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Abstract

Recent years have witnessed significant advances in our under-
standing of bounds on rationality in both cognitive psychology
and economics. These two fields have been making separate
progress, but time is ripe for unifying these efforts. In this ar-
ticle, we introduce recently developed economic tools, them-
selves rooted in the psychometric tradition, to quantify indi-
vidual differences in the capacity for cognitive control. These
tools suggest that a reliable assessment of the capacity for cog-
nitive control may be accomplished by examining task perfor-
mance as a function of reward. We demonstrate through sim-
ulation studies that an incentive-informed measure of task per-
formance does a better job of recovering individual differences
in one’s capacity for cognitive control, compared to the com-
monly used congruency effect. Furthermore, we show that the
economic approach can be used to predict control-dependent
behavior across different task settings. We conclude by dis-
cussing future directions for the fruitful integration of behav-
ioral economics and cognitive psychology with the aim of im-
proved measurement of individual differences in the capacity
for cognitive control.
Keywords: mental effort; executive function; individual dif-
ferences; rational inattention; Bayesian revealed preference

Introduction
Cognitive control is a collection of mechanisms that enables
us to adapt information processing in service of current task
goals. Our capacity to exert control is crucial for accomplish-
ing complex tasks and is related to various real-life outcomes
such as work success and good health (Diamond, 2013). Yet,
numerous factors can constrain our capacity to exert con-
trol (Musslick & Cohen, 2021), including its efficacy and
cost. Individual differences in these factors, and the resulting
capacity for control, have been theorized to predict perfor-
mance outside the laboratory (Musslick, Cohen, & Shenhav,
2019). Unfortunately, traditional performance-based mea-
sures of cognitive control capacity (i.e. accuracy, response
time) remain poor predictors of performance in the real world
(Saunders et al., 2018). In this article, we leverage a psycho-
metric framework from behavioral economics—grounded in
rational inattention—to derive a novel, choice-based measure
of control-dependent behavior and assess its internal and ex-
ternal validity. Our results suggest that the estimation of fac-
tors determining the capacity for cognitive control can be im-
proved by assessing performance as a function of incentives.

Researchers have developed a variety of paradigms to in-
dex a given person’s capacity to exert cognitive control. Most
commonly, these paradigms require the participant to cate-

gorize a target stimulus while ignoring one or multiple dis-
tractors (Dreisbach & Fröber, 2019). For instance, in the
Stroop task, participants are required to name the ink color
of a color word (e.g., say “red” in response to “GREEN”)
while ignoring the word. Such interference tasks allow for
the computation of a congruency cost: the difference in per-
formance (e.g., accuracy) on trials in which target and dis-
tractor are associated with the same response (congruent tri-
als, e.g. “RED” in the Stroop task) and trials in which the
distractor interferes with the target to produce a competing
response (incongruent trails, e.g., “GREEN” in the Stroop
task). Congruency costs have commonly been applied to as-
sess real-world self-control outcomes (e.g., addiction treat-
ment compliance, healthy diets; Streeter et al., 2008; Allan,
Johnston, & Campbell, 2010). However, the test-retest ability
of interference-based measures in cognitive control tasks is
surprisingly low (Hedge, Powell, & Sumner, 2018; Draheim,
Tsukahara, Martin, Mashburn, & Engle, 2021). Moreover,
task performance measures that are supposed to target the
same construct (e.g., the inhibition of distraction information)
are poorly correlated with one another (Rouder & Haaf, 2019;
Whitehead, Brewer, & Blais, 2019) and are poor predictors
of other measures, such as questionnaires that tap into real-
life outcomes (Dang, King, & Inzlicht, 2020). This issue is
complicated in choice-based paradigms, aiming to assess par-
ticipants’ preference for executing control-demanding tasks
(e.g., Kool, McGuire, Rosen, & Botvinick, 2010; Westbrook,
Kester, & Braver, 2013) as such preferences can be deter-
mined by a multitude of factors other than one’s capacity for
cognitive control (Musslick et al., 2019).

Mounting theoretical work suggests that the low predictive
validity of performance- and choice-based measures derives
from a confound between a person’s capacity for cognitive
control and their willingness to exert it. For instance, build-
ing on a cost-benefit model of control allocation (Shenhav,
Botvinick, & Cohen, 2013), Musslick et al. (2019) demon-
strate that traditional metrics, such as the congruency effect,
can be driven by a variety of factors unrelated to a person’s ca-
pacity for cognitive control, such as the amount of practice on
a task. Related simulation work shows that the performance-
enhancing influence of positive affect can be explained in
terms of both a reduction in the cost of cognitive control
and an enhanced sensitivity to rewarding outcomes (Grahek,
Musslick, & Shenhav, 2020). Thus, assessing one’s capac-
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ity for cognitive control requires dissociating it from factors
influencing motivation to exert it. Prior theoretical work sug-
gests that proper estimation of the capacity for control may
require an assessment of performance as a function of incen-
tives (Musslick, Cohen, & Shenhav, 2018). This comports
with recent efforts in economics on utilizing the psychometric
information contained in task accuracy across different incen-
tives (Caplin & Martin, 2015). Borrowing from production
theory, this line of work suggests that the amount of attention
a person is willing to supply for a given incentive reflects the
underlying cost of attention—just like the quantity of prod-
uct a company is willing to supply for a given price reflects
the cost of production (Caplin, Csaba, Leahy, & Nov, 2020;
Caplin, 2021). Caplin et al. (2020) leverage this operational-
ization to quantify the costs of attention from task accuracy
without confounding the effect of incentives. This suggests
that a similar measure of control-demanding behavior—as a
function of incentives—can prove useful for indexing an in-
dividual’s capacity for cognitive control.

In this article, we leverage the psychometric theory of ra-
tional inattention, as introduced by Caplin et al. (2020), to
derive an incentive-informed measure of cognitive control ca-
pacity. After introducing the measurement procedure, we de-
rive a formal relationship between the introduced metric and
the traditional congruency effect. We then build on a well-
established model of control allocation, to simulate individ-
ual differences in task performance. We examine the inter-
nal and predictive validity of the introduced measures, by ex-
tracting them from the simulated performance and by corre-
lating them with internal variables that determine an agent’s
capacity for cognitive control. We demonstrate that the as-
sessment of performance across incentives provides a better
index of cognitive control capacity and that it may provide a
reliable predictor of cognitive performance across individuals
and tasks. We conclude by outlining directions for the joint
advancement of economic theory and psychometrics.

The Psychometrics of Rational Inattention
Our psychometric framework builds upon the intellectual tra-
dition of bounded rationality, assuming that human cogni-
tion is rational within certain boundaries (Chater & Oaks-
ford, 1999; Anderson, 1990; Griffiths, Lieder, & Goodman,
2015). While an unboundedly rational agent always chooses
the ‘best’ action to take, the actions chosen by a boundedly
rational agent may not always be the absolute ‘best’ but are
on average as good as possible without requiring an unrea-
sonable amount of effort.

To formalize this framework in an experimental setting,
we use A to denote the set of actions selected by a partici-
pant (e.g., responding “red” or “green” in a Stroop task). The
value of a chosen action typically depends on the experimen-
tal condition (e.g., whether the color of the Stroop stimulus
is red or green). We call the set of experimental conditions
states, denoted by S. As we will demonstrate below, a Stroop
task with congruent and incongruent trials may be charac-

terized by two states (congruent and incongruent) with two
respective actions (correct or incorrect response). Finally,
how good an action a ∈ A is in a state s ∈ S is quantified
by an expected utility function U : S×A→ R≥. A partici-
pant that is boundedly rational must always choose according
to an action strategy that maximizes the expected value of
U(s,a)−K(experiment). Here U(s,a) represents the utility
the agent receives and K represents the (mental) cost the agent
has to pay to resolve this choice problem. What we mean by
an action strategy is simply the probability of choosing an
action given a state, denoted as p(a|s). Hence the expected
value of U(s,a)−K(experiment) amounts to∑

s∈S

∑
a∈A

U(s,a)p(a|s)p(s)−K(experiment)

where p(s) denotes the probability of the state s occurring in
the experiment. The quantities p(s) and p(a|s) can be eas-
ily determined based on the choice data. The probability of
each state is set by the experimenter and the marginal proba-
bility of an action in a given state can be estimated from the
participant’s choice data using their choice frequency. Unfor-
tunately, one cannot directly measure a participant’s utility
function U nor their cost of control K. However, U can be
estimated based on the reward structure of the experiment.
While there is plenty of work proposing ways to estimate U
from rewards under different research contexts, (Caplin et al.,
2020) provide a first, general procedure for recovering the
mental cost K—henceforth referred to as Caplin et al.’s K—
from only the choice data.

To assess K, we require that the same participant per-
forms the task (i.e, identical set of experimental conditions
and actions) under different utility functions. This can be
accomplished by asking the participant to perform multiple
instances of the same experiment but under different incen-
tives. To illustrate this, consider a “baseline” experiment with
a given utility function U that we set as a reference point.
We require that in all other experiments, the same participant
must have a utility function wU for some w ∈ R≥. Next for
each of the experiments, we can compute the marginal prob-
ability pw(s,a) = pw(a|s)pw(s) of the state s and the action a
from the frequencies of each unique pair of state and action
in the choice data 1. Caplin et al. denote the expected utility
of the experiment as a function of w:

û(w) =
∑
s∈S

∑
a∈A

wU(s,a)pw(s,a)

The main quantity of interest in our framework is the ex-
pected utility normalized by the weight w:

ū(w) =
û(w)

w
=
∑
s∈S

∑
a∈A

U(s,a)pw(s,a) (1)

where ū(w) is the revealed expected utility calculated using
the choice data of the w weighted experiment and the utility
function of the base experiment. Caplin et al. (2020) prove

1Note that all marginal probabilities must add up to 1.
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Figure 1: Caplin et al.’s K. K(w) is the area of the region to the
left of the revealed expected utility ū curve between ū() (the
revealed expected utility for the base experiment) and ū(w)
(the revealed expected utility for the experiment that provides
w times more of an incentive than the base experiment). w,
w, and w are three example values of w.

that if the participant is indeed a boundedly rational agent,
ū should be a monotonically non-decreasing function. If the
data supports such monotonicity, one can recover K:

K(w) = wū(w)−
∫w


ū(t)dt. (2)

Note that K is a function of w, that is, there is a separate K
for each experiment (each with a different reward structure).
The geometric intuition is illustrated in Figure 1. To summa-
rize, we can recover K from the empirical choice data using
the following steps:

Step 1 Recruit participants for a base experiment at which
the participants each has some utility function U . Then, ob-
tain the marginal probabilities p(a, s) for each state and action
pair from each participant’s choice data.

Step 2 Repeat step 1 for a set of n experiments that are iden-
tical to the base experiment except for the reward structure.
Importantly, the reward structures differ in such a way that
participant’s utility function in each experiment is some pos-
itive multiple w of U . n should be large enough to estimate
how the function ū depends on w according to Eqn. 1.

Step 3 Compute the revealed expected utility ū for each ex-
periment, and then compute K according to Eqn. 2.

We illustrate the recovery method based on an application
to the Stroop task.

Application to the Stroop Task
In a simple version of the Stroop task, a participant may
choose from two relevant actions, to indicate the ink color
of a color word (accurate) or not (inaccurate):

A = {correct, incorrect}.

Two possible experimental states (or conditions) may occur
with equal frequency: the ink color may match the word (con-
gruent condition) and the ink color mismatches the word (in-
congruent condition).

S = {congruent, incongruent}.

If the action is the correct response (i.e., ‘accurate’), the par-
ticipant gets the reward of 1 point, otherwise she gets 0 points.

Step 1 With the aformentioned Stroop task as our base ex-
periment, the first step is to collect data. In this article, we
obtain all the data from a simulated cognitive agent which
we introduce in the next section. Because data are simulated,
can implement the assumption that reward points equal the
participant’s utility. Thus, for the base experiment:

U(s,a) =

{
 if a = correct
 if a = incorrect

From the data, one can calculate p(s,a) for each pair of state
and action. Because actions can be only correct or incor-
rect, the marginal probability of being correct

∑
s∈S p(s,a =

correct) can be interpreted as the participant’s accuracy. Be-
cause under this particular utility function, the utility value
does not depend on the state amounts to 1 whenever the ac-
tion is correct, and 0 if it is incorrect, the expected utility is
equal to the marginal probability of being correct and can thus
be also interpreted as participant’s accuracy.

Step 2 Now we need to simulate data from versions of the
Stroop experiment with the same S and A, and ∃w ∈ R≥
such that its reward/utility function

Uw(s,a) =

{
w if a = correct
 if a = incorrect

For each experiment, if the action amounts to the correct re-
sponse (i.e., ‘accurate’), the participant gets the reward of
w ∗  = w point, otherwise she gets w ∗  =  points. Akin
to Step 1, the expected utility of each of these data divided by
w, i.e. ū(w), can be understood as the participant’s response
accuracy in the task where the reward is w points, instead of 1
point. Similarly, a participant’s accuracy in only the congru-
ent condition is equivalent to ū(w|s = congruent) and partici-
pant’s accuracy in only the congruent condition is equivalent
to ū(w|s = incongruent). To emphasize these operational in-
terpretations, from now on we denote

• w as R (reward for accurate responses),

• ū(w) as A(R) (accuracy as a function of reward),

• ū(w|s = congruent) as AC(R) (congruent trial accuracy),
and

• ū(w|s = congruent) as AI(R) (incongruent trial accuracy).

Step 3 Using our new notations, we can compute the Caplin
et al.’s K as K(R) = RA(R) −

∫R
 A(t)dt. We next compare

and contrast Caplin et al.’s K with the congruency effect,
which has been the state-of-the-art indicator of the capac-
ity for cognitive control in the literature. The congruency
effect in the Stroop experiment with reward R, denoted by
∆A(R), is defined as the difference in accuracies on congru-
ent and incongruent trials in the experiment with reward R,
i.e., ∆A(R) = AC(R)−AI(R). These two measures have two
crucial distinctions. First, Caplin et al.’s K traces its roots to
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a rigorous and very general mathematically theory entailed
directly by the bounded rationality paradigm, whereas the us-
age congruency effect is restricted to tasks like the Stroop task
and lacks such theoretic connections. Second, while Caplin
et al.’s K takes advantage of the accuracy function at all re-
ward levels, the congruency effect only depends on one ex-
periment. Since both measures were computed using the ac-
curacy function, they also formally related:

Proposition 0.1. If the experiment entails an equal number
of congruent and incongruent trials, we can show that,

K(R)−KI(R) =
R

(∆A(R)−∆Ā|R )

where KI(R) refers to the Caplin et al.’s K calculated using
only the data in the incongruent condition, and ∆Ā|R denotes
the mean of congruency effects from reward 0 to R.

Proof. By definition,

K(R) = RA(R)−
∫R


A(t)dt

Because we assume there are the same number of trials in
congruent and incongruent condition,

= R
AC(R)+AI(R)


−

∫R



AC(t)+AI(t)


dt

= R
∆A(R)+AI(R)


−

∫R



∆A(t)+AI(t)


dt

=
R


∆A(R)+RAI(R)−
∫R



∆A(t)


dt −
∫R


AI(t)dt

=
R


∆A(R)−
R


∆Ā|R +RAI(R)−
∫R


AI(t)dt

=
R

(∆A(R)−∆Ā|R )+KI(R)

K(R)−KI(R) =
R

(∆A(R)−∆Ā|R )

The relationship between Caplin et al.’s K and the con-
gruency effect is illustrated in Figure 2. However, while
the existence of such a relationship serves as an inter-
esting theoretic result, it does not imply that they are
equally useful as estimators of one’s capacity for cogni-
tive control. We will proceed to validating these met-
rics using simulated data from a computational model
of control allocation below. The corresponding simula-
tion code, as well as the domain-general recovery method
is available on GitHub (https://github.com/musslick/
Psychometrics-of-Rational-Inattention).

Assessing the Internal and Predictive Validity
of Caplin et al.’s K

The validity of any performance-based metric of control-
demanding behavior can be assessed based on its ability to
(a) track internal variables of the control system, and (b) pre-
dict behavior across tasks. So far, we considered three dif-
ferent metrics: the traditional congruency effect (assessed at

Figure 2: Caplin et al.’s K and mean congruency effect ∆Ā.
Red curve: average accuracy in the congruent condition (AC);
green curve: average accuracy in the incongruent condition
(AI); blue curve: the average accuracy for the entire task (A);
yellow curve: congruency effect (∆A). Blue region: Caplin
et al.’s K of the entire task; green region: Caplin et al.’s K of
only the incongruent condition; Yellow region: 10 times the
mean congruency effect (∆Ā| ) where 10 corresponds to
the highest reward.

reward = ), Caplin et al.’s K, and the mean congruency ef-
fect, averaged across reward conditions. In this section, we
extract these metrics from the behavior of a simulated agent
in an interference task. The agent implements a model of
control allocation based on the Expected Value of Control
(EVC; Shenhav et al., 2013) which has been used to sim-
ulate a wide array of empirical findings concerning human
performance (e.g., Musslick, Shenhav, Botvinick, & Cohen,
2015; Grahek, Shenhav, Musslick, Krebs, & Koster, 2019;
Grahek et al., 2020; Shenhav, Straccia, Musslick, Cohen, &
Botvinick, 2018; Bustamante, Lieder, Musslick, Shenhav, &
Cohen, 2021). We then examine how well the introduced
metrics relate to latent variables that determine the agent’s ca-
pacity of control, and how well they can predict performance
in a second, unrelated task.

The Expected Value of Control Model
The EVC theory by Shenhav et al. (2013) proposes that an
agent determines the optimal amount of control by maximiz-
ing the expected value of control, that is, the expected utility
of implementing a control signal with a given intensity u mi-
nus an intrinsic cost that scales with the intensity of the signal

EVC(u,S) = P(correct|u,S)V (R)−Cost(u)

where P(correct|u,S) is the probability of responding cor-
rectly on a task, V (R) represents the value of committing a
correct response for a given incentive R (e.g., monetary re-
ward), and Cost(u) amounts to the cost of implementing the
control signal with intensity u. It is hypothesized that the con-
trol system chooses to implement the control signal with the
maximal expected value of control:

u∗ = argmax
u

EVC(u,S).
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Parameterization of Simulated EVC Agents
For the simulations reported in this article, we assume that
the probability of responding correctly in an interference task
increases monotonically with the amount of control intensity
allocated, following the sigmoid function:

P(correct|u,S) =


+ eε·u−a

where ε characterizes the control efficacy, i.e. how an in-
crease in control signal intensity translates into changes in
task accuracy. The parameter a determines the degree of task
automaticity: The higher a, the easier the task, that is, the
less cognitive control is needed to reach the correct outcome2.
Note that a = a− i depends on the amount of interference i
in the current trial. For congruent trials, we assume that the
agent receives no interference i =  whereas in incongruent
trials, the agent receives some amount of interference i > 
(effectively lowering the probability of responding correctly).

The subjective value can be described as a function of the
reward R provided for a correct response. Here we assume
that the subjective value of the correct outcome amounts to

V (R) = v ·R+b

where R is a monetary reward that is provided in the event
of a correct response, v is the reward sensitivity of the agent
and b is the baseline value that the agent assigns to being ac-
curate (accuracy bias). Finally, the EVC agent is assumed to
allocate control by taking into account an intrinsic cost that
scales with control signal intensity. For the simulations re-
ported below, we chose an exponential cost function,

Cost(u) = ec·u −

where c scales the increase in the cost of control with one
unit of control signal intensity u. To simulate individual dif-
ferences in EVC agents, we sampled parameters of the model
from the uniform intervals listed in Table 1. The intervals
were chosen such that the agents would allocate at least some
amount control (u∗ >) for each task condition. Note that the
control efficacy ε and the control cost c both characterize an
agent’s capacity to exert control across different tasks.

Table 1: Uniform intervals of sampled EVC parameters.

Parameter Description Min Max
e control efficacy 4 5
c control cost 0.8 0.9
v reward sensitivity 0.95 1.05
aA automaticity of Task A -4 -2
aB automaticity of Task B -4 -2
iA distractor interference of Task A -2 -1
iB distractor interference of Task B -2 -1
b accuracy bias 5 5

Simulation Procedure
Following the estimation procedure outlined above, we sim-
ulated behavior for different reward conditions, ranging from

2The automaticity of a task may be influenced by a number of
factors, such as prior experience with the task.

R =  to R =  in steps of .. For each reward condi-
tion, we assessed the agent’s performance in congruent trials
(iA = ) and incongruent trials (iA >) of an interference task,
henceforth referred to as Task A. We also simulate the behav-
ior of an EVC agent in an additional task that we refer to as
Task B. We ensured that Task A and Task B were unrelated to
one another, by sampling task automaticities and interference
effects for both tasks independently for each agent. Thus, an
agent’s automaticity aB and interference iB for Task B can be
considered independent from their automaticity aA and inter-
ference iA for Task A. We simulated behavior for a total of
1000 EVC agents whose parameters were drawn from uni-
form distributions listed in Table 1.

Analysis
For each reward and trial condition, we computed the agent’s
congruency effect by subtracting P(correct|u,S) in incongru-
ent trials from P(correct|u,S) in incongruent trials, i.e. ∆A =
P(correct|u,S) − P(correct|u,S). We also derived Caplin et
al.’s K(R = ), by integrating the accuracy of each simu-
lated agent across all reward conditions (Figure 2, blue area).
Finally, we computed the related, mean congruency effect
across reward conditions (cf. Proposition 0.1).

To examine the internal validity of each metric, we as-
sessed the Pearson correlation of that metric with (1) the con-
trol efficacy ε as well as (2) the control cost c, across the
1000 simulated agents. We assessed the predictive validity
by correlating the metrics derived from Task A with the con-
gruency effect at r=0 in Task B. The integral term involved in
calculating K was approximated using the trapezoid rule. To
remove the effect of simulation sample size, non-parametric
bootstrapping with 6000 samples was used to obtain the stan-
dard error of the absolute value of each correlation coefficient
and the p-value of the difference in correlation coefficients.

Results: Internal Validity
To compare the internal validity in task A, we correlated our
measures each with the simulating parameter values. We
found that all of our three measures correlate significantly
with the control cost and control efficacy parameters (|t |>,
df = , p < −). However, the correlation between the
control cost and the congruency effect for R =  (r = .)
is significantly weaker than between the mean congruency ef-
fect from R=  to R=  (r = ., p= .) and between
Caplin et al.’s K at R =  (r = ., p = .). The corre-
lation between the control cost and the mean congruency ef-
fect from R=  to R=  is also significantly weaker than that
between Caplin et al.’s K at R=  (p= .). However, the
correlation between the control efficacy and the congruency
effect for R =  (r =−.) is not significantly weaker than
between the mean congruency effect from R =  to R = 
(r = −., p = .). However, note that both measures
yield a significantly weaker correlation than Caplin et al.’s K
at R =  (r = −., p < −). This result indicates that
Caplin et al.’s K can better predict the control cost and effi-
cacy than the congruency effect.
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Figure 3: Correlation strength. The x-axis represents differ-
ent measurements calculated from the simulated Stroop task.
The y-axis represents the absolute value of Pearson correla-
tion between the measurement and the quantity shown in the
panel label. ∆A() is the congruency effect at reward 0, ∆A|
is the mean congruency effect from reward 0 to 10, K(10) is
Caplin et al.’s K at reward 10. Error bars are bootstrapped
confidence intervals using 6000 samples.

Results: Predictive Validity
We found that all three metrics derived from the agents’ per-
formance in Task A correlate significantly with the congru-
ency effect at R =  in Task B (t > , df = , p < −).
Similarly, the correlation between the the congruency effect
at reward 0 in task B and the congruency effect for R = 
in task A (r = .) is significantly weaker than between
the mean congruency effect from R =  to R =  in task A
(r = ., p = .). Caplin et al.’s K at R =  in task A
correlates more strongly with the congruency effect in Task B
than the other two measures (r = ., p < −). This in-
dicates that Caplin et al.’s K can predict better the congruency
effect of another cognitive control task.

General Discussion
People rely on cognitive control to adjust how they process
information in order to achieve their goals. Although reli-
able measurement of the capacity to exert cognitive control
is crucial for predicting important outcomes (e.g., mental and
physical health, job success; Diamond, 2013), current mea-
sures of control (e.g., the congruency effect) show poor inter-
nal and external validity (Hedge et al., 2018; Saunders et al.,
2018). Here we propose that one of the causes of this issue is
that the current measurement approaches are focused on mea-
suring control capacity at a fixed point. While there is exten-
sive research showing that motivation increases how much
cognitive control people exert (Botvinick & Braver, 2015;
Parro, Dixon, & Christoff, 2018; Shenhav, Fahey, & Grahek,
2021), current approaches measure cognitive control capacity
at a fixed motivational point, rather than considering how the
amount of control changes as a function of incentives. In this
work, we introduced Caplin et al.’s K as a novel measurement
technique that relies on the integration of task performance
across reward conditions. This measurement device is im-

plied by economic theories of rational inattention, resulting
in a formal relationship with existing measures (Caplin et al.,
2020; Caplin, 2021).

Building on the bounded rationality framework, we ex-
posed a relationship between Caplin et al.’s K and the con-
gruency effect measured as a function of linearly increasing
incentives. We examined the validity of these metrics based
on the behavior of simulated agents implementing a well-
established theory of control allocation (Shenhav et al., 2013;
Musslick et al., 2015). We find that Caplin et al.’s K does
a better job of predicting latent variables that determine an
agent’s capacity for cognitive control (control efficacy and
control cost) compared to the traditional congruency effect.
Moreover, Caplin et al.’s K can be leveraged to predict an
agent’s behavior across unrelated interference tasks. These
results provide initial support for the idea that considering
how performance varies as a function of incentive levels is
crucial for assessing the capacity for cognitive control.

While Caplin et al.’s K shows promise in advancing the
quantification of control-demanding behavior, there are im-
portant next steps to take. First, our simulations call for repli-
cation with data collected from human participants. How-
ever, humans may not satisfy our simplifying assumption that
expected utility scales linearly with the reward offered for
correct performance. Addressing this may require a varia-
tion of prize probabilities as opposed to rewards (Caplin et
al., 2020) or the consideration of prospect theory (Tversky &
Kahneman, 1992). Moreover, calculating Caplin et al.’s K for
noisy empirical data might require fitting the accuracy func-
tion A(w). This could be done either via assuming the shape
of the function or relying on symbolic regression (Udrescu
et al., 2020). Second, here we have focused exclusively on
task accuracy, but accuracy is known to tradeoff with reaction
times in cognitive tasks (Bogacz, Brown, Moehlis, Holmes, &
Cohen, 2006). Thus, future work is needed to incorporate ex-
isting models of the reaction time-accuracy tradeoff into the
economic theory of rational inattention.

Despite current limitations, the introduced measurement
device opens up new vistas for the systematic characterization
of cognitive control across paradigms. Given that Caplin et
al.’s K can be computed for arbitrary experiment conditions,
it may help quantify and tie together the demands for cogni-
tive control across different paradigms (e.g., task switching
or dual-tasking). This includes varying demands for cogni-
tive control as a function of expected trial frequencies, e.g.,
the relative proportion of congruent versus incongruent trials
(Logan & Zbrodoff, 1979). Finally, Caplin et al.’s K promises
to expose a formal relationship between the avoidance of cog-
nitive control (assessed in terms of task preferences; Kool et
al., 2010) and task performance. A combination of psycho-
metrics and rational inattention may offer novel paths to in-
tegrating the various ways in which researchers assess cogni-
tive control. Such an integrative effort may not only further
the cognitive control capacity but advance concomitant theo-
rizing of rational inattention in behavioral economics.
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