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INTRODUCTION

Procellariiform seabirds navigate the world’s oceans
by mechanisms that are not well understood. These
birds have an excellent sense of smell, and olfaction has
been linked to both foraging and homing to specific
nest sites, particularly in burrowing species. With re-
spect to foraging, the use of olfaction has been studied
in greatest detail in sub-Antarctic species (for review
see Nevitt 2000, Nevitt & Bonadonna 2005a). Our cur-
rent understanding is that procellariiforms use odor
cues at both larger (1000s of square kilometers), and
smaller (10s or 100s of square kilometers) spatial scales
(Nevitt 2000). At large spatial scales, changes in the
odor profile over the ocean demarcate productive zones
in what appears as a featureless landscape to humans.
These productive zones are areas where prey patches

are likely to be encountered. Once a bird arrives at a
productive area, the changing odor landscape triggers
a shift in behavior to a small-scale, area-restricted
search. Birds then use a combination of visual and ol-
factory cues to pinpoint prey patches. Observational
and experimental evidence collected from species as-
semblages near South Georgia suggests that the sen-
sory modality that a bird typically uses depends on both
the bird species and the foraging context (e.g. Nevitt
1999, Nevitt & Veit 1999, Nevitt et al. 2004). Some spe-
cies zigzag upwind to focus activity to odor sources (e.g.
Nevitt et al. 1995, Nevitt 2000), whereas others use vi-
sual cues provided by aggregations of prey, foraging
seabirds and marine mammals (Silverman et al. 2004).

Procellariiform seabirds respond to a variety of
scented compounds associated directly or indirectly
with prey, including dimethyl sulfide (DMS), a sulfur-
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ABSTRACT: Procellariiform seabirds (petrels, albatrosses and shearwaters) navigate vast distances
over seemingly featureless ocean habitat by mechanisms that are not well understood. These birds
have large olfactory bulbs, and the use of smell has been implicated in both foraging and homing
behavior. While many olfactory cues relevant to these behaviors have been identified, ammonia is a
potentially significant, biogenic, scented compound that has not been studied in this context. Ammo-
nium (NH4

+) constitutes a primary waste product produced by many of the prey species on which pro-
cellariiforms forage. Nitrogen waste products, including volatilized ammonia (NH3), also scent the
terrestrial landscape of sub-Antarctic islands where newly breeding procellariiform seabirds recruit
and raise their young. Since an ability to smell ammonia may be relevant to both prey detection and
locating colonies or islands, we used a non-invasive, behavioral assay to examine whether this
scented compound is detectable by a candidate test species, the blue petrel Halobaena caerulea
Gmelin. Our results suggest that these birds can detect volatilized ammonia within a concentration
range that they may naturally encounter (10–11 to 10–5 M), and point to ammonia as a potential signal
molecule in the sub-Antarctic.
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based compound released by phytoplankton. DMS
emissions become elevated in surface seawater associ-
ated with oceanic features such as upwelling zones and
shelf waters, where both phytoplankton and prey tend
to aggregate (for review see Nevitt 2000). DMS emis-
sions also increase locally during cell destruction asso-
ciated with zooplankton grazing (e.g. Dacey & Wake-
ham 1986, Daly & DiTullio 1996, Kasamatsu et al. 2004).
A range of other scented compounds are also released,
either through excretion or maceration, as organisms
are broken up during the predation process (see discus-
sion in Nevitt et al. 2004). These compounds include
nitrogen waste products which, like DMS, may provide
birds with proximate cues for detecting krill swarms.
For example, freshly caught Antarctic krill Euphausia
superba Dana excrete ammonium (NH4

+) on the order
of 1.6 to 2.8 nmol mg–1 dry mass h–1 (Atkinson & White-
house 2000). Calculations from laboratory, ship-based,
experiments suggest that copepods and small eu-
phausids excrete ammonium into the pelagic zone
around South Georgia Island at a rate of approximately
1 mmol m–2 d–1 (Atkinson & Whitehouse 2001).

Nitrogen waste products may also play a role in how
birds navigate to colony sites or islands. Islands pro-
vide breeding habitat for marine mammals and
seabirds and consequently receive substantial quanti-
ties of marine-derived nitrogen as wastes. These
wastes give rise to both atmospheric (volatilized NH3)
and marine ammonium (NH4

+/NH3) plumes that are of-
ten detectable by humans kilometers downwind (Ersk-
ine et al. 1998, see also Rankin & Wolff 2000). In a re-
view of population sizes of penguins, seals, and their
associated excrement rates on Macquarie Island, Ersk-
ine et al. (1998) calculated that over 3 700 000 t of dry
mass excrement was deposited annually, and this con-
verted to nearly 240 t of nitrogen. Moreover, the contri-
bution of ~60 000 burrowing petrels of various species
(see Shirihai 2002) was not included in this calculation
because uric acid from birds is rapidly mineralized, re-
leasing ammonia gas. On another sub-Antarctic island
(Marion Island), Lindeboom (1984) estimated that over
10% of nitrogen from penguin colonies eventually
reached inland vegetation as volatilized ammonia.
Thus, from a human perspective, increased volatilized
ammonia contributes substantially to the odor land-
scape associated with the island habitat on which birds
nest. Even though ammonia is both a potent olfactory
and trigeminal stimulant to humans, most bird species
that have been tested (including rock doves Columbia
livia, red-winged blackbirds Agelaius phoeniceus, Eu-
ropean starlings Sturnus vulgaris and gray partridges
Perdiz perdix) cannot physiologically or behaviorally
detect this compound (for review see Clark 1997).

Since volatilized ammonia may be important in both
prey detection and locating colonies or inhabited

islands, the aim of this study was to determine whether
ammonia is detectable to a candidate procellariiform
species within a concentration range that is potentially
biologically relevant to both foraging and navigation.
Therefore, although absolute sensitivity thresholds in
birds typically range from 10–7 to 10–5 M across a vari-
ety of olfactory stimuli and species (see Roper 1999 for
review), the lowest concentration we tested was 4
orders of magnitude lower (10 pM or 10–11 M) than the
lowest expected threshold value. Experiments were
performed on the blue petrel Halobaena caerulea
Gmelin, a common species that nests in burrows
throughout the sub-Antarctic. To reliably test a con-
centration series in the field, we used a non-invasive,
behavioral assay that was developed to test responses
of domestic chicks to odor stimuli in laboratory situa-
tions (Porter et al. 1999). We have previously adapted
this method to examine olfactory sensitivity in both
blue petrels and diving petrels (Cunningham et al.
2003). Based on our findings, we explore two potential
roles for ammonia as signal molecule for procellari-
iform seabirds.

MATERIALS AND METHODS

The study was conducted at Ile Verte (49° 51’ S,
70° 05’ E) from January 8 to 16, 2004. Ile Verte is situ-
ated on the eastern side of the Kerguelen Archipelago,
just south of the Antarctic Convergence. Breeding
populations of blue petrels at Kerguelen have been
estimated to approach 1 to 2 million pairs (Weimer-
skirch et al. 1989).

The Porter method. We tested the olfactory re-
sponses of 24 blue petrel chicks using the Porter
method. This method was developed as a relatively
simple technique for testing responses of domestic
chicks to odors in laboratory settings (Porter et al.
1999). Chicks enter a sleep-like state and responses
are recorded as test odors are puffed onto their nostrils.
This technique has several advantages for our applica-
tions in that it is completely non-invasive, does not
deleteriously impact fledging success, and has previ-
ously been used to test the responses of blue petrel
chicks in the field (Cunningham et al. 2003). While the
Porter method does not work well with adult birds,
results from earlier work suggest that chick responses
to odor stimuli reflect those of adults in at-sea experi-
ments (Cunningham et al. 2003).

To run a trial, a chick was removed from its burrow,
placed in a cotton bag and transported to a well-venti-
lated field hut (4 × 6 m) within 500 m of the colony. The
chick was then placed in a holding chamber lined with
a clean paper towel. The holding chamber was made of
black, flexible corrugated plastic folded to form a rec-
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tangular box (approximately 10 × 5 × 5 cm) open at both
ends. The chamber was placed on a small platform to
allow easy access to the chick’s nostrils. The chick was
positioned so that its head protruded from one end and
the chamber walls were in contact with the bird’s body.
Once the chick was positioned in the chamber, it
quickly (within 3 min) entered a sleep-like state in
which its head drooped slightly and its eyes closed. As
in earlier studies, chicks were considered to be ’asleep’
when their eyes were closed, their head became
droopy, and their legs and wings relaxed. Chicks were
left to sleep for at least 3 min before initiating a trial.

During a trial, we exposed the chick to a series of 3
increasing ammonia solution concentrations (10 pM,
10 nM, 10 µM in water, pH 7.0) with a control (water)
inserted randomly into the sequence. Vapor concentra-
tions were not measured, but were conservatively
estimated to be 1 order of magnitude less than solution
concentrations (e.g. Sawyer & McCarty 1978). Stimuli
were presented by puffing odor above the chicks’
nostrils using a 500 ml Nalgene® squeeze bottle. The tip
of the bottle was positioned ~3 cm from the nostrils. The
bottle was then squeezed 1 to 2 times in 5 s, producing
brief puffs of odorant-saturated air near the bird’s nos-
trils. Responses to odorant presentations were recorded
for 1 min and scored categorically as positive (Score = 1;
biting movements, vocalizations, distinct head or body
movements) or negative (Score = 0; typically no reac-
tion) for each bird (modified from Porter et al. 1999).
Experimental observations and scoring were done
‘blind’: the person delivering the stimulus and record-
ing the response did not know the identity or concen-
tration of the stimulus being delivered. In addition, the
person who set up the odor sequence was not present
during the experimental trial. If the chick woke up
during a test, we waited for up to 3 min for it to return to
a sleep-like state. We then allowed the bird to sleep for
1 min before proceeding with the next stimulus. If the
bird did not fall asleep within 3 min, we aborted the
experiment and returned the bird to its burrow.

All experiments were conducted within a narrow tem-
perature range (10 to 13°C) during daylight hours, when
parents were absent from the burrow. Chicks were
transported and tested one at a time and spent less than
30 min away from the nest. Each chick was weighed
after testing, returned to its burrow, and was tested only
once. Burrows were monitored again prior to fledging to
check for any deleterious effects of the experimental
procedure. Although we left the island just prior to
fledging, we observed no mortality among the chicks
that were tested; weight gain and wing chord growth
were within normal parameters (Jouventin et al. 1985).

Odors. Odorant stimuli (100 ml) were prepared in
serial dilution from stock solutions (1 mM; Sigma-
Aldrich). Solutions were prepared using new Hamilton

syringes and glassware. During preliminary trials, we
noticed that distilled water prepared from local sources
in the Kerguelen laboratories had an ammonia odor.
Thus, to avoid potential contamination from ambient
water sources, all solutions were prepared in bottled
spring water (Evian®) imported from France rather
than locally available distilled water. Test solutions
were transferred to clean Nalgene® squeeze bottles.
Bottles were allowed to sit for at least 3 h at ambient
temperature to equilibrate the headspace.

Statistical analysis. To determine whether there was
a difference among treatment effects, scores were ana-
lyzed using a Friedman test (in essence, a nonparamet-
ric, blocked ANOVA). Dunnett’s multiple comparison
test was used to determine which of the non-control
treatments differed significantly from the control treat-
ment (Daniel 1990). We next used a rank ANOVA to
examine whether the condition of being fed the previ-
ous night impacted the dose response. Fed status was
indicated by a marked distension of the crop. This
analysis followed the structure of a repeated-measures
ANOVA, with feeding status considered as a between-
subject factor, and dose considered as a within-subject
factor (Daniel 1990).

As in earlier studies (Cunningham et al. 2003), we
also investigated the relationships between age indica-
tors (chick weight and tarsus length) and chick respon-
siveness to treatments. Here we calculated Spearman’s
ρ coefficient, a measure of association based on ranked
data. We looked at mean behavioral response by aver-
aging each chick’s scores for control and ammonia
treatments. A significant test statistic indicated a
nonzero rank correlation (Zar 1996). All analyses were
performed using SYSTAT software.

RESULTS

The 24 Halobaena caerulea chicks we tested ranged in
weight from 85 to 215 g (mean ± SE was 166.9 ± 6.5 g),
suggesting that chicks were mid-way through their
development to fledging at the time of testing; (Jou-
ventin et al. 1985). Average (±SE) wing chord and tarsus
measurements were consistent with this approximation
(wing chord: 45.4 ± 2.1 mm; tarsus: 28.2 ± 0.8 mm).

Mean scores for control and the 3 test stimuli were
significantly different (Fig. 1, Friedman test, F = 3.21;
df = 3; p < 0.03); All application concentrations differed
significantly from the control (p < 0.05, Dunnett’s mul-
tiple comparison test), suggesting that chicks could
detect ammonia at solution concentrations from 10 pM
to 10 µM (10–11 to 10–5 M).

We found that being fed the previous night had no
impact on the dose response to ammonia, suggesting
that chicks were just as likely to respond to volatilized
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ammonia at the concentrations tested, regardless of
whether or not they were hungry (Fig. 2, Fed: N = 9;
Unfed: N = 12; rank ANOVA: F = 0.46; p = 0.98; We
had no data for feeding state for 3 chicks). Similarly,
we found no correlation between average score and
either weight (Spearman’s ρ = 0.06; p = 0.73; N = 24) or
tarsus length (Spearman’s ρ = –0.15; p = 0.50; N = 24),
suggesting that chicks responded similarly to test
stimuli, regardless of their age.

DISCUSSION

Our results demonstrate that blue petrel chicks can
detect volatilized ammonia at solution concentrations

as low as 10 pM (10–11 M). While this concentration is
well below the detection range that has typically been
reported for other avian species (10–7 to 10–5 M,
reviewed by Roper 1999), the dose response curve did
not reach threshold, suggesting that blue petrels can
probably detect even weaker concentrations than
those we tested (see Nevitt & Bonadonna 2005a). In
earlier experiments in which we used this technique to
test blue petrel chicks’ responses to a single concentra-
tion of DMS, we found that response depended on sati-
ation state (Cunningham et al. 2003) and, potentially,
age (Cunningham unpubl. data). In the present exper-
iment, our results showed no significant correlation
with these variables, suggesting that neither hunger
nor age influenced responsiveness. In interpreting our
results, we caution that a limitation of this non-inva-
sive, behavioral assay is that it does not discriminate
between an olfactory and a nociceptive (trigeminal or
common chemical sense) response. Humans experi-
ence this sense in response to various spices (capsassin
in chili peppers, horse radish, or garlic, for example),
whereas birds are sensitive to different compounds
that may or may not also stimulate the olfactory system
(for review see Clark 1998). In any event, both path-
ways may be involved in mediating the detection of
scented compounds in natural situations, depending
on the context and the concentration (Clark 1997).
With respect to our study, we did not observe chicks
recoiling from stimulus presentations as might be
expected for a trigeminal irritant, and chicks
responded at stimulus concentrations that are more
typically attributed to olfactory perception (<10–5 M,
Kirifides et al. 2004). Behavioral responses were also
qualitatively similar to those we have observed in sim-
ilar tests using established foraging odors (e.g. DMS,
Cunningham et al. 2003). 

Potential role of ammonia as a foraging cue

The sensitivity range suggests that the blue petrel
Halobaena caerulea may be able to use ammonia as a
signal molecule for detecting prey patches, and this is
a topic that deserves further research. Ammonium is
the major excretion product of seabird prey, including
schooling mesopelagic fish and krill swarms. Although
ammonium is taken up by phytoplankton through
nitrogen recycling, it has also been shown to accumu-
late in surface seawater for at least several hours in
association with dense krill swarms. For example,
Johnson et al. (1984), measured ammonium (NH4

+)
levels within a krill swarm to be on average 0.75 mmol
m–3 (7.5 × 10–7 M) higher than in adjacent seawater
and suggested that these levels were generated by
excretion over a period of 15.5 h. 
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Fig. 1. Halobaena caerulea. Average behavioral responses of
24 blue petrel chicks to ammonia using the Porter method.
Mean (+SE) scores are plotted for responses to control and
to each solution concentration. #Significant difference from

control response (p < 0.05)

Fig. 2. Halobaena caerulea. Responses to ammonia of fed
(black bars; N = 9) vs. unfed (white bars; N = 12) chicks, show-
ing percentage of positive scores for control and for each solu-
tion concentration. Feeding status of 3 birds could not be
determined and these were therefore not included in this 
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While it is not known how much of this ammonium is
volatilized, the discovery that blue petrels are respon-
sive to picomolar solution concentrations suggests that
they may be able to use trace emissions to identify pro-
ductive foraging areas. Marine ammonia emissions
have not been as well studied in the sub-Antarctic as
emissions of other trace gases. However, empirical
measurements taken in the remote Pacific (Quinn et al.
1988, 1990, as cited by Nightingale & Liss 2004) sug-
gest that the sea-to-air flux of NH3 is similar in size to
DMS emissions. Blue petrels are sensitive to DMS at
sea, and chicks also respond to it using the Porter
method (e.g. Nevitt et al. 1995, Nevitt 2000, Cunning-
ham et al. 2003). Moreover, the foraging behavior of
blue petrels involves searching remote, offshore areas
for patchily distributed prey in pelagic waters (e.g.
Chaurand & Weimerskirch 1994), where the signal-to-
noise ratio for ammonia and other trace gases emitted
into the atmosphere in association with zooplankton
aggregations is likely to be high (see discussion in
Larsen et al. 2001). Large fetch, wave action and wind,
all typical of the Southern Ocean environment, should
increase the rate of transfer between seawater and air.
Wave spray will tend to aerosolize ammonia in solu-
tion, while low temperatures will tend to reduce the
atmospheric equilibrium concentration and the extent
of volatilization (Liss & Galloway 1993, Liss et al. 2004). 

With respect to signaling prey availability to birds,
we speculate that signals should be strongest when
prey is closest to the surface, since it has previously
been established that ammonium concentrations in
surface seawater reflect vertical migratory patterns of
mesozooplankton. For example, Priddle et al. (1997)
showed that ammonium concentrations in near-surface
(top 30 m) water around South Georgia varied diur-
nally, with maximum values reaching 1.3 mmol m–3

(1.3 × 10–6 M) near local midnight, dropping to as low
as 0.1 mmol m–3 (1 × 10–7 M) around noon. Thus, if blue
petrels can detect volatilized ammonia at sea and use it
to locate, recognize, or otherwise evaluate potential
prey hotspots, then this ability may be most useful at
night when prey is closest to the surface and when
visual cues are obscured. In support of this hypothesis,
the correlation between prey availability and diet
implies that at least some foraging occurs at night (e.g.
Croxall et al. 1999, Cherel et al. 2002). However, the
mechanisms by which blue petrels locate prey are not
completely understood, particularly in terms of eluci-
dating the interaction between olfactory and visual
cues with respect to prey capture (see Nevitt 2000).
Clearly, the combined evidence suggests that volati-
lized ammonia may be an important signal molecule
for this species, but whether blue petrels and other
procellariiforms can use it as a foraging cue at sea will
require further investigation.

Ammonia as a signal molecule in the terrestrial
habitat

A common assumption is that procellariiform
seabirds navigate to islands by simply seeing them in
the distance, but this perspective overlooks the fact
that other species do not share the same sensory world
as humans (for reviews see Dusenbery 1992, Wiltschko
& Wiltschko 1994 and Goodenough et al. 2000). For
example, previous studies have suggested that olfac-
tory features of island habitat are likely to be as dis-
tinctive for procellariiforms as visual features are for
humans (reviewed by Nevitt & Bonadonna 2005a).
With respect to homing, Grubb (1974) showed that
Leach’s storm-petrels Oceanodroma leucorhoa translo-
cated just 500 m from their nesting colonies failed to
relocate their burrows if their olfactory nerves were
transected. Moreover, intact birds consistently ap-
proached colony sites by zigzagging upwind (Grubb
1974; see also Griffin 1940, Billings 1968, Grubb 1973),
suggesting an olfactory-mediated search (see Dusen-
bery 1992 for detailed descriptions of olfactory search).
More recent studies indicate that similarly displaced
blue petrels Halobaena caerulea and thin-billed prions
Pachyptila belcheri fail to relocate nest sites when ren-
dered temporarily anosmic (smell-blind) (Bonadonna
et al. 2001, 2004). While vocalizations are audible in
colonies, these results indicate that auditory cues pro-
vided by mates and conspecifics were insufficient for
nest site relocation at these spatial scales. At greater
distances, procellariiforms may be able to use mag-
netic cues for orientation and navigation, but a variety
of species can still home accurately, even when the
local magnetic field has been experimentally disrupted
(e.g. white-chinned petrels Procellaria aequinoctialis:
Benhamou et al. 2003, Bonadonna et al. 2005).

Although procellariiform seabirds doubtless use a
hierarchy of cues in long-distance navigation (Nevitt &
Bonadonna 2005b), the demonstration that petrels can
detect volatilized ammonia indicates that it is a potential
odor landmark used for homing to islands, particularly at
night or in fog when other cues are obscured. Sub-
Antarctic islands are detectable by smell from a distance,
even to humans, due to the large number of seabirds and
marine mammals that tend to breed on them. A primary
component of this characteristic odor can be attributed to
nitrogen waste, and in particular, to volatilized ammonia.
For example, on Macquarie Island, Erskine et al. (1998)
found volatilized ammonia in the air spaces 1 m above
penguin colonies, and were able to trace the transfer of
this ammonia inland as well as out to sea. In Antarctica,
ammonia transfer from penguin colonies has been traced
as far as 15 km (Rankin & Wolff 2000). These data sug-
gest that the odor signature around inhabited islands is
a prominent feature for those animals that can detect it. 
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The association of ammonium with inhabited islands
suggests that ammonia and associated scents may
contribute to the sensory cues birds use to evaluate habi-
tat before choosing to nest there for the first time. For
example, nitrogen signatures also give local information
about where nesting sites are or have been historically
(see Lindeboom 1984, Erskine et al. 1998, Bergstrom et
al. 2002). On Macquarie Island, soils from direct excre-
ment zones of nesting animals, especially soils associated
with burrowing petrels, had a substantially higher
concentration of soluble nitrogen than soil samples
collected away from such influence (Erskine et al. 1998).
Total soluble nitrogen levels were highest (1.8 ± –0.4 µM
g–1 dry wt) at a burrowing petrel site, surpassing those in
soils collected from penguin colonies (1.61 ± 0.3 to
0.8 ± –0.1), elephant seal wallows (0.2 ± –0.1), light-man-
tled, sooty albatross, nesting sites (0.6 ± –0.2), and areas
frequented by skuas and non-indigenous rabbits
(0. ± –0.2), giant petrels (1.2 ± –0.1) and humans (0.5 ±
–0.2). The dominant soluble form of nitrogen was ammo-
nium, whereas concentrations of other forms (nitrate,
urea, uric acid and amino acids) were comparatively low.
Soils sampled at the burrowing petrel site also contained
45% protein – double to that at any other site. These data
are noteworthy, since urinary proteins have been linked
to individual recognition in other species (mice, e.g.
Hurst et al. 2001) and could also be explored in the
context of burrow or individual recognition (Bona-
donna et al. 2001, 2004, Bonadonna & Nevitt 2004). 

CONCLUSIONS

The results presented here suggest that blue petrels
can detect ammonia at concentrations pertinent to both
foraging and navigation. The extreme sensitivity
suggests that blue petrels may be able to use volatilized
ammonia to detect prey patches at sea, and this is a topic
that deserves further research. For example, with re-
spect to multi-level ecological monitoring programs, our
results suggest that examining the relationship between
seabird distributions and seawater ammonium concen-
trations may provide insights into the foraging behavior
of birds and other predators (Serebrennikova & Fanning
2002, Chapman et al. 2004), particularly with respect to
the mechanisms used to find prey. In the context of
homing, a picture is emerging that sub-Antarctic islands
represent prominent olfactory features in the sensory
landscape in which blue petrels and other procel-
lariiforms operate. Our results thus establish volatilized
ammonia as a measurable, biogenic, scented compound
in the hierarchy of cues that these birds have available to
them  to relocate their home islands. The possibility that
petrels use ammonium as a cue for evaluating potential
breeding areas needs to be further explored.
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