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Towards a whole brain model of Perceptual Learning

Marcello Maniglia and Aaron R Seitz
Department of Psychology, University of California - Riverside, Riverside, CA

Abstract

A hallmark of modern Perceptual Learning (PL) is the extent to which learning is specific to the 

trained stimuli. Such specificity to orientation, spatial location and even eye of training has been 

used as psychophysical evidence of the neural basis of learning. This argument that specificity of 

PL implies regionalization of brain plasticity implicitly assumes that examination of a singular 

locus of PL is an appropriate approach to understand learning. However, recent research shows 

that learning effects once thought to be specific depend on subtleties of the training paradigm and 

that within even a simple training procedure there are multiple aspects of the task and stimuli that 

are learned simultaneously. Here, we suggest that learning on any task involves a broad network of 

brain regions undergoing changes in representations, read-out weights, decision rules, attention 

and feedback processes as well as oculomotor changes. However, importantly, the distribution of 

learning across the neural system depends upon the details of the training procedure and the 

characterstics of the individual being trained. We propose that to advance our understanding of PL, 

the field must move towards understanding how distributed brain processes jointly contribute to 

behavioral learning effects.

Introduction

Perceptual Learning (PL) refers to changes in our perceptual processes due to experience 

and is fundamental to perceptual development, formation of perceptual expertise, and 

rehabilitation after sensory damage. From a scientific perspective, PL represents one of the 

most studied perceptual phenomena (with the first systematic investigation dating back to 

the end of XIX century, i.e., Volkman, 1858) and has been observed in virtually all the 

human senses, with examples in vision [1], hearing [2], touch [3], taste and smell [4,5] 

providing evidence that experience can improve human performance on essentially any 

perceptual tasks. This has given rise to numerous approaches aiming to exploit PL in the 

development of training interventions for different categories of individuals; such as athletes 

[6,7], medical experts [8], or people with visual deficits; such as amblyopia [9,10], myopia 

[11,12], presbyopia [13], macular degeneration [14–16], age-related visual decline [17–19], 

Autism Spectrum Disorder [20,21], dyslexia [22], among others. However, while research 

provides promise that PL has potential to improve perceptual skills in those seeking 

expertise or rehabilitation, such interventions are limited by lack of understanding of both 
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the behavioural attributes of PL and the brain plasticity that underlies it. Here we suggest 

that to understand and maximally exploit PL, it is necessary to know how training with 

different tasks and in different individuals gives rise to different behavioural and 

neurological outcomes.

The first key to understanding the field of PL rests in the behavioural aspects of learning. In 

the present manuscript we predominantely focus on vision research, which has largely 

dominated the field of study [23]. Most contemporary approaches to PL train on simple 

tasks that are thought to target perceptual primitives; such as stimulus orientation [24–26], 

motion [27–29], contrast [30,31], hyperacuity [32], texture discrimination [33–35], acuity 

[17], crowding [36–38], binocular processing [39,40] or processing speed [41], among 

others. A common finding is that PL can be exquisitely specific to trained stimulus features 

such as the spatial location and orientation [25,32,42], and even the eye of training [1,43]; as 

summarized in Figure 1. While the degree of specificity depends on training conditions and 

individual differences [24,32,33], stimulus specific learning is often considered necessary to 

discriminate PL from simple performance improvements due to learning the task structures. 

Further, the specificity of PL suggests that learning may be a singular process for which 

learning can simply be characterized.

The exquisite specificity of PL has largely defined the field as it has been thought to provide 

clues into the neural systems underlying learning. A common view suggests that behavioural 

specificity puts constraints on the candidate neural representations underpinning learning. 

This representational view of PL led researchers to postulate a correspondence between 

features of behavioral specificity and the responsiveness of neurons in a given brain area to 

those features; suggesting that learning is due to plasticity in that brain area. For example 

location, orientation and ocular specificity at the behavioral level may be due to plasticity in 

primary visual cortex, which contains neurons selective to orientation, location and eye. An 

alternative framework suggests that PL reflects improvements in the ability of higher-level 

areas to read out task-relevant sensory information in the service of task-related decisions 

[44,45]. From a computational framework, these read-out models provide simple and 

parsimonious explanations of PL and have served as a counterpoint to the suggestion that the 

specificity of PL implies regionalization of plasticity in the brain.

These contrasting theories have led to a binary view of PL that has largely dominated the 

field for the last 40 years, where significant research focus has been directed to proving that 

PL is either due to changes in representation of a specific brain region, or that it can be 

better explained by decision processes reading out information from these representations. 

However, there has been a recent proliferation of alternative theories arguing for multistage 

models of learning [44,46,47] or in the most radical view that PL is best explained as a form 

of ‘conceptual’ learning [24]. These models attempt to fill the explanation gap in the binary 

view of PL, which has been useful in driving research to understand the contributions of 

different brain processes in learning, but it is insufficient to explain how plasticity in 

multiple brain areas, and interactions across the neural system, jointly contribute to the 

observed behavioural changes.
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In the present manuscript we review recent research and propose a new whole brain 

framework to understand PL. The key to this model is to acknowledge that PL is not a 

singular process, but instead leads to multiple components of learning that combine together 

to produce changes in performance. We suggest that without a whole brain model of PL one 

cannot adequately explain how small changes in task structures lead to different behavioural 

outcomes or characterize the substantial individual differences in learning often found within 

and across studies. Further progress in the field will ultimately require understanding of how 

learning experiences can give rise to plasticity across a broad set of brain systems and how 

this distribution of changes manifests differently through training with different tasks and in 

different individuals.

The Neural Basis of Perceptual Learning

Numerous studies, using a variety of techniques (e.g. psychophysics, EEG, fMRI, TMS, 

animal electrophysiology, computational modelling, etc), have attempted to identify specific 

brain areas as being responsible for specific examples of learning [30,42,48,49]. We review 

some key findings from these studies and attempt to categorize them as being related to low-

level representation changes, higher-level representation changes, changes in read-out, 

changes in decisions, changes in attention or other factors (see Figure 2). In reading these it 

is important to consider that similar tasks are used in research that attempts to localize 

learning to different stages of processing and that these explanations for the neural bases of 

PL are not mutually exclusive.

Evidence for low-level representation changes

In the context of the binary view of PL, the holy grail for the representational view of PL has 

been to provide evidence that primary visual cortex (V1) undergoes plasticity. Supporting 

evidence comes from neuroimaging studies showing functional activity changes [25,48,50–

52] and electrophysiological studies in animals showing receptive field changes in single 

units [53–55], both consistent with plasticity in V1. For example, Shibata et al [48], used an 

fMRI online-feedback method to induce activation patterns in early visual cortices (V1/V2) 

corresponding to those evoked by an oriented Gabor and found that changes in activity in V1 

coincided with performance improvements in detecting the trained orientation pattern. 

Interestingly, PL has recently been shown to affect even earlier, pre-cortical neural loci: Yu 

et al [30], reported an increase in neural response to low contrast stimuli in the M-layers of 

the Lateral Geniculate Nucleus (LGN) that correlated with PL of contrast detection. While 

these and other studies provide compelling evidence that low-level representation areas can 

exhibit PL–induced plasticity, it must be noted that the proof of concept that plasticity can be 

observed in V1 is not evidence of V1’s exclusive role in the reported changes in behavioural 

performance. On the contrary, while Schoups et al [53] found electrophysiological evidence 

for orientation tuning curve changes in monkey V1 as a result of training, they estimated that 

these neural changes were sufficient to explain less that 10% of the performance changes.

Evidence for higher-level representation changes

While primary visual cortex has been a particular focus of PL, there are numerous other 

visual processing areas that each show unique patterns of featural sensitivity (e.g. MT to 
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motion, V4 to curvature and color, FFA to faces, PPA to houses and scenes, etc), and which 

are also involved in PL. For example, in the case of learning orientation discrimination, 

observations of PL from animal electrophysiology have been mixed in V1 (e.g. [56]) but 

robust in V4 [49,54]. Further, many PL studies train with stimulus features such as shapes, 

objects and faces [57–60] for which plasticity in primary visual cortex would be insufficient 

to account for learning. For example, Bi and colleagues [60] showed that training on face 

orientation showed a high degree of specificity for the stimuli used, and stabilized facial 

representations in the fusiform face area (FFA [61]). PL has been found to lead to changes in 

response properties in numerous visual representation areas including; motion in V3a [62], 

MT [63] and LIP [64], orientation in V1 [53], V4 [49,54] and PIT [42], contours in LO [65], 

faces in FFA [61], among others. Further, these higher areas better account for behaviorual 

learning with plasticity in V4 explaining 25% or more [49,66]of observed perceptual 

learning effects of orientation discrimination in monkeys.

Evidence for read-out from representation areas

While there is substantial evidence supporting the idea that brain areas involved in 

representing visual information can undergo plasticity, computational models demonstrate 

that plasticity in visual representations is not necessary to explain specificity of PL [67]. The 

basic insight that these models provide is that even if representations are fixed during 

learning, changes in read-out weights between perceptual representation and decision areas 

can parsimoniously account for most behavioural findings of PL. For example, Dosher and 

colleagues [68] proposed an integrated reweighting theory (IRT) that relies upon a 

combination of location specific and location invariant representation to account for transfer 

of learning to new retinal locations. Talluri et al. [46] proposed a simplified version of the 

IRT that accounts for individual differences and recent evidence of retinal transfer of 

learning, as reported in studies using double training [32,69], which is a paradigm where 

after training that yields stimulus specificity, additional practice on an irrelevant task at a 

different retinal location, unlocked transfer of the intial learning to the untrained retinal 

location, putting into question the characteristic of location specificity of classic PL [32, 69]. 

These models make the important point that the behavioural specificity found in PL offers 

insufficient evidence to conclude that a visual representation has been changed.

Recent physiological studies in monkeys [70] and functional imaging in humans [71] 

provide fascinating neuroscientific evidence of read-out mechanisms in the brain. 

Chowdhury et al. [70] used a GABA agonist (muscimol) to reversibly inactivate monkey MT 

area to show that performance on a coarse-depth discrimination task was dependant upon 

MT activity. They then trained the animals on a fine-depth discrimination task (for which a 

prominent role of V4 is hypothesized) and made the surprising discovery that MT 

inactivation no longer impaired performance on this task. Chang et al. [71] performed a very 

similar study in humans finding that extracting depth cues in noise was disrupted by 

transcranial magnetic stimulation (TMS) to posterior parietal cortex (PPC) prior to training 

on a fine-depth discrimination task, but not after. Similar results were found by Chen, Peng, 

Zhou, Thompson and Fang [62] who reported that TMS of MT+ disrupted the ability to filter 

out a noisy motion direction display prior to, but not after, training a motion discrimination 

task. Showing the opposite direction of effect, Liu and Pack [72] found that inactivation of 
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MT had little effect on motion perception of moving gratings in monkeys until after training 

the animals on a motion direction discrimination task with random dots. These studies 

provide direct evidence that PL can change the brain systems that are read-out to solve a 

given perceptual task.

Evidence for Attention and Feedback

Another body of research proposes that changes in top-down attentional modulation may 

explain behavioral findings of PL. For example, Poort et al. [73] showed that visual learning 

in mice increases V1 selectivity for task-relevant stimuli, leading to enhanced stimulus 

discriminability at the population level. These learning-induced enhancements of stimulus 

representation in V1 diminished when mice were not engaged in the task, suggesting the 

involvement of top-down signals in increasing population-level discriminability. Learned 

changes in low-level response properties may then be a result of top-down attentional 

modulation affecting sensory processing by enhancing the target signals and/or attenuating 

responses evoked by task-irrelevant features [74–76]. Further, Itthipuripat and colleagues 

[77] suggested that PL relies on two different selective attention mechanisms exhibiting 

different temporal courses: At first, performance improvements are related to attentional 

gain amplification, while a later stage relies on a noise reduction mechanism. Bays et al. [78] 

found that PL was associated with more efficient deployment of attention after learning. 

While these studies show that attention may explain some behavioral findings of PL, other 

studies control for attention (e.g. [49]), or find learning without attention [79], and suggest 

that not all findings of PL are easily explained as attentional learning.

Evidence for other explanations of PL

While most models of PL have focused on how representations, read-out, or attention may 

best explain observed changes in behavior, a number of other models and mechanistic 

explanations have been proposed. For example, Guidotti et al. [80] showed how PL 

increased the frequency and similarity of fMRI resting state activity in the cortical regions 

engaged by the training task. Diaz et al. [81] found that enhancement of the single-trial 

amplitude of late (decisional) but not early (sensorial) EEG components predicted PL. Chen 

et al., [82] report that motion direction discrimination training led to a sharpening of the 

cortical tuning to trained stimuli at the sensory processing stage (visual area V3A), as well 

as the optimization of the connectivity between this sensory area and a higher level, 

decision-making region in the Intraparietal Sulcus. Finally, neural plasticity as a product of 

training can manifest as a change in propensity for a system to learn new perceptual tasks 

[83]. For example, Kattner et al. [84] showed that training on a series of tasks sharing 

common components can induce transfer of learning to new task relying on similar 

components not in the form of immediate performance improvement but rather as increase in 

learning rate (‘learning to learn’). This is consistent with a recent model by Wang et al. [24] 

claiming that PL occurs at a ‘conceptual level’ where participants learn abstract rules that 

can be applied to novel features. At the other extreme, PL can help stabilize eye-movements 

in individuals with nystagmus [85] or to learn more efficient eye-movement strategies in 

situations of visual field loss [86,87]. Together these studies suggest that factors such as 

conceptual frameworks and propensity to learn new tasks, and, at least in clinical 
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populations, oculomotor processes, can all make contributions to behavioural changes found 

through PL.

Towards a Whole Brain Model of Perceptual Learning

Evidence presented thus far shows that PL gives rise to learning at different levels of visual 

representations, in read-out from representations, in attentional feedback to representations, 

in decisions and in ocular-motor systems. If each of these systems can change then it seems 

unlikely that learning, even in the simplest tasks, is a singular process. Take, for example, a 

simple visual search to find a target line orientation among a set of distractor lines (Figure 

3), Le Dantec and Seitz [88] showed that not only did participants show a classic result of 

improved search performance specific to the target orientation, PL also exhibited specificity 

to orientations of the distractor stimuli, the 24 (of 36) possible grid locations where the 

target appeared during training, and spatial context of the target and distractor stimuli. This 

demonstrates that multiple components of PL, which likely rely upon different brain 

systems, can arise together in the optimization of task performance. We suggest that learning 

any task is likely to rely upon a distribution of plasticity across the brain.

Viewing PL as a distributed process may provide a useful framework to interpret recent 

findings of how the degree of specificity is mediated by attributes of the stimuli and tasks 

employed, and moderated by the individuals who are trained. For example, training with 

high-precision stimuli gives rise to more specificity and is hypothesized to lead to greater 

low-level learning than found through training with low-precision stimuli [32,46,89]. Other 

stimulus details such as target complexity [90] and stimulus adaptation during training [33] 

also impact generalization of learning. Further, recent studies show that training with 

multiple tasks ([29,45,91], but see [31]), directing exogenous attention towards the trained 

stimuli [92], training with more stimulus categories [93], all promote greater generalization 

of learning. In addition, characteristics of the individuals being trained moderate the 

specificity of learning [29,32], such as different levels of baseline performance [41,94], 

experience with action video games [83,95], personality traits and motivation [96], socio-

cognitive profiles [97] and sleep habits [35]. We suggest that all of these factors may 

contribute to different distributions of learning across the brain systems that can contribute 

to PL.

Summary

While traditionally PL research has focused on identifying specific learning attributes and 

associating these with particular brain processes, accumulating evidence suggests that a 

multitude of brain processes contributes to PL. Further we observe that training on a simple 

task can give rise to dissociable components of learning that are likely related to plasticity in 

different brain systems. Complementing this observation is that a wide range of factors 

associated with the training conditions, as well as the individuals being trained, mediate and 

moderate the behavioural attributes of training. Together, these findings suggest that the 

premise that PL is a singular process that can be attributed to a single learning system is 

insufficient to explain the broad set of findings in the field. We propose that to advance our 

understanding of PL, new models need to be developed that account for how learning is 
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jointly due to plasticity across multiple brain systems and that the distribution of this 

learning across the system is likely mediated by different training conditions and moderated 

by characteristics of the individuals being trained. For example, one can view PL as 

changing the “weights” of bi-directional connections between the units of a hierarchical 

network encompassing different visual and non-visual areas. Such a view can explain 

changes in early areas, intermediate areas, changes in top-down modulations (attention) and 

read-out. As a start towards this end, recent studies have found that deep neural networks 

can provide parsimonious fits for PL and provide a framework to see how learning is 

distributed across layers of the network and even to understand changes at the single unit 

level [98, 99]. While these models also have their limitations, they do provide some initial 

evidence of the utility of a whole brain model as route to better understand perceptual 

learning.
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hemifield-specific performance improvement accompanied by an increase in neural response 
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Highlights

• Perceptual Learning research has identified numerous processes that change 

with learning.

• Identified mechanisms of Perceptual Learning are not mutually exclusive.

• Learning even a simple task involves changes a multitude of processes.

• Advanced understanding of Perceptual Learning will require a whole brain 

model of plasticity.
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Figure 1. 
Specificity of PL. The figure shows training displays where training at one location, one 

orientation or with one eye (left panel) might not transfer to the same stimulus at a different 

location, orientation, or eye, respectively (right panel).
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Figure 2. 
Multiple mechanisms of Perceptual Learning. Learning has been attributed to low-level 

representations (red), higher level representations (green), Read-out (blue arrow), Attention/

Feedback (yellow arrow) and decisions, as well as other processes. Together, these involve 

the whole brain.
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Figure 3. 
Multiple stimulus properties are learned together. Figure shows schematic of a visual search 

task for an oriented target (indicated by red circle) that can appear in one of 24 trained (pink, 

upper left) or 12 untrained (blue upper left) locations, a trained set of distactor orientations 

(around the horizontal in the upper right), and spatial context of distractors and target (as 

seen in the right column). Training has been found to be specific to all of these features [e.g. 

87].
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