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Abstract:  We consider bargaining in a bipartite network of buyers and sellers, who can only 
trade with the limited number of people with whom they are connected.  Such networks could 
arise due to proximity issues or restricted communication flows, as with information 
transmission of job openings, business opportunities, and transactions not easily regulated by 
external authorities.  We perform an experimental test of a graph-theoretic model that allows us 
to decompose any two-sided network into simple networks of three types, with unique 
predictions about equilibrium prices for the networks in our sessions.  We begin with two 
separate simple networks, which are then joined by an additional link.  Participants appear to 
quickly grasp important characteristics of the networks.  The results diverge sharply depending 
on how this connection is made, typically conforming to the theoretical directional predictions.  
Payoffs can be systematically affected even for agents who are not connected by the new link.  
We find strong evidence that shares (publicly) allocated in the past to others in one’s current 
position substantially and significantly affect what one is willing to accept. 
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1. Introduction 

 In institutions such as financial markets, people make independent and anonymous 

decisions that interact through a central clearing mechanism that matches buyer and seller.1  

However, in other environments, individual agents are only in contact with a small number of 

other agents, and transactions can only take place if there is a direct ‘link’ (e.g., a social or 

business relationship) connecting two agents.  In this sense one can talk about a network, which 

summarizes the structure of linkages among people.  Intuitively, some connections may be better 

than others. 

Network structure has economic implications for a wide range of situations that feature a 

limited number of agents and connections.  A market may be inherently thin, as with exclusive 

dealers, airplane or arms sales, or international relations.  Even where there are many players, 

useful information may be transmitted only through private channels, as is often the case for job 

openings, business opportunities, and confidential transactions.  A network is a non-market 

institution, with important market-like characteristics.  It can be seen to represent an intermediate 

case between bilateral bargaining and matching in a large centralized market.2

Social networks may play an important role where there is little effective external 

regulation.  For example, Lamoureaux (1986, p. 648) states that “the operation of New England 

banks [in the first half of the nineteenth century] was shaped primarily by kinship networks,” and 

attributes the successful industrialization of the region to these networks.  Guseva and Rona-Tas 

(2001) find that social and business networks ameliorated problems in the emerging Russian 

                                                           
1 Nevertheless, there are still human agents in this system.  Professional traders and market makers may strongly 
prefer to transact with others of their cohort, so that links may still play a role.  
2 Roth, Prasnikar, Okuno-Fujiwara & Zamir (1991) highlight the effect of competition, demonstrating that results 
are very different for an ultimatum game, with one-to-one matching, and a ‘market game’, where a single agent on 
one side can agree to a proposal from any of nine agents on the other side. 
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credit-card market in the early 1990s, which suffered from both difficulties in screening 

applicants and a lack of effective punishment or sanctions for violations. 

While theoretical work on network structure has been progressing rapidly, there have 

been few empirical tests; however, the stylized theoretical environment lends itself to laboratory 

experiments.  In this paper, we assume that the basic network structure is exogenously given.  

While this is clearly not the case in many environments, here the imposed network structure 

could be seen as representing social, legal, or cultural trading restrictions.  This abstraction 

allows us to focus on the issue of the resulting bargaining allocations once the network has 

reached the form we consider.   

We extend the infinite-horizon Corominas-Bosch (2004) graph-theoretic model of buyers 

and sellers to a finite-horizon experimental game.  The model allows us to decompose any 

countable number of agents into relatively simple subgraphs (plus some extra links).  This 

decomposition (and the associated equilibrium payoffs) is unique for the networks we study, 

(although it is not unique for general bipartite networks) and determines whether any particular 

link is relevant to the local equilibrium price.  The process of price formation is central in 

economics, and there are many applications for which the traditional Walrasian approach seems 

inadequate; Rubinstein and Wolinsky (1985), Gale (1987), and others model price formation as 

an outcome of decentralized bilateral bargaining.  Pairs of traders who reach agreements leave 

the market, and those remaining (and re-matched) continue to bargain, as in our design. 

The crucial question that this paper investigates is how the network ‘architecture’ affects 

the outcomes and dynamics of bargaining.  We perform a test on whether it matters how a simple 

link is added between two small groups of traders.  One link is theoretically irrelevant, while the 

other should have dramatic effects.   We find that the manner in which the link is added has a 
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major impact on the bargaining outcome, as the results diverge sharply across treatments and 

broadly conform to the theoretical predictions.  Payoffs can be systematically affected even for 

agents who are not connected by the new link.   

Most of the discrepancies between the data and theoretical predictions seem to be 

attributable to two behavioral phenomena: First, we find that people receive significantly less 

when they have only one connection, even where the theory predicts no difference in outcomes.  

Perhaps having only a single connection makes one nervous, or inspires perceived bargaining 

weakness.  Second, we see strong evidence that shares (publicly) allocated in the past to others 

in one’s current position substantially and significantly affect what one is willing to accept, 

suggesting that a form of social learning (Ellison and Fudenberg 1993) is taking place.  

 

2. Background 

There are two strands to the network literature in economics.  One branch of research 

examines the process of network formation; see for instance Jackson and Wolinsky (1996), 

Jackson and Watts (forthcoming), Bala and Goyal (2000) or Kranton and Minehart (2001). The 

second strand considers the impact of exogenously-specified network structures on outcomes; 

examples include Bala and Goyal (1998), Glaeser, Sacerdote & Sheinkman (1996), Morris 

(2000), Chwe (2000), and Calvó-Armengol (2001).  Our study relates to the second strand, as we 

do not consider the issue of how networks were formed, or which networks we might expect to 

form if there are modest costs to forming (or severing) links.  Our motivation for considering 

exogenously-specified networks is that we are primarily interested in isolating the effect of a 

small change in network structure on bargaining behavior and prices.  We simply presume that 

the links are already in place due to some relationships that have (or had) value, and that the cost 
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of (endogenous) change is prohibitive.  In this sense, the networks we use are effectively stable 

and have immediate economic application. 

Although economics experiments on networks are recent, there are now several such 

papers, all with a very different focus than ours.3  Corbae and Duffy (2001) study 2x2 games, 

where participants play all of their ‘neighbors’ in the network.  Cassar (2002) finds that play in a 

coordination game typically converges to the efficient Nash equilibrium less frequently with 

local interaction or a random network than with a ‘small-world’ network.  Deck and Johnson 

(2002) examine the effect of cost-sharing institutions in endogenous networks, obtaining slightly 

better efficiency when players can bid between zero and the full cost of a direct link.  Riedl and 

Ule (2002) find stable cooperation in a prisoner’s dilemma when people can choose their own 

partners.  Falk and Kosfeld (2003) find that the Bala and Goyal (2000) model predicts outcomes 

fairly well with one-way flows, but does quite poorly with two-way flows.4  While all of these 

studies consider network-related issues, none directly address the asymmetrical nature of many 

networks, how network structure affects bargaining outcomes, or the value of different links. 

Also related is the social-learning literature, which generally considers the effect of 

dynamic aggregation of social information on equilibrium outcomes.  Ellison and Fudenberg 

(1993, p. 612) use the term social learning to describe contexts where “agents base their 

decisions, at least in part, on the experience of their neighbors,” listing (p. 613) three features for 

such learning environments, all of which are satisfied here.5  Ellison and Fudenberg (1995) find 

that word-of-mouth communication may lead to superior choices and socially-efficient 

                                                           
3 Kosfeld (2003) offers an excellent survey of this embryonic field. 
4 Kirchkamp and Nagel (forthcoming) study a prisoner’s dilemma game with local interaction. Berninghaus Ehrhart 
& Keser (1998) use a 3-person game; participants are either connected to neighbors on a circle or play within closed 
three-person groups. 
5 1) Agents observe both their neighbors’ choices and the payoffs that these choices generate; 2) Agents periodically 
reevaluate their decisions, as opposed to making a once-and-for-all choice; 3) Players may be sufficiently 
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outcomes.  Jackson and Kalai (1997) study recurring games, where a stage game is played 

repeatedly, but each stage is played by a new group of players.  This set-up seems closest in 

spirit to our game, but involves signals that shed light on the distribution of types in the 

population.6  

In our environment, a link can have an important impact or no impact at all depending on 

which subnetworks it connects.  In a sense, this result is reminiscent of the concept of ‘structural 

holes’ in the sociology literature.  Burt (1992) contends that people have a competitive 

advantage if they are at bottlenecks in partially-connected networks.  In terms of power, being 

adjacent to a link between two groups that are each internally well-connected but are largely 

separate is more valuable to the people at the nodes than are links within a fully-connected 

group.  See Willer (1999) and Burt (2000) for discussions of the literature and issues in this 

field. 

 
3. The Model 

Corominas-Bosch (2004) provides a method for decomposing a network of buyers and 

sellers into relatively simple subgraphs, plus some extra links.  Our adaptation to the laboratory 

is a two-sided market, with two types of agents (e.g., buyers and sellers) who engage in 

sequential bargaining – alternating offers over a shrinking pie, with multiple possible rounds.   

Suppose there are n sellers and m buyers of a homogenous good for which all sellers have 

reservation value 0 and all buyers have reservation value 1.  Each buyer desires only one unit of 

the good, and each seller can supply only one unit.  Is the price dependent only on the relative 

sizes of n and m, and will all trades take place at the same price?  Here buyers (sellers) bargain 

                                                                                                                                                                                           
heterogeneous that under full information they would not all make the same choice.  In our case, one’s neighbors are 
in a sense temporal. 
6 See also Jackson and Kalai (1999) and Bala and Goyal (1998, 2001). 
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with a pre-assigned subset of all sellers (buyers); links are non-directed, which means that A is 

linked to B if and only if B is linked to A.  Any buyer may be connected to multiple sellers and 

vice versa.  The network structure is common information, as are all proposals and 

acceptances.7,8   

Our analysis incorporates the following intuition: Some networks are ‘competitive’, so 

that the short side of the market receives all surplus.  On the other hand, other networks are 

‘even’ (neither of the sides is stronger), and agents split the payoffs nearly evenly.  This structure 

generalizes to any network, and we can decompose any network into a union of smaller 

networks, each one either a competitive or an even network, plus some extra links.   

Consider three types of particular bipartite graphs (GS, GE, and GB); in the graphs below 

we arbitrarily have sellers reside at the top nodes and buyers reside at the bottom nodes.  Let 

graphs GS be those with more sellers than buyers, such that any set of sellers can be ‘jointly 

matched’ with buyers if the number of sellers in this set does not exceed the number of buyers.9  

In the following figure, G1 is of type GS since it has more sellers than buyers (3 versus 2), and 

since we can find a joint matching involving any set of 1 or 2 sellers.  Graphs GB are the 

complement, substituting sellers for buyers and vice versa.  Finally, graphs GE have as many 

sellers and buyers and are such that there exists a joint matching involving all of them.  

                                                           
7 One might object that it is unrealistic for a seller to simultaneously advertise the availability of a good to many 
parties when there is only one unit available.  Indeed, we might expect somewhat different behavior if an agent 
could only make an offer to one other specified agent in each round, even where the theoretical predictions are the 
same.  Nevertheless, there are markets where this practice occurs and where it is understood that there is only one 
unit available.  For example, when one wishes to publish a paper in law journals, one may simultaneously submit the 
paper to all law journals, even though it can only be published in one of them.  Similarly, stores (e.g., car 
dealerships) may send out flyers to ‘linked’ buyers advertising a product of which there is only one unit available for 
purchase.  We feel that our game should be viewed as a reduced form that abstracts from many aspects of real-word 
negotiations. 
8 Of course, bargainers maintain personal anonymity in the laboratory. 
9 Intuitively, a set of sellers can be jointly matched if there exists a collection of pairs of linked members such that 
each agent belongs to at most one pair.  See Appendix A for more detail and the formal definitions. 
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G3  :  type  GBG1 :  type GS  G2 :  type GE

 

Not every graph is one of these three types, as is illustrated by the following graph:  
  s1

 b1

  s2      s3  s4

  b2   b3  

Nevertheless, we can decompose this graph into two subgraphs, one of type GS and one 

of type GE, plus an extra link. 

GS GE

 

Theorem 1 (shown in Appendix A) shows that any graph decomposes as a union of 

subgraphs which are of one of these three types, plus some extra links which will never connect a 

buyer in a subgraph GB with a seller in a subgraph GS.  As in Corominas-Bosch (2004), a simple 

iterative algorithm for decomposing countable bipartite networks is at the heart of the process.10

The graph below is an example of the decomposition process; it decomposes into two 

subgraphs of type GS, one of type GE and one of type GB. 

                                                           
10 An outline: We first remove the subgraphs that have a set of sellers of size t collectively linked to less than t 
buyers. We do so starting with the subgraphs in which multiple sellers are collectively linked to only one buyer. 
Then we remove the subgraphs in which more than 2 sellers are collectively linked to only 2 buyers.  When we have 
exhausted all the possibilities we then remove the subgraphs that have a set of buyers of size t, collectively linked to 
less than t sellers.  The subgraphs removed in the first case, will be type GS

i, the ones removed in the 2nd case will be 
type GB

i and the remaining subgraphs will be type GE. 

 7



 

decomposes as:

GS
1 GS

2 GE
1 GB

1

 
 

The decomposition we have defined above directly allows us to characterize equilibrium 

outcomes.  The subgame-perfect equilibrium payoff will give all the surplus to the short side in 

the subgraphs that are GS or GB (competitive networks), while the surplus will be split relatively 

evenly (taking into account the first mover advantage) in GE subgraphs (even networks).  We 

demonstrate below precisely how this works for the particular networks and procedures used in 

our experimental design. 

 
Implementation 

Before describing the details of the bargaining game, it may be helpful to show the 

particular networks that we use in our experiment: 

 
(1)                 (2)                 (3)            

  s1

    b1

  s2

 

   s3  s4

   b2   b3   

   s3  s4

   b2   b3  
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 Network (1) is analogous to the Roth et al. (1991) market game, but with only two proposers 

(instead of nine) for each responder.   In both networks (2) and (3), there are two buyers and two 

sellers; in network (2) each buyer is connected to each seller, while in network (3) there is no 

link between b2 and s4.  In these networks, nodes represent traders and arcs represent trading 

possibilities. 

We begin our experimental sessions with one network (1) and one of either network (2) 

or (3).  We later introduce a connection between the two networks, linking either the bottom of 

(1) to the top of the other network, or the top of (1) to the bottom of the other network.  The 

discerning reader might also notice that the prediction of different behavior resulting from these 

different links would also hold with network (1) and a separate dyad, a simpler case.  However, 

we chose the 7-person structure to provide a bit more richness in the environment; as it happens, 

the number of links in the 4-person network becomes behaviorally relevant, as we find some 

differences depending on whether this network is fully connected.  To the best of our knowledge, 

we are the first to experimentally compare behavior in a N versus a |X| structure. In addition, one 

of the strong predictions of the model is that people who are not directly involved with the added 

link can nevertheless be affected by it.  By using a 7-person network, we have more possibilities 

for testing this prediction without increasing the complexity too much. 

 In the first round of bargaining, sellers simultaneously make proposals to divide 2500 

with any of their linked buyers.11  These offers are displayed, and buyers then simultaneously 

choose to accept at most one of the proposals made by linked sellers.  If one or more responders 

accept the same share proposed by one or more proposers, the accepting player who is left 

                                                           
11 Note that sellers and buyers are simply labels.  We could have just as well called the first movers buyers and the 
results would be unchanged. 
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unmatched after a coin flip is then matched with the other proposer who made the same offer.12  

This means that responders actually accept a proposal, but they do not care with which specific 

proposer they trade.  If a buyer and seller trade, they and their links are removed from the 

network.  If any linked buyers and sellers remain, the game proceeds to the 2nd round, where now 

buyers propose divisions of 2400 to all of their linked sellers, who choose whether to accept.  If a 

3rd round is necessary, sellers propose divisions of 2300, etc.  There are at most 6 rounds of 

bargaining; a coin is flipped in front of the group after round 4 to determine whether the period 

ends after round 5 or round 6.13  All unmatched players receive 200.14   

Let us examine how to determine the subgame-perfect equilibrium payoffs (subsequently 

denoted by PEP).  Our analysis begins with the study of the simplest possible cases: Networks 

with at most 2 sellers and 2 buyers.  We start by considering triads: 

(1) 

 200

 2300

 200

 
 

In the unique PEP of our game (see Proposition 1; all propositions and proofs are given in 

Appendix B), the buyer receives 2300, and the sellers receive 200.  The result is intuitively clear: 

Competition is so strong that the agents on the long side are forced to yield all surplus to the 

agent alone on the short side.  In this respect, it is worth noting that competition is much stronger 

                                                           
12 We thank Matt Jackson and Tom Palfrey for pointing out that in fact this process is necessary for the equilibrium 
predictions to hold. 
13 We introduced this uncertainty in order to prevent unraveling effects, at least prior to round 5.   
14 We chose a non-zero reservation payoff to avoid having to give individual participants no money other than the 
show-up fee.  This may serve to reduce any ‘fairness’ considerations, which are not the research question for this 
paper.  We shall see that the passage of time seems to reduce their impact in any case.  While we could have chosen 
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than the ultimatum effect given by the last period.  Even if it is the turn of s1 and s2 to propose in 

the last period, they are forced to yield all surplus to agent b1. 

A buyer and seller linked only to each other will split the surplus nearly evenly, with the 

initial proposer having a small advantage (Lemma 1), and we can extend this result to both 

networks feasible with two sellers and two buyers (Proposition 2): 

              

       (2)                     (3) 

1300 1300

1200 1200   

1300 1300

1200 1200   
 

According to this theory there is no difference between the predictions for networks (2) 

and (3).  One might initially suppose that the equilibrium should favor the agents having more 

connections, but a closer look tells us that the extra connection in (2) is actually irrelevant.  

Suppose the seller with two links offers a small share to the buyers.  Clearly the buyer with two 

links will reject such a proposal, since he has the other seller all to himself.  If the other buyer 

also rejects the proposal, then the seller with two links will be forced to offer a larger share.  This 

process continues until all buyers and sellers receive equal shares (subject to the slight inequality 

present from the asymmetric timing of offers). 

When the number of players in each side is less than or equal to two, we have seen that 

either we have a network in which one side completely extracts the surplus from the other side 

(we will denote these networks as ‘competitive’ networks, like Network 1) or we have networks 

in which neither of the sides is stronger, with the surplus being split evenly with the proposer 

                                                                                                                                                                                           
a higher reservation payoff to reduce fairness considerations, doing so would have also reduced the power of our 
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having a slight advantage (denoted as ‘even’ networks, as Network 2 or 3).  Equivalently, we can 

also state that the theoretical joint payoffs received by agents always falls into one of only two 

categories: 1) When agents are in a competitive network, the agent on the short side receives 

2300 (all the surplus minus the reservation value), while the agent on the long side receives 200 

(the reservation value).  2) In an even network, agents making initial proposals receive 1300 

(slightly more than half of the pie) and agents responding to these proposals receive 1200 

(slightly less than half of the pie). 

Interestingly, this property can be generalized to any network.  Theorem 2 (see Appendix 

B) tells us that in each network, no matter how complex it may be, there exists an equilibrium in 

which agents either extract all the surplus, receive only the reservation value, or split the pie 

nearly evenly.  This result uses the existence of a decomposition (see Theorem 1) that allows us 

to split any network into subgraphs that are either competitive or even, plus some extra links.  

Competitive subgraphs reproduce situations in which, as in Network 1, there exists an 

equilibrium in which the long side extracts all surplus.  Even networks (like Network 2 or 3) 

reproduce situations in which there exists an equilibrium in which agents split the surplus 

roughly evenly.  This PEP is not unique in all cases, but it is unique for the networks used in this 

experiment.  Our derivation closely follows Corominas-Bosch (2004), by adapting the model of 

the infinite-horizon game treated therein to our finite-horizon game.  

Applying Theorem 2 to our networks, we get the following PEP for the 7-player 

networks, which we show is unique in Propositions 4 and 5. 

                  (4)                        (5) 

                                                                                                                                                                                           
statistical tests to show the effect on behavior of adding a link. 
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  200 

 2300 

 200   1300  1300

 1200 1200 
  

200

2300

200  1300  1300

1200 1200
 

 (6)                        (7) 
 200 

 2300 

200  200  200 

  2300 2300   

200

 2300

200  200  200

  2300 2300  
It may be helpful to provide some intuition for the theoretically-predicted differences 

between, for instance, networks (4) and (6), the 7-person groups that are formed by adding a link 

between the smaller networks.  In network (6) the added link from s2 to b2 (hereafter, a top-to-

bottom link, or tb) serves as a propagation mechanism.  We know that one of the sellers must 

receive the reservation payoff, since there is no way to match all sellers with all buyers.  Assume 

it is s1 (we can start with s2, s3, or s4 and get the same result), then s2 must also receive the 

reservation payoff, or else s1 could make a proposal that would yield him a slightly higher payoff 

than the reservation value, a proposal that should be accepted by b1.  Similarly, it must be the 

case that s3 proposes receiving the reservation payoff, otherwise s2 could deviate.  This leaves b3 

in a position to also extract surplus.  Essentially, the buyers are jointly able to exploit the sellers; 

b1, b2, and b3 receive full shares and s1, s2, s3, and s4 receive only the reservation payoffs.   

On the other hand, in network (4) there is no propagation across the added link (hereafter, 

a bottom-to-top link, or bt).  Seller s3 knows that either s1 or s2 must get 0, so that b1 will expect 

to get a full share. This implies that s3 eliminates b1 from his bargaining plans, and the (s3, 

s4,b2,b3) network can be considered in isolation.  
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Thus, an apparently minor change in the network (differing by only one connection) may 

strongly alter the situation.  A new connection can affect players who are not directly involved.  

On the other hand, some new connections are theoretically irrelevant.  

 

 

4. Experimental Design 
 

This experiment was conducted at the Universitat Pompeu Fabra in Barcelona, Spain.  

Participants were recruited by posting notices at campus locations.  A total of 105 people 

participated in our study (each person could only participate in one session).  Most of these were 

students in economics or business, with a smaller percentage of students in the humanities.  

Session lasted about 100 minutes and average earnings were approximately 1600 Spanish 

pesetas (at the time, $1 = 140 pesetas), including a show-up fee of 500 pesetas. 

Participants were given written instructions (an English translation of the instructions is 

presented in Appendix C) and these were read aloud.15  We used a three-person network and one 

of two types of four-person networks in the initial phase of our experimental sessions.  Thus, 

there were seven agents in each experimental session.  These are the networks we used in the 

initial phase:  

 s2 s1

b1     

s3 s4

b2 b3  
or 

                                                           
15 The instructions did not correctly reflect the specifications of the theoretical model when two agents 
simultaneously accept the same individual’s offer, while there was another identical offer available (see footnote 
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 s2 s1

b1   

s3 s4

b2 b3  

 

We conducted 15 sessions.  There were 4 sessions for each type of network, except for 

Treatment 1, as one session was canceled due to an insufficient number of participants.  Each 

session consisted of 10 separate bargaining interactions or ‘periods’.  Every participant received 

a sheet of paper that stated his or her letter assignment in the period.  

The networks were drawn on the board and each proposal was written next to the player’s 

letter.  In the first half of the first round, agents s1, s2, s3, and s4 made proposals on sheets of 

paper.  Blank sheets were also collected from agents b1, b2, and b3, so that anonymity with 

respect to role was preserved.  In the second half of this bargaining round, agents b1, b2, and b3 

indicated which one (if any) of the outstanding proposals they wished to accept.16  Acceptances 

and rejections were indicated on the board and an ellipse was drawn around links between those 

agents who had reached agreements, removing them and their links from the network.  

Bargaining rounds continued as needed.  In the second bargaining round, agents b1, b2, and b3 

made proposals and agents s1, s2, s3, and s4 indicated which one (if any) of the outstanding 

proposals they wished to accept.  This pattern continued in odd and even rounds.  Each period 

was comprised of up to 5 or 6 bargaining rounds (decided by a coin flip after round 4), with the 

total amount to be divided shrinking after each unsuccessful bargaining round. 

                                                                                                                                                                                           
12).  However, this situation was rare in the laboratory and was in fact implemented in accordance with our model in 
three of the five cases where it occurred. 
16 In the 2nd half of the first round, we collected responses from b1, b2, and b3, as well as blank sheets from s1, s2, s3, 
and s4.  In all subsequent rounds (if necessary), we continued to collect sheets from every player. 
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The session then proceeded to the next period.  We randomly changed positions for each 

individual in each period, subject to the constraint that each person remained in their original 3- 

or 4-person network.  While it might seem more natural to keep the same letter assignments 

throughout the session and learning might well have been thereby accelerated, fixed roles in our 

multi-period design could lead to people deciding to invest in some form of reputation; in 

addition, role changing allows for ‘smoothing’ of the heterogeneity of individuals and minimizes 

arbitrary performance by a participant unhappy at being stuck in a disadvantageous role 

throughout the session.  More importantly, as will be shown later, this does not lead to different 

results (for the basic networks in period 1 to 4) from comparable studies without role changes. 

Finally, one of our findings, that subjects are influenced by others’ behavior in their position, 

would not have been identifiable without this role rotation.17  Nevertheless, it is possible  

We played four periods before adding a link between the two networks and six periods 

after the link was added.  The number of periods to be played either before or after the link was 

added was not divulged to the participants, although they were told that there would be a change 

in the network at some point in time.  The participants only learned the nature of the new 

network at the time that the change was publicly introduced.  

People were told that one of the 10 periods would be chosen at random for 

implementation of actual monetary payoffs.  At the end of the experiment, a 10-sided die was 

rolled to determine the period chosen for payment.18  Participants were then paid individually 

and privately.  Table 1 below summarizes our treatments: 

 
                                                           
17 Furthermore, Charness and Rabin (forthcoming) find no significant effects from role rotation in simple binary-
choice games, and Heijden, Nelissen and Verbon (2002) show how role rotation is qualitatively irrelevant in a 
sequential exchange-game experiment (note that we have role randomization, not role rotation).  In fact, Binmore, 
Shaked and Sutton (1985) find that role reversal brings results closer to equilibrium in a bargaining game. 
18 This random-payment design avoids possible ‘income effects’ from participants having accumulated wealth in 
early periods. 
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Table 1 – Treatment Summary 

Treatment 7-person network Sessions Periods/Session  

1 V / |X| 3 10 

2 V / N 4 10 

3 V \ |X| 4 10 

4 V \ N 4 1019

                     

  

5. Experimental Results 

In this section, we present our results and the performance of the theoretical predictions.  

Overall, we find that the maximum number of matches (three) was achieved in 139 of 149 

periods, with 98% (437 of 447) of all potential matches made.  Table 2 shows the distribution of 

the number of rounds needed to reach agreement in each session: 

 

Table 2 - Agreements Reached, by Round 

 Round 
Treatment 1 2 3 4 5 6 None 

1 64 
(71.1%) 

19 
(21.1%) 

3 
(3.3%) 

0 
(0.0%) 

2 
(2,2%) 

0 
(0.0%) 

2 
(2.2%) 

2 93 
(77.5%) 

19 
(15.8%) 

2 
(1.7%) 

3 
(2.5%) 

1 
(0.8%) 

0 
(0.0%) 

2 
(1.7%) 

3 99 
(82.5%) 

14 
(11.7%) 

1 
(0.8%) 

1 
(0.8%) 

1 
(0.8%) 

0 
(0.0%) 

4 
(3.3%) 

4 79 
(67.5%) 

24 
(20.5%) 

5 
(4.3%) 

6 
(5.1%) 

1 
(0.9%) 

0 
(0.0%) 

2 
(1.7%) 

Total 335 
(74.9%) 

76 
(17.0%) 

11 
(2.5%) 

10 
(2.2%) 

5 
(1.1%) 

0 
(0.0%) 

1020

(2.2%) 
 

On average, participants received 96.2% of the possible surplus of 6300 for each 7-

person group, and this was fairly consistent across treatments and pre- and post-link periods.21  

                                                           
19 There were only nine periods in one session of Treatment 4. 
20 Two disagreements in N networks were the result of players s3 and b3 reaching an agreement, and leaving players 
E and F isolated.  Thus, only 8 disagreements reflect failed bilateral bargaining.   
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Three-quarters of all possible matches are made in the first round, while another 17% are made 

in the second round.   Only 15 bargaining sessions go beyond round 4, and two-thirds of these 

never become agreements.22  Thus, of the total inefficiency of 3.8%, 2.2% can be attributed to 

failed negotiations while the rest is due to agreements reached after round 1. 

Table 3 summarizes the average payoffs for first-round agreements in each treatment, 

both before and after the introduction of the additional link after period 4.23,24

 

Table 2 – Average Payoffs by Network Position (First-round Agreements)  

 Network Position 
Treatment Period s1 s2 b1 s3 s4 b2 b3

         
1-4 606 

(200) 
525 

(200) 
1569 
(2300) 

1265 
(1300) 

1260 
(1300) 

1238 
(1200) 

1229 
(1200) 

 
1 

V / |X| 5-10 396 
(200) 

331 
(200) 

1974 
(2300) 

1264 
(1300) 

1288 
(1300) 

1217 
(1200) 

1236 
(1200) 

         
1-4 819 

(200) 
434 

(200) 
1443 
(2300) 

1333 
(1300) 

1082 
(1300) 

1108 
(1200) 

1279 
(1200) 

 
2 

V / N 5-10 400 
(200) 

386 
(200) 

1924 
(2300) 

1327 
(1300) 

1252 
(1300) 

1175 
(1200) 

1248 
(1200) 

         
1-4 560 

(200) 
737 

(200) 
1403 
(2300) 

1246 
(1300) 

1262 
(1300) 

1258 
(1200) 

1229 
(1200) 

 
3 

V \ |X| 
 

5-10 982 
(200) 

784 
(200) 

1482 
(2300) 

934 
(200) 

757 
(200) 

1407 
(2300) 

1374 
(2300) 

         

                                                                                                                                                                                           
21 The proportions range from 94.7% (periods 1-4 of Treatment 3) to 97.4% (periods 5-10 of Treatment 2).  
22 Although the numbers here are quite small, a similar result in time-decay bargaining is found in Charness (2000).  
This result shows that even a relatively large financial disincentive in the last period may not induce an agreement in 
a final dyad.  However, these disagreements are rare, suggesting that even though there is some form of ‘fairness’ 
present in these dyads, it is not a major factor in our results. 
23 We only use first-round agreement data since bargaining behavior in later rounds may also be confounded by 
changes in the remaining network structure.  In theory, all bargaining should end in round 1; recall that this occurs 
75% of the time.  This selection criterion will be used in tests throughout the paper, unless otherwise noted.  For 
completeness, the average payoffs for all cases are shown in Appendix D. 
24 Data for periods 1 to 4 reveal two features.  The V network has unequal divisions with the bottom extracting most 
of the pie.  This is similar to the result observe in Roth, Prasnikar, Okuno-Fujiwara & Zamir’s (1991) market game. 
Second, in the “balanced” network |X|, both sides of the market obtain almost equal shares as in the standard 2 
person pie shrinking game.  We take both of these results as indication the role randomization did not have a 
substantial effect on our results. 
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1-4 442 
(200) 

725 
(200) 

1533 
(2300) 

1261 
(1300) 

1119 
(1300) 

1122 
(1200) 

1294 
(1200) 

 
4 

V \ N 5-10 839 
(200) 

839 
(200) 

1661 
(2300) 

729 
(200) 

750 
(200) 

1537 
(2300) 

1475 
(2300) 

Equilibrium payoffs in parentheses 

 

A nonparametric Wilcoxon-Mann-Whitney rank-sum test (Siegel and Castellan 1988) on 

payoff changes, using fully-independent session-level data (15 observations), confirms that the 

type of link added (tb or bt) strongly affects bargaining behavior. The changes in average (s1,s2) 

payoffs and the average difference in (b2,b3) and (s3,s4) payoffs are always highest when a tb link 

is added; this reverses for player b1’s payoffs (see Table D1).  Each of these comparisons 

indicates a difference significant at p = 0.002.   

Several implications of the theory can be tested; we first consider the point predictions, 

and then discuss the qualitative predictions.  Table 4 breaks the average payoff per position 

down by link-type, and reports whether the payoff differs (at the 5% significance level) from the 

theoretical prediction. We pool all the (first-round agreement) data for s1, b1, and b2, as the type 

of link does not affect the predicted payoffs for these positions.25  For s2, s3, b3, and b4, the 

theory distinguishes between whether or not there is a tb link.  The columns give the theoretical 

predictions, and in each cell the average amount is reported, accompanied by r if the theoretical 

prediction is rejected and nr otherwise.  As can be seen, only two of the 11 predictions cannot be 

rejected.  However, the relative magnitudes of the estimates seem to go in the direction 

suggested by theory. 

 

Table 4 – Tests of the Quantitative Theoretical Predictions 

Type Link 200 1200 1300 2300 
s1 All 641 r    

                                                           
25 We note that the apparent differences in A and B payoffs in periods 1-4 in some treatments vanish when these are 
(appropriately) aggregated across treatments. 
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s2 All 578 r    
b1 All    1646 r 
s3 No tb   1286 nr  
s3 tb 855 r    
s4 No tb   1211 r  
s4 tb 754 r    
b2 No tb  1188 nr   
b2 tb    1464 r 
b3 No tb  1255 r   
b3 tb    1418 r 

 

To test the qualitative predictions, we first average the payoffs by subject (for each 

position and relevant link).  Using these per-subject averages, we conduct sign tests.  Each cell 

compares whether the column and row components are equal, with a one-sided test if there is a 

directional hypothesis: 

 

Table 5 – Nonparametric Tests of Payoff Comparisons26  

 Type s1 s2 s3 s4 b2 b3 s3 s4 b2
Type Link All All No tb No tb No tb No tb tb tb tb 

s2 All nr, t         
b1 All r, t r, t        
s3 No tb    r  
s4 No tb   r  

nr, t r,t 
 

b2 No tb    nr, t    
b3 No tb   

nr 
nr, t     

s4 tb       nr, t   
b2 tb      
b3 tb     

r, t r, t 
nr, t 

r (nr) means we can (cannot) reject (at p = 0.05) the hypothesis that the payoffs are equal.   
t means the result is consistent with the theory.   

 
All but two of the theoretical predictions find support.  Even for the two exceptions, the 

difference between actual average payoffs and predicted payoffs is never more than 100.27  We 

will explore the causes for these deviations in our discussion.  Generally the directional 

                                                           
26 All tests in this Table are sign tests, except for the (s3, s4) vs. (s3, s4) and the (b2, b3) vs. (b2, b3) comparisons, 
which are Wilcoxon-Mann-Whitney rank-sum tests. 

 20



comparisons are very much in line with the theoretical predictions, at high levels of statistical 

significance.28

Although the theoretical point predictions generally fail, the evolution of play suggests 

that this might be in part remedied over time.  The theory seems to fare poorly when it predicts a 

very uneven split.  In most of these cases however, payoffs either stabilize or move closer and 

closer to the predicted values.  Figures 1-3 illustrate how payoffs change over time for the top 

and bottom of each small network.  

Figure 1 - b1 Earnings Over Time
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Figure 1 shows that player b1’s earnings increase in all treatments prior to the addition of 

a link.  When the new link connects b1 and s3, b1’s earnings continue to increase steadily.  

However, when the new link connects s2 and b2, b1’s earnings do not change as much after 

period 4. 

                                                                                                                                                                                           
27 The (s3, s4) average payoff with no tb link is only slightly larger than the (b2, b3) average payoff, (1248 vs. 1221), 
instead of being 100 larger, and the s3 and s4 payoffs with no tb link are different (1286 to 1211). 
28 While we do not focus on the networks remaining after the first round of bargaining, some summary statistics may 
be useful.  There were 65 cases where only 2 connected bargainers remained after the first round.  These were 
always members of the original four-person network, except for one case where s1 and b1 remained unmatched. 
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Figure 2 shows that the average earnings for players s1 and s2 decline in all treatments 

prior to the addition of the new link.  This trend continues when the new link connects b1 and s3; 

however, when the new link connects s2 and b2, the average earnings increase somewhat. 

Figure 2 - Average (s1,s2) Earnings Over Time
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Figure 3 looks at the difference between the average payoffs for the top and the bottom 

of the 4-person network.  In the first 4 periods, there is very little difference between the average 

payoffs for b2 and b3 and the average payoffs for s3 and s4.  However, behavior after the new link 

is added is very sensitive to whether the link connects b1 and s3 or b2 and s2.   In the first case 

there is no change, but in the second case b2 and b3 payoffs increase dramatically. 

                                                                                                                                                                                           
There were also 24 cases where a set of 3 connected bargainers remained after the first round, with 15 of these being 
(s1, s2, b1).  All 8 bargaining failures occurred in the dyads. 
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Figure 3 - Average (b2, b3) - (s3, s4) Earnings over Time
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Hence, all of these trends appear to bring the division of payoffs closer to the theoretical 

predictions, except in the case where a tb link is added.  A possible reason for the latter behavior 

will be explored later. 

6. Discussion  

Thus far it seems fair to say that the model predicts the directions of the split rather well, 

and that the tb link has the expected effect.   Yet questions remain concerning what makes 

behavior differ from the exact predictions of the theory and how to explain the few qualitative-

prediction anomalies.  Of course, to the extent that we find factors that contributed to these 

deviations, these may very well be due to our particular experimental environment. 

The observed outcomes are the result of at least two decisions.  On the one hand, people 

decide what they are willing to offer.  On the other hand, people receiving these offers decide 

what they are willing to accept.  We first attempt to identify the determinants of whether an offer 

is accepted or rejected.  Table 6 presents probit estimates of the determinants of whether, in 

round 1, subjects accepted or rejected the best offer they received (when available offers 
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differed, the lower one(s) were never chosen).29  Two separate probit regressions are estimated 

for the responders, one for type b1 and one for pooled types b2 and b3.30

 

Table 6 - Determinants for Accepting an Offer 
 

 Type b1
 

Types b2 and b3
(pooled) 

Share offered (all link types for 
b1 and no tb link for b2 and b3) 

12.95*** 
(3.95) 

11.79*** 
(2.40) 

Share offered with tb link  
(for b2 and b3) 

-- 8.92*** 
(2.04) 

Average share the position 
received in the past 

-13.27*** 
(4.10) 

-2.10*** 
(0.77) 

2-link -- 0.54** 
(0.30) 

3-link 0.05 
(0.62) 

1.00** 
(0.46) 

Constant 0.97 
(1.39) 

-2.76** 
(1.21) 

Number of Observations 132 264 
 

Log likelihood -37.93 -107.67 
 

Period one omitted      *,**,*** indicates statistical significance at p = 0.10, 0.05, 0.01.   
2-link is a dummy that has a value of 1 if the offerer is linked to 2 people, and is 0 otherwise.   
3-link is a dummy that has a value of 1 if the offerer is linked to 3 people, and is 0 otherwise. 

 
As expected, the share offered is a significant factor with regard to acceptance or 

rejection – higher proposed shares are more likely to be accepted.  However, note that b2 and b3 

are generally willing to accept less money when there is a tb link.  This is a bit surprising, as we 

                                                           
29 In this case, a likelihood ratio test strongly rejects the random-effects specification for b2 and b3 types. Since the 
results are not markedly different for b1, we only include the probit in the text.  The random-effects probit estimates 
are available in a longer working-paper version. There were no significant period effects, so these are also omitted in 
the regression.  The results were unaffected. 
30 Pooling data for positions b2 and b3 may seem incorrect since although they are predicted to be equivalent in 
equilibrium, they might not be in practice. The extent to which they differ is the number of connections. Thus we 
control for the number of links even if these are not predicted to have an impact theoretically. Another (separate) 
issue is that, as shall be seen later, the added link between the two (originally) separate networks, tb and bt, may not 
be irrelevant in the laboratory. Hence we have also estimated the probit regressions interacting the share offered 
with a dummy for each type of link.  We show that for type b1, none of the three coefficient estimates differ 
statistically; for types b2 and b3, the cases with no link and with a bt link do not differ statistically, but the coefficient 
for the tb link differs from both of the others.  This both confirms the theory and validates the specification choice 
for the probit regressions.  
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have seen (Tables 3 and 4) that b2 and b3 receive a greater amount with a tb link.  It would 

appear that this effect must be driven by higher tb-link offers being made.  In fact, (s3,s4) round 1 

offers average 1366 with a tb link, compared to 1180 with a bt link (the Wilcoxon-Mann-

Whitney test gives  p < 0.001).  Since b2 can reach an agreement with s2 with a tb link, both s3 

and s4 should be concerned with being left unmatched in this case, and so must compete.  

We also observe the fact that the shares allocated in the past affect what one is willing to 

accept.  Thus, people appear to be learning the ‘social norm’ for the group.31  In an unfamiliar 

situation (either in the laboratory or in the field), where people may be uncertain about 

appropriate behavior, it is natural to consider that individuals update their beliefs about social 

norms on the basis of other observed outcomes.  Here we see that the higher the average share 

previously received by a position, the less likely it is that a person in that position will accept 

any given offer.  

We find that both b1 and (b2,b3) decisions on whether to accept offers are sensitive to 

whether the subject is connected to only one person; this is not predicted by the theory.  

However, this factor seems quite plausible psychologically; perhaps people get more nervous 

when they only have one connection, and are correspondingly less aggressive.  Also notice that 

the coefficient for a 3-link is nearly identical to that of the 2-link (it is not statistically different) 

for b2 and b3, and the coefficient for a 3-link is effectively zero for b1 decisions.32, 33  

                                                           
31 Note that this is not the usual form of learning, where agents learn from the agents to whom they are connected.  
Instead, since agents change positions, they see what other people do in the same position.  We find that their 
behavior is influenced by what they observe. 
32 Note that b1 is always connected to at least 2 people in the first round of bargaining, which is all we consider in 
our analysis. 
33 The analysis of the marginal effects is available in a longer working-paper version. 
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We can also examine the determinants of the offers made in the first round by s1, s2, s3, 

and s4.34  Our results for first-round offers by s1 and s2 (pooled) and by s3 and s4 (pooled) are 

shown in Table 7: 

 
Table 7 – Determinants of Offers 

 Types s1 and s2
35  Types s3 and s4

36

Independent variable Coeff. Std. Error Coeff. Std. Error 
Period 2 0.030  0.023 0.030  0.019 
Period 3 0.075*** 0.022 0.034** 0.015 
Period 4 0.106*** 0.023 0.013 0.019 
Period 5 0.176*** 0.025 0.012 0.021 
Period 6 0.204*** 0.024 0.034* 0.020 
Period 7 0.214*** 0.025 0.034* 0.020 
Period 8 0.215*** 0.024 0.040** 0.019 
Period 9 0.238*** 0.025 0.068*** 0.018 
Period 10 0.227*** 0.025 0.056*** 0.020 

tb link -0.101*** 0.022 0.041*** 0.016 
2-link -0.052*** 0.017 -0.031*** 0.010 
3-link -- -- -0.030** 0.014 

# of observations 298 296 
Period one omitted      *,**,*** indicates statistical significance at p = 0.10, 0.05, 0.01.   

2-link is a dummy that has a value of 1 if the offerer is linked to 2 people, and is 0 otherwise.   
3-link is a dummy that has a value of 1 if the offerer is linked to 3 people, and is 0 otherwise. 

 

Here we see positive time trends for (s1,s2) offers, with significant t-statistics almost from 

the beginning.  Perhaps these offers would approach the extreme level predicted with more time.  

In conformance with the payoffs displayed in Figure 2, but in contrast with the predictions, it 

appears that s1 and s2 adjust their offers downwards when a tb link is added.37  However, the 

negative coefficient for the tb link dummy is overwhelmed by the coefficients for the later 

periods.  The reason for this seems to be that after the tb link is added, s3 and s4 do not increase 

                                                           
34 These were estimated using fixed-effects regressions.  We can reject the hypothesis that the fixed effects are not 
statistically significant. 
35 Pooling is justified both theoretically and empirically (see Table 5). 
36 Although pooling is justified theoretically, one might oppose this on the basis of the results in Table 4.  Note, 
however, that the difference in payoffs between s3 and s4 only occurs if they are connected to a different number of 
buyers (see Table 8 below).  By controlling for the number of links, this is taken into account in the regression. 
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their offers as much as is predicted by theory.  This allows s2 to undercut s3 and also allows s1 to 

decrease his offers.   

Note that this also explains the anomalous jump in Figure 2 for Treatments 3 and 4.38  

We should also expect s3 and s4 to adjust their offers, and this is exactly what is observed. 

As with b1 and (b2,b3) offer-acceptance decisions, we find that both (s1,s2) and (s3,s4) 

offers are sensitive to whether the subject is connected to only one person.39  This may explain 

the surprising result (Table 4) that s3’s and s4’s payoffs are not equal.  To see this, we will show 

that results for networks 2 and 4 (where s3 and b3 have more connections than s2 and b2) drive 

the payoff inequality.  Also notice that for s3 and s4, the coefficient for a 3-link is nearly identical 

to that of the 2-link (it is not statistically different).  Table 8 presents some sign test results: 

 

Table 8 – Sign Tests on (s3,s4) and (b2,b3) Payoffs 

 
Link category, Network type 

 none, N tb, N bt, N none, |X| tb, |X| bt, |X| 
s3 vs. s4 r nr r nr nr nr 
b2 vs. b3 r* nr r nr nr nr 

r (nr) means we can (cannot) reject the hypothesis that the payoffs are equal.  
r* means significant at p = 0.10, but not 0.05. 

 
Our theory predicts that s3 and s4 payoffs should be the same, and b2 and b3 payoffs 

should be the same.  While s3 and s4 payoffs are not different for the |X| network, they are 

significantly different in most conditions for the N network.40  As the only real difference 

between these networks is the number of connections for s4, it appears that having only a single 

connection inspires perceived bargaining weakness.  

                                                                                                                                                                                           
37 A sign test indicates that s1 and s2 payoffs are significantly lower before a tb link than after one is made.   
38 This is also consistent with the observation that b1’s payoffs are higher in treatments 1 and 2 than in treatment 3 
and 4 (significant at the 1% significance level using a Mann-Whitney test). 
39 Note that for s1 and s2, this simply identifies the different impacts of the link on types. 
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As in bilateral bargaining games, buyers and sellers payoffs are closer than predicted, a 

phenomenon often attributed to some form of social preferences. However, evidence from 

market games (e.g., Roth et al. 1991) indicates that bargaining agreements are quite lopsided 

when there are unequal numbers of buyers and sellers.  Our evidence from the V network is 

consistent with this; for example, Figure 1 shows that b1 earnings begin to approach the full 

2300 predicted in the final periods.   It is worth noting that some prominent social-preference 

models (e.g., Fehr and Schmidt 1999, Bolton and Ockenfels 2000) successfully predict (via 

heterogeneity) the lopsided payoffs in the market game, so that the presence of fairness is not 

inconsistent with lopsided payoffs in a multi-player environment.  Finally, we note that our main 

result, the sharply divergent outcomes after bt versus tb links, occurs despite any existing social 

preferences, which might tend to diminish this divergence. 

 

Some modeling and design concerns and issues 

We have modeled bargaining as an alternating-offer process, with multi-lateral 

simultaneous bargaining.  We begin with the long side of the market making offers, and we do 

not consider the simpler case of 5-person networks with a bt or tb link between the triad and the 

dyad.  Finally, we provide full information about the network structure, offers, and acceptances 

to every experimental participant; these characteristics are not completely general to bargaining 

environments.  In view of these issues, we must consider whether our results are artifacts of our 

specific design. 

The first issue is that a more unstructured bargaining protocol might lead to different 

outcomes, as alternating-offers models may make idiosyncratic predictions about the effects of 

                                                                                                                                                                                           
40 Indeed, the only s3 vs. s4 comparison that is not significantly different in N networks occurs with a tb link.  This is 
consistent with our explanation, as here s3 is being directly undercut by s2, and so needs to adjust more (in an 
immediate sense) than does s4. 
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outside options in bilateral bargaining and this could carry over to the network structure in the 

design.41  While this is a reasonable concern, there is some evidence that the observed results are 

robust to the bargaining protocol.42   

A second concern is whether our results are robust to which side of the market made the 

first offer (in round 1), even though there is no theoretical difference.  We do have indirect 

evidence that allowing the short side to make the first proposal would not have affected the 

results greatly.  There were nine cases in periods 1-4 where no agreement was reached in the 

unconnected V in the first round of bargaining, but an agreement was reached in the second 

round, where the short side made the proposal to the long side of the market.  In all of these 

cases, the short side indeed received more than the matched agent from the long side.  The 

average amount received by the short side was 1683 (out of 2400), or 70% of the total.  This 

compares with 59% for agreements reached in the unconnected V in round 1; perhaps the 

divisions would be more extreme in the unequal case if the short side could move first.43  

While we do not consider the simpler 5-person network, we also have some evidence 

from those six instances where a connected 5-person network remained after the first round of 

bargaining.  In one of these cases, the remaining network was type bt, decomposing into a triad 

and a dyad; unsurprisingly, the dyad settlement was fairly even, 54% vs. 46%, while the short 

side of the V received 69% of the total.  More interesting are the five cases where a tb 5-person 

network remained; since this network cannot be decomposed, the theoretical predictions are for 

each agent on the short side to receive the lion’s share.  There were six agreements reached in 

                                                           
41 We thank Vince Crawford for this observation. 
42 Four students at Universitat Pompeu Fabra, A. Alsina, R. Fuertes, E. Moret & M. Planell, replicated our network 
and payoff structures in a couple of sessions for an undergraduate research project.  They used a double-auction 
design instead of alternating offers.  All subjects could submit bids in each round.  To maintain anonymity, bids 
were written down on pieces of paper and an experimenter would copy them on the blackboard.  Their results were 
close to ours, both with respect to payoffs, treatment effects, and efficiency.  
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the second round of bargaining, with the agent on the short side receiving an average of 72% of 

the total payoff (the range was 63-79%).  If a dyad remained after the second round, the split was 

50% for each agent, while if a triad remained, the agent on the short side received 77%.  These 

data suggest that results would not have been dramatically different if we had used 5-person 

networks in our design, although perhaps we would have observed more extreme splits in the tb. 

Another issue is that it may be unrealistic to expect bargainers to have the full 

information that we provide, limiting the applicability of our results.  One could reasonably 

argue that in practice one might not actually know details about transactions between parties 

with whom one cannot transact, so that the network must also determine the information flow in 

the group.  We chose this information structure in part for practical reasons (public display in a 

hand-run experiment), but also to introduce the possibility of social learning.  We recognize that 

eliminating imperfect information might well affect behavior and decision rules.  

Nevertheless, in the small markets/networks mentioned earlier (airplanes, arms, etc.), the 

limited number of participants may well know the full information that we provide.44  In 

addition, the Lovaglia et al. (1995) test of the effect of restricting this information showed no 

discernible difference in (late-session) outcomes, although it took substantially longer to arrive 

at these outcomes.  In line with these results, we conjecture that the public display of all 

information helped to accelerate the learning process, and perhaps served to minimize 

disagreements.  This additional information may facilitate a common perception of the pertinent 

social norm.  Clearly, since this allowed subjects to see what others in their current position 

                                                                                                                                                                                           
43 Of course, there is also a selection-bias issue here, since agents at the bottom node of the V who make proposals 
in round 2 must have declined proposals in round 1. 
44 Alternatively, consider the academic job market.  While a lower-ranked school might not be able to hire (or even 
interview) top candidates, it is still able to learn hiring information that is relevant to it’s own actions.  
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obtained in the past, it might also have contributed to the deviations.45  Perhaps one useful 

direction for future work would be to investigate how changes in the information structure affect 

bargaining behavior and outcomes. 

 

 

7. Conclusion 
We conduct an experiment to study the effect of network structure on bargaining 

outcomes in a bipartite market of buyers and sellers of a homogenous and indivisible good.  In 

many markets, a buyer is connected to only a small subset of all sellers, and vice versa.  Such an 

interaction can be modeled as a network, which describes the feasible links (trading possibilities) 

between agents.  

We observe a high degree of bargaining efficiency, in that the total payoffs received are 

96% of the maximum possible.46  The public display of all bids and acceptances may accelerate 

learning with respect to both bargaining power and group norms about appropriate division.47 

While there are only 10 separate bargaining interactions for each individual in an experimental 

session, there is strong evidence of substantial changes in bargaining behavior even over this 

limited period of time.  

In the laboratory, the payoffs often do not match the theoretical point predictions; this is 

the norm more than the exception in experimental economics (see Chapter 4 in Kagel and Roth 

                                                           
45 Of course, the ultimate effect of providing this information is an open empirical question. However, Blume, 
DeJong, Kim, and Sprinkle (1998) find that providing a population history leads to an increase in the proportion of 
separating outcomes achieved in a sender-receiver game, and Duffy and Feltovich (1999) find that observation of 
other players' actions and payoffs appears to affect the evolution of play. Armantier (1998) finds that in a common-
value auction, unless subjects learn the signals and bids of other players, their bidding behavior never approaches the 
behavior predicted by theory. 
46 It is true that the high degree of efficiency may be partially an artifact of the modest decline in payoffs with 
successive bargaining rounds.   Nevertheless, efficiency would still be quite high (92%) with the same bargaining 
behavior and a (for example) 20% discount from round to round, since 75% of the possible agreements are reached 
in the first round, and 17% in the 2nd round.  A steeper discount rate could also induce more rapid agreement, 
partially compensating for the higher efficiency loss from round to round. 
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1995), which is why the focus is often on whether a model predicts the correct comparative 

statics with respect to changes in the key variables in the model.  Here the central contribution of 

the theory, the decomposition, seems to capture the fairly strong differences in bargaining 

behavior depending on how a link is added between two groups.  Payoffs are typically 

asymmetric where predicted so, and in the expected direction; we find these effects in a short 

time in a moderately complex environment, perhaps in part because we provide public 

information about transactions.  We also find that subjects not directly connected to an added 

link are affected by its presence where the theory so predicts. 

To the extent that behavior deviates from the theory, we see some explanations outside of 

the bargaining model and probably related to the specifics of our experimental environment, 

such as a significant decrease in earnings when an agent is connected to only one other agent, 

even where an extra connection (in the N network) should not make any difference.  This 

indicates that what makes the results from the |X| network look so similar to what has been 

observed before in multilateral bargaining game is not simply the fact that there is the same 

numbers of buyers and sellers connected together, but also that they all have the same number of 

connections.  Also, there is strong evidence of a form of social learning: The shares that have 

been allocated in the past to others in one’s current position substantially and significantly affect 

what one is willing to accept. This phenomenon could be the result of people updating their 

beliefs about the success of different strategies, as in belief-based learning models (Fudenberg 

and Levine 1999); it could also be a more general form of social learning, where subjects are 

trying to learn the acceptable norm by observing the behavior of others (see Ellison 2002, for 

example).  

                                                                                                                                                                                           
47 Chatterjee and Dutta (1998) find that public offers in thin markets lead to a unique subgame-perfect equilibrium in 
pure strategies, whereas private offers do not permit any efficient equilibria in pure strategies. 
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We feel that the network framework is a useful metaphor for many market environments.  

Natural extensions of our work include changing bargaining timing and protocols, as well as 

considering endogenous link-formation with bipartite markets.  For example, if we consider that 

it may be possible to add or subtract links in markets, we can predict the effect of such changes 

in the trading regime.48  It is plausible that the lower payoffs experienced by people with few 

links could lead to over-connectedness, from a social standpoint.  As network theory is still 

evolving and general solutions are often unobtainable, experimental study seems a very natural 

complement in this area.  
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Appendix A – Graph Theory Notation and Results 
 

We now start introducing basic concepts in graph theory.  All concepts are standard (excepting the definition of GS, 
GB, and GE) and can be found in any graph theory textbook, e.g., Gould (1988). 

 
A non-directed bipartite graph G=<S∪B,L> consists of a set of nodes, formed by n sellers S={s1,..., sn } and m 
buyers B={ b1,..., bm}, and a set of links L, each link joining a seller with a buyer.  An element of L, say a link from 
si to bj will be denoted as si : bj.   
 
A subgraph G0=<S0∪BB0,L0> of G=<S∪B,L> is a graph such that S0⊆S, B0⊆B, L0⊆L, and such that each link in L0 
connects a seller of S0 with a buyer in B0.  When we speak of the subgraph G0 induced by the set of nodes S0∪B0B  in 
G we mean the subgraph formed by the nodes S0∪BB0 and all the links that connect a seller in S0 and a buyer in B0 in 
G. 
 
A matching in a bipartite graph G=<S∪B,L> is a collection of pairs of linked members of B and S such that each 
agent in S∪B belongs to at most one pair. We say that a subset of agents can be matched if there exists a matching 
involving these agents. 
 
For instance, in the following graph there exists a matching involving agents s1, s3, b1and b2 (depicted in the figure 
with the dotted lines), but there exists no matching involving s1 and s2. 

s1 s2 s3

b1 b2  
 
We now define three different types of connected graphs, that we will denote by GS  (where ‘s’ stands for a surplus 
of sellers), GB  (with a surplus of buyers) and GE  (with an equal number of buyers and sellers).  For each of these 
graphs, one can construct a matching with a set of nodes in the long side at most equal to the short side.  
 
Definition: A graph G=<S∪B,L> with more sellers than buyers (⏐S⏐= n > m =⏐B⏐) is a GS graph if any subset of 
sellers of size smaller or equal than m can be matched. 
Symmetrically, a graph with more buyers than sellers (n < m) is a GB graph if any subset of buyers up to size n can 
be matched.  Finally, a graph with as many sellers and buyers (n = m) is a GE graph if there exists a matching 
involving all its agents.49

 
Theorem 1 shows that any graph decomposes as a union of subgraphs which are of one of these three types, plus 
some extra links which will never connect a buyer in a subgraph GB with a seller in a subgraph GS.  A simple 
iterative algorithm for decomposing bipartite networks is at the heart of the process. 
 

                                                           
49 The task of checking whether a graph is of one of this three types is simplified by using Hall's Theorem (1935), a 
well-known result in graph theory that relates the existence of a matching to the property of a subset of nodes being 
collectively linked to a set of at least the same number of members. 
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Theorem 1  
 

Every graph G can be decomposed into a number of subgraphs GS
1 ,...,GS

nS (of the GS type), GB
1 ,...,GB

nB (of 
the GB type), GE

1 ,...,GE
nE (of the GS type), such that each node of G belongs to one and only one of the 

subgraphs and any seller (buyer) in a GS
i (GB

i ) is only linked to buyers (sellers) in a  GS
j (GB

j ). 

1) 

2) Moreover, a given node always belongs to the same type of subgraph for any such decomposition.  
We will write G= GS

1 ∪ ... ∪ GS
nS  ∪ GB

1 ∪ ... ∪ GB
nB  ∪ GE

1 ∪ ... ∪ GE
nE, with the union being disjoint.  

 
Proof: See Corominas-Bosch (2004) 
 

 
We can adapt the theory to the particular networks used in our design: applying Theorem 1 to the networks used in 
the experiment, we get the following decompositions: 

 
          (1)           (2)           (3)            

GS
  GE

  GE  
 

(4)      (5) 

GS GE    GS GE  
(6)      (7) 

GS

   GS
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Appendix B – Propositions and Proofs 
 
For simplicity, in the propositions and theorems below, we denote by Πt the amount that can be split among any two 
agents at round t.  That is, Πt = 2500-(t-1)*100, for 1 ≤ t ≤ 6. Whenever we speak about a proposal (p, 1-p), we mean 
that the proposer suggests a share of p for himself and 1-p for the responder. 
 
Proposition 1: Suppose that the initial network is given by: 
 

s1

b

 s2

  
Then there is a unique PEP equilibrium payoff, which gives a payoff of 200 to each of agents s1 and s2, and 2300 to 
agent b. 
 
Proof: First note that if two agents reach agreement the game is immediately finished, since there is no possibility of 
a second agreement among another pair of agents.  Suppose now that we are in the 6th round, when agent b has to 
propose a division of Π6. If s1 or s2 reject, they do not reach an agreement and so they receive a payoff of 200.  
Therefore the game reduces to an ultimatum game, and the only equilibrium is the one in which b proposes (Π6-200, 
200) and the proposal is accepted. 

Now, suppose that we are in the 5th round.  Interestingly, whether this is the last round of the bargaining 
session or not, the only equilibrium is the one in which both s1 and s2 propose (200, Π5-200) and b accepts.  To see 
why, suppose w.l.o.g that agent s1 proposes a share of (p, Π5-p) with p>200 and b accepts. Then, either s2 also 
proposed (p, Π5-p), in which case s1 and s2 both get a payoff of p/2, or s2 proposed a different share, in which case s2 
gets 200 and s1 gets p. But then, s2 could undercut and instead propose (in round 5) the division (200+ε, Π5-200-ε) 
which b should accept, since Π5-200-ε > Π5-p and since the most b can get in the next round is Π6-200, which is 
smaller than Π5-200-ε. With similar arguments we can determine the strategies for the other rounds.  

We now specify the set of strategies leading to the PEP equilbrium. 
 At round t, with t ∈ {1,3,5} 

Agents s1 and s2 both propose (200, Πt-200).  Agent b accepts a proposal iff the share offered is greater than 
or equal than Πt-200. If both proposals are greater or equal than Πt-200, the buyer accepts the proposal that 
gives a higher share for himself. Otherwise, b rejects. 

 At round t, with t ∈ {2,4,6}  
Agent b proposes (Πt-200, 200).  Agents s1 and s2 both accept iff the share offered is greater than 200.  
Otherwise, they reject.  

 
Lemma 1: Suppose that the initial network is given by: 

   s

   b   
Then, there is a unique PEP equilibrium payoff, which gives a payoff 1300 to the seller and 1200 to the buyer. 
 
Proof: Suppose that we are in the 6th round.  The equilibrium will then be agent b proposing (Π6-200, 200) and 
agent s accepting, following the structure of an ultimatum game.  Now, suppose that we are in the 5th round and we 
know that a 6th round has to be played. Then, from standard bargaining results (see Rubinstein 1982) we know that 
proposals will always leave the responder indifferent between accepting or rejecting, and therefore s will leave the 
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responder indifferent between accepting or rejecting, and will therefore propose (Π5-(Π6-200), Π6-200). If we are in 
the 5th round and this is the last one, the only equilibrium tells s to propose (Π5-200,200). Since there exists a 6th 
round with probability 1/2, after finishing round 4, in expected terms the seller expects to get a payoff of 1/2(Π5-
(Π6-200))+ 1/2(Π5-200) = Π5-(Π6/2) and the buyer expects to get Π6/2. In this manner, we can calculate all the 
proposals in equilibrium.  

We now specify the set of strategies leading to the PEP equilbrium. 
 At round t, with t ∈ {1,3}, and with t=5 if 5 is not the last period: 

Agent s proposes (Πt-(50(5-t)+Π6/2), (50(5-t)+Π6/2)). Agent b accepts a proposal iff the share offered is 
greater than or equal than 50(5-t)+Π6/2).  Otherwise, b rejects. 

 At round t, with t ∈ {2,4}: 
Agent b proposes ((50(6-t)+Π6/2), Πt-(50(6-t)+Π6/2)).  Agent s accepts a proposal iff the share offered is 
greater than or equal than Πt-(50(6-t)+Π6/2).  Otherwise, s rejects.  

 At round t, with t =5, if 5 is the last period: 
Agent s proposes (Π5-200, 200).  Agent b accepts a proposal iff the share is equal or greater than 200, 
otherwise b rejects. 

 At round t, with t =6: 
Agent b proposes (Π6-200, 200).  Agent s accepts a proposal iff the share is equal or greater than 200, 
otherwise s rejects.  
 

Proposition 2: Suppose that the initial network is given by one of the two networks below:  
s1 s2

b1 b2   

s1 s2

b1 b2  
Then, there exists a unique PEP equilibrium payoff, in which sellers s1 and s2 get a payoff of 1300 and b1 and b2 get 
a payoff of 1200. 
 
Proof: Suppose that we are in the 6th round.  If there is only a pair left, we know the equilibrium by Lemma 1 and 
we are done.  Alternatively, suppose that all four agents are still in the market.  
 
Now, suppose that we are in the 6th round. Note that responders will never reject in equilibrium (not even reject 
with some probability). The finite nature of the game implies that after a rejection, agents will always get 200. Then, 
the fact that a responder rejects with some probability, implies that accepting was no better than rejecting. This 
implies in turn that both proposers proposed to keep all the pie for themselves and leave 200 for the responder. 
Then, at most one proposer was able to receive all the pie minus 200.  Then, the other proposer would be willing to 
deviate and propose to give 200+ε to the responder, and this is an offer that would clearly be accepted by at least one 
responder (as the alternative is accepting 200 or rejecting).  
 
Now, suppose that both agents accept a price p1 from the same proposer, with the other proposers having proposed 
p2. Clearly the other  proposer wouldn't be matched and would receive 200. Thus, this proposer would be willing to 
deviate and propose to get 200+ε for himself, an offer that would clearly be accepted by at least one responder. 
Therefore, it must be the case that responders accept from different proposers or that both proposers proposed the 
same price. Thus, we conclude that in equilibrium responders accept from different proposers with probability one 
or accept the same price proposal p, p being the proposal of both proposers. Given that after rejection, proposers will 
get only 200, one can conclude that the proposals in equilibrium will give everything to the proposers and leave only 
200 to respondents. 
 
Once we deduce the payoffs for round 6, we can proceed as before by using induction, since proposals will always 
leave the responder indifferent between accepting or rejecting.  
 

We now specify the set of strategies leading to the PEP equilbrium. 
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If all players are in the game: 
 At round t, with t ∈ {1,3}, and for t=5 if 5 is not the last period:  

Both sellers propose (Πt-(50(5-t)+Π6/2), (50(5-t)+Π6/2)). Buyers accept the highest proposal for themselves 
iff the share offered is greater than or equal than (50(5-t)+Π6/2), and otherwise they reject. 

 At round t, with t ∈ {2,4}: 
Both buyers propose ((50(6-t)+Π6/2), Πt-(50(6-t)+Π6/2)).  Sellers accept the highest proposal for 
themselves iff the share offered is greater than or equal than Πt-(50(6-t)+Π6/2), and otherwise they reject. 

 At round t, with t=5, and 5 being the last period: 
Both sellers propose (Π5-200, 200). Buyers accept the highest proposal for themselves iff the share offered 
is greater or equal than 200, and otherwise they reject. 

 At round t, with t=6: 
Both buyers propose (Π6-200, 200).  Sellers accept the highest proposal for themselves iff the share 

offered is greater or equal than 200, and otherwise they reject. 
 
If not all players are in the game, then it must be the case that we are in the network described in Lemma 1. Proceed 
according to the set of strategies defined in Lemma 1.  
 
The PEP described above can be generalized in a PEP that exists for any given network, as shown by Theorem 2. 
  
Theorem 2: Take any graph G and decompose it as a union of GS, GE and GB according to Theorem 1. Then, there 
exists a PEP in which: 
 
Sellers in GS receive 200, buyers in GS receive 2300. 
Sellers in GB receive 2300, buyers in GB receive 200. 
Sellers in GE receive 1300, buyers in GE receive 1200.  
 
Proof: We will show the result using induction.  
 
Step 0: n ≤ 2, m ≤ 2) We first show the result for a number of sellers ≤ 2, and a number of buyers ≤ 2. Only four 
different graphs are possible with at most two sellers and two buyers. These are the graphs analyzed in the previous 
resultss (Lemma 1, Proposition 1 and Proposition 2), in which the above statement is true. 
 
Step 1: n ≤ k, m ≤ k) Suppose that the result is true for graphs of sizes n ≤  k-1, m ≤  k-1. We now have to show that 
the result is true for graphs of sizes n ≤ k, m ≤ k. 
 
Given that in our game a pair of connected agents may reach a agreement at any point in time, while unmatched 
agents keep playing, to describe the subgame-perfect equilibria of the game we need to know the equilibrium in any 
possible network that results as a consequence of the deletion of some of the links in the initial network. 
 
We now write the strategies that would support the PEP for a graph of size n ≤ k, m ≤ k.  
 
• Strategies whenever the current graph is Gi, a strict subgraph of G (somebody has traded). By the induction step 
we know of the existence of an PEP in this subgame. this is the PEP stratgegies will prescribe agents to follow.  
• Strategies whenever the graph is G (nobody has traded). Call the current round t, with 1 ≤ t ≤ 6. Call this set of 
proposals, price proposal P. 
 
Proposal P: 
 At round t, with t (1,3, 5) with 5 not being the last period. 

Sellers in GS propose (200, Πt-200). Sellers in GB propose (Πt-200, 200). Sellers in GE propose: (Πt-(50(5-t)+Π6/2), 
(50(5-t)+Π6/2)).  
 At round t, with t (2,4) 

Buyers in GS propose (Πt-200, 200). Buyers in GB propose (200, Πt-200). Buyers in GE propose: ((50(6-t)+Π6/2), 
Πt-(50(6-t)+Π6/2)).  
 At round t, with t=5, with 5 being the last period: 

Sellers in GS propose (200, Π5-200). Sellers in GB propose (Π5-200, 200). Sellers in GE propose (Π5-200, 200).  
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 At round t, with t=6. 
Buyers in GS propose (Π6-200, 200). Buyers in GB propose (200, Π6-200). Buyers in GE propose (Π6-200, 200). 
 
Acceptances: If the price proposal has been equal to P, then all responders in GS accept the proposal made by 
proposers in GS, responders in GB accept the proposal made by proposers in GB, and responders in GE   accept the 
proposal made by proposers in GE. 
 
We now write what agents do facing some of the possible unilateral deviations: 
 
Members of GS (odd round, sellers proposing): If the distribution differs from P in one price only, then call si the 
seller that deviated in its proposal. Buyers in GS will continue to accept the share of Πt-200 for themselves. By the 
definition of a GS subgraph, there exists a way to match all buyers in GS with a set of sellers in GS which excludes si. 
Therefore, all buyers can get Πt-200, and the seller that deviated is isolated and gets 200. The rest of buyers all 
accept the proposal made by sellers in their respective subgraph. Similarly for Members of GB in an even round, 
with buyers proposing. 
 
Members of GE (odd round, sellers proposing): Suppose that seller si tries to propose a better share for himself. 
Relabel agents so that si and bi are linked in a matching involving all agents in GE (the existence of this matching is 
guaranteed by the definition of GE). Then, all buyers excepting bi accept the proposal stated by all sellers excepting 
si, and bi rejects. The rest of buyers all accept the proposal made by sellers in their respective subgraph. This means 
that in the following period agents si and bi will remain isolated and play as in Lemma 1. Similarly for members of 
GE in an even round, with buyers proposing. 
 
Now it is easy to check that what we have above is indeed a Nash Equilibrium, as no agent can unilatery deviate 
asking for a larger share and be accepted, and no responder can do better by rejecting. 
  
To define a subgame-perfect equilibrium, we must also state what strategies specify off the equilibrium path. We 
now explain how strategies can be constructed so that the strategies above conform to a subgame perfect 
equilibrium.  For any distribution of prices, agents have a finite set of actions that consist of either accepting one of 
the proposals or rejecting all.  If less than the maximum possible number of pairs form, then by the induction step 
we know that there exists a PEP in the resulting subgraph (since this will be a subgraph that has a number of agents 
strictly smaller than k).  We define strategies so that if less than the maximum possible number of pairs form, then 
strategies follow the PEP of the resulting subgraph (which we know exists by the induction step).  If all agents 
reject, then the strategies will prescribe for proposers to propose price distribution P and for responders to accept.  
Therefore we can conclude that given an action for all responders, the payoffs are immediately determined.  This 
must have at least one NE.  We will define the strategies as follows: for any distribution of prices, strategies will tell 
responders to play according to this NE.  However, note though that there may be multiple NE.  If this is the case, 
strategies must specify which of the several NE will be played.  Any specification would suffice.  
 

 
Proposition 4: Suppose that the initial network is given by one of the two networks below:  

s1

 b1

s2 s3 s4

b2 b3   

s1

 b1

s2 s3 s4

b2 b3    
 
Then, the unique PEP equilibrium payoff will give: 
 
• a payoff of 200 to agents s1 and s2 
• a payoff of 2300 to agent b1 
• a payoff of 1300 to sellers s3 and s4 
• a payoff of 1200 to buyers b2 and b3 
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Proof: Existence is inmediate by Theorem 1, as the above networks decompose as a subgraph of type GS (formed 
by agents s1, s2 and b1) and a subgraph of type GE (formed by agents s3, s4, b2, b3). (see Appendix A). 
To show uniqueness, as a first step, we will show that in either case sellers s1 and s2 receive a payoff of 200 in 
equilibrium, while buyer b1 receives 2300.  Suppose to the contrary (w.l.o.g.) that s1 receives a payoff higher than 
200.  This cannot happen in an odd round, through s1 proposing a partition that b1 accepts, since s2 would have 
undercut by proposing (200+ε, Πt –200-ε), a proposal that b1 can not reject, as it is strictly better than anything b1 
can get in the next period.  Then, it should be the case that s1 accepted from b1 in an even round.  But if this is the 
case, s2 would also accept, therefore both sellers s1 and s2 would be accepting from b1 in an even round, each 
reaching agreement with the same probability, and otherwise receiving 200.  But this cannot be an equilibrium 
either, as b1 could propose a higher share for himself (and would still be accepted, since sellers in the following 
round would get 200).   We can conclude then that s1 and s2 get 200 in equilibrium and b1 gets the rest of the pie, 
starting in any subgame. 
 
Now it is intuitive to see that agents s3, s4, b2, and b3 will play as in Proposition 2, as if the link connecting b1 and s3 
would not exist.  Indeed, if all four agents are still in the market in the last round, we know that in equilibrium buyer 
b1 will propose (Π6-200, 200) and that this would be accepted by sellers s1 and s2.  Clearly, if s3 or s4 rejects, he 
receives a payoff of 200, so should accept any proposal that is greater than or equal to it.  Thus, we can apply the 
arguments of Proposition 2 here as well.   
 
Proposition 5: Suppose that the initial network is given by one of the two networks below:  

s1

 b1

s2 s3 s4

b2 b3   

s1

 b1

s2 s3 s4

b2 b3  
 
Then, the unique PEP will give: 
• a payoff of 200 to all sellers. 
• a payoff of 2300 to all buyers. 
 
Proof: Existence is immediate by Theorem 1, as the above networks decompose as a unique subgraph of type GS. 
(see Appendix A). 
To show uniqueness, note first that as four pairs will never form, at least one of the sellers must receive a payoff of 
200 in equilibrium. Let us call this seller si. This seller must be linked to at least one buyer, call him bi. Now, since 
si received 200 in equilibrium, this implies that he could not deviate in the first round and propose 200+ε for 
himself. This implies in turn that bi could accept a share of 2300 from somebody else (since note that in the network 
we are analyzing any buyer bi is linked to at least 2 sellers), call him sj.  That is, this implies that seller sj was 
proposing 200 for himself and was accepted.  But again, if he could not deviate, this implies that all the linked 
buyers accept 2300 from other sellers. That is, the fact that a seller si received the reservation value in equilibrium 
implies that the sellers linked to bi , with bi being a buyer linked to si, also receiving the reservation value.  Given 
the structure of the networks, in this case this implies that all sellers proposed the reservation value for themselves 
and were accepted.  
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Appendix C - Instructions 
 
 
Thank you for participating in this experiment.  You will receive 500 pesetas for attending the session and 
appearing on time.  In addition, you will make decisions for which you will receive an amount of money; 
the amount depends on the choices made in the experiment. You will receive a subject number that we 
will use to identify you during the experiment.  Please hold on to this number, as we will need it in order 
to pay you. 
 
In this experiment, you will be in a group of 7 persons who will engage in anonymous bargaining 
sessions.  As explained below, people will make proposals to divide a sum of money between them.  In 
each session, every person will be connected to one or more other persons.  You can only bargain with 
those people with whom you are connected.  An individual can only reach an agreement with at most one 
other person in a bargaining session.  
 
An example of a diagram of a network (the overall set of possible connections between people) is shown 
on the board.  A network has two sides, a top and a bottom. 
 
Your connection(s) will be constant throughout a bargaining session; however, there will be multiple 
bargaining sessions and your location on the network may change from one session to the next.  The 
network itself will remain constant for some number of bargaining sessions, but the network will change 
at some point in the experiment.  You will be informed when this occurs and a diagram of the new 
network will be displayed on the board. 
 
Each bargaining session will consist of up to 5 or 6 rounds, each of which consists of two parts.  In the 1st 
part of the 1st round, each member of the top side of the network will make a proposal for dividing a sum 
of money with anyone on the bottom side of the network with whom he or she is connected.  A proposal 
is a suggestion of how much money you would receive and how much money a person accepting the 
proposal would receive. In the 2nd part of the 1st round, individuals on the bottom side of the network 
respond to the proposals made by those individuals with whom they are connected.  One may choose to 
accept one of these proposals or choose to reject all available proposals.  If a proposal is accepted, there is 
a match and both parties to the match are removed from the network for the remainder of that bargaining 
session.  If there are no more possible matches that can be made, the bargaining session has been 
completed.   
 
If there are still possible matches, we continue to a 2nd round.  In the 1st part of the 2nd round, all 
persons on the bottom side of the network who have not become matched will make proposals to divide a 
(smaller) sum of money with connected persons on the top side of the network.  In the 2nd part of the 2nd 
round, each unmatched individual on the top side of the network will choose either to accept one of the 
proposals made by people with whom he or she is connected or to reject all available proposals.  Matches 
are determined and displayed.  Once again, if there are no more possible matches to be made, the 
bargaining session is over.  If there are still potential further matches, the bargaining session will continue 
to a 3rd round, in which the top side of the network will make proposals to divide a (still smaller) sum of 
money.  A 4th round, where the bottom side of the network would make proposals, would follow if 
necessary. 
 
If we reach a 5th round of a bargaining session, we will flip a coin to see if a 6th round will be permitted 
(if necessary) or if the bargaining session ends after the 5th round. 
 
The amount of money to be divided will diminish over the course of a bargaining session, in the 
following manner: 
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A proposal made in the 1st round suggests a division of 2500 pesetas 
A proposal made in the 2nd round suggests a division of 2400 pesetas 
A proposal made in the 3rd round suggests a division of 2300 pesetas 
A proposal made in the 4th round suggests a division of 2200 pesetas 
A proposal made in the 5th round suggests a division of 2100 pesetas 
A proposal made in the 6th round suggests a division of 2000 pesetas 
 
Any individual who remains unmatched at the end of a bargaining session would receive a payoff of 200 
pesetas for that session.  
 
 
Mechanics: A diagram of the network in use will be shown on the board at all times.  We designate 
positions on the network with the letters A-G.  When proposals are made, we will indicate all of the 
proposals on this diagram.  The choice of each responder to either accept or reject proposals will 
subsequently be displayed.  If a match has been made, the connection between the two matched parties 
will be circled. 
 
At the beginning of each bargaining session, you will receive a sheet of paper with a drawing of the 
network; your location on the network will be circled.  You have been given a stack of small pieces of 
paper with your subject number on them.  When you are making a proposal or when you are rejecting or 
accepting proposals, please do so on one of the small pieces of paper and also fill in your assigned letter 
in the space provided. 
 
As it may be possible that a responder could respond to more than one proposal, if you choose to accept a 
proposal you must indicate the letter of the person making this proposal.   
 
In the event of more than one person accepting the same proposal, we will randomly determine which 
responder becomes matched.  If you have accepted a proposal but do not become matched, you must 
proceed to the next round. 
 
We wish to preserve anonymity throughout the experiment.  We therefore ask that you turn in one of the 
small pieces of paper in each part of each round played, even if you are already matched or if it is not 
your turn to propose or respond.  If this procedure were not followed, other participants might be able to 
deduce the identity of the person at a location on the network.  If it is your turn to propose or respond, 
please do so.  If it is not your turn, we ask that you write “Not my turn” on one of the small pieces of 
paper. 
 
 
Payment: Although there will be a number of bargaining sessions, at the end of the experiment we will 
randomly select (using a die) the results from one of these bargaining sessions for actual payment.   
 
If you have any questions, please ask them now or by raising your hand during the course of the 
experiment.  Communication between participants is strictly forbidden.  Are there any questions?  
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Appendix D – Average Payoffs50

 
 

Table D1 – Average Payoffs in Treatment 1 
 

 Network Position 
Period s1 s2 b1 s3 s4 b2 b3

1 533 783 1350 1033 1217 1117 867 
2 567 533 1567 1183 1233 1233 1183 
3 533 467 1667 1317 1217 1183 1217 
4 650 200 1717 1267 1217 1233 1217 

Avg. 1-4 546 496 1575 1200 1221 1192 1121 
5 683 200 1783 1183 1250 1217 1250 
6 658 200 1842 1250 1250 1083 1217 
7 267 500 1933 1283 933 1217 867 
8 200 507 1993 1267 1283 1233 1183 
9 450 200 2050 1217 1250 1233 1233 
10 233 233 2133 1217 1233 1183 1200 

Avg. 5-10 415 307 1956 1236 1208 1194 1158 
 

 

Table D2– Average Payoffs in Treatment 2 
 

 Network Position 
Period s1 s2 b1 s3 s4 b2 b3

1 725 650 1325 1225 1225 1250 1225 
2 200 1100 1375 1250 1212 1250 1238 
3 425 838 1438 1225 1238 1225 1238 
4 800 425 1475 988 1138 988 1162 

Avg. 1-4 538 753 1403 1172 1203 1178 1216 
5 1012 675 1488 1225 675 1325 1250 
6 788 1112 1512 688 700 1338 1038 
7 819 600 1481 875 1056 1400 1294 
8 1062 875 1438 875 675 1362 1362 
9 1012 775 1488 612 912 1438 1388 
10 806 569 1494 875 1088 1394 1375 

Avg. 5-10 916 768 1484 858 851 1376 1284 
 

                                                           
50 These are actual payoffs for all bargaining rounds. 
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Table D3– Average Payoffs in Treatment 3 
 

 Network Position 
Period s1 s2 b1 s3 s4 b2 b3

1 450 913 1338 1212 1238 1212 1212 
2 912 425 1362 1312 900 1188 1575 
3 1012 200 1488 1300 1200 1175 1275 
4 900 200 1600 1350 675 662 1188 

Avg. 1-4 818 434 1447 1294 1003 1059 1312 
5 400 581 1719 1250 1188 1200 1288 
6 275 669 1756 1250 1162 1175 1312 
7 619 200 1881 1238 1238 1162 1262 
8 494 200 2006 1025 1262 950 1238 
9 325 350 2025 1012 1288 962 1212 
10 288 319 2094 1375 1262 1125 1212 

Avg. 5-10 400 386 1914 1192 1233 1096 1254 
 

 
Table D4 – Average Payoffs in Treatment 4 

 
 Network Position 

Period s1 s2 b1 s3 s4 b2 b3
1 825 450 1425 1212 900 950 1288 
2 200 938 1588 1300 1181 1200 1218 
3 375 525 1725 1225 1200 1250 1300 
4 300 688 1712 1138 1238 1188 1188 

Avg. 1-4 425 650 1612 1219 1130 1147 1248 
5 812 575 1688 538 875 1562 1075 
6 925 762 1500 862 425 1512 1612 
7 762 600 1738 512 850 1650 1338 
8 875 862 1600 525 625 1588 1525 
9 525 725 1750 650 825 1675 1450 

10* 833 883 1667 567 233 1583 1700 
Avg. 5-10 789 734 1657 609 639 1595 1450 

*One of the four sessions did not have a period 10. 
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