65.8)
71,040 (316) 5,714 (39.4) 5,598 (38.6) 6,324 (43.6)
70,365 (313) 5,671 (39.1) 5,047 (34.8) 5,773 (39.8)
67,443 (300) 5,424 (37.4) 5,279 (36.4) 6,005 (41.4)

K fcore), according to Table 6.7. These factors have been considered in Table 6.6.

115



Table 6.7 Modification factor according to Chilean standard NCh 1171/1 Of. 2001.
Slenderness (h/d) | Factor K

2.00 1.00
1.75 0.98
1.50 0.96
1.25 0.93
1.00 0.87

Following the 2010 Chile earthquake, one wall apparently buckled in the first story of
Building #1 (Figure 1.1). As response in the first story was the primary interest, linear and
nonlinear models were assembled based on the compressive strength obtained from a first-story
core. Periods would not be much affected by using an alternative value for compressive strength.
Therefore, the cubic compressive strength is considered as 8,000 psi (55 MPa), cylinder strength
fe= 17,300 psi (50 MPa), and the elasticity modulus is £c= 4,800 ksi (33,000 MPa). For linear
analysis, the effective flexural and axial rigidity (including cracking) is used, according to ASCE
41 (2006), section 6.3.1.2: walls-cracked 0.5 £¢ [z (flexural) and 0.4 £- Aw (shear), columns 0.3 £¢ [z
(flexural) and 0.4 £- Aw (shear), slabs 1/3 Ec Iz (flexural). Kent and Park (1971) unconfined concrete
model is used for nonlinear analysis. Measured reinforcement properties from coupons from the
building are tensile strength £;= 110 ksi (759 MPa) and yield strength 7= 73.4 ksi (506 MPa).

6.2.4 Soil Properties

Layers of the foundation soil reported by the project geotechnical engineer (EMPRO, 2007) are:
e H-1 From 0.0 ft to 18.0 ft (0.00m-5.50m)
e H-2 From 18.0 ft to 34.4 ft (5.50m-10.50m)
e H-3 From 34.4 ft to 38.1 ft (10.50m-11.60m)
e H-4 From 38.1 ft to 50.7 ft (11.60m-15.45m)
e H-5 From 50.7 ft to 52.2 ft (15.45m-15.90m)
e H-6 From 52.2 ft to 65.8 ft (15.90m-20.06m)

Table 6.8 indicates the soil parameters for each layer. According to the Chilean standard
NCh 433 Of. 1996, the soil classifies as type III for seismic zone 3.

Table 6.8 Soil properties per layer (EMPRO, 2007).
H-1 H-2 H-3 H-4 H-5 H-6
USCS classification SP,SM SP ML SP ML @ SP
Fines (%) <12% 3 84 1 57 3
Plasticity index NP NP NP NP NP NP
Solids specific weight (Gs) 2.7 2.77 2.53 2.7 2.61  2.76
Nspt, blows/ft >40  29t073 9  57t062 13 | >60
Internal friction angle 38 38 - 40 - 42
Effective cohesion, psi (MPa) 0 0 - 0 0 0

116



6.2.5 Recorded Ground Motion

Instruments recorded the ground acceleration during the 2010 Chile earthquake at a nearby station
(Colegio Concepcion, San Pedro de 1a Paz) owned by the Seismological Service at the Department
of Geophysics at the University of Chile (GUC). The station is located at 0.8 miles (1.3 km) from
the building site and this is the available record closest to the building site. Ramirez and Vivallos
(2009) described the type of soil of the area where the building is located as alluvial deposits of
the Bio-Bio River, fine to medium sands with little silt, with some layers of coastal sand deposits
and anthropogenic filling on top. The soil classifies as type 3 according to the Chilean standard
NCh433 Of. 1996 (section 6.2.2). Figure 6.4 to Figure 6.6 show the acceleration records for the
three measured directions.
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Figure 6.4 Corrected ground motion east-west direction (1 in. = 25.4 mm).
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Figure 6.5 Corrected ground motion north-south direction (1 in. = 25.4 mm).
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Figure 6.6 Corrected ground motion up-down direction (1 in. = 25.4 mm).

Figure 6.7 to Figure 6.9 show the pseudo acceleration, pseudo velocity, and the
displacement response spectrum (2% damping ratio).
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Figure 6.7 Pseudo acceleration spectrum.
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Figure 6.8 Pseudo velocity spectrum (1 in. = 25.4 mm).
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Figure 6.9 Displacement spectrum (1 in. = 25.4 mm).

The first mode period in the east-west direction, estimated from an ETABS linear model
in section 6.2.7, is T = 0.57 s. This period is based in several assumptions regarding material
properties and loads. In Figure 6.7 it can be observed that the calculated period falls in the valley
of the east-west spectrum, and a large peak is observed at T~0.76 s. Therefore, a sensitivity
analysis should be done regarding the first-mode period and its influence on the calculated
structure response. According to Figure 6.9, in the east-west direction the peak spectral
displacement is between 9.8-15.8 in. (250-400 mm) for the reasonable building period range.
Therefore, the maximum roof drift ratio is close to DR = 1.43%. This assumes that peak
displacement response of the nonlinearly responding building is the same as that of the building
with linear-elastic properties.

Figure 6.10 compares the calculated pseudo-acceleration spectrum (2% damping ratio) and
the NCh 433 Of. 1996 design spectrum (R*=1). It is observed that the design pseudo-accelerations
are largely exceeded in the east-west direction within the plausible period range.
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Figure 6.10 Pseudo acceleration spectrum comparison.

Figure 6.11 presents a tripartite plot for the three recorded directions.
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Figure 6.11 Tripartite plot for east-west, north-south and up-down motion
(1 in. =25.4 mm).

From Figure 6.11 for the period range 0.57s < T < 0.76 s the structure is in the
displacement preserved zone, and therefore the maximum roof drift ratio obtained from linear
analysis is expected to be close to the nonlinear maximum drift ratio.

6.2.6 Damage Reported Following the 2010 Chile Earthquake

The main building post-earthquake damage is described in this section (DICTUC, 2010). Even
though no major exterior damage is apparent, the floors cantilevering from the walls to form

balconies showed obvious sagging.
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Figure 6.12 Exterior views: (a) east view; (b) axis A; (c) west view; (d) axis Zz (after
DICTUC, 2010).

Severe damage, which affects the structure stability, was observed from the second
subterranean level to the first story, in walls oriented east-west between axes 12 and 14. In general
terms, this entire line of walls failed in one of those stories. Repetitive damages were observed
from the second to the fourteenth story, but these did not appear in the judgment of the author to
affect the structure stability. Finally, in the fifteenth story and in the mechanical room, damage
increases due to the changes on the lateral force-resisting system.

The main damage in the second subterranean level is concentrated in two walls. Damaged
concrete has been removed and supplementary reinforcement cages have been added adjacent to
the original wall sections.
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(c)

Figure 6.13 Damage in second subterranean level: (a) axis P, between axes 12 and 14;
(b) detail of axis P; (c) axis L, between axes 11 and 14; (d) axis G, between
axes 7 and 10 (after DICTUC, 2010).

Similar damage was observed in the first subterranean level. There were two failures in
walls located in axis V and F, between 14 and 12.
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Figure 6.14 Damage in first subterranean level: (a) axis V, between axes 12 and 14; (b)
detail of axis V; (c) axis F, between axes 12 and 14; (d) detail of axis F
(after DICTUC, 2010).

In the first story, two specific failures types were observed. The wall in axis N, between
axes 3 and 4, had apparent compressive failure. Note that axis N wall had an irregularity (indicated
in Figure 6.22) in this story that could have been a contributing factor. The axis J wall, between
axes 6 and 9, also had a compressive failure.
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Figure 6.15 First story damage: (a) axis N, between axes 3 and 5; (b) detail of axis N;
(c) axis J, between axes 6 and 8; (d) detail of axis J (after DICTUC, 2010).

Another important damage was located in axis U, between axes 5 and 9. This wall had a
compressive failure. This failure was consistent with the predominant east-west direction of the
earthquake. It should be noticed that this is an L-shaped wall (flange in axis 5), so the flange may
have had an influence in the failure mode.
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Figure 6.16 First story damage: (a) axis U, between axes 5 and 9; (b) detail of axis U;
(c) axis U, between axes 5 and 9; (d) axis 5, between axes U and Y (after
DICTUC, 2010).

At the four corners of the building, in the first story, there are walls of non-uniform
thickness (200/300 mm). Failures can be observed in the section of thickness change.
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(e) (f)

Figure 6.17 First story damage: (a) axis C, between axes 13 and 14; (b) axis C,
between axes 13 and 14; (c) axis C, slab damage; (d) axis C, between axes
3 and 4; (e) axis Y, between axes 3 and 4; (f) axis Y, between axes 13 and
14 (after DICTUC, 2010).
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Connections between walls and slabs sustained damage as shown next.

(b)

Figure 6.18 Second story damage in axis C, between 13 and 14: (a) view 1; (b) view 2
(after DICTUC, 2010).

6.2.7 ETABS Model for Building #1

The onset of out-of-plane instability in slender walls of Building #1 is analyzed using nonlinear
models of isolated walls. For the analysis of isolated walls, it is required first to estimate the
displacement demand at the roof. This demand is estimated from a response spectrum analysis of
the full building using the software ETABS. Figure 6.19 shows the linear fixed-base model for

Building #1.

Figure 6.19 ETABS model for Building #1.
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Table 6.9 presents the periods and modal participating mass ratios for the first ten modes

of the building.

Table 6.9

Mode | Period (s)

0.78
0.57
0.47
0.19
0.18
0.15
0.14
0.13
0.12
0.11

O O N OOV | W N K

=
o

Modal analysis output for Building #1.

Modal mass ratio
east-west direction

0.18
60.19
0.02
0.00
0.05
0.14
11.92
2.26
0.60
0.20

Modal mass ratio
north-south direction
0.00

0.02
60.16
0.18
0.01
0.05
0.07
0.42
143
10.04

From Table 6.9, the second mode (period T = 0.57 s) has the highest effective modal mass
in east-west direction, and the third mode (period T = 0.47 s) has the highest effective modal mass
in north-south direction. As noted in section 6.2.5, according to the elastic response spectrum of
the nearby recorded ground motion, lateral displacement is sensitive to the vibration period, with
peak displacement occurring for fundamental period T = 0.76 s. In order to evaluate the worst
case scenario, the seismic mass was increased in the model to achieve this target period of T =
0.76 s. Modifying the stiffness properties could have done this as an alternative approach. The
building modal analysis output is then modified as shown in Table 6.10.

Table 6.10 Modal analysis output for Building #1 with increased seismic mass.

Mode | Period (s)

1.05
0.76
0.63
0.26
0.18
0.17
0.16
0.10
0.09
0.08

Ol o N oo W N BB

[
o

Modal mass ratio
east-west direction

0.18
60.19
0.02
0.00
14.02
0.12
0.00
0.02
13.43
1.59

Modal mass ratio
north-south direction
0.00

0.02
60.16
0.19
0.00
1.02
11.24
0.88
1.55
13.13

Section 6.2.8 presents the analysis results of nonlinear models of isolated walls, all of them
oriented in the east-west direction. To proceed with those analyses, it was necessary to estimate
first the maximum displacement that the building experienced during the earthquake. Figure 6.20
shows the maximum lateral displacement over the height in the east-west direction for the building
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with increased seismic mass, which is the worst case scenario regarding the demand of lateral
displacement.

14
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Figure 6.20 Maximum lateral displacement, east-west direction (1 in. = 25.4 mm).

From Figure 6.20 the maximum roof drift ratio is 1.4%, which is consistent with the first
estimation presented in section 6.2.5.

6.2.8 Nonlinear Models of Isolated Walls

An evaluation of the onset of out-of-plane instability requires an estimation of the maximum strain
demand at the wall base. Two walls of Building #1, both oriented in the east-west direction, are
analyzed using nonlinear models of isolated walls. Figure 6.21 shows the selected walls in a plan
view. Wall N is the only one that showed apparent buckling following the 2010 Chile earthquake
(Figure 1.1). The other wall was selected because of its proximity to wall N (within 12 ft) and
because it did not show appreciable post-earthquake damage at the first story. This observation
can be used bound the analysis results.
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Figure 6.21 Analyzed walls for Building #1.

Nonlinear analysis of isolated walls includes integration of curvatures along the height and
a plastic hinge approach according to Figure 5.3. Only for wall N the analysis also includes a
PERFORM 3D nonlinear model. These isolated models are used to estimate strain profiles at the
base for buckling evaluation.

6.2.8.1 Analysis of Wall in Axis N

Several analyses were performed for the wall with the most obvious buckling as pictured in Figure
1.1. Figure 6.22 shows an elevation view of wall N.
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Figure 6.22 Elevation view of wall N, dimensions in cm (1 cm = 0.39 in.).

Figure 6.23 shows the tributary area (typical floor) considered for the model of the isolated wall.
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Figure 6.23 Tributary area at level 2-14 (typical floor).
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Table 6.11 indicates total load at each floor.

2to 14
Roof

Table 6.11

Area, ft?> (m?)
400.80 (37.24)
400.80 (37.24)
248.10 (23.05)
284.70 (26.45)
339.60 (31.55)

Gravity load per floor wall N.

45.15 (200.84)
45.15 (200.84)
21.60 (96.08)
24.78 (110.23)
29.56 (131.49)

Dead Load, kips (kN) | Live Load, kips (kN)

4.10 (18.24)
4.10 (18.24)
2.54 (11.30)
2.92 (12.98)
3.48 (15.48)

The axial load at the first story bottom level is P= 863 kips (3839 kN). Therefore
P/Asf=0.05.

6.2.8.1.1.1 Curvature Integration Approach

The procedure indicated in section 5.2 is followed. The simplified model has concentrated
nonlinearity in the first story, and linear elastic behavior is assumed in the other stories. This is
reasonable considering the wall has a relatively weak first story due to a setback. For the first story,
the moment curvature relation is calculated with XTRACT. For the upper stories, the cracked
properties indicated in ASCE 41 (2006) are used. Figure 6.24 shows the section properties
considered in the XTRACT model.

Section Details:

b rl
X Centroid: 3026E-14 in I 4425 1922@20
¥ Centroid: 64.89 in ::::::::E:-:L:::'::

Section Area: 2412 in"2

I gross about X: 1.82E+7 in"4

I gross about \: 1.613E+6 in"4

Reinforcing Bar Area: 69.07 in"2 @

Percent Longitudinal Steel: 2864 % -

Overall \\'xdt-h: 1339 in ¢2 9 @ 15

Overall Height: 2354 in

Number of Fibers: 32

Number of Bars: 98

Number of Matenials: 2 '

Material Types and Names: 81

User Defined: O =nso 4925 m

Strain Hardening Steel: W A63-42H2

Figure 6.24 XTRACT model section properties for wall N (1 in. = 25.4 mm, bars

diameter in mm).
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Figure 6.25 shows the moment-curvature relations for the flange in compression and in
tension.
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Curvature (/in)
Figure 6.25 Moment-curvature relations axial load N=863 kips (1 in. = 25.4 mm;

1in. - kips = 0.11 kN-m).

The lateral force pattern used for this analysis is inverted triangular. The total force was
increased until reaching the target drift of 1.43%, the value obtained from linear analysis of the
entire building. For the case of the flange in compression, the target displacement is reached
without crushing in concrete or fracture in steel. Figure 6.26 shows the normalized moment and

curvature over the height for this case.
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Figure 6.26 (a) Normalized moment; (b) curvature for flange in compression.

As expected, the curvature demand is concentrated in the first story. (Note that the
calculated curvature distribution shows a sharp spike toward the base level, indicating that the
calculated strain and curvature may be sensitive to minor variations in the deformation or moment
demands. A plastic hinge model is used later in this chapter to reduce the sensitivity of the result.
For the case of flange in tension, Figure 6.27 shows the normalized moment and curvature over
the height. For this case, concrete at the wall stem crushes at a drift ratio of 0.49%.
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Figure 6.27 (a) Normalized moment; (b) curvature for flange in tension.

Figure 6.28 shows the calculated section strain profiles, under the assumption that plane
sections remain plane.

0.040 0.008
4

~ 0.030 ~ NG
c < 0.004 N
2 0.020 2
= 0010 e o0 £ 0.000 AN
g | //“} ’ ° g \} +049%
? 0.000 ——1.43% & -0.004

-0.010 ! -0.008

0 78 157 235 0 78 157 235
(a) Distance Along Web (in.) (b) Distance Along Web (in.)

Figure 6.28 Strain profiles for wall N from curvature integration: (a) flange in
compression; (b) flange in tension.

Figure 6.28a shows that for the case of the flange in compression, the target drift ratio of
1.43% is reached without concrete crushing at the wall flange or bar fracture at the wall stem, and
the maximum tensile strain at the wall boundary is 0.03. Figure 6.28b shows that for the flange in
tension, the ultimate state is triggered by concrete crushing at the wall stem, when the maximum
compressive strain reaches 0.004. The roof drift ratio at this point is 0.49%. At this drift ratio,
Figure 6.28a shows a maximum tensile strain at the wall stem of 0.01 when the flange is in
compression. These estimations of strain profiles at the wall base will be used later in section 6.2.9
for the evaluation of the onset of out-of-plane instability.

6.2.8.1.2 Plastic Hinge Approach

As was indicated in section 6.2.8.1.1.1, the wall has a relatively weak first story due to a setback.
The nonlinear behavior will be concentrated here, and the contribution to the top displacement of
the elastic deformation in the upper stories is expected to be small in comparison to the contribution
given by the first story nonlinearity. A simplified plastic hinge approach according to Figure 5.3
is appropriate to model this behavior. For the case of the flange in compression, the curvature at
1.43% drift ratio is given by ¢, = 1.43%/(0.5-235) = 1.22-10"*in.”L. For the flange in
tension, the ultimate state is triggered by concrete crushing at the wall stem, at a curvature ¢,, =
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4.36- 107> in.”! and the estimated drift ratio is DR = ¢, l, =4.36- 1075-0.5- 235 = 0.51%.
Figure 6.29 shows the calculated section strain profiles.
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Figure 6.29 Strain profiles for wall N from plastic hinge approach: (a) flange in
compression; (b) flange in tension.

The strain profiles obtained from both approaches (curvature integration and plastic hinge)
are very similar. There is only a minor difference in the value of drift ratio at which concrete
crushing is triggered at the wall stem.

6.2.8.1.3 PERFORM 3D Model

Only for this wall, a non-linear fixed-base model was developed using PERFORM 3D. Two
different analyses are performed:

a) Non-linear response history analysis. The seismic mass is calculated by
tributary areas considering 50% of the live load. A factor is applied over the
seismic load to get 1.43% roof drift ratio (maximum value estimated from
ETABS model of the building). The ground motion is defined in section 6.2.5.

b)  Pushover analysis. An inverted triangular lateral force pattern is applied. A
pushover analysis is performed until reaching a roof drift ratio of 1.43%.

From these two analyses it is possible to estimate strain profiles at the wall base. Figure

6.30 shows the base-overturning moment versus roof drift ratio for the nonlinear response history
analysis.
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Figure 6.30 Nonlinear response history analysis — base overturning moment v/s roof

drift ratio (1 in.-kips = 0.11 kN-m).

Figure 6.31 and Figure 6.32 show calculated section strain profiles from nonlinear response
history and pushover analyses. Strain profiles are shown for the drift ratio that crushes the wall
stem in compression and for the target drift ratio of 1.43% when the wall stem is in tension.

0.030 0.008
g 0020 // 2 0.004
< 0010 / —a—0.56% < 0.000
& 0000 / — o143 8 -0.004 \ —4—0.56%
0,010 | -0.008
0 78 157 235 0 78 157 235

(a) Distance Along Web (in.) (b) Distance Along Web (in.)

Figure 6.31 Strain profiles for wall N from nonlinear response history analysis: (a)
flange in compression; (b) flange in tension.
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Figure 6.32  Strain profiles for wall N from pushover analysis: (a) flange in
compression; (b) flange in tension.
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Both figures show the strain profile at 1.43% drift ratio when the flange is in compression.
For this case, the maximum tensile strain at the wall stem is close 0.03 for the dynamic analysis
and 0.04 for the pushover analysis. Both analyses showed crushing at the wall stem for lower drifts
(close to 0.60%). At this drift ratio, when the flange is in compression, the tensile strain at the wall
stem is 0.01.

6.2.8.2 Analysis of Wall in Axis K

Figure 6.33 shows the elevation of wall K. For this wall, curvature integration and the
plastic hinge approach are used to estimate strain profiles at the base.
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Figure 6.33 Elevation view of wall K, dimensions in cm (1 cm = 0.39 in.).

Figure 6.34 shows the tributary area for gravity loads (typical floor).
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Figure 6.34 Tributary area at level 2-14 (typical floor).
Table 6.12 gives the total gravity load per floor for wall K.

Table 6.12 Gravity load per floor wall K.

Floor | Area, ft* (m?) | Dead Load, kips (kN) | Live Load, kips (kIN)

2| 368.34 (34.22) 41.49 (184.56) 3.77 (16.77)
-1 | 368.34 (34.22) 41.49 (184.56) 3.77 (16.77)

1| 275.98 (25.64) 24.02 (106.85) 2.83 (12.59)
2to 14 | 303.90 (28.23) 26.45 (117.66) 3.11 (13.83)
Roof | 249.29 (23.16) 21.70 (96.53) 2.55 (11.34)

The axial load at the first story bottom level is P= 633 kips (2816 kN). Therefore, P/Agfc
= 8.5%.
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6.2.8.2.1 Curvature Integration Approach

This analysis follows the procedure introduced in section 6.2.8.1.1.1. Figure 6.35 shows the section
properties used in the XTRACT model.

Section Details:

X Centroid: -.3673E-16 in 4¢2,, E

Y Centroid: 2303 in =
Section Area: 1051 in"2 o

I gross about X: 1.626E+6 in"4

I gross about Y: 4643 in"d

Reinforcing Bar Area: 20.46 in"2

Percent Longitudinal Steel: 2.803 % i
Overall \\'1dr.'h_- 7874 mn e ¢22@1 Scm
Overall Height: 1335 in

Number of Fibers: 136

Number of Bars: 50

Number of Matenials: 2

Material Types and Names: 4¢3_?_E o
User Defined: O=H30

Strain Hardening Steel: W A63-42H2

Figure 6.35 XTRACT model section properties for wall K (1 in. =25.4 mm, bars
diameter in mm).

Figure 6.36 shows the moment-curvature relation.
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Figure 6.36 Moment-curvature relation axial load N=633 kips (1 in. = 25.4 mm;
1in. - kips = 0.11 kN-m).

The lateral load pattern is also inverted triangular and was increased until reaching 1.43%
drift ratio, target value obtained from ETABS. Figure 6.37 plots the normalized moment and
curvature over the building height.
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Figure 6.37 (a) Normalized moment; (b) curvature.

As expected, all the curvature demand is concentrated in the first story. Again the
calculated curvature distribution shows a sharp spike toward the base level, indicating that the
calculated strain and curvature may be sensitive to minor variations in the deformation or moment
demands. Analysis showed that crushing at the wall boundary occurs at a drift ratio of 0.63% and
a compressive strain of 0.004. For this drift, Figure 6.38 shows the calculated section strain profile.
The maximum tensile strain at the opposite wall boundary is 0.008.
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Figure 6.38 Strain profile for wall K from curvature integration.

6.2.8.2.2 Plastic Hinge Approach

A simplified plastic hinge approach according to Figure 5.3 is now used. The ultimate state is
triggered by concrete crushing at the wall boundary, at a curvature ¢, = 8.47 - 107> in.”%.
Therefore, the estimated drift ratio is DR = ¢, [, = 8.47 - 1075:0.5- 134 = 0.57%.

140



Figure 6.39 shows the calculated section strain profiles at the drift ratio that crushes the

wall boundary in compression. The estimated value for the maximum tensile strain in the opposite
boundary is 0.008.
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Figure 6.39 Strain profile for wall K from plastic hinge approach.

6.2.9 Evaluation of the Onset of Out-Of-Plane Instability

The simplified mechanics of section 2.2 represents a prismatic column under uniform
tension/compression cycles and fixed supports at the top and bottom. The most important
parameter for the evaluation of instability is the maximum tensile strain required to buckle the
element during load reversal. Analysis of sections 4 and 5.3.3 showed that the simplified
mechanics model can be used for cases where the strain profile is nearly uniform strain over the
height, and the effect of the strain distribution along the length of the wall is not relevant when the
wall length is more than 10¢,,. The analyzed walls typically have a setback at the first story by
architectural requirements. For these cases, it is reasonable to assume that the plastic hinge extends
over the first story height and therefore the strain demand is constant or close to constant along the
first story height. Moreover, similar cases (see TW2 in section 5.3.3) show that the boundary
element buckles like a fixed-fixed element at the first story. For this reason, the simplified
mechanics is used here to evaluate the onset of out-of-plane instability. Table 6.13 shows the
properties used in buckling calculation for these two walls.

Table 6.13 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa).

Material Dimensions, in.

p " . BE Area of
Wall roperties, psi . Story BE Stirrup | Longitudinal Steel
ngth’ Lerllgth, Height, | h. | Length, Clear A, in.?
fe fy M H Ip Cover, ¢
N 7,300 | 73,400 7.9 235 94 94 9 0.8 3.04
K 7,300 | 73,400 7.9 133 94 94 9 0.8 2.36

Table 6.14 shows the buckling calculation for these walls, considering that spalling does
not occur before buckling. Therefore, the total wall width (b,,) is considered.
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Table 6.14 Buckling calculation when spalling does not occur.

Wall Slenderness

Wall b/kh, p m € K €sm
N 0.17 4% | 041 | 0.14 | 0.78 | 0.034
K 0.17 3% | 032 | 0.16 | 0.79 | 0.039

Table 6.15 shows the buckling calculation for these walls, when spalling precedes
buckling. Therefore, the core width (b,) is considered.

Table 6.15 Buckling calculation when spalling precedes buckling.
Core Width, Wall Slenderness
Wall be be/khu poom & K Em
N 44 0.09 7% | 0.74 | 0.09 1  0.013
K 4.5 0.10 6% | 0.56 | 0.11 1 | 0.015

For wall N, different values of €g,, were obtained from different analyses, according to
Table 6.16.

Table 6.16 Boundary bar tensile strain for different analyses in wall N.

Analysis €sm

PERFORM 3D nonlinear response history analysis | 0.03

PERFORM 3D pushover analysis DR=1.43% 0.04
Numerical integration of curvatures DR=1.43% 0.03
Simplified plastic hinge DR=1.43% 0.03

For the buckled wall N, all the models produce similar conclusions, presented in Figure
6.40. For lateral loading that puts the flange in tension, the stem crushes for roof drift ratio of
approximately 0.5%. According to Table 6.14, a prior peak tensile strain of €4,,, = 0.03 is required
to soften the wall sufficiently to cause out-of-plane buckling in the previously intact wall stem. To
reach this peak of €5, = 0.03, however, requires roof drift ratio around 1.4%. Although this drift
ratio is plausible given the response spectrum for the site, it is approximately three times the drift
ratio required to crush the wall stem. Therefore, it seems much more likely that the wall crushed
first for loading that put the stem in compression, and the damaged section then buckled out of
plane. If it is assumed that spalling of cover concrete leaves an intact core, Table 6.15 indicates
that the reduced section would be prone to out-of-plane buckling at the roof drift ratio close to
0.5%.

Rectangular wall K is located immediately adjacent to wall N (Figure 6.21). Therefore, it
is reasonable to conclude that the walls were subjected to nearly identical displacement histories.
This wall experienced minor failure in the boundary, apparently due to compression. As with wall
N, the wall has a setback at the first story (Figure 6.33). Simplified models integrating curvature
over height, including a plastic-hinge model, were used to study likely strain demands in the first
story, using the same approach as was used for wall N. According to these models, crushing of the
wall boundary is expected for roof drift ratio of approximately 0.6% as shown in Figure 6.40
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(slightly larger than the value required for wall N). Maximum tensile strain is approximately 0.008
at this drift ratio. According to Table 6.14, a prior peak tensile strain of €, = 0.04 is required to
soften the wall sufficiently to cause out-of-plane buckling after spalling. These combined results
indicate that crushing of the wall boundary would be expected to precede wall buckling. As noted,
the wall sustained minor concrete crushing, with no evidence of out-of-plane buckling. The
damage state for wall K suggests that the wall did not undergo drifts significantly exceeding 0.6%
(onset of crushing). Thus, it seems even less likely that wall N could have reached lateral drifts
required for buckling to control the behavior.
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Figure 6.40 Interpretation of wall N analysis.
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6.3 BUILDING #23

6.3.1 Building Description

Building #2 is located in Santiago, Chile. The structure was severely damaged following the 2010
Maule earthquake. The building was designed in 2006 and constructed in 2009. It has twenty
stories and four subterranean levels. Its total plan area is approximately 220,660 ft* (20,500 m?).
The gravity and seismic force-resisting system are composed of reinforced concrete walls of 6.69
in. (170 mm) typical thickness. The typical story height is 8.27 ft (2.52 m). Figure 6.41 shows the
typical plan view.
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Figure 6.41 Building #2 — Typical plan view.

The damage is mainly concentrated in the first subterranean level, in walls indicated in
Figure 6.42.
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Figure 6.42 Building #2 — Damaged walls in the first subterranean level.

3 Data for Building #2 obtained from DICTUC reports (2010 and 2012).
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6.3.2 Loads and Design Standards

Gravity and seismic loads were calculated following the Chilean standards NCh 1537 Of. 1986
and NCh 433 Of. 1996. Reinforced concrete members were designed according to ACI 318 (2005).
Table 6.17 shows the calculated gravity loads. For the seismic mass, 50% of live load is considered.

Table 6.17 Gravity loads per floor.

Floor = Slab thickness, in. (mm) Dead Load, psf (kPa) Live Load, psf (kPa)
-4 to -1 7.09 (180) 102.00 (4.88) 10.03 (0.48)
1to 20 5.51 (140) 82.00 (3.93) 10.03 (0.48)

The parameters used in the building seismic design according to NCh 433. Of. 1996 are:
building category C (importance factor [ =1), seismic zone 2 (A, = 0.3g), soil type II (T, = 0.30s,
p = 1.5) and 5% damping ratio. Equations were previously defined in section 6.2.2. Figure 6.43
presents the elastic response spectrum without response modification factor (R* = 1).
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Figure 6.43 NCh 433 Of. 1996 elastic response spectrum (for R*=1).

6.3.3 Nominal and Measured Material Properties

According to the building design documents, the nominal material properties are: concrete H25
confidence interval 90%, maximum compressive strength in cubic test specimen 3,600 psi (25
MPa) and reinforcement steel A63-42H, tensile strength £~ 91 ksi (630 MPa), yield strength £, =
60 ksi (420 MPa). From Table 6.2, the cylinder compressive strength is £= 2,900 psi (20 MPa).
For this analysis, real material properties (DICTUC, 2012) are used instead of nominal properties.
Concrete compressive strength is determined from cores testing.

Two buckled walls are analyzed in this section: Walls O and K2. Compressive strengths
for both walls at the first subterranean level, where out-of-plane instability occurred, are £-= 3,800
psi (25.9 MPa) for wall O and = 4,100 psi (28.5 MPa) for wall K2. For linear analysis, the
effective flexural and axial rigidity (including cracking) is used, according to ASCE 41 (2006).
Values of effective stiffness were indicated in section 6.2.3. Kent and Park (1971) unconfined
concrete model is used for nonlinear analysis. Measured reinforcement properties from coupons
from the building are tensile strength 7= 110 ksi (759 MPa) and yield strength £, =73.3 ksi (506
MPa).
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6.3.4 Recorded Ground Motion

Instruments recorded the ground acceleration during the 2010 Chile earthquake in several locations
in Santiago. Three stations close to the building site, operated by University of Chile, are located
in Santiago-Centro, La Florida and Penalolén (records available in terremotos.ing.uchile.cl). The
highest displacement demands are obtained for the Santiago-Centro record. This station is the
closest to the building site and it is located at 3.1 miles (5 km). The soil type is expected to be
similar in both sites, type II according to the Chilean standard NCh 433 Of. 1996. Therefore, the
Santiago-Centro record is selected for analysis. Figure 6.44 to Figure 6.46 show the acceleration
records for the three measured directions.
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Figure 6.44 Corrected ground motion east-west direction (1 in. = 25.4 mm).

)

—_
o
o

50

50 +

Ground acceleration (in.fs2

-100

0 50 100 150 200 250
Time(s)

Figure 6.45 Corrected ground motion north-south direction (1 in. = 25.4 mm).
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Figure 6.46 Corrected ground motion up-down direction (1 in. = 25.4 mm).

Figure 6.47 to Figure 6.49 show the pseudo acceleration, pseudo velocity, and the
displacement response spectrum (2% damping ratio).
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Figure 6.47 Pseudo acceleration spectrum.
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Figure 6.48 Pseudo velocity spectrum (1 in. = 25.4 mm).
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Figure 6.49 Displacement spectrum (1 in. = 25.4 mm).

From a ETABS linear analysis model of the building (section 6.3.6), the first-mode period
in the east-west direction is T = 1.56 s. This period is based on several assumptions regarding
material properties and loads. According to Figure 6.49, in the east-west direction the peak spectral
displacement is close to 7.5 in. (190 mm) for the reasonable building period range. Therefore, an
estimated value for the maximum roof drift ratio is 0.60%. Figure 6.50 shows a comparison
between the computed PSA spectrum (2% damping ratio) and the NCh 433 Of. 1996 design
spectrum (R*=1). The computed PSA spectrum exceeds the design spectrum at all periods.
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Figure 6.50 Pseudo acceleration spectrum comparison.

Figure 6.51 shows a tripartite plot for the three recorded directions.
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Figure 6.51 Tripartite plot for east-west, north-south and up-down motion
(1 in. =25.4 mm).

From Figure 6.51, for T = 1.56 s (first-mode period in the east-west direction) the
structure is in the displacement preserved zone, and therefore the maximum roof drift ratio
obtained from linear analysis is expected to be close to the nonlinear maximum drift ratio.

6.3.5 Damage Reported Following the 2010 Chile Earthquake

The main post-earthquake damage of Building #2 (DICTUC, 2010) is described in this section.
Figure 6.52 shows exterior views of the building.
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Figure 6.52 Exterior views of Building #2: (a) west face; (b) north face (after DICTUC,
2010).

The main damage is concentrated in the first subterranean level, in six walls in the east/west
direction, as pictured in Figure 6.53.
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(e) (f)

Figure 6.53 Damaged walls in first subterranean level: (a) axis K2; (b) axis O; (c) axis
Q3; (d) axis S; (e) axis T2; (f) axis 7 (after DICTUC, 2010).

Second to fourth subterranean levels do not show damage. In the first story, only minor
damage is observed. In the second story, there is one damaged wall, as shown in Figure 6.54.
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(b)
Figure 6.54 Damaged walls in second story, axis J: (a) view 1; (b) view 2 (after
DICTUC, 2010).

6.3.6 ETABS Model for Building #2

The onset of out-of-plane instability in slender walls of Building #2 is analyzed using nonlinear
models of isolated walls. For the analysis of isolated walls, it is required first to estimate the
displacement demand at the roof. This is achieved through a model of the building in ETABS and
response spectrum analysis. Figure 6.55 shows the linear fixed-base model for Building #2.

Figure 6.55 ETABS model for Building #2.

Table 6.18 shows the building modes periods and modal participating mass ratios.
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Table 6.18 Modal analysis output for Building #2.

Mode | Period (s) | Modal mass ratio Modal mass ratio
east-west direction | north-south direction

1 1.56 0.01 52.76

2 1.25 1.06 1.70

3 0.75 51.94 0.10

4 0.31 0.04 19.08

5 0.28 0.25 0.02

6 0.21 12.27 0.09

7 0.16 0.33 8.76

8 0.13 0.12 3.24

9 0.11 10.58 0.04

10 0.09 0.45 5.85

11 0.06 18.22 0.74

12 0.05 0.17 5.93

From Table 6.18, the third-mode has the highest effective modal mass in building
longitudinal direction (north-south, T = 0.75 s), and the first-mode has the highest effective modal
mass in transverse direction (east-west, T = 1.56 s). The two analyzed walls are both oriented in
the east-west direction. Figure 6.56 shows the maximum lateral displacement over the height for
the east-west direction.
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Figure 6.56 Maximum lateral displacement, east-west direction (1 in. = 25.4 mm).
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Therefore, the estimated value for the maximum roof drift ratio is 0.64%, close to the
estimation presented in section 6.3.4.

6.3.7 Nonlinear Models of Isolated Walls

An evaluation of the onset of out-of-plane instability requires an estimate of the maximum strain
demand at the wall base. Two walls of Building #2 oriented in the east-west direction, are analyzed
using nonlinear models of isolated walls. Figure 6.57 shows the selected walls in a plan view. Both
walls (O and K2) showed apparent buckling following the 2010 Chile earthquake, as shown in
Figure 6.53a and b.
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Figure 6.57 Analyzed walls for Building #2.

For this analysis, only the plastic hinge approach, according to Figure 5.3, is used to
estimate strain profiles at the base for buckling evaluation.

6.3.7.1 Analysis of Wall in Axis O

Figure 6.58 shows an elevation view of wall O.
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Figure 6.58 Elevation view of wall O, dimensions in cm (1 cm = 0.39 in.).

In this case, the setback is located at the first subterranean level, buckling was reported at
this level (section 6.3.5), and therefore the hinge location for the plastic hinge model is considered
at the first subterranean level. This simplified model considers the wall as a cantilever column with
fixed base at the bottom of the first subterranean level. Therefore, a small lateral displacement is
allowed at the grade level.
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Figure 6.59 shows the section properties for XTRACT model.

Section Details:

X Centroid: 9258 in

¥ Centroid: 5073 in 6 $28

Section Area: 2361 in"2 -

I gross about X: 1L.O9E+7 in"4 2

I gross about Y: 1L641E+6 in"4

Reinforcing Bar Area: 3835 "2

Percent Longitudinal Steel: 1.625 % ¢1 0@ 12

Overall Width: 1373 in dt

Overall Height: 189.8 in xt

Number of Fibers: %9 - $

Number of Bars: 106

Number of Materals: 2 %

Material Types and Names: e 1:6 ¢28 : s
Strain Hardening Steel: H A63-42H2 = = ' ¢, @1 SI =
User Defined: [ H2s

Figure 6.59 XTRACT model section properties for wall O (1 in. = 25.4 mm, bars
diameter in mm).

Figure 6.60 shows the moment-curvature relations for the flange in compression and in tension.
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Figure 6.60 Moment-curvature relations axial load N= 2048 kips (1 in. = 25.4 mm;
1in. — kips = 0.11 kN-m).

The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.6%
is ¢, = 0.6%/(0.5-189.8) = 6.32-107° in.”*. Figure 6.61 shows the calculated strain profiles.
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Figure 6.61 Strain profiles for wall O from plastic hinge approach: (a) flange in
compression; (b) flange in tension.

Figure 6.61b shows the strain profile at the wall base for the case of the wall stem in
compression at 0.3% roof drift ratio, the limit at which concrete crushing occurs at the stem. This
indicates that estimated maximum roof drift ratio of 0.6% cannot be reached without crushing the
wall stem first. Figure 6.61a shows the strain profile at the wall base at 0.3%, 0.5% and 0.6% roof
drift ratio, for the lateral load that compresses the wall flange. For this case, the maximum tensile
strain at the wall stem is close to 0.01 when the maximum roof drift ratio is reached and 0.004 for
the drift that causes failure at the wall stem when the load acts in the opposite direction.

6.3.7.2 Analysis of Wall in Axis K2
Figure 6.62 shows an elevation of wall K2. As in wall O, the simplified model considers the wall

as a cantilever column with fixed base at the bottom of the first subterranean level and the plastic
hinge located at this level.
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Figure 6.62
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Elevation view of wall K2, dimensions in cm (1 cm = 0.39 in.).

Figure 6.63 shows the section properties for XTRACT model.

Section Details:
X Centroid:

Y Centroid:

Section Area

1 gross about X:

I gross about Y
Reinforcing Bar Area:
Percent Longitudinal Steel
Overall Width:

Overall Height:
Number of Fibers:
Number of Bars:

Number of Materials:

- A460E-16
86.27E-3 in
7473 n"2
§18.8E+3 n"4
2386 n"4
2729 m"2
3651 %
6.693 m
1117 in

120

62

-

Material Types and Names:

Strain Hardening Steel:

User Defined:

Figure 6.63
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properties for wall K2 (1 in. = 25.4 mm, bars

diameter in mm).
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Figure 6.64 shows the XTRACT moment-curvature relation.
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Figure 6.64 Moment-curvature relation axial load N= 562 kips (1 in. =25.4 mm;
1in. — kips = 0.11 kN-m).

The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.6%
is ¢, = 0.6%/(0.5-111.7) = 1.07 - 10~* in.” L. Section analysis shows that the ultimate state is
triggered by concrete crushing at the wall boundary for a curvature of ¢, = 8.19 - 107° in.”* and

a drift ratio of DR = ¢, [, = 8.19 - 107°-0.5- 112 = 0.5%. Figure 6.65 shows the strain profile

at 0.5% drift ratio. The maximum tensile strain at the wall boundary when the opposite boundary
crushes in compression is 0.005.
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Figure 6.65 Strain profile for wall K2 from plastic hinge approach.

6.3.8 Evaluation of the Onset of Out-of-Plane Instability
Table 6.19 shows the material and section properties used in the analysis of the onset of out-of-

plane instability. Table 6.20 and Table 6.21 present the buckling calculations from the simplified
mechanics of section 2.2, for intact cover and spalled off cover prior to buckling.
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The simplified mechanics is used here for buckling evaluation under the assumption that
the strain demand over the height of the first subterranean level is close to constant, which seems
to be reasonable given the geometry of the walls. According to Table 6.20, to buckle the previously
intact walls O and K2 requires a maximum tensile strain close to 0.01 prior load reversal. This
value can be reached at the stem of wall O at a drift ratio of 0.6% (Figure 6.61a).

In wall K2, analysis shows that reaching this strain is not possible without crushing the
boundary first (Figure 6.65). Wall K2 analysis suggests that buckling was a secondary failure mode
after the cover is spalled off, which occurs at a drift ratio close to 0.5%. When the onset of buckling
is evaluated after the cover is spalled off, Table 6.21 indicated that reaching a tensile strain of
0.007 at the wall boundary is enough to buckle it during load reversal, and the estimated strain
demand is 0.005 (Figure 6.65), which is close to the required strain. For wall O, at 0.5% drift ratio,
the estimated value for the maximum tensile strain at the stem is 0.008, more than the required
value to buckle the stem after the cover is spalled off according to Table 6.21. Figure 6.61b
indicates that spalling at the stem of wall O occurs at a drift ratio of 0.3%.

Therefore, similar conclusions are obtained from the analysis of Buildings #1 and #2.
Analyses suggest buckling of slender walls in Chilean buildings was a secondary failure model
that followed crushing of the wall boundary. For Building #2, this likely occurred at a drift ratio
close to 0.5% or 0.6%.

Table 6.19 Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa).

Material Dimensions, in. BE Area of

Properties, psi : P
Wall ’ . Story BE Stirrup Longitudinal
ngth’ Lerllgth, Height, h. | Length, Clear Steel A, in.2

fe fy v H In Cover, ¢
K2 | 4,100 73,300 7.9 190 126 126 10 0.8 6.47
0) 3,800 | 73,300 7.9 112 126 126 22 0.8 15.27
Table 6.20 Buckling calculation when spalling does not occur.

Wall p m F; LY €sm

K2 | 8% | 1.43  0.06 | 0.78 | 0.012
o 9% | 1.72 | 0.05 | 0.79 | 0.011

Table 6.21 Buckling calculation when spalling precedes buckling.
Wall Slenderness
Wall bo/kha p m E K| €m
K2 0.07 14% | 2.56 | 0.04 | 1 | 0.007
O 0.07 15% | 297 | 0.03 1  0.007
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6.4 BUILDING #3¢

6.4.1 Building Description

Alto Rio building was located in the city of Concepcion, Chile. The structure collapsed following
the 2010 Maule earthquake, as pictured in Figure 6.66. The building was designed between 2006
and 2007 and its construction was completed in 2009. It had rectangular plan with fifteen stories
in the south end and twelve stories in the north end (stepped elevation at the roof level), and two
subterranean levels. The maximum building height was 125 ft (38 m), the typical story height of
8.2 ft (2.5 m) with first story height of 9.8 ft (3 m). Each subterranean plan area was 11,140 ft?
(1,035 m?). Plan area of a typical story was 5,170 ft* (480 m?). The structure comprised reinforced
concrete slabs of 5.9 in. (150 mm) thickness with structural walls of 7.9 in. (200 mm) typical
thickness. The building foundation was a reinforced concrete slab of 32 in. (800 mm) thickness.

\t

e
o et A
| "IN 1
0 e (A

Figure 6.66 Collapse of Alto Rio building following 2010 Maule earthquake, after
IDIEM (2010).

4 Data for Building #3 obtained from IDIEM reports (2010).
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Figure 6.67 shows the plan view of a typical story. Figure 6.68 shows the plan view of the
first story, where failure apparently triggering the collapse occurred in the short direction of the
building.

) @

.
|
o
e :II

Figure 6.67 Alto Rio building — Plan view of typical story.

Figure 6.68 Alto Rio building — Plan view of first story.

6.4.2 Loads and Design Standards

Gravity and seismic loads were calculated following the Chilean standards NCh 1537 Of. 1986
and NCh 433 Of. 1996. Reinforced concrete members were designed according to ACI 318 (2005).
The parameters used in the building seismic design according to NCh 433. Of. 1996 are: building
category C (importance factor I=1), seismic zone 3 (4, = 0.4g), soil type II (T, = 0.30s, p =
1.5) and 5% damping ratio. Equations were previously defined in section 6.2.2. Figure 6.69 shows
the elastic response spectrum without response modification factor (R* = 1).
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Figure 6.69 NCh 433 Of. 1996 elastic response spectrum (for R*=1).

6.4.3 Nominal and Measured Material Properties

Specified concrete grades, according to the building design documents, are: H30 in foundations,
H30 from the second subterranean level up to the second level above grade and H25 for the rest of
the building. Chilean standard NCH420 Of. 2008 defines the cylinder strength f. for each case,
and those values were indicated in Table 6.2. For this case, f/=2,900 psi (20 MPa) for H25
concrete, and 3,630 psi (25 MPa) for H30 concrete. The reinforcement steel grade is A63-42H,
nominal tensile strength 7= 91 ksi (630 MPa) and nominal yield strength £y = 60 ksi (420 MPa).
For the evaluation of the onset of out-of-plane instability from the simplified mechanics, real
material properties (IDIEM, 2010) are used instead of nominal properties. Reinforcement steel
properties were measured from coupons (Table 6.22) and concrete compressive strengths were
determined from cores testing (Table 6.23).

162



Table 6.22 Measured reinforcement steel strength at first story (IDIEM, 2010).

. Diameter, in. Yielding, psi Fracture, psi Elongation
Bar Location (mm) (Mpi)p (Mpa) P (50 )
1 Story 1, axis 8-A 1(25) 61,496(424) 105,442(727) 17.5
2 Story 1, axis 8-A 1(25) 67,007(462) 106,023(731) 19
3 Story 1, axis 13-A 0.9(22) 69,038(476) 112,114(773) 17.5
4 Story 1, axis 13-A 0.9(22) 70,633(487) 109,213(753) 17
5 Story 1, axis 13-A 0.9(22) 69,908(482) 109,939(758) 19
6 Story 1, axis 13-A 0.7(18) 69,038(476) 108,488(748) 18
7 Story 1, axis 13-A 0.6(16) 98,481(679) 111,099(766) 9.5
8 Story 1, axis 20a-B-C 0.6(16) 70,778(488) 111,824(771) 19.5
9 Story 1, axis 20a-B-C 0.5(12) 70,198(484) 102,107(704) 14
10 Story 1, axis 11-C 0.9(22) 70,633(487) 109,939(758) 17.5
11 Story 1, axis 5-A 0.7(18) 66,862(461) 97,610(673) 14
14 Story 1, axis 8-A 0.3(8) 72,954(503) 106,748(736) 12
16 Story 1, axis 11-C-B 0.9(22) 69,908(482) 109,939(758) 16
18 Story 1, axis 17-A 0.6(16) 75,710(522) 114,000(786) 14.5
20 Story 1, axis 20-A 0.6(16) 68,603(473) 100,366(692) 16.5
21 Story 1, axis 20-A 0.6(16) 72,229(498) 102,397(706) 16
22 Story 1, axis 24-C 1(25) 70,633(487) 101,381(699) 18
23 Story 1, axis 24-C 1(25) 68,893(475) 100,801(695) 20.5
24 Story 1, axis 24-A 1(25) 66,427(458) 106,603(735) 17.5
25 Story 1, axis 24-A 1(25) 63,236(436) 106,023(731) 16
26 Story 1, axis 24-A 1.1(28) 58,305(402) 97,030(669) 17.5
27 Story 1, axis 24-A 0.6(16) 72,229(498) 102,397(706) 16.5
28 Story 1, axis 26-A 0.7(18) 67,443(465) 106,748(736) 18
29 Story 1, axis 33-A 1(25) 65,847(454) 105,442(727) 20
30 Story 1, axis 33-A 1(25) 68,168(470) 99,496(686) 19
31 Story 1, axis 33-A 1(25) 66,427(458) 98,336(678) 18
34 Story 1, axis 33-C-B 0.7(18) 69,618(480) 107,328(740) 17.5
35 Story 1, axis 33-C-B 0.7(18) 68,023(469) 105,587(728) 20
36 | Story 1, axis C-33-26 1(25) 68,168(470) 101,381(699) 19.5
37 Story 1, axis 35-C 0.4(10) 85,717(591) 107,473(741) 10.5

Table 6.23 Measured concrete compressive strength at first story (IDIEM, 2010).

Core compressive Cylinder . .
Core Location strength, psi compressive Cubic compressive
(Mpa) strength, psi (Mpa) strength, psi (Mpa)
T1 Story 1, axis 8 B-C 6,301(43.4) *) (*)
T2 Story 1, axis E 5-8 4395(30.3) 4153(28.6) 4,864(33.5)
T3 Story 1, axis C 8-11 6,585(45.4) *) *)
T4 Story 1, axis 20a A-C 6,059(41.8) *) *)
T5 Story 1, axis 24 A-B 6,514(44.9) *) *)
T10 Story 1, axis 5 I-G 5,874(40.5) * *)
T11 Story 1, axis E 2-5 7,325(50.5) *) *)
T25 Story 1, axis A 17-20 6,329(43.6) *) (*)

(*) Not reported.
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The evaluation of the onset of out-of-plane instability is performed for three walls, all
oriented in the building short direction, in axes 8, 13 and 20, between axes D and I. Instability is
expected to occur at the first story. Therefore, for analysis, measured material properties at the first
story are considered. Reinforced bars used in wall stems had diameters 0.9 in. (22 mm) and 0.7 in.
(18 mm). The average measured yielding stress these bars was 69 ksi (476 MPa). Analysis of the
wall in axis 8 considers the concrete compressive strength measured in core T1 of 6.3 ksi (43
MPa). For walls in axes 8 and 20, analysis is performed considering the concrete compressive
strength measured in core T4 of 6.0 ksi (41 MPa). For all cases, strength reduction factors due to
core slenderness are negligible.

6.4.4 Recorded Ground Motion

Instruments recorded the ground acceleration during the 2010 Chile earthquake in Colegio
Inmaculada Concepcion, located in downtown Concepcion at 0.7 miles (1.2 km) from the building
site. This station, operated by University of Chile, is the closest to the building site (record
available in terremotos.ing.uchile.cl). The site where the record was obtained and the building site
are located in the same type of soil, alluvial deposits of the Bio-Bio river (Ramirez and Vivallos,
2009), and ground motions are expected to be similar. The ground motion measured in downtown
Concepcion is considered for analysis. Figure 6.70 to Figure 6.72 show the acceleration records
for the three measured directions, where the east-west direction corresponds to the transverse
(short) direction of the building.
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Figure 6.70 Corrected ground motion east-west direction (1 in. = 25.4 mm).
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Figure 6.71 Corrected ground motion north-south direction (1 in. = 25.4 mm).
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Figure 6.72 Corrected ground motion up-down direction (1 in. = 25.4 mm).

Figure 6.73 to Figure 6.75 show the pseudo acceleration, pseudo velocity, and the
displacement response spectrum, calculated for 2% damping ratio.
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Figure 6.73 Pseudo acceleration spectrum.
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Figure 6.74 Pseudo velocity spectrum (1 in. = 25.4 mm).
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Figure 6.75 Displacement spectrum (1 in. = 25.4 mm).

Table 6.24 shows the building vibration periods reported by Tanyeri (2014). Values were
obtained from a linear elastic model of the complete structure using the software ETABS. The
model considered effective flexural stiffness of 0.5E.I; according to ASCE 41-06, where E is the
concrete Young’s modulus of 4,470 psi (31 MPa) and I; is the second moment of inertia of the
gross section. The Young’s modulus E. was calculated from ACI318 considering measured
strength obtained from core tests (IDIEM, 2010). The seismic mass considered 25% of the live
load. The model included flexibility of walls and columns extending below the grade level, but
lateral translational degrees of freedom were fixed at the lowest subterranean level.
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Table 6.24 Calculated vibration periods, after Tanyeri (2014).
Mode @ Period (s) Direction

1 0.81 Tranverse

2 0.71 Longitudinal
3 0.58 Torsional

4 0.19 Longitudinal
5 0.17 Transverse

6 0.14 Torsional

Tanyeri (2014) reported roof drift ratios of 0.7% in the building transverse direction and
0.46% in the longitudinal direction, both obtained from response spectrum analysis with 2.5%
damping ratio, considering the ground motion recorded in downtown Concepcion. Analyses of
Chilean buildings in this research consider 2% damping ratio for response spectrum analysis. From
Figure 6.75, for the reasonable period range in the transverse direction (where the three selected
walls are oriented), the estimated displacement of a SDOF system is 8 in. This gives an estimation
of the roof drift ratio of 0.85%, the value considered for this study. This is consistent with the roof
drift ratio reported by Hilson (2014).

Figure 6.76 shows a comparison between the computed PSA spectrum (2% damping ratio)
and the NCh 433 Of. 1996 design spectrum (R*=1). The computed PSA spectrum exceeds the
design spectrum at many periods.
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Figure 6.76 Pseudo acceleration spectrum comparison.

Figure 6.77 shows a tripartite plot for the three recorded directions.

167



0.5
N
0.2 I 1 Lo o (R i G 1
0.02 005 01 0.2 G 05 1 2 5 10 20 50

Tn(s)

Figure 6.77 Tripartite plot for east-west, north-south and up-down motion
(1 in. =25.4 mm).

From Figure 6.77, for T = 0.81 s (first-mode period in the east-west direction) the
structure is in the displacement preserved zone, and therefore the maximum roof drift ratio
estimated from linear analysis (0.85%) is expected to be close to the nonlinear maximum drift
ratio.

6.4.5 Damage Reported Following the 2010 Chile Earthquake

The building collapsed completely during the 2010 Chile earthquake. This section presents
highlights of the damage observed during post-earthquake inspection (IDIEM, 2010), with special
focus on walls in axes 8, 13 and 20, all oriented in the building short direction (east-west). These
are the walls selected to perform an evaluation of out-of-plane instability. Figure 6.78a and b show
two post-earthquake views of building, both taken from the north side. Inspection showed that the
podium level was the critical level of the structure and the building upper portion rigidly
overturned in the east direction and collapsed, with the west side of the building subjected to high
tensile forces and the east to high compressive forces (Tanyeri, 2014). When the building
collapsed, its east side impacted the wall located at the perimeter of the subterranean level, which
seems to have caused the fracture at the ninth level of the building, as pictured in Figure 6.78.
Inspection of the foundation did not show significant damage.
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Figure 6.78 Collapse of Alto Rio building, a) view from the north side towards east, b)
view from the north side towards west (after IDIEM, 2010).

In axis 8, the failure was observed at the base of the first story, near the intersection with
axis A. Then the failure surface climbed to a height of 16 in. (0.4 m) over the base and progressed
horizontally until axis B, where it climbed diagonally again until axis C and then declined
gradually towards the base (Figure 6.79a). Figure 6.79b shows lap splice failure at the intersection
of axes 8 and A. Figure 6.79c shows compressive failure in axis 8 between axes A and B. Figure
6.79d shows lap splice failure and bar fracture at the intersection of axes 8 and C.
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(c) (d)
Figure 6.79 Damage in axis 8 (after IDIEM, 2010).

In axis 13, the failure was observed at 71 in. (1.8 m) above the base at the first story, near
the intersection with axis A. Then the failure surface declined gradually towards the base until a
height of 32 in. (0.8 m) and progressed further to the base until reaching axis C (Figure 6.80).
Figure 6.80e shows that the concrete at the intersection of axes 13 and A was completely crushed
due to large compressive force and poor lateral confinement.
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(c) (d)

Figure 6.80 Damage in axis 13 (after IDIEM, 2010).

Failure in the wall located in axis 20 occurred at a height of 55 in. (1.4 m) above the base
at the first story, near axis A (Figure 6.81). The top portion of this wall showed heavy damage
consistent to out-of-plane loading (IDIEM, 2010).

171



(c)
Figure 6.81 Damage in axis 20 (after IDIEM, 2010).

Based on post-earthquake inspection, IDIEM (2010) sketched the observed damage in axes
8, 13, and 20 (Figure 6.82).
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Sketch of damage: a) axis 8, b) axis 13, c) axis 20 (after IDIEM, 2010).

Figure 6.82
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6.4.6 Nonlinear Models of Isolated Walls

Three walls of Alto Rio building at the first story, all of them oriented in the east-west direction,
are analyzed using nonlinear models of isolated walls. Figure 6.83 shows the selected walls in a
plan view.

Wall 8 Wall 13 Wall 20
TT1T 00Ty 17 T
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i__ _______________
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Figure 6.83 Analyzed walls for Alto Rio building.
This analysis is conducted considering the plastic hinge model introduced in Figure 5.3.
6.4.6.1 Analysis of Wall in Axis 8, between Axis D and |

Figure 6.84 shows an elevation view of axis 8. At the first story, this wall was continuous along
the entire building width. Above the first story, a stack of corridor openings of 4 ft (1.2 m) width
divided it into two separate walls connected only by floor slabs, without coupling beams. Structural
drawings show that the wall had a small flange of 3 ft (0.9 m) width at the intersection with axes
A and I, starting at the first story (axis A) or the second story (axis I) and extending up to the
building top. This flange prevented out-of-plane instability of the wall at the axis A edge. At axis
I, the wall stepped back from the building perimeter by 1.3 ft (0.4 m) at the first story, and the
flange was discontinued. Figure 6.82a presented a sketch with the post-earthquake damage in axis
8, where damage was concentrated in the first story. It is noteworthy that the first story considered
as a solid wall has strength and stiffness higher than upper stories. However, a failure surface can
deviate from a horizontal plane, such that the first story wall can become the weak element
supporting the set-back (or flag) wall above it. This plausibly explains the critical damage
concentrated in that story. Consequently, the wall edge close to axis I could be especially prone to
buckle, given that was subjected to large vertical strains.
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Figure 6.84 Elevation view of axis 8, dimensions in cm (1 cm = 0.39 in.).

The plastic model model shown in Figure 5.3 is used to determine the strain demands at
the base of the first story of the wall in axis 8, between axes D and I. This model considers only
the top lateral displacement caused by the nonlinear behavior in the plastic hinge region, defined
for this case at the first story. The moment-curvature relation used in the plastic hinge region is
obtained from Hilson (2014), who defined a critical section at the first story. Figure 6.85 presents
the first-story critical section and Figure 6.86 presents the corresponding moment-curvature
relation for flange in compression and in tension.
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Figure 6.85 Critical section at the first story for wall in axis 8, between axis D and |,
dimensions in cm (1 cm = 0.39 in.), after Hilson, 2014.
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Figure 6.86 Moment-curvature relation for critical section at the first story and
expected axial force (1 in. = 25.4 mm; 1 in-kips = 0.11 kN-m), after Hilson,
2014.
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For this model, the curvature demand at the base of the first story for the estimated
maximum roof drift ratio of 0.85% is ¢, = 0.85%/(0.5-197) = 8.63 - 107> in.”!. Figure 6.87
shows the calculated strain profiles.
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Figure 6.87 Strain profiles for critical section of wall in axis 8, between axes D and |,
from plastic hinge approach: (a) flange in compression; (b) flange in
tension.

Figure 6.87b shows the strain profile at the plastic hinge region for the case of the wall
stem in compression at 0.64% roof drift ratio, the limit at which concrete crushing is calculated to
occur in the stem (close to axis I). This seems to indicate that estimated maximum roof drift ratio
of 0.85% cannot be reached without crushing the wall stem first. Figure 6.87a shows the strain
profile at the wall base at 0.64% and 0.85% roof drift ratio, for the lateral load that compresses the
wall flange. For this case, the maximum tensile strain in the wall stem is close to 0.017 when the
maximum roof drift ratio is reached and 0.011 for the drift that causes crushing at the wall stem
when the load acts in the opposite direction.

6.4.6.2 Analysis of Wall in Axis 13, between Axis D and |

Figure 6.88 shows an elevation of axis 13. This case is similar to axis 8, where only the wall edge
close to axis I at the first story was susceptible to buckle, considering that a flange prevented this
from occurring in axis I at any upper level starting at the second story. The wall edge located in
axis A was not likely to buckle because of a flange that goes from the first story up to the roof.
This analysis also considers a critical section between axis D and I at the first story, as shown in
Figure 6.89. The moment-curvature relation obtained from Hilson (2014) and shown in Figure
6.90 is used in the plastic hinge region to estimate the strain demands.
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Figure 6.89 Critical section at the first story for wall in axis 13, between axis D and |,
dimensions in cm (1 cm = 0.39 in.), after Hilson, 2014.
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Figure 6.90 Moment-curvature relation for critical section at the first story and
expected axial force (1 in. = 25.4 mm; 1 in-kips = 0.11 kN-m), after Hilson,
2014.

The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.85%
is also ¢p, = 8.63 - 107° in.”1. Figure 6.91b shows the strain profile at the plastic hinge region for
the case of the wall stem in compression at 0.56% roof drift ratio, the limit at which the wall edge
close to axis I crushes according to this section analysis. Therefore, the estimated maximum roof
drift ratio of 0.85% cannot be reached without crushing the wall stem first. Figure 6.91a shows the
strain profile at 0.56% and 0.85% roof drift ratio, for the lateral load that compresses the flange of
the critical section. For this case, the maximum tensile strain in the wall stem is 0.016 when the
maximum roof drift ratio is reached and 0.011 for the drift that causes crushing at the wall stem
when the load acts in the opposite direction.
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Figure 6.91 Strain profiles for critical section of wall in axis 13, between axes D and |,
from plastic hinge approach: (a) flange in compression; (b) flange in
tension.
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6.4.6.3 Analysis of Wall in Axis 20, between Axis D and |

Figure 6.92 shows an elevation of axis 20. In this case, similar to axes 8 and 13, the damage was
concentrated in the first story, as sketched in Figure 6.82c. The wall in axis 20 had a door opening
at the first story, between axes C and D. At this story, wall segments between axes D and I and
axes A and C were connected by a 23.6in. x 7.9in. (0.6m x 0.2m) coupling beam. In upper stories,
a longitudinal corridor separated both segments without coupling beams, and they were connected
only by the slab. Figure 6.93 depicts the critical section at the first story. This critical section is
considered for moment-curvature analysis, the calculated relation of which is presented in Figure
6.94. Estimations of strain demands are obtained from section analysis and the plastic hinge model
shown in Figure 5.3. As in the previous cases, only the wall stem in the first story close to axis I
was succeptible to buckle. At any other level, a flange prevented this from occurring.
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Figure 6.92 Elevation view of axis 20, dimensions in cm (1 cm = 0.39 in.).
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Figure 6.93 Critical section at the first story for wall in axis 20, between axis D and |,
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The curvature demand at the wall base for the estimated maximum roof drift ratio of 0.85%
is ¢, = 0.85%/(0.5-197) = 8.63 - 107> in.” L. For this curvature, according to Figure 6.95a, the
maximum tensile strain at the wall stem is 0.016. Section analysis showed that stem crushing
occurs at a roof drift ratio of 0.70%. When the stem is tension, this drift ratio gives a maximum
tensile strain of 0.013 (Figure 6.95a).

0.020 ‘ : : . 0.015

~ 0015 ‘ — /’ ~ 0010

S 0.010 T2 afs S 0005 |

£ 0.005 | | —4—070% £ : |

s " s 0.000 —&—0.70%

® 0.000 —-085% @ gpo5 |

-0.005
-0.010
0 50 100 150 200 0 50 100 150 200
(a) Distance Along Web (in.) (b) Distance Along Web (in.)

Figure 6.95 Strain profiles for critical section of wall in axis 20, between axes D and |,
from plastic hinge approach: (a) flange in compression; (b) flange in
tension.

6.4.7 Evaluation of the Onset of Out-of-Plane Instability

Similar to the out-of-plane instability evaluation performed for buildings #1 and #2 (sections 6.1
and 6.3), the simplified mechanics equation introduced in section 2.2 is considered here for the
evaluation of the onset of instability in walls 8, 13 and 20 between axes D and I. The assumption
behind this analysis is that the nonlinear behavior extended along the entire first story and the
vertical strain demand along the edge close to axis I at this level was constant or close to constant,

which seems to be a reasonable assumption from the reported post-earthquake damage (section
6.4.5).

Table 6.25 presents the materials properties and dimensions used on this evaluation.
According to Table 6.26, to buckle a previously intact stem requires a maximum tensile strain
close to 0.03 for the three walls. Moment-curvature analysis of the critical sections at the first story
and the plastic hinge model indicated that the maximum tensile strain demand at the stem was
close to a half of this value for all walls. Therefore, to buckle an intact wall does not seem to be
possible given the estimated demands. However, section analysis of the three walls showed that
crushing of the wall stem occurs for all cases at a drift ratios lower than the value estimated from
linar analysis, and Table 6.27 shows that buckling of a reduced section, where the cover has been
spalled off, requires a maximum tensile strain close to 0.013 for all cases. According to the models
used in this section to estimate strain demands, it is possible to reach strains higher than this value
right after crushing or during a subsequent cycle prior the maximum estimated drift ratio, and,
therefore, instability of the reduced section cannot be ruled out as one of multiple explanations of
the reported damage.
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Properties for buckling calculation (1in. = 25.4 mm; 1 psi = 0.007 MPa).

Table 6.25
Material Dimensions, in. BE Area of
Properties, psi ; i
Wall > Width, Length, St.ory hy BE Stirrup Longltudl.nal
b ) Height, (in.) Length, Clear Steel A, in.?
fe fy v H ) In Cover, ¢
8-D,I | 6,300 | 69,000 7.9 197 115 115 9 0.8 2.36
13-D,I | 6,000 | 69,000 7.9 197 115 115 9 0.8 2.36
20-D,I | 6,000 @ 69,000 7.9 197 115 115 9 0.8 1.58
Table 6.26 Buckling calculation when spalling does not occur.
Wall p m € X €sm
8-D,I | 3% | 0.35  0.15 0.81 | 0.028
13-D,I | 3% | 0.36 A 0.15  0.81 | 0.027
20-D,I | 2% | 0.24 | 0.18 H 0.82 | 0.032
Table 6.27 Buckling calculation when spalling precedes buckling.
Wall Slenderness
Wall be/khy m S K €sm
8-D,1 0.08 5% | 0.57 | 0.11 1 0.013
13-D,I 0.08 5% | 0.60 | 0.11 1 0.013
20-D,I 0.09 3%  0.39 | 0.14 1 0.015
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7 Summary and Conclusions

71 SUMMARY

Chapter 1 introduced the problem of out-of-plane instability in slender boundary elements,
presented a review of relevant prior studies, code requirements and current design practice.
Chapter 1 also defined the research program objectives and scope. Chapter 2 introduced three
models for analysis of out-of-plane instability: (a) a simplified mechanics theory for buckling of
prismatic columns under uniform tension/compression cycles, based on concepts previously
introduced by Paulay and Priestley (1993), (b) nonlinear beam-column elements with force-based
formulation, currently implemented in OpenSees and later used for buckling analysis of prismatic
columns under uniform and nonuniform tension/compression cycles, (c) nonlinear finite elements
(implemented in the software TNO DIANA), shell and solid elements, based on a smeared
cracking approach for concrete modeling and full bonding between concrete and reinforcement
bars. These finite element models were later used for buckling analysis of columns and walls under
cyclic loading. Chapter 3 presented an evaluation of the analytical models for global instability,
introduced in Chapter 2, using the results of column tests (Chai and Elayer, 1999). Comparisons
between different models and sensitivity studies for the variation of some key parameters were
included. In Chapter 4, the effects of force/strain gradients along the wall height and length in the
onset of out-of-plane instability were evaluated using OpenSees models for isolated boundary
elements and TNO DIANA models for walls. Different cases were considered to provide insight
of these effects. Chapter 6 applied the buckling models to the analysis of three buildings that
showed some signs of wall instability during the 2010 Chile earthquake. For each building, the
material properties and reported damage were summarized. Analytical models were used to
estimate the peak roof displacements, and then the plausibility of wall instability being the primary
cause of failure was assessed.

7.2 CONCLUSIONS

Based on the results reported herein, and within the limitations of the study parameters, the
following conclusions are made:

e Prior to 2010, lateral buckling of slender wall boundaries had been observed only in
laboratory tests but not in actual buildings subjected to earthquake shaking. The 2010 Chile
earthquake showed that buckling is a potential risk to slender walls that should be
considered in the design process.
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The tendency of an intact wall to buckle under cyclic loading depends not only on the
aspect ratio hy, /b of the wall boundary but also on the maximum tensile strain experienced
by the member prior to axial compression.

A simplified mechanics model for buckling of prismatic sections under uniform
tension/compression cycles has been introduced. Comparison with the results of reinforced
prism (column) tests showed that the simplified mechanics model provides a good estimate
of the conditions (slenderness and maximum prior tensile strain) required to initiate
buckling of uniformly loaded prisms (columns).

Finite element models were developed to study the reversed cyclic buckling of reinforced
prisms (columns). Both (a) force-based nonlinear beam-column elements with fibers and
(b) nonlinear finite element models, both using the smeared cracking approach, were
developed. It was shown that buckling of reinforced prisms (columns) subjected to cyclic
lateral loading can be simulated using these nonlinear finite element models.

Analytical studies using finite elements were conducted to determine the effects on wall
boundary instability of (a) strain gradients along the wall length and (b) strain/moment
gradients along the wall height height. These studies showed that the effect of the gradient
along the length can be neglected for walls longer than 10t,,, which is the typical case of
walls prone to buckle. The strain gradient along the height can have an important effect of
improving the stability of the wall boundary.

In typical multistory buildings, the assumption of uniform strain along the unsupported
height at the first story is often reasonable, and in such cases the onset of out-of-plane
instability can be identified using expressions derived from the simplified mechanics
model. The theory suggests that walls with one curtain of reinforcement are more
vulnerable to lateral instability than walls with two curtains.

In some special cases, the moment gradient over the unsupported height can influence the
buckling tendency of a wall in a building. In such buildings, the assumption of uniform
axial demand over the height can lead to an underestimation of the maximum tensile strain
required to buckle the boundary element during load reversal. The effects of moment
gradient should be considered in such cases.

A correction factor for the simple mechanics model is proposed to enable estimation of the
tendency for wall instability in walls having appreciable moment gradient over height. This
factor increases the estimated maximum tensile strain that triggers buckling during load
reversal.

Although it has been demonstrated that lateral buckling may occur in an intact wall without
being preceded by crushing, it can also occur as a secondary failure mode after the onset
of cover spalling. Complete cover spalling produces a smaller, more slender cross section
with greater tendency to buckle, which can happen immediately after spalling or during
subsequent cycles.

Analysis of slender walls in three damaged buildings in Chile suggests that the observed
buckling was a secondary failure mode that followed crushing of the boundary element.
Stems of T-shaped and L-shaped walls seem to be especially prone to buckle due to the
high strain demands that occur during earthquakes, and special considerations should be
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made to limit the slenderness ratio for these cases. Analysis of slender walls in one of the
buildings indicates that buckling after initial spalling cannot be ruled out as one of the
multiple explanations of the observed collapse.

Building codes should have a slenderness ratio limit for the intended hinge zone of special
structural walls. The UBC (1997) limit of Au/b < 16 is recommended for walls that
maintain their concrete cover. The same limit could be applied to walls for which cover
concrete has spalled. However, the limited evidence suggests that the Au/b limit should
apply with b referring to the width of the confined core, which in ACI 318 is defined as b..

Based on consideration of out-of-plane buckling, special structural walls should have two
curtains of reinforcement within the intended hinge zone, regardless the shear or the wall
thickness, considering that walls with two curtains are less vulnerable to out-of-plane
instability.
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Appendix A. Buckling in Isolated Boundary
Elements with Non-uniform Axial
Strain

This appendix is complementary to section 4.2 and presents the results of OpenSees analyses for
isolated columns under several axial force profiles.
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Figure A.6 Specimen SWC3_2, o= 1: a) average axial strain versus axial force at the
base, b) normalized axial strain, c) normalized axial force, d) normalized
buckled shape.
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Figure A.7 Specimen 5WC3_2, o= 0.8: a) average axial strain versus axial force at

x1073

the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Figure A.8 Specimen 5WC3_2, o= 0.5: a) average axial strain versus axial force at
the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Figure A.9 Specimen SWC3_2, o= 0.25: a) average axial strain versus axial force at

the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Specimen 5WC3_2, o= 0: a) average axial strain versus axial force at the
base, b) normalized axial strain, c) normalized axial force, d) normalized
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Specimen 5WC4_3, o= 1: a) average axial strain versus axial force at the
base, b) normalized axial strain, c) normalized axial force, d) normalized

buckled shape.
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Figure A12  Specimen 5WC4_3, o= 0.8: a) average axial strain versus axial force at
the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Figure A13  Specimen 5WC4_3, o= 0.5: a) average axial strain versus axial force at

the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Figure A.14  Specimen 5WC4_3, o= 0.25: a) average axial strain versus axial force at
the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Figure A15 Specimen 5WC4_3, o= 0: a) average axial strain versus axial force at the

base, b) normalized axial strain, c) normalized axial force, d) normalized
buckled shape.
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Figure A.16  Boundary element with hub = 50, = 1: a) average axial strain versus axial
force at the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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Figure A.17  Boundary element with hub = 50, o= 0.8: a) average axial strain versus

x10%l

axial force at the base, b) normalized axial strain, ¢) normalized axial

force, d) normalized buckled shape.
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Figure A.18 Boundary element with hub = 50, o= 0.5: a) average axial strain versus
axial force at the base, b) normalized axial strain, ¢) normalized axial
force, d) normalized buckled shape.
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Figure A.19  Boundary element with hub = 50, o= 0.25: a) average axial strain versus

x1O%I

axial force at the base, b) normalized axial strain, ¢) normalized axial
force, d) normalized buckled shape.
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Boundary element with hub = 50, o= 0: a) average axial strain versus axial
force at the base, b) normalized axial strain, ¢) normalized axial force, d)
normalized buckled shape.
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