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Abstract

Cognitive science is an archipelago of concepts and models,
with cross-pollination between topics of interest often prohib-
ited by incompatible approaches. Despite this, behavioral per-
formance universally depends on information transmission be-
tween brain regions and is limited by physical and biological
constraints. These constraints can be formalized as informa-
tion theoretic constraints on transmission, which provide nor-
mative predictions across a surprising range of cognitive do-
mains. To illustrate this, we describe a simple variable-length
rate coding model built with Poisson processes, Bayesian in-
ference, and an entropy-based decision threshold. This model
replicates features of human task performance and provides a
principled connection between a high-level normative frame-
work and neural rate codes. We thereby integrate several dis-
joint ideas in cognitive science by translating plausible con-
straints into information theoretic terms. Such efforts to trans-
late concepts, paradigms and models into common theoreti-
cal languages are essential for synthesizing our rich but frag-
mented understanding of cognitive systems.
Keywords: information theory; bayesian inference; rate cod-
ing; response time; learning

Introduction and Background
Cognitive science is home to almost as many models as phe-
nomena they purport to describe. While this sui generis ap-
proach to each problem allows rich and flexible descriptions,
it stands in sharp contrast to the physical sciences, in which
scientists strive for and expect simple unifying principles, like
Newton’s axiomatic laws, from which individual phenom-
ena arise as particular circumstantial manifestations (Chater
& Brown, 2008). In cognitive science, we would say that
Newton’s laws are normative. But where are our first prin-
ciples, from which we can hope to derive a coherent set of
expectations about how cognition should operate? In this pa-
per, we consider information transmission from the environ-
ment, through the brain, to behavior. By constraining both
the channel code and each transmitted signal to be optimally
inferred under normative assumptions, we can construct a
message-transmission system that replicates the Hick-Hyman
law (Hick, 1952; Hyman, 1953) and the Power Law of Prac-
tice (Newell & Rosenbloom, 1981), illuminates the connec-
tion between transmission rate and energy use, and produces
human-like response time distributions. Our information-
theoretic approach affords a principled way to connect lev-
els of analysis (Marr, 1982) by integrating energetic resource
availability, message encoding and decoding schemes, and
task performance characteristics into a single framework.

Applying information-theoretic concepts to the study of
cognition is not new. The years following Claude Shan-
non’s ‘A Mathematical Theory of Communication’ (1948)
produced a wealth of information-theoretic analyses of cog-
nitive function, perhaps the most famous of which resulted
in the Hick-Hyman law (Hick, 1952; Hyman, 1953). This
mathematical approach merged with optimal control theory
to become Cybernetics (Wiener, 1965), which promised to
understand cognition and behavior as just another system of
information transmission, feedback, and control, and subject
to the same constraints. Despite their successes, enthusiasm
about both information theory and cybernetics has not per-
sisted to the present day, partly because cybernetics was ab-
stracted away from biological and neurological characteriza-
tions, and partly because the cognitive revolution led to a fo-
cus on the nature and calculus of representation.

The development of cognitive architectures has resulted
in highly successful models of a broad array of tasks (Sun,
2008; Anderson et al., 1997; McClelland, 2009). In paral-
lel, architecture-free computational principles like Bayesian
inference, prediction, credit assignment, and generalization
bounds on learning have provided a rich framework for nor-
mative thinking (Shiffrin, 2010; Griffiths et al., 2008). Com-
putational architectures form a possible hybrid (Chater &
Brown, 2008), using normative computational principles to
structure a cognitive architecture. However, these principles
are often expressed in mathematical language disconnected
from cognitive and neural architectures, leading to a perva-
sive difficulty in translating between mathematical formula-
tion and plausible neural implementaiton.

The inability to translate between cognitive models directly
results in a lack of knowledge transfer between domains (cog-
nitive processes, language, tasks, etc) and levels of analysis
(high-level models to low-level mechanistic details). For ex-
ample, consider cognitive control as a case-in-point illustra-
tion. ‘Cognitive control’ refers to the deployment of atten-
tion and memory resources in the service of competing tasks.
Each of these (control, attention, and working memory) are
famously limited in capacity and inextricably intertwined in
their roles in executive function. It is well-known that task
practice lessens the effort required to do tasks, lessens atten-
tional load, reduces response times, and decreases the amount
of cognitive control required (Logan, 1985; Moors, 2016;
Pierce & McDowell, 2017). These effects mirror practice
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effects in perceptuo-motor skill acquisition, suggesting there
should be some common principles, but it is currently difficult
to transfer insights gained in the study of one phenomenon to
the study of others. This lack of transferability means that
cognitive science has developed a series of ‘knowledge is-
lands,’ making it almost impossible to share insights across
boundaries.

Even within a single topic, with the same underlying con-
cepts, there are often many theories that are difficult to re-
late to each other. For example, under the shared working
assumption that mental effort is treated as a cost in a cost-
benefit analysis, there is considerable disagreement about the
nature of the cost. Depending on the theory employed, it
may represent an opportunity cost from foregone tasks, a loss
of the intrinsic reward of cognitive leisure, the tendency of
mental effort to discourage use of limited-capacity resources
like working memory, or simply the effort of cognitive con-
trol as a cost per se. Although Shenhav et al. (2017) show
that these ideas share common computational principles, they
also leave it as an open question how to compare them di-
rectly. The difficulty is that cognitive costs are exogenous to
the computational architecture, which means there are many
non-equivalent ways to import them. Without further norma-
tive constraints, there are many rational ways to import com-
putational modeling ideas (like costs), which means each new
model multiplies the translational difficulties for integrating
and relating existing models, constraints and concepts.

Like Shenhav et al. (2017), we take as foundational that
the brain is an information-processing organ, ultimately
transferring information from the environment via sensation,
through the brain, and back into the environment as behav-
ior. Although high level theories of behavior are most eas-
ily expressed in decision- and control-theoretic terms, re-
expressing these theories in information-theoretic terms af-
fords the incorporation of constraints on information process-
ing, as illustrated by work on bounded rationality (Ortega et
al., 2015). Biological constraints involving energy availabil-
ity and noise, when translated into information theory formal-
ism, become normative bounds on the ability to transfer infor-
mation. Similarly, limitations on information available to the
organism provide bounds on task performance. In essence,
information theory provides a well-known, well-understood
and sophisticated language for translating models and theo-
ries that has largely untapped potential. We illustrate this po-
tential by demonstrating its capacity to use common compu-
tational principles to reveal relationships between the seem-
ingly unrelated phenomena of learning rates, response time
distributions, and energetic resource utilization.

Framework
Whatever the task at hand, neurons performing task-related
computations must infer, in a continuous-time and streaming
manner, which ‘messages’ are being transmitted from other
brain regions (Rieke et al., 1999). This inference process is
noisy, imperfect, and time-dependent. We model this process

by performing continuous-time inference about the configu-
ration of stochastic processes, with a stopping criterion based
on a posterior entropy threshold. This approach produces nor-
mative predictions that match the behavioral characteristics
so commonly observed in experimental paradigms, including
the shape of response-time distributions and the decrease in
response times and mental effort as a function of practice.

Characterizing the relationship between inferential con-
straints and transmission efficiency is the domain of infor-
mation theory (Cover & Thomas, 2012). Information the-
ory has been transformative in its applications to electronic
communications, and has provided useful normative predic-
tions for neural characteristics (Bialek, 2012). In particular,
information theoretic constraints underlie the Efficient Cod-
ing Hypothesis (Barlow et al., 1961; Simoncelli & Olshausen,
2001), which suggests that neural connectivity is structured
in such a way as to encode information from the natural en-
vironment with maximum efficiency. Despite widespread ev-
idence for the general validity of this hypothesis in early sen-
sory systems (e.g. Laughlin (1981); Vinje & Gallant (2000);
Pitkow & Meister (2012)), there is still significant uncertainty
as to whether information theoretic principles are relevant at
the level of cognitive processing. Central to this reservation
is a concern that Shannon’s proofs of the existence of arbi-
trarily efficient binary codes rely on his use of ‘block codes,’
in which several messages are combined into a single string
in a way that increases the likelihood of error-free transmis-
sion (Shannon, 1948; Cover & Thomas, 2012). For example,
Luce (2003) writes “Shannon’s way of defining the concept
[of channel capacity] requires that not individual signals be
transmitted but rather very long strings of them so as to be rid
of redundancies. That is rarely possible within psychological
experiments.” Another recent paper raises similar concerns
that Shannon’s method of encoding “requires complex com-
putation and long delays to encode and decode in ways that
achieve optimality,” and that it only “applies to settings of
perfect signal recovery, which may not be possible or even
desirable in biological settings” (Park & Pillow, 2017).

Concerns about the applicability of Shannon’s proofs to in-
formation transmission in the brain confuse levels of analy-
sis (Marr, 1982). It is true that Shannon’s reliance on block-
coding to achieve efficient information transmission is an
implementation-level detail applicable to discrete-time codes
and not to the communication of information between neu-
rons. However, the core conceptual contribution of informa-
tion theory lies not in coding techniques but in providing a
method for quantifying uncertainty. More broadly, the the-
ory serves to characterize the ways in which noise and re-
dundancy affect the reliability, efficiency, and rate of infer-
ence. From this broader perspective, it is surely applicable
to the study of cognitive function. That an understanding of
these factors can lead to the design of optimal codes is impor-
tant, but the specifics of code design in a discrete-time system
do not invalidate the application of general principles to the
study of cognition.
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Figure 1: A codebook converts symbols A, B, etc. from
a symbol alphabet into configurations of firing rates across
Poisson processes n1,n2, .... In this simple model, the code-
book assigns a signal rate λS to a single Poisson process for
a given symbol. Each Poisson process also emits spikes at
a noise rate λN . As Poisson process rates are additive, this
results in a total emission rate of λN +λS for the ‘activated’
process.

In the remainder of this paper, we show an example of a
continuous-time variable length coding mechanism, built us-
ing entropy and inference, that adheres to the principles of
information theory while providing normative predictions of
signal transmission time and accuracy. We emphasize that the
continuous-time nature of the code means that signals are not
discretized. Because of this, we are able to transmit messages
such that transmission time is linearly related to message sur-
prisal, replicating the Hick-Hyman law. By presenting such
a code, we show that appropriate information-theoretic con-
cepts can be applied to the study of neural information trans-
mission.

Implementation

We model information transmission by having a sender en-
code a message into a configuration of Poisson process fir-
ing rates, and a receiver watch the generated spikes until they
are confident about the configuration of underlying rates, and
thus about the content of the encoded message (see Figure 2
for a schematic of the architecture). In more detail, the trans-
mission mechanism consists of an encoder, a transmitter, a
receiver, and a codebook. The transmitter is an array of Pois-
son processes, each continuously producing points or ‘spikes’
independently at a given noise rate λN . This can be viewed
as a basic model of a neural rate code, as neural spikes trains
are often modeled as Poisson processes (Rieke et al., 1999).
The symbols to be communicated are taken from an alphabet
of discrete symbols A . The codebook describes a mapping
between each symbol and a configuration of Poisson rates,

Figure 2: Messages are selected from a source distribution
P. The codebook translates each message into a higher fir-
ing rate for a single process (a simplifying, but not restrictive,
assumption). Poisson processes stochastically emit spikes,
which are observed by the inference process. Bayesian infer-
ence combines the prior distribution Q with the likelihood of
each message given the accumulated observations to produce
a posterior distribution over possible messages.

and the mapping from a given symbol to rate configuration
is carried out by the encoder. For the sake of expositional
simplicity, we restrict the codebook to increasing the rate for
a single Poisson process from the noise rate λN to a signal
rate λN + λS, as shown in Figure 1. The neural analogue is
that each Poisson process is ‘tuned’ to ‘prefer’ a particular
symbol in a 1-hot manner, resulting in a sparse code.

The receiver observes the sequence of spikes emitting
from each Poisson process and continuously attempts to in-
fer which rate configuration is producing the spikes it ob-
serves, and thereby which symbol is being transmitted. We
assume, again for simplicity and consistent with common
information-theoretic analysis, that the receiver knows the
values of both λN and λS. In standard binary or Gaussian
channels, transmission is a discrete vector of amplitudes that
takes a fixed time to transmit. Because of this, practition-
ers typically speak in terms of transmitting bits-per-signal, or
bits-per-second (which are a constant multiple of each other).
In our case, the receiver accumulates information about each
transmission gradually, over time. In effect, observing for a
longer period of time adds redundancy to the signal.

As observations continue, the receiver calculates and con-
tinuously updates a posterior probability distribution over
possible messages, and stops decoding when the entropy of
the posterior reaches a pre-specified stopping threshold. Let
transmitted symbols be treated as realizations of a random
variable X . The receiver begins each transmission at time
t = 0 with an initial uncertainty HQ(X) regarding the sym-
bol being transmitted, reflecting its prior distribution Q(X)
of the possible codewords. As time passes and observa-
tions Yt = {y1, · · · ,yt} are made, the receiver uses Bayesian
inference to update the prior to obtain a posterior distribu-
tion Qt(X |Yt) over messages according to Bayes rule, which
yields an updated posterior entropy HQt (X |Yt). The posterior
entropy decreases non-linearly with time and reflects the de-
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Figure 3: (A) Spikes are randomly emitted by each Poisson
process as a function of time. The lower-most Poisson pro-
cess is firing at a higher λN + λS rate, while the others are
firing at rate λN . (B) The receiver observes the spikes and
infers which process is firing at rate λN +λS. The initial en-
tropy is 2 bits, indicating a weak belief in equal probabilities
for each of the 4 possible signals. The receiver’s remaining
entropy changes as the processes are observed and the poste-
rior probability of each signal is calculated.

gree of confidence that a message has been correctly received.
Transmission stops when HQt (X |Yt) reaches a threshold. Fig-
ure 3 shows the change in posterior entropy over time for an
example transmission.

Variable length transmissions
In the coding scheme introduced here, messages are variable-
length: transmissions of messages with higher surprisal takes
more time than messages with low surprisal, where surprisal
is calculated using the prior probability distribution Q(X) of
the receiver. Recall that the surprisal h(x) of a message x
drawn from a distribution P(X) is the logarithm of the inverse
probability of the message, h(x) = log2

1
P(X=x) .

In ‘entropy codes,’ codeword length (and thus transmission
time of each codeword) is roughly proportional to the sur-
prisal of the encoded symbol in the absence of noise. When
symbols are independently drawn according to a categorical
probability distribution, this can manifest in two ways. In
the first, increasing the number of possible symbols increases
the surprisal of each individual symbol, and consequently the
length of the code needed to encode its value. In the second,
symbols drawn from a categorical distribution with unequal
probabilities will have different surprisal values: more fre-
quently transmitted messages will have lower surprisal and
shorter codes than less frequent messages. We performed

Figure 4: (A) The expected value of the receiver’s entropy
regarding four possible messages decreases as spikes are ob-
served. Increasing the signal power λS changes the informa-
tion transmission rate. (B) Response time distributions vary
as a function of signal power λS, and in each case are well-fit
by a log-normal distribution.

simulations to explore these scenarios in turn using our trans-
mission model.

First, we varied codebook sizes and recorded transmission
times using a fixed entropy threshold and a uniform source
distribution. The nonzero entropy threshold occasionally re-
sults in transmission errors, as we see in human subjects. In-
formation transmitted is thus less than the surprisal of each
individual message, on average. We computed actual infor-
mation transmitted by calculating the mutual information be-
tween transmitted symbols and received symbols, for each
codebook size. The results are shown in Figure 5 and are a
close qualitative match for the Hick-Hyman observations of
human response times reported by Hick (1952) and Hyman
(1953).

We next transmitted messages drawn from a non-uniform
distribution P(X) and measured transmission time for each
message. For each transmission, we measured the informa-
tion transmitted by comparing the receiver’s prior probabil-
ity distribution Q(X) (which equals the source distribution
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Figure 5: Mean transmission time increases logarithmically
with codebook size and linearly with information transmit-
ted, mirroring the Hick-Hyman law. Points represent mean
transmission times and shaded regions represent the 50% and
90% high-density interval of the transmission time distribu-
tion. In each case, messages were transmitted according to a
discrete uniform distribution P(X) over messages, and the re-
ceiver maintained a uniform prior distribution Q(X) = P(X)
of the same dimensionality. For each transmission, an entropy
threshold of 0.3 bits was used, with λS = 4 and λN = 10.

P(X), an assumption we relax below) with their posterior dis-
tribution Q(X |Y ) at decision time. We measured the differ-
ence in these distributions using the Kullback–Leibler diver-
gence between the two distributions, DKL(Q(X |Y )||Q(X)).
The change between the receiver’s prior and posterior dis-
tributions is equivalent to the decrease in the receiver’s sub-
jective uncertainty about which message is being transmitted.
From the point of view of the receiver, this is equivalent to the
amount of information transmitted, in bits. Figure 6 shows a
linear relationship between message surprisal and transmis-
sion time, again qualitatively matching Hyman’s reported re-
sults from human subjects.

Learning to efficiently transmit

As with source-coding systems, expected message transmis-
sion times are faster when more frequently transmitted mes-
sages are transmitted in less time than less frequently trans-
mitted messages. In the our system, this is implemented
by tailoring the receiver’s prior distribution Q to match, as
closely as possible, the source distribution P. This reveals an
epistemic problem from the perspective of the receiver, which
has no a priori knowledge of the source distribution: the prior
must be learned and updated by observing message transmis-
sions. The work of Hick and Hyman has been legitimately
criticized for omitting this discussion (Laming, 2010).

Suppose we allow a receiver with an incorrect uniform
prior message distribution Qinit to update its distribution to
Qobs in a Bayesian manner each time a message is received,
so that the subsequent message transmission starts with the

Figure 6: Mean transmission time increases linearly with ac-
tual information transmitted, echoing similar findings in hu-
mans by Hyman (1953). The quantity of information trans-
mitted is calculated as the the KL-divergence between the
prior distribution Q(X) and the posterior distribution P(X |Y )
at decision time. Messages were drawn from a non-uniform
source distribution P(X). The receiver is assumed to know
this source distribution and maintains a prior distribution
Q(X) = P(X). For each transmission, an entropy threshold
of 0.3 bits was used, with λS = 4 and λN = 10.

updated prior. As the receiver observes which messages
are transmitted and at what relative frequency, Qobs will
become an ever-closer approximation to P, shrinking both
DKL(P||Qobs) and the expected transmission times. Figure
7 shows message transmission times resulting from a uni-
form (naive) prior, a prior equal to the true source distribu-
tion, and an intermediate distribution, as might be expected
to develop from a moderate level of experience with the task.
In each case, response time is linearly related to message
surprisal as calculated using Q. The slope depends on the
amount of experience with the task: as experience accrues
and Qobs approaches P, response times more closely reflect
the transmission frequencies of each message. The varying
slopes are reminiscent of the subject-specific slope found by
Hyman (1953).

As observations accumulate, the rate at which response
times decrease as Q approaches P mirrors the Power Law of
Learning (Newell & Rosenbloom, 1981). The Power Law
of Learning is a ubiquitous finding that task response times
have a power-law relationship with the number of practice
episodes, when averaged across many subjects. We con-
structed a categorical source distribution P with k = 16 cat-
egories, but with most of the probability mass in two cate-
gories. We initialized Qinit to have a Dirichlet prior with con-
centration parameters 2, representing a weak prior belief that
the source distribution is uniform. We simulated N message
transmissions, for N = 2 to N = 1024, taken evenly in log
space. For each value of N, we averaged the results across
1,000 simulated observers, resulting in an expected posterior
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Figure 7: Mean transmission time is a function of the re-
ceiver’s prior belief Q(X) over messages, rather than the
source distribution P(X). In each case, messages were trans-
mitted from the identical source distribution, where A was
most frequent, followed by B, and so on. Each line connects
response times arising from the same prior distribution. A
uniform Q(X) results in a flat line, while a Q(X) = P(X) re-
sults in the steepest slope. In each case, the relationship be-
tween subjective surprisal and response time is approximately
linear. For each transmission, an entropy threshold of 0.3 bits
was used, with λS = 4 and λN = 10.

distribution Qobs after N observations. For each Qobs we then
simulated more 2,000 message transmissions, with messages
drawn with frequency defined by P, and calculated the trans-
mission time for each. As illustrated in Figure 8, the relation-
ship between observations N and transmission time is linear
in log-log space, matching the Power Law of Learning.

The energy connection
Implicit in the above discussion is the notion that informa-
tion transmission costs energy: transmission is initiated when
an encoder assigns signal power λS to a Poisson process. If
each spike costs energy, this implies a rate of energy expen-
diture. As shown in Figure 4, signal power has a direct ef-
fect on the rate of entropy decrease and the resulting trans-
mission times. The framework introduced here allows us to
explicitly describe the relationship between energy use (in
terms of spikes), task novelty (in the form of naive Q esti-
mates), task practice, and response times. If mental effort is
a phenomenological correlate of signal transmission costs, it
also provides a normative explanation for effort decrease as
a function of practice, and provides weight to the currently
tenuous relationship between mental effort and the utilization
of metabolic resources.

Indeed, neural spikes are not free: an estimated 10% of an
adult body’s energy budget is allocated to neural information

Figure 8: Simulated message transmission time decreases as a
function of observations, as the prior Q approaches the source
distribution P. Signals are transmitted with signal strength
λS = 4, noise power λN = 10, and an entropy threshold of 0.3.
Points represent mean transmission times, and the shaded re-
gion represents the 80% high-density interval of the response
time distributions.

processing (Stone, 2018). In light of this, we might expect
the brain to adopt a strategy of driving energetic efficiency
by tailoring codes (represented by codebooks and Q distri-
butions) to individual tasks. As stimulus distributions P are
not equivalent between tasks, this would necessitate the cre-
ation and maintenance of a bank of task-specific codes, with
a power-law response time trend repeated during the practice
of each separate task (Newell & Rosenbloom, 1981). How-
ever, the power-law describes severely diminishing returns
between task practice and transmission efficiency, and tasks
in the world are not as discrete as in laboratory experiments.
Because of this, in a naturalistic setting we might instead ex-
pect the brain to implement some ‘universal’ code (Cover &
Thomas, 2012) that provides moderately efficient transmis-
sion across range of tasks (Vera et al., 2018). If this is the
case, the brain would sacrifice efficiency to achieve flexibility,
which is, after all, a chief characteristic of human cognition.

Conclusion
We have applied the principles of information theory to a sim-
ple rate-coding model of neural information transmission. We
showed that placing normative bounds on the inference of
both source distributions and the content of individual sig-
nals results in a coding mechanism that predicts the Hick-
Hyman Law and the Power Law of Practice, describes a prin-
cipled connection between information transmission and en-
ergy use, and produces realistic response-time distributions.
By utilizing the information-theoretic principles relevant to a
continuous-time system (in particular entropy and inference),
and avoiding those that are not (block-coding), we have pro-
duced a simple and parsimonious explanation of a wide range
of phenomena.
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