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ABSTRACT OF THE DISSERTATION 
 

Genetics of Celiac Disease 
 

By 
 

Richard Sungho Ahn 
 

Doctor of Philosophy in Epidemiology 
 

University of California, Irvine, 2014 
 

Professor Chad Garner, Chair 
 
 
 

While most common variants associated with celiac disease have now been identified through 

genome-wide association studies (GWAS), outstanding questions still exist regarding the validity of 

previously identified common variants, the presence of common variants associated with celiac 

disease within the major histocompatibility complex (MHC) region of chromosome 6 that are 

independent of the high-risk HLA genotypes, and the presence of low-frequency and rare variants 

associated with celiac disease within previously implicated genomic regions. This dissertation sought 

to study all of these questions by employing GWAS, fine-mapping methods, meta-analysis methods, 

imputation, and next-generation sequencing (NGS) of targeted genomic regions. 

 In the first study of this dissertation, two large-scale celiac disease GWASs were re-analyzed 

using alternative random-effects meta-analysis models in addition to the fixed-effects approach 

employed in each GWAS meta-analysis. Implementing a random-effects meta-analysis model did 

not appreciably increase or decrease the power to detect an association and nearly all of the 

previously implicated loci were found to be genome-wide significant in the re-analysis. In the second 

study, a fine-mapping approach of the MHC region that takes into account the effect of the high-

risk HLA genotypes was implemented. After adjustment for the high-risk HLA genotypes and the 

linkage disequilibrium in the MHC region, seven novel loci were found to be associated with celiac 



 xi 

disease. In the third study, targeted NGS-based resequencing was performed on previously 

implicated genomic regions to test for the presence of low-frequency and rare variants associated 

with celiac disease. Gene-based collapsing tests revealed that dozens of genes harbor low-frequency 

and rare variants that are associated with celiac disease, particularly in the MHC region and within 

non-coding regions of genes. The fourth study implemented a variant imputation method to impute 

low-frequency and rare variants into a large GWAS dataset to increase the statistical power to detect 

low-frequency and rare variants. Nearly all of the low-frequency and rare variant associations from 

the third study were replicated in this fourth study along with novel associations, using both gene-

based tests and single-marker association tests. 

 These studies reveal that there are many more loci that need to be carefully followed-up in 

larger resequencing studies and functional studies than previously acknowledged by large-scale celiac 

disease GWAS that do not account for the role of the high-risk HLA genotypes or the low-

frequency and rare variants within genomic regions that harbor common variants previously found 

to be associated with celiac disease. 
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Chapter 1: Introduction  

With the transition from linkage analysis and positional cloning to genome-wide association 

studies (GWAS) in the post-genome era of the early 2000s, the number of loci known to be 

associated with numerous, common, complex diseases has grown exponentially. Coupled with 

microarray genotyping platforms at the single-nucleotide polymorphism (SNP) resolution that have 

steadily decreased in price while simultaneously increasing in variant density, the agnostic nature of 

genome-wide scans have quickly grown in popularity amongst both clinical and basic science 

oriented human genetics researchers. For many common, complex diseases, much of the common 

variation (minor allele frequency (MAF) ≥ 0.05) conferring low to modest risk of disease (odds 

ratios 1.1-2) has been identified and replicated via GWAS and meta-analysis of GWASs. In a 

number of studies, fine-mapping efforts have also been undertaken to identify putatively causal 

variants that are in linkage disequilibrium (LD) with tag SNPs found on commercially available 'SNP 

chips' by employing denser genotyping arrays, resequencing of targeted genes, and in the case of 

autoimmune disorders such as celiac disease, adjustment for the typically high effect size of human 

leukocyte antigen (HLA) serotypes. 

However, while GWAS meta-analysis and fine-mapping methods have dramatically 

increased the number of known common risk loci, it is not yet clear that widely-used methods of 

meta-analysis sufficiently adjust for heterogeneity between studies to identify low-frequency or rare 

variants that may underlie the common variants already uncovered. There are also gaps in the 

knowledge of causal variants in the 3.6 Mb major histocompatibility complex (MHC) region of 

chromosome 6 that are not in LD with known alleles of human leukocyte antigen (HLA) serotypes 

implicated in autoimmune diseases. 

This dissertation will empirically re-evaluate prior meta-analyses of celiac disease GWAS by 

implementing novel meta-analysis models that better incorporate heterogeneity, investigate the use 
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of fine-mapping methods to identify additional risk loci associated with celiac disease in the MHC 

region, perform association analysis of low-frequency and rare variants identified through targeted 

resequencing of coding regions of celiac disease associated genes identified in previous GWAS, and 

finally, utilize an imputation method to impute rare and low-frequency SNPs into a large-scale 

GWAS dataset to identify putatively causal, low-frequency and rare variants genome-wide and in the 

MHC region that may have gone undetected in previous celiac disease GWASs and meta-analyses 

GWAS. This chapter will provide a brief introduction to GWAS, meta-analysis, and celiac disease as 

well as providing a summary of the specific aims and hypotheses of this dissertation. 

 

1.1. Genome-wide Association Studies 

As the Human Genome Project approached completion1, researchers began to transition 

away from linkage analysis based studies. While linkage analysis has yielded remarkable results in the 

identification and mapping of highly penetrant genes linked to susceptibility for hundreds of 

Mendelian disorders throughout the 1980s through the 1990s, including monogenic disorders such 

as cystic fibrosis and Huntington’s disease2–4. In general, the risk alleles in the susceptibility genes 

identified by linkage analysis tended to be non-synonymous, or amino acid altering, and of low-

frequency5. However, while these approaches have found significant results in many studies of 

common, low-penetrance diseases, very few have led to convincing replication studies, with one 

estimate suggesting that perhaps less than 10% of non-Mendelian disease loci may be identified 

through linkage analysis6–8. 

Linkage-analysis based studies of complex disorders tended to yield more modest and non-

replicable results relative to Mendelian disorders. The high costs associated with performing whole-

genome linkage analysis studies involving the collection of large family pedigrees spurred researchers 

to re-examine the potentials of performing association studies on candidate genes or across the 
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whole genome8. With the completion of the Human Genome Project9 and the advent of relatively 

inexpensive microarray-based genotyping machines that could capture hundreds of thousands to 

millions of polymorphisms for thousands of individuals in a short span of time, adoption of 

genome-wide association studies (GWAS) began in earnest around 200510 with the number of new 

GWAS for a variety of complex disorders growing exponentially for the next few years. In a 

relatively short span of time, GWAS have uncovered many common variants associated with 

complex diseases and traits such as age-related macular degeneration, type 2 diabetes, Crohn’s 

disease, systemic lupus erythematosus, and cholesterol levels10–14. 

Non-Mendelian diseases are typically governed by risk-susceptibility alleles across several 

genes and patterns of inheritance within families tend to be more complicated than in Mendelian 

diseases15. This is in addition to the environmental and other random factors that may or may not be 

accounted for. Underlying GWAS, are two competing hypotheses to explain the role of variants in 

the etiology of complex diseases. The first is the ‘common disease-common variant’ hypothesis 

(CDCV). According to CDCV, complex disease may be largely explained by a set of common 

variants of low-penetrance, with each variant explaining some small percentage of the population 

risk16. The second is the ‘common disease-rare variant hypothesis’ (CDRV). According to CDRV, a 

large proportion of the population risk may be attributable to the effect of a few variants of low 

MAF and of high-penetrance17. Common variants tend to have modest ORs between 1.1 and 2, with 

very few variants having an OR equal to or greater than 2, while most rare or low-frequency variants 

are thought to have ORs greater than 2. Many researchers have also adopted a hybrid model in 

which common and rare variants together explain the risk of developing a complex disease. 

While CDCV posits that common variants may be causal, most of the common variants that 

have been identified in GWASs thus far are probably not causal because they may be in LD with 

some underlying causal variant that remains undetected in GWAS because the variant was not 
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captured on commercially available SNP arrays18,19. In many instances, the best evidence for a loci 

being identified as either causal or in linkage disequilibrium with a causal variant is the p-value of the 

association and to achieve genome-wide significance, the p-value must be extremely low, with 

common acceptance of a p-value of 5x10-8 or lower as the threshold20–22. To detect smaller and 

smaller odds ratios, researchers need to genotype larger numbers of samples to have sufficient 

power to detect a genome-wide significant association. However, the marginal gains in utility have 

been rapidly diminishing5. 

Next-generation sequencing (NGS) studies now allow researchers to better evaluate the 

distribution of allele frequencies, both common and rare variants that are likely to be associated with 

common, complex diseases22. Common variants, particularly in the intergenic regions, may act as 

effect modifiers for the rare variants or be in linkage-disequilibrium with the rare variants and act as 

markers for candidate loci that are to be resequenced. There is strong evidence for the latter view 

and this evidence has had a significant impact on the design of denser, custom microarrays and in 

the design of statistical tests to detect rare variants15,23. Recent resequencing-based association studies 

of inflammatory bowel disease, multiple sclerosis, and age-related macular degeneration24–27 provide 

evidence that resequencing studies may provide sufficient power to discover high-risk rare variants 

under CDRV28.  

 

1.2. Meta-analysis of GWAS 

While individual GWAS led to the discovery of many novel polymorphisms associated with 

a host of complex diseases, replication studies to provide robust evidence of association have now 

become de rigueur. However, even for common variants, sufficiently powered replication studies 

require tens or hundreds of thousands of samples to be genotyped to minimize the number of false-

positives, a requirement that any individual investigator may find infeasible because of the severe 
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cost29–32. These constraints have led to the widespread and rapid adoption of meta-analysis of 

GWAS beginning around 2007 and the formation of large consortia33. As a result, many of the risk 

variants discovered and replicated in the last half-decade are the fruit of meta-analyses of GWASs, 

with several hundred meta-analyses of GWAS having been published at the present time34,35. These 

studies based on consortium data have provided strong evidence for small effect sizes (in terms of 

ORs) that range from 1.1 to less than 218,22,36,37. 

 Within the biomedical sciences, the method of combining p-values—and more specifically, 

Fisher’s method—was the most popular meta-analysis method. It was largely abandoned around the 

1980s because of limitations that include the inability to estimate a summary effect across all studies 

and the inability to deal with heterogeneity between studies38. The most popular approach—and the 

most powerful—is fixed-effects meta-analysis39. Fixed-effects meta-analysis effectively yields results 

that are similar to the Cochran-Mantel-Haenszel method35,38 for obtaining a pooled odds ratio and p-

value in 2x2xk contingency table analysis or the weighted Z-scores method that yields results similar 

to fixed-effects meta-analysis when the fixed-effects weight that is used is the inverse of the variance 

for each study, the optimal method of weighting a fixed-effects model40,41. The random-effects 

model is the preferred model when between-study heterogeneity is detected because it allows for 

greater generalizability of association results discovered in GWAS meta-analysis across different 

population groups. The random-effects model incorporates the between-study heterogeneity into 

the effect estimator weight42. While false-positive rates are higher when using the random-effects 

model with few data sets (as is the case in a discovery stage), it also has a much lower false-positive 

rate as the number of data sets increases, lower by several magnitudes at times. This tendency makes 

random-effects desirable in meta-analyses aimed at replications43.  

 

1.3. Celiac disease 
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Celiac disease, or coeliac sprue, is a chronic, autoimmune, heritable, enteropathy of the small 

intestine that is triggered by ingestion of gluten peptides found in wheat, barley, or rye products. 

First diagnosed in modern times in the late nineteenth century by Samuel Gee, typical symptoms 

include bloating, abdominal pain, chronic diarrhea, and failure to thrive in affected children44. 

Currently available therapeutic treatment consists solely of strict dietary exclusion of gluten and 

supplements to treat vitamin and mineral deficiencies that result from malabsorption of nutrients in 

the small intestine45. Left untreated, these vitamin and mineral deficiencies may lead to anemia, 

osteoporosis, and neurological disorders46,47. While over 90% of patients respond very well to a 

gluten exclusion diet, around 5% of patients, particularly those patients that developed symptoms 

past age 50, do not respond to treatment and are then diagnosed with refractory celiac disease48. The 

estimated prevalence of disease is between 0.5 and 1.26% amongst Caucasians in Europe and USA49. 

The global prevalence of disease is much lower with an estimated prevalence around 0.03%50,51. 

Even after adjustment for advancements in screening technology and historic underestimation of 

the occurrence rate of celiac disease, the incidence of celiac disease has been shown to be increasing 

over time52. Celiac disease is more prevalent among women than men below the age of 60 and it is 

thought that there may be some loci that are influenced by gender and by hormone levels. 

Interestingly, amongst cases greater than 60, celiac disease is more prevalent among males53. While 

celiac disease may be diagnosed at any age, most cases are diagnosed in early childhood or around 

the fourth or fifth decade of life51,54. Perhaps the most troubling complication occurs primarily in 

patients diagnosed with celiac disease after the age of 50 and do not have a remission of symptoms 

after being placed on a gluten-free diet. These patients are diagnosed as having refractory celiac 

disease and are at a significantly higher risk for developing enteropathy-associated T-cell 

lymphoma55. 
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It has been well established in the last three decades that individuals that carry the alleles for 

the HLA-DQ2 or HLA-DQ8 haplotypes that encode for MHC class II heterodimeric molecules on 

the surface of antigen-presenting cells are more susceptible to developing celiac disease than non-

carriers. Most cases carry either one or both of the DQ2 and DQ8 haplotypes, with the majority 

being heterozygous carriers of the DQ2 haplotype. However, while DQ2 and DQ8 haplotypes are 

widely considered to be necessary in the development of celiac disease, it is not considered to be 

sufficient for diagnosis and prediction of the onset of disease as some 40% of healthy individuals in 

the highest-risk Western European population are carriers of alleles for either the DQ2 or DQ8 

haplotypes56–59. Highly sensitive and specific serological tests for the presence of IgA antibodies 

versus tissue transglutaminase are the current gold standard for diagnosis of celiac disease along with 

tissue biopsy of the small intestine and positive response to exclusion of dietary gluten56,60. 

According to the diagnosis algorithm of the ESPGHAN criteria, a patient is positively diagnosed 

with celiac disease when histopathological analysis reveals hyper plastic villous atrophy of the small-

intestine and a remission of symptoms after the patient has been placed on a gluten-free diet56,61,62. 

Besides the well-established environmental risk factor of gluten peptides and the genetic risk factor 

of HLA-DQ2 and HLA-DQ8 molecules, there has also been speculation that adenovirus and 

rotavirus infection after birth may increase the risk of celiac disease63,64. 

 Genetic risk factors other than the genotypes encoding for HLA-DQ2 and HLA-DQ8 have 

been discovered in several linkage analysis studies65–67. The first GWAS (and GWAS meta-analysis) 

of celiac disease by van Heel et al.68 identified variants in the IL2 and IL21 genes, genes critical in 

the expression of T-cell cytokines. A follow-up study by Hunt et al.69, replicated the results from van 

Heel et al. and also identified six new loci that regulate the adaptive immune response in celiac 

disease. Trynka et al.70 performed a follow-up study to the Hunt et al. study with four more study 

populations and were able to identify two novel loci associated with celiac disease, OLIG3-
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TNFAIP3 and REL. Garner et al.71 also performed a follow-up to the Hunt et al. study with 

samples drawn from a US population and was able successfully replicate five of the eight regions 

identified in the previous study, including IL2 and IL21 and was able to provide evidence for a new 

loci associated with celiac disease, ITGA4. In 2010, Dubois et al.72 performed a large-scale meta-

analysis GWAS involving twelve population groups and were able to identify thirteen more novel 

loci with genome-wide significant evidence with another thirteen novel loci with suggestive 

evidence. Using a custom, dense genotyping platform, Trynka et al.73 identified another thirteen 

novel celiac disease loci and performed fine-mapping leading to the discovery of multiple 

independent variants at about a third of the novel loci, providing evidence that a combination of 

common and rare variants play a role in increasing risk for developing celiac disease. Another fine-

mapping study was performed by Ahn et al.74 using genotype data from a North American celiac 

disease GWAS that was able to identify four new loci in the extended MHC region that are 

independent of the HLA genotypes. Most recently, Hunt et al.75 conducted a large-scale exon 

sequencing based study of 25 genes previously implicated in celiac disease GWAS with over 40,000 

samples and found that rare variants in coding regions explain very little heritability of disease 

(approximately 3%) and claim that there is little evidence to support the implementation of large-

scale whole-exome sequencing studies in autoimmune diseases such as celiac diseases although this 

study does not provide evidence against implementing whole-genome or targeted resequencing 

studies that include exonic, intronic, and intergenic regions. Including all studies to date, all HLA 

and non-HLA loci have been estimated to explain approximately 60% of the genetic variance of 

celiac disease72,73,75, indicating that there is much heritability left to be explained.  
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1.4. Hypotheses and experiments 

Hypothesis 1: Utilizing novel random-effects meta-analysis methods will increase the power to 

detect common variants at previously identified loci with genome-wide significance. 

Experiment 1 (Chapter 3): Two large-scale celiac disease GWAS that used a fixed-effects 

equivalent meta-analysis approach72,73. This chapter investigates the change in statistical significance 

when two alternative random-effects were utilized to account for between-study heterogeneity. 

Standard fixed-effects and random-effects models were also utilized for comparison purposes.   

 

Hypothesis 2: There are novel variants associated with celiac disease in the extended MHC region 

that are independent of the high-risk HLA genotypes. 

Experiment 2 (Chapter 4): While the high-risk HLA genotypes within the classical MHC region 

are necessary for disease development, it has been difficult to determine if there are any HLA-

independent loci within the MHC region due to the complexity of the region. A fine-mapping 

approach was implemented to determine if there are variants associated with celiac disease in the 

extended MHC region independent of the high-risk genotypes for HLA-DQ2 and HLA-DQ8. 

 

Hypothesis 3: There are rare and low-frequency variants associated with celiac disease within genes 

previously found to be associated with celiac disease. 

Experiment 3 (Chapter 5): A small-scale (approximately 500 samples) targeted NGS-based 

resequencing study was conducted to determine if there are rare and low-frequency variants that are 

associated with celiac disease. Gene-based collapsing tests were used to test for association as a 

single-variant test will be underpowered to detect an association. 
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Hypothesis 4: Rare and low-frequency variants imputed forward into a previous large-scale GWAS 

dataset will be well powered to provide statistically significant evidence of association with celiac 

disease under gene-based and single-variant tests. 

Experiment 4 (Chapter 6): While large-scale GWAS using dense microarray genotyping platforms 

have been performed, the vast majority of rare and low-frequency variants have not been tested for 

association with celiac disease. A variant imputation method was utilized to impute forward rare and 

low-frequency variants into a large-scale GWAS dataset (~24,000 samples) and both gene-based and 

single-variant tests were performed to test for association. 
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Chapter 2: Methods and Materials 

This chapter describes the subjects, the investigators and institutions that collected the data, how the 

genotyping of samples was conducted, and the phenotyping of samples. Several institutions in the 

United States of America, the European Union, as well as India were involved in the collection of 

samples. Genotyping was performed in the US, The Netherlands, and the UK. All samples were 

phenotyped according to similar protocols. 

 

2.1. Subjects 

Subjects for association analysis of the extended MHC region in celiac disease and 

association of rare and low-frequency variants in the 12 previously identified regions and the 

MHC region with celiac disease 

 2300 cases and controls were obtained from the North American Celiac Disease Genetic 

consortium74. This consortium is led by Dr. Susan Neuhausen at City of Hope (COH) in Duarte, 

CA, Dr. Chad Garner at the University of California, Irvine (UCI), Dr. Joseph Murray at the Mayo 

Clinic in Rochester, MN, Dr. Alessio Fasano at the University of Maryland, and Dr. Peter Green at 

Columbia University, in NYC, NY. The institutional review board (IRB) of each respective 

institution has approved the IRB protocols submitted at each institution to collect, code, and analyze 

samples. Every IRB protocol included a written informed consent form signed by all subjects. Of 

the 2300 total subjects, 1764 are cases and 536 are controls. Of the 1764 cases, 532 were collected at 

the University of Utah and UCI, 743 were collected at the Mayo Clinic, 423 were collected at the 

University of Maryland, and 66 were collected at Columbia University. Of the 536 controls, 177 

were collected at COH and 359 were collected at the Mayo Clinic (Table 2.1). As celiac disease 

predominantly affects Caucasian populations, all of the 2300 cases and controls are Caucasian and 

unrelated. All subjects had blood samples collected for serological testing and DNA extraction. Of 
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the 1068 subjects collected at COH, 247 cases, 234 controls, and 26 phenotypically ambiguous 

samples were resequenced. 

Table 2.1. Number of cases and controls by institution from Ahn et al.74 
Institution Case Control 
COH 532 177 
Mayo Clinic 743 359 
UMaryland 423 - 
Columbia 66 - 
 

Subjects for analysis of meta-analysis methods for genome-wide association studies and 

application of meta-analysis methods in association studies of celiac disease 

 All samples were collected for previously reported multi-stage, multi-country GWASs by the 

European Celiac Disease Consortium and were generously provided by Dr. David van Heel at the 

Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and 

Dentistry, Queen Mary University of London, London, UK (Tables 2.2, 2.3, and 2.4)72,76. The first 

UK cohort cases were collected at seven hospitals in the UK: Barts and the London, London; 

Hammersmith Hospital, London; Leeds University Hospitals, Leeds; Llandough Hospital, Cardiff; 

Sheffield University Hospitals, Sheffield; Derbyshire Royal Infirmary, Derby; John Radcliffe 

Hospital, Oxford68. The second UK cohort cases were collected at the same hospitals as the first UK 

cohort, with the exception of 374 cases and 176 controls that were collected by the Celiac UK 

recruitment effort. Any cases in the first UK cohort showing genetic relatedness to cases in the 

second UK cohort were removed. All UK cases were matched to a control from either the 1958 

British Birth Cohort or the National Service Cohort. Written informed consent was obtained for all 

subjects and ethics approval was provided by the Oxfordshire Research Ethics Committee B as well 

as local ethics committees69. All subjects were Caucasian of northern European ethnic origin and 

unrelated. The first UK cohort contained 737 cases and 2596 controls while the second UK cohort 

contained 1849 cases and 4936 controls. Another 6209 cases from the Celiac UK recruitment effort 



 13 

and 742 controls from the 1958 British Birth Cohort and the National Service Cohort were added to 

the first and second UK cohorts for a dense-genotyping based fine-mapping study76. 

 The cases for the first and second Finnish cohorts were collected at the University of 

Tampere72,77. Matched population controls were collected through the Finrisk cohort and the Health 

2000 cohort. All subjects provided a written informed consent and ethics approval was provided by 

the ethics committees of the University of Tampere, Helsinki University Hospital, and the Finnish 

National Public Health Institute. All subjects were ethnically Finnish and unrelated. The first Finnish 

cohort contained 647 cases and 1829 controls while the second Finnish cohort contained 259 cases 

and 653 controls. 

 The cases and controls for the first Italian cohort were collected at the Centro per la 

prevenzione e diagnosi della malattia celiaca, Fondazione IRCCS Ospedale Maggiore Policlinico in 

Milan, Italy78. Cases and controls for the second Italian cohort were collected at the Pediatric 

Department of the Sapienza University of Rome79 in Rome, Italy.  Written informed consent forms 

were obtained from all subjects and study approval was given by the ethics committee of the 

Fondazione IRCCS Ospedale Maggiore Policlinico. All subjects were ethnically Italian. The first 

Italian cohort contained 497 cases and 543 controls while the second Italian cohort contained 1010 

cases and 804 controls. 

 Dutch cases and controls were collected at the University Medical Center in Utrecht, The 

Netherlands68,80. All subjects had provided written informed consent forms and approval was 

obtained from the medical ethics committee of the University Medical Center in Utrecht. All 

subjects were ethnically Dutch and unrelated. The Dutch cohort contained 803 cases and 846 

controls. A further 320 cases and 301 controls were obtained under the same protocol for a dense-

genotyping based fine-mapping study76. 
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 Cases from the USA were collected at the Mayo Clinic, Rochester MN and at UCI, Irvine 

CA71. All subjects had signed written informed consent forms and approval for the study was 

provided by the IRBs at the Mayo Clinic and UCI. All subjects were Caucasian and unrelated. Age, 

sex, and ethnicity matched population controls were obtained from the COH and the Mayo Clinic. 

The US cohort contained 973 cases and 555 controls. 

 Irish cases were collected at St. James’ Hospital and the Adelaide and Meath Hospitals in 

Dublin, Ireland, and at University College Hospital, Galway, Ireland. Study approval by the 

Institutional Ethics Committee of St. James’ Hospital and local approval was obtained along with 

signed written informed consent forms for all subjects. All subjects were of Caucasian, northern 

European origin and unrelated. The Irish cohort contained 597 cases and 1456 controls68. 

 Polish cases were collected in hospital clinics throughout Poland while controls were 

collected from the Children’s Memorial Health Institute in Warsaw, Poland. Signed written informed 

consent forms were obtained for all subjects and approval were obtained by the local ethics 

committee. The Polish cohort contained 564 cases and 716 controls72. 

 Hungarian cases were collected from children’s clinics in Budapest and Debrecen and 

population matched controls were obtained from a previous epidemiological study. Signed written 

informed consent forms and the approval of local ethics committees were obtained. All subjects 

were ethnically Hungarian and unrelated. The Hungarian cohort contained 965 cases and 1067 

controls72,81. 

 Spanish cases were collected from Madrid area hospitals while controls were obtained from 

hospital employees and blood donors. Signed written informed consent forms and the approval of 

the ethics committee at Hospital Clinico San Carlos were obtained. All subjects are Caucasian in 

origin and unrelated82. 
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 The Indian cohort (only used in the dense-genotyping based fine-mapping study) was 

collected from the Punjab region of India76 with 229 cases and 391 controls. Signed written 

informed consent forms and the approval of local ethics committees were obtained. All subjects 

were ethnically Indian and unrelated; this is the only non-European cohort collected. 

Table 2.2. Number of cases and controls by country for stage 1: GWAS of Dubois et al.72 
Country Case Control 
UK 737 2596 
UK2 1849 4936 
Finland 647 1829 
The Netherlands 803 960 
Italy 497 580 
 

Table 2.3. Number of cases and controls by country for stage 2: follow-up of Dubois et al.72 
Country Case Control 
USA 973 555 
Hungary 965 1067 
Ireland 597 1456 
Poland 564 716 
Spain 550 433 
Italy 1010 804 
Finland 259 653 
 
 
Table 2.4. Number of cases and controls by country of Trynka et al.76 
Country Case Control 
UK 7728 8274 
The Netherlands 1123 1147 
Poland 505 533 
Spain-CEGEC 545 308 
Spain-Madrid 537 320 
Italy-Rome, Milan, Naples 1374 1255 
India-Punjab 229 391 
 

2.2. Phenotyping 

Phenotyping of subjects for association analysis of the extended MHC region in celiac 

disease and association of rare and low-frequency variants in the 12 previously identified 

regions and the MHC region with celiac disease 
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 Each of the four institutions that collected samples for the North American Celiac Disease 

Genetic Consortium used the same serology tests and the same diagnostic criteria for positively 

identifying a celiac disease case74. To be defined as a case, each subject had to meet two of three 

diagnostic criteria: 1) be positive for IgA EMA and IgA tTG antibodies; 2) or exhibit a small 

intestinal biopsy that is indicative of celiac disease; and e) demonstrate either a clinical or histological 

improvement on a gluten-free regimen. Most of the cases met all three criteria; a small proportion of 

subjects that were collected before the development of celiac-specific antibodies did not have a 

positive serology while another small proportion of subjects did not report a biopsy. Self-reported 

cases or subjects with biopsies indicative of only a minor infiltration of intraepithelial lymphocytes 

were not considered cases (Figure 2.1). 

 

Figure 2.1. Meeting any two of the three criteria for diagnosing celiac disease indicates a true 
positive case. 
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Phenotyping of subjects for analysis of meta-analysis methods for genome-wide association 

studies and application of meta-analysis methods in association studies of celiac disease 

 Nearly all cases were diagnosed according to the criteria set forth in the revised European 

Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGAN)83: these criteria 

include a positive serology test for celiac-specific antibodies, clinical, and histopathological criteria. 

All cases had a small intestinal biopsy indicating the presence of celiac disease. Individual collection 

centers had variations in biopsy criteria. UK, Dutch, Polish, Italian, Hungarian, and Indian cases 

were required to exhibit at least a Marsh grade III biopsy. Cases from Spain were required to have at 

least a Marsh grade II biopsy. 

 

2.3. Genotyping 

Genotyping of subjects for association analysis of the extended MHC region in celiac 

disease and association of rare and low-frequency variants in the 12 previously identified 

regions and the MHC region with celiac disease 

 All 2300 samples were genotyped at Center for Inherited Disease Research at Johns Hopkins 

on the Illumina 660 W Quad platform. Samples and SNPs were excluded if data was missing for 

more than 2% of either the sample or the SNP. SNPs with MAF < 0.03 or failing the Hardy-

Weinberg Equilibrium (HWE) with p < 1x10-5 were also excluded. Samples were also tested for 

genetic relatedness and excluded if genetically related. Reported sex was also tested for and if the 

reported sex did not match the genetic sex, the sample was excluded. Samples were also tested for 

population stratification via multi-dimensional scaling (MDS)84 and subsequent cluster analysis to 

remove outlier individuals. A total of 114 samples were excluded leaving 517 controls and 1668 

cases that passed all QC criteria. 1898 SNPs from the xMHC (chromosome 6p; between positions 

26000508 and 33544122) were included from the entire GWAS panel. Sanger sequencing was 
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performed for 95 samples to determine the HLA-DQA1 and DQB1 alleles to determine controls 

for HLA genotyping using a PCR method developed at COH. The remaining samples were 

genotyped by either a PCR-based HLA-DQ typing method developed at COH74 or by a tag SNP 

method that utilizes six SNPs to predict the four HLA-DQ types known to be associated with celiac 

disease. 

 508 samples from the COH were resequenced on the Illumina Genome Analyzer IIx 

platform at an average read depth of 35x after targeted enrichment of the 12 previously identified 

regions and the 7.6 Mb xMHC region of chromosome 6p. The sequence libraries were enriched with 

either the Agilent or NimbleGen bait platform. A custom pipeline was implemented using BWA, 

SAMtools, Picard, and the GATK packages to align the paired-end reads to the reference genome 

and call SNP85–87. 

Genotyping of subjects for analysis of meta-analysis methods for genome-wide association 

studies and application of meta-analysis methods in association studies of celiac disease 

 All GWAS genotyping (first stage) and follow-up genotyping (second stage) (Figure 2.2) was 

performed in labs in London, Hinxton, and Groningen. The UK1 cases were genotyped on the 

Illumina Hap300v1-1 platform (~300K SNPs) while the UK1 controls were genotyped on the 

Illumina Hap550-2v3. The UK2 cases, Finland1 cases, the Dutch cases and controls, and the Italian 

cases and controls were all genotyped on the Illumina 670-QuadCustom_v1. The UK2 controls 

were genotyped on the Illumina 1.2M-DuoCustom_v1 and the Finland1 controls were genotyped on 

the Illumina 610-Quad. All follow-up genotyping of the 131 SNPs for the USA, Hungary, Ireland, 

Poland, Spain, Italy2 cases and controls (and the Finland2 cases) was performed on the Illumina 

GoldenGate BeadXpress platform. Finally, the Finland2 controls were genotyped using the Illumina 

610-Quad platform. 
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 Dense genotyping of the 183 non-HLA loci (~196K SNPs) was performed for all 

population cohorts (UK, Dutch, Polish, Spanish, Italian, Indian) using the custom Illumina  

Immunochip platform in labs in London, UK, Hinxton, UK, Groningen, The Netherlands, and 

Charlottesville, USA. 

 

Figure 2.2. First stage GWAS with a second stage follow-up with only the SNPs that passed a set 
threshold in the first stage. Adapted from Dubois et al.72 
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Chapter 3: Meta-analysis Methods for Genome-wide Association Studies 

Genome-wide association study (GWAS) meta-analysis (MA) is now routinely used to 

combine either individual-level data or summary statistics from multiple GWASs to increase 

statistical power to detect the small effect sizes of common alleles and to decrease the likelihood of 

observing false-positive associations. The cost to perform a large-scale GWAS MA with sample sizes 

ranging from the tens of thousands to hundreds of thousands is reduced by orders of magnitude 

because new samples do not have to be genotyped. As a result of this reduction in experimental 

cost, hundreds of GWAS MAs have been performed over the last half-decade and have significantly 

increased the quantity of risk loci discovered and replicated for a number of different phenotypes. 

There are now several approaches to GWAS MA, with the most widely implemented approach 

being fixed-effects MA because it is the least conservative and most statistically powerful approach 

for most GWAS MAs. However, fixed-effects MA is not always ideal because it ignores the potential 

heterogeneity or between-study variance that may exist between studies by assuming that the effect 

of a risk allele is homogeneous across all of the studies in the MA. In this study, two GWAS meta-

analyses of celiac disease were reanalyzed: 1) A GWAS MA that includes 9,451 celiac disease cases 

and 16,434 controls from 12 collections and 2) a GWAS MA using a custom dense genotyping 

platform to capture variants across a greater allelic spectrum in 12,041 cases and 12,228 controls 

from 7 collections. The purpose of this study was to determine if the results from a random effects 

MA that accounts for between-study heterogeneity will differ significantly from the results that were 

originally published. This study presents evidence that a SNP at a locus in chromosome 1 (RUNX3) 

that was previously reported to show genome-wide significance (p < 5x10-8) in one of the previous 

GWAS MA was not genome-wide significant in either the discovery stage or the combined stage 

when the between-study heterogeneity was adjusted for by the random effects MA approaches and 
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highlights the need to carefully investigate between-study heterogeneity and the implementation of 

GWAS MA models that control for heterogeneity.  

 
 
3.1. Introduction 

For several decades, MA has been implemented in many disparate fields to pool together the 

estimated summary statistics from independently conducted studies of a given trait or disease and 

increase statistical power to detect small effect sizes that would otherwise be undetected in each 

study of the MA40,42,88. In the last half-decade, MA has been heavily employed within the context of 

genome-wide association studies of human diseases. GWAS MA was adopted early on by human 

disease investigators because it provides increased power to detect associations of small effect size 

for common diseases and complex traits by combining either the summary statistics or individual-

level data from previously conducted studies, thereby lowering the cost to detect new associations by 

allowing investigators to avoid having to perform expensive de novo collection and genotyping of 

the thousands of cases and controls required for sufficient power. As genotypic data are readily 

available through several consortia and public data repositories, a large number of MAs of many 

common diseases and traits11,13,88–92 have already been performed and have identified new 

associations that could not be detected in any one of the component studies. Uncertainty regarding 

the validity of the results from early GWAS MAs35,93–96 have centered on the effects of between-

study heterogeneity on the results of a GWAS MA and how to properly adjust for between-study 

heterogeneity arising from the aggregation of multiple independent studies38. 

In previous GWASs of celiac disease, discovery and replication studies were combined by 

implementing a fixed-effects (FE) MA framework from samples representing diverse population 

groups68,69,72 ranging from the UK, the Netherlands, Italy, Spain, Poland, Hungary, Finland, Ireland 

and the USA. The MA framework that was implemented was a FE equivalent model in the form of 
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the Cochran-Mantel-Haenzel (FE-CMH) test40,97 that led to the discovery and replication of 13 novel 

celiac disease loci in Dubois et al.72. Trynka et al.76 performed a dense genotyping study of previously 

identified celiac disease regions using a custom genotyping platform with a higher density of SNPs 

that have a wider allele frequency spectrum than previously analyzed. This study included seven 

independent sample collections (six from Europe and one from India) and also employed a FE 

equivalent model based on conditional logistic regression (FE-CLR)98,99 that included a categorical 

variable for the collection ethnicity. An FE equivalent model such as FE-CLR pools data from each 

study or collection prior to the estimation of the effect size and variance and does not explicitly 

weight the overall effect size and p-value by the within-study or between-study variance. However, 

MA models that explicitly combine effect sizes such as the FE and random-effects (RE) models, 

estimate the effect size and variance for each study independently before combining and weighting 

the summary statistics from each study to estimate the overall effect size and p-values.  

Using the individual-level data from Dubois et al.72 and Trynka et al. 76 to estimate individual 

study effect sizes and within-study variance, the performance, in terms of p-values, of MA 

implementations that can explicitly account for the observed between-study heterogeneity relative to 

the performance of FE equivalent methods such as FE-CMH or FE-CLR was compared. Finally, 

the relative performance of several FE and RE models, including two newly developed random-

effects based models100,101, is compared in the presence of between-study heterogeneity. 

 
 
3.2. Methods 

Measures of heterogeneity 

Several measures have been developed to express between-study heterogeneity, with the two most 

widely adopted measures of between-study heterogeneity being Cochran’s Q statistic and the I2 

statistic99,102, with Q and I2 as follows, 
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!!! = !! !! − ! !!   

!! =
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! ×100%, !"#!! > ! − 1
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where !! !is the weight for a given study i, !! is the effect size estimate for study i, ! is the mean 

effect size estimate across all i studies, and k is the total number of studies in the MA. As Cochran's 

Q is the sum over i studies of the product of the inverse variance for each study i and the squared 

difference of the observed effect size of study i and the expected effect size of study i, Cochran’s Q 

follows a !! distribution with k-1 degrees of freedom with the I2 statistic being based on Cochran's 

Q statistic. Whereas Cochran’s Q is a statistical test to determine if heterogeneity is present or not, 

the I2 statistic expresses between-study heterogeneity as a percentage of the effect size variance due 

to between-study variance, the !! (see below for detail on estimation of !!). The distribution of I2 

ranges from 0% to 100% where an I2 value of 0% to 40% indicates little evidence of between-study 

heterogeneity, 40% to 75% indicates evidence of moderate to strong between-study heterogeneity, 

and an I2 > 75% indicates very strong evidence of between-study heterogeneity102. The I2 statistic 

truncates to zero when Q ≤ k-1. To estimate the standard error and confidence interval for the I2 

statistic, the H2 index is calculated102,  

!! = !
!!!. 

The H2 index has the following relationship with the I2 statistic, 

!! = !!!!
!! ×100%.  

Then, the construction of the confidence interval for H is as follows, 

!!"(!)± !! ! !"[!"(!)]. 

The natural logarithm of H is taken to assume a standard normal distribution for the confidence 

interval and the standard error of ln(H), SE[ln(H)], is calculated 
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The standard error and confidence interval for I2 can then be obtained by applying the relationship 

that H2 has with I2. 

While both Cochran’s Q statistic and the I2 statistic have low statistical power to detect 

between-study heterogeneity when the number of studies is low and excessive power when the 

number of studies is very high, the I2 statistic has become the preferred statistic to quantify between-

study heterogeneity because it is the percentage of variation at a given locus—across all studies in an 

MA—explained by the between-study variance94,103 and is thus much easier to interpret. 

Fixed-effects 

For decades, Fisher’s method of combining p-values was the most commonly applied MA method 

in the biomedical sciences. However, it was largely abandoned because of the method’s severe 

limitations, including an inability to estimate an overall effect size estimate across all studies, an 

inability to estimate between-study heterogeneity, and a higher false-positive rate of association 

when the directionality of effect estimates was not consistent across all studies in the MA38. The 

method of weighted Z-scores was an improvement upon Fisher’s method of combining p-values, as 

it allowed for individual weights for each study (as compared to the uniform, and most likely 

suboptimal, weighting of Fisher’s method) and took the directionality of effects into account when 

estimating an overall Z-score104. 

Under the very ideal assumption of no between-study heterogeneity (i.e. homogeneity), an 

investigator can maximize the statistical power of pooling together the summary statistics from all 

available studies by performing a MA under the fixed-effects (FE) model35,38. The FE model assumes 

that effect size estimates, Xi, are homogeneous and normally distributed across each study i. The FE 
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model estimator weights the effect size estimate for each study i by the inverse of the within-study 

variance (i.e. the sampling error) for each study i, 

! = !!!!!
!!!

, 

where Wi = !!!! and Vi is the standard error of Xi  squared. Then, the test statistic for the FE 

estimator, ZFE is 

!!" = !
!"(!). 

 ! is assumed to be normally distributed, so the p-values for ZFE may be obtained from the 

CDF of the standard normal distribution. Han et al.100 demonstrated that the p-values of the FE 

estimator are the equivalent of the p-values obtained by taking the weighted sum of Z scores of each 

study i, 

!!" = !!!! !!!! !!!!!
!!!! !!!!!

, 

where Ni is the sample size of study i and pi is the minor allele frequency (MAF) of a given marker 

from study i.  

Random-effects 

The within-study variance estimates the sampling error within a particular study, while the variance 

in effect size may exist between the studies in a MA and is known as the between-study variance or 

heterogeneity, !2. In practice, the most commonly used estimator for !2 is the DerSimonian and 

Laird estimator42,  

!! =
!!(!!!)

!!! ! !!
!!

!!!

, !"#!! > (! − 1)

0, !"#!! ≤ (! − 1)
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If between-study heterogeneity in effect-size estimates is suspected or estimated across studies in a 

MA, the random-effects (RE) model is thought to be more appropriate as the RE model assumes 

heterogeneity to exist under the null hypothesis42,100 and incorporates the !! into the weighting. 

Hybrid approaches combining FE and RE models to optimize p-values and lower the false-positive 

rates of association have been implemented, wherein FE is applied to loci for which between-study 

heterogeneity is not detected while RE is applied to loci when between-study heterogeneity is 

detected92. However, Thompson et al.96 have suggested that FE may not yield p-values that are 

conservative enough, while RE may estimate overly conservative p-values. Furthermore, Han et al.100 

demonstrated a limitation with the RE model that makes it yield overly conservative p-values. They 

demonstrated this by a simulation that shows that the FE model is more efficient—that is, pFE < 

pRE—than the RE model at least 75% of the time while the RE model is never more efficient than 

the FE model because the RE model assumes that !2 exists under both the null and the alternative 

hypotheses with likelihoods L0 and L1, respectively 

!! = !

!!(!!!!!)
! exp!(− !!!

! !!!!!
)  

!! = !

!!(!!!!!)
! exp − !!!! !

! !!!!!
,  

where !! is the estimated between-study variance and is held constant under L0 and L1. In response, 

Han et al.100 implemented a modified RE model (RE2 from here forward) that does not assume that 

heterogeneity estimated under the alternative hypothesis should be applied under the null, providing 

the likelihoods: 

!! = !
!!(!!)! exp!(− !!!

! !!
)  

!! = !

!!(!!!!!)
! exp − !!!! !

! !!!!!
.  



 27 

Binary-effects 

Han et al.101 implemented another random-effects based model known as the binary-effects model 

(BE) that estimates a test statistic for each study in the MA, the m-value. This m-value is equivalent 

to a Bayesian posterior probability of association, in that it incorporates prior effect existence data 

from collections. The overall p-value is estimated by incorporating the m-value as a weight in the FE 

test statistic, 

!!" = !! !!!!!

!!
!!!!

. 

Here mi, the m-value, is the posterior probability of effect existence in study i, 

!! = ! !! = 1 ! = ! ! !! = 1 ! !! = 1
! ! !! = 0 ! !! = 0 + ! ! !! = 1 ! !! = 1  

= ! ! ! = ! ! ! = !!∈!!
! ! ! = ! ! ! = !!∈!

. 

Here X is the observed effect size, T is a binary random variable that indicates whether an effect 

exists or not for a given SNP, U is the set of the 2n values that T can take on, and Ui is the subset of 

U where T=1. The prior for X, µ, is normally distributed with mean 0 and variance σ2, where σ was 

set to 0.2, a value found in simulations105 to be an appropriate prior that predicts that approximately 

5 SNPs per million SNPs will have a high effect size (i.e. OR ~ 3) while the prior for T, π, follows 

the beta distribution with α = 1 and β = 1 (i.e. uniform distribution). The m-value can be computed 

analytically by integration or estimated by a Metropolis-Hastings algorithm based Markov Chain 

Monte Carlo method when the number of studies in a MA does not allow for an analytical 

solution101.  

 Simulations as well as an empirical investigation have shown that the BE model adjusts for 

moderate (50% ≥ I2 ≤ 75%) between-study heterogeneity slightly better than either RE or RE2101. 

The BE model also provides a visualization framework known as the P-M plot to better understand 
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the effect existence for each individual study as well as the between-study heterogeneity and 

evidence of possible allelic heterogeneity (i.e. different minor alleles between subpopulation groups) 

by plotting the m-value against the p-value. 

 

3.3. Results 

For the reanalysis of the Dubois et al. data72, summary statistics for each of the 12 collections (9,451 

cases and 16,434 controls in total) were obtained by fitting a logistic regression model for each 

collection separately. Study collections had been originally sampled from the UK, Finland, the 

Netherlands, Italy, USA, Hungary, Ireland, Poland, and Spain. Of the approximately 523,000 SNPs 

from the discovery stage of the original study, only the 26 SNPs that were genome-wide significant 

(GWS) in the combined stage of the original study with p-value ≤ 5x10-8 were included in the 

present study. For the reanalysis of the Trynka et al. data76, summary statistics for each of the 7 

collections (12,041 cases and 12,228 controls) were obtained by by fitting a logistic regression model 

that included sex as a covariate for each collection separately. Of the approximately 139,000 SNPs 

from the dense genotyping study, only the 32 SNPs from the primary signals at a given locus 

(secondary or tertiary signals within a locus were not included) that were significant with a p-value ≤ 

5x10-8 were included in the present study. To exclude ethnic outliers within each collection and 

adjust for population stratification, multidimensional scaling (along with other GWAS quality 

control measures) was performed during data quality control in both of the original studies106. All 

MA under FE, RE, RE2, and BE was performed using the METASOFT package101. 

Replication of Dubois et al. 2010 

Between the p-values reported by the FE, RE, RE2, and BE models (Table 3.1), the FE model was 

the most efficient (i.e. reported the lowest p-value) except when there was moderate to high 

between-study heterogeneity (I2 > 50%)102. As expected from the simulation results of Han et al.100, 
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PRE equaled that of PFE when there was no between-study heterogeneity. Also as expected, the RE 

model did not yield lower p-values than the FE, RE2, or BE models for any loci. Interestingly, for 

SNPs rs10903122, rs13010713, rs1464510 and rs653178, PRE2 was lower than PFE, PRE, and PBE in the 

presence of high between-study heterogeneity (I2 ≥ 75%) although the RE2 model still yielded much 

more conservative p-values than FE-CMH and was not GWS at p ≤ 5x10-8 for rs10903122 or 

rs13010713. Finally, as expected based on simulation and empirical evidence reported by Han et 

al.101, PBE was lower than PRE for SNPs rs917997 and rs13314993, both of which exhibit moderate 

between-study heterogeneity (50% ≥ I2 ≤ 75%). 

Table 3.1. Meta-analysis p-values of FE, RE, RE2, and BE from Dubois et al.72 
SNP Chr:Pos I2 PDubois PFE PRE PRE2 PBE 

rs2816316 1:190803436 0 2.20E-17 3.18E-17 3.18E-17 7.79E-17 3.88E-15 
rs3748816 1:25116606 4.3 3.28E-09 3.62E-09 1.40E-08 6.51E-09 2.61E-08 
rs10903122 1:25176163 70.3 1.73E-10 7.84E-04 8.57E-02 6.59E-06 3.08E-05 
rs296547 1:199158760 2.3 4.11E-09 5.11E-09 9.76E-09 9.12E-09 3.33E-08 
rs13003464 2:61040333 16.4 3.71E-13 4.24E-13 6.02E-11 9.08E-13 1.14E-11 
rs917997 2:102437000 64.2 1.11E-15 1.07E-15 5.57E-05 1.56E-16 1.99E-17 
rs13010713 2:181704290 64.0 4.74E-11 1.58E-05 2.90E-02 6.72E-07 7.26E-07 
rs4675374 2:204510823 0 5.79E-09 6.41E-09 6.41E-09 1.14E-08 1.09E-07 
rs17035378 2:68452459 0 7.79E-09 8.11E-09 8.11E-09 1.51E-08 2.55E-07 
rs13098911 3:46210205 3.4 3.26E-17 4.07E-17 3.61E-16 9.44E-17 6.37E-16 
rs17810546 3:161147744 17.4 3.98E-28 6.78E-28 3.46E-22 2.10E-27 1.74E-25 
rs1464510 3:189595248 92.1 2.98E-40 6.26E-12 1.76E-01 4.38E-33 1.74E-29 
rs13314993 3:32990473 61.5 3.27E-09 2.94E-05 6.45E-02 1.70E-06 1.06E-06 
rs11712165 3:120601486 35.1 8.03E-09 1.24E-08 4.44E-06 2.25E-08 9.62E-08 
rs13151961 4:123334952 0 2.18E-27 3.08E-27 3.08E-27 9.44E-27 2.26E-24 
rs2327832 6:138014761 0 4.46E-19 5.86E-19 5.86E-19 1.51E-18 1.63E-16 
rs1738074 6:159385965 0 2.94E-15 3.63E-15 3.63E-15 8.35E-15 8.56E-13 
rs10806425 6:90983333 27.2 3.89E-10 4.93E-10 1.69E-07 9.21E-10 9.70E-09 
rs802734 6:128320491 5.8 2.62E-14 3.65E-14 2.18E-13 8.11E-14 2.81E-12 
rs653178 12:110492139 87.1 7.15E-21 1.58E-03 5.72E-01 2.92E-14 1.10E-10 
rs9792269 8:129333771 0 3.28E-09 2.98E-09 2.98E-09 5.37E-09 8.53E-08 
rs1250552 10:80728033 21.0 9.09E-10 5.45E-08 3.88E-06 9.87E-08 1.31E-07 
rs1893217 18:12799340 0 2.52E-10 2.68E-10 2.68E-10 5.11E-10 2.49E-08 
rs11221332 11:127886184 0 5.28E-16 7.74E-16 7.74E-16 1.92E-15 7.35E-14 
rs12928822 16:11311394 14.5 3.12E-08 2.91E-08 9.00E-07 5.68E-08 2.52E-07 
rs4819388 21:44471849 39.7 2.46E-09 2.92E-09 2.39E-06 3.40E-09 5.20E-09 
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Representative P-M plots were generated for three loci GWS in Dubois et al.72 that 

represented either zero, moderate, or high degree of between-study heterogeneity: rs13151961 (I2 = 

0), rs917997 (I2 = 64.2), and rs1464510 (I2 = 92.1). The P-M plot for rs13151961 (Figure 3.1) reflects 

the lack of between-study heterogeneity in effect size by showing consistently high m-values against 

consistently non-GWS (for each individual collection) p-values across FE-CMH, FE, RE, RE2, and 

BE. For SNP rs917997 (Figure 3.2), the m-values were spread more widely across the horizontal axis 

of the P-M plot, with the Spanish, Irish, and Italian collections occupying what Han et al.101 refer to 

as the ambiguous region of effect existence. The impact of the between-study heterogeneity and the 

clustering of collections in the ambiguous effect existence region may help explain the much larger 

p-values for RE, with BE yielding the lowest p-value. SNP rs1464510 (Figure 3.3) exhibited the 

greatest degree of between-study heterogeneity with collections clustering to the relatively 

unambiguous regions of no effect existence or high-probability of effect existence with the 

exception of two studies (m-value > 0.8) that lie in the ambiguous region. The combined stage p-

value reported by Dubois et al.72 for rs1464510 was GWS, as were FE, RE2, and BE (with RE2 

yielding a lower p-value than FE or BE), while RE was not surprisingly non-GWS.   

In the discovery stage of Dubois and colleagues’ association analysis, rs10903122, a SNP of 

the RUNX3 gene, was one of the SNPs to pass the discovery stage p-value threshold of less than 

1x10-4 under FE-CMH and was one of the 131 SNPs that were subsequently genotyped in the 

replication and the final combined GWAS. SNP rs10903122 was then reported as being GWS with a 

combined p-value < 5x10-8. However, when between-study heterogeneity was adjusted for in a 

replication of the discovery stage of Dubois et al.72, rs10903122 (I2 = 70.3) did not pass the p-value 

threshold of 1x10-4 set by Dubois et al.72 under RE, RE2, or BE with the lowest p-value under RE2 

being 3.91x10-3. Finally, in the replication of the combined stage, rs10903122 did not meet the 

combined stage GWS threshold of 5x10-8, with the lowest p-value obtained under RE2 being 
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6.59x10-6. While the p-values indicate non-GWS, the P-M plot of rs10903122 (Figure 3.4) provides 

evidence that there may be a true effect, as the m-values for six of the twelve collections are within 

the region of high posterior probability of effect existence (m-value ~ 0.9) while another four 

collections are in an area of the P-M plot where there is overlap between the ambiguous region of 

effect existence and high posterior probability of effect existence101. Only two collections, the Polish 

and Dutch collections, have an m-value indicative of no effect existence. From the 26 SNPs that 

were GWS in the combined stage of Dubois et al.72 with a p-value ≤ 5x10-8, five SNPs were not 

GWS under the FE, RE, RE2, or BE model. As only one of the 26 SNPs had a lower p-value using 

FE, RE, RE2, or BE, the least conservative method is FE-CMH. As expected, the RE model was 

the most conservative in the presence of between-study heterogeneity. 

 

  
Figure 3.1. P-M plot of rs13151961 from Dubois et al.72 
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Figure 3.2. P-M plot of rs917997 from Dubois et al.72 
 
 

 
Figure 3.3. P-M plot of rs1464510 from Dubois et al.72 
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Figure 3.4. P-M plot of rs10903122 from Dubois et al.72 
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behavior as BE outperformed RE2 in the presence of high between-study heterogeneity (I2 > 75%). 

This was considered anomalous because Han et al.101 has previously demonstrated through 

simulation that while BE and RE2 are nearly the same in efficiency, RE2 tends to perform slightly 

better than BE in the presence of high between-study heterogeneity. 

 
Table 3.2. Meta-analysis of FE, RE, RE2, and BE from Trynka et al.76 
SNP Chr:Pos I2 PTrynka PFE PRE PRE2 PBE 
rs4445406 1:2539400 0 5.40E-12 1.98E-11 1.98E-11 4.40E-11 1.57E-10 
rs12068671 1:172681031 41.7 1.40E-10 4.85E-10 7.28E-03 4.55E-10 9.45E-11 
rs1359062 1:192541472 0 2.50E-25 1.57E-23 1.57E-23 4.99E-23 1.25E-22 
rs10800746 1:200881392 0 2.60E-08 4.00E-08 4.00E-08 7.15E-08 2.59E-07 
rs13003464 2:61186829 0 4.30E-16 7.83E-16 7.83E-16 2.05E-15 2.21E-14 
rs990171 2:103086770 0 1.20E-16 1.79E-15 1.79E-15 4.62E-15 1.91E-14 
rs1018326 2:182007800 60.4 3.10E-16 3.48E-15 4.07E-02 1.78E-15 2.12E-16 
rs6715106 2:191913034 58.3 8.40E-09 4.44E-08 1.32E-03 7.86E-08 2.00E-07 
rs1980422 2:204610396 34.2 1.40E-15 3.02E-15 4.55E-07 7.74E-15 2.46E-14 
rs2097282 3:46378025 54 1.10E-20 2.46E-19 1.45E-05 7.10E-19 4.23E-19 
rs61579022 3:119123278 49.1 9.90E-09 1.75E-08 1.99E-02 3.16E-08 1.06E-08 
imm_3_161120372 3:157034177 0 2.60E-27 1.97E-26 1.97E-26 6.61E-26 5.96E-25 
rs2030519 3:188119901 0 3.00E-49 2.36E-48 2.36E-48 1.06E-47 1.03E-46 
rs13132308 4:123551114 0 1.90E-38 6.99E-36 6.99E-36 2.72E-35 1.82E-34 
rs1050976 6:408079 83.1 1.80E-09 3.47E-03 3.77E-01 8.08E-08 2.42E-05 
rs55743914 6:128293562 29.6 1.10E-18 9.78E-17 3.53E-06 2.63E-16 9.34E-17 
rs17264332 6:138005515 0 5.00E-30 9.83E-28 9.83E-28 3.38E-27 3.17E-26 
rs182429 6:159469574 0 8.50E-16 1.16E-15 1.16E-15 3.01E-15 3.06E-14 
1kg_7_37384979 7:37298049 63.2 2.10E-08 8.87E-09 9.67E-02 9.87E-09 1.94E-09 
rs2387397 10:6390192 0 1.90E-08 4.42E-08 4.42E-08 7.82E-08 7.19E-07 
rs1250552 10:81058027 59 8.00E-17 1.56E-14 8.57E-04 3.91E-14 1.82E-14 
rs7104791 11:111196858 0 1.90E-11 2.70E-10 2.70E-10 5.71E-10 6.29E-10 
rs10892258 11:118579865 0 1.70E-11 5.86E-11 5.86E-11 1.28E-10 3.17E-10 
rs61907765 11:128391937 0 3.40E-13 4.47E-13 4.47E-13 1.06E-12 1.43E-11 
rs3184504 12:111884608 81.6 5.40E-21 2.20E-13 4.25E-01 1.98E-16 3.80E-17 
rs11851414 14:69259502 0 4.70E-08 7.97E-08 7.97E-08 1.44E-07 3.46E-07 
rs1378938 15:75096443 0 7.80E-09 3.26E-07 3.26E-07 5.68E-07 2.06E-06 
rs6498114 16:10964118 0 5.80E-10 3.17E-10 3.17E-10 6.69E-10 1.76E-09 
rs11875687 18:12843137 8.17 1.90E-10 3.51E-10 1.33E-07 7.39E-10 3.03E-09 
rs1893592 21:43855067 15.5 3.00E-09 7.07E-09 4.30E-04 1.26E-08 4.99E-09 
rs4821124 22:21979289 0 5.70E-11 8.58E-11 8.58E-11 1.86E-10 6.36E-10 
rs13397 X:153248248 0 2.70E-08 7.33E-09 7.33E-09 1.44E-08 1.58E-08 
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P-M plots were generated for SNPs with the highest between-study heterogeneity and the 

lowest between-study heterogeneity: rs1050976 (I2 = 83.1), rs3184504 (I2 = 81.6,), and rs2030519 (I2 

= 0).  For SNP rs1050976 (Figure 3.5), all collections, with the exception of the UK collection, 

cluster towards the bottom left-hand side of the plot where the posterior probability of effect 

existence is essentially zero. It is of note, that the UK collection, with an m-value of approximately 

1.0 and near GWS p-value, is at the top right-hand side of the plot where the posterior probability of 

effect existence approaches 100%. Such a divergence suggests that much of the between-study 

heterogeneity observed at rs1050976 is being driven by the considerable divergence between the UK 

collection and the six other collections. While the clustering to either end of the m-value distribution 

is not quite as distinct as with rs1050976, the P-M plot for rs3184504 (Figure 3.5) suggests that the 

high between-study heterogeneity of rs3184504 is probably driven by the UK collection again having 

a very high posterior probability of effect existence and the clustering of the Spanish and Dutch 

collections towards the region of effect existence. The standout collection here was the Indian 

collection, which is very near the bottom-center of the P-M plot and indicates that the Indian 

collection is underpowered101. This suggestive evidence from the P-M plot is corroborated by the 

very small sample size of the Indian collection (229 cases and 391 controls) relative to the total 

sample size of the study (12,041 cases and 12,228 controls). SNP rs2030519 (Figure 3.6) shows a 

distinct clustering of all points towards the region of effect existence even though the individual 

study p-values are not GWS for most of the collections, again with the exception of the UK 

collection that alone has a p-value < 1x10-30. It is this distinct clustering of all collections to the 

region of effect existence that probably drove the observed zero between-study heterogeneity. 
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Figure 3.5. P-M plot of rs1050976 from Trynka et al.76 
 
 

  
Figure 3.6. P-M plot of rs3184504 from Trynka et al.76 
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Figure 3.7. P-M plot of rs2030519 from Trynka et al.76 
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PRE = 2.18x10-9, PRE2 = 3.62x10-9, PBE = 2.87x10-9), rs2030519 (PFE = 2.48x10-12, PRE = 2.48x10-12, 

PRE2 = 4.72x10-12, PBE = 5.85x10-11) and rs13132308 (PFE = 3.99x10-8, PRE = 3.99x10-8, PRE2 = 

6.66x10-8, PBE = 6.90x10-7). Interestingly, all three SNPs that were found to be GWS when the UK 

collection was excluded also had zero between-study heterogeneity, providing suggestive evidence 

that the UK collection was driving up the between-study heterogeneity. 

 
 
Table 3.3. Minor alleles, allele frequency, and odds ratio with 95% confidence intervals for three 
representative SNPs. 

SNP Collection Minor 
Allele 

Minor Allele 
Frequency* Odds Ratio 95% Confidence Interval 

rs1050976 India-Punjab T 0.40 0.89 0.68 – 1.17 
 UK C 0.47 1.13 1.08 – 1.18 
 Spain-Madrid T 0.48 0.97 0.79 – 1.18 
 Poland T 0.44 0.88 0.74 – 1.05 
 Spain-CEGEC T 0.47 1.00 0.82 – 1.23 
 The Netherlands T 0.47 0.77 0.66 – 0.89 
 Italy T 0.46 0.96 0.86 – 1.08 
rs3184504 India-Punjab T 0.13 0.88 0.61 – 1.28 
 UK C 0.51 0.83 0.79 – 0.87 
 Spain-Madrid T 0.47 1.19 0.97 – 1.46 
 Poland C 0.50 0.82 0.68 – 0.98 
 Spain-CEGEC T 0.49 0.99 0.81 – 1.20 
 The Netherlands T 0.47 1.19 1.03 – 1.39 
 Italy C 0.49 0.86 0.77 – 0.96 
rs2030519 India-Punjab G 0.40 0.81 0.62 – 1.06 
 UK G 0.48 0.74 0.71 – 0.78 
 Spain-Madrid G 0.53 0.77 0.63 – 0.94 
 Poland G 0.46 0.87 0.72 – 1.04 
 Spain-CEGEC G 0.53 0.78 0.64 – 0.95 
 The Netherlands G 0.46 0.80 0.69 – 0.93 
 Italy G 0.53 0.75 0.67 – 0.84 
*Minor allele frequency in controls 
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3.4. Discussion  

In two previous GWAS MA of celiac disease, Dubois et al.72 and Trynka et al.76 presented evidence 

that RUNX3 is a novel locus associated with celiac disease. However, when between-study 

heterogeneity was accounted for in the present study by MA models such as RE, RE2, and BE, the 

SNPs identified as GWS in the RUNX3 gene no longer provide convincing evidence in terms of 

naïve p-value alone. As this locus was only marginally significant under all FE, RE, RE2, and BE 

models (and not GWS under even RE2 as described above) and exhibited the highest degree of 

between-study heterogeneity (I2 = 83.1), this particular locus may require an additional validation to 

be deemed a new independent loci associated with celiac disease strictly by p-value alone. However, 

the m-values and the P-M plot for rs10903122 provide suggestive evidence of a true effect and that 

the sample sizes for most of the collections are large enough, even if the posterior probability of 

effect existence for those collections are close to zero. Interestingly, three of the GWS novel loci 

(rs12068671, 1kg_7_37384979, and rs1893592) from Trynka et al.76 that were analyzed under FE-

CLR were also GWS under FE, RE2, and BE in the present study. Four loci for which the BE 

model was most efficient (rs1018326, rs61579022, rs55743914, and rs31854504), demonstrate 

evidence that even with between-study heterogeneity observed, those loci do replicate the results 

shown previously in Dubois et al.72. For the loci tagged by rs10903122 and rs13314993, which are 

not GWS at p-value ≤ 5x10-8 under FE, RE, RE2, or BE in the replication of the combined stage of 

the Dubois study, but are GWS under FE-CMH, those same loci do not have any SNPs GWS under 

FE-CLR in Trynka et al.76. However, SNPs representing two loci, rs653178 and rs917997, were 

found to be GWS under FE-CLR in Trynka et al.76. Curiously, the most heterogeneous SNP from 

the Dubois et al.72 data, rs1464510, has zero observed between-study heterogeneity with rs2030519 

in the Trynka et al.76 data. Both SNPs belong to the LPP locus and both SNPs are GWS under FE-

CMH and FE-CLR as well as FE, RE2, and BE.  
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Trynka et al.76 reported that the UK collection alone was sufficient to account for most of 

the GWS loci but did not present data in their study. The present study provides evidence that this 

assertion is true and that the UK collection is driving much of the evidence for effect existence and 

the high degree of between-study heterogeneity observed in some loci and that the MA based 

estimates of the effect sizes are probably biased upwards because of the “winner’s curse” 

phenomenon35,107–109. There are two loci, rs1893592 and rs12068671, for which logistic regression 

using just the UK collection alone slightly outperforms FE-CLR, using all 7 collections, although 

with rs12068671, PBE  < PFE-CLR UK only probably because of the moderate amount of between-study 

heterogeneity that the BE model can adjust for. 

Strengths of the original meta-analyses by Dubois et al.72 and Trynka et al.76 include 

homogeneity of the phenotyping of samples and of the genotyping platforms for each study dataset, 

especially Trynka et al.76 dataset, which was based on one genotyping platform. While the collections 

for the Trynka dataset were genotyped in different laboratories and may still be subject to some 

laboratory-level bias, a bias due to genotyping platform93 is not likely to exist because all samples 

were genotyped on the same Illumina Immunochip platform. However, this study demonstrates that 

even without the genotyping platform bias, significant between-study heterogeneity exists and does 

affect the performance of the MA models. As population stratification was adjusted for by multi-

dimensional scaling, the observed heterogeneity is likely to be driven by ethnic or subpopulation 

group membership. 

The present study lacks independent samples to further validate the results, particularly any 

of the novel signals from the Trynka et al.76 study. This weakness is present in many MAs of GWAS 

as avoiding the genotyping of more samples is the impetus for MA in the first place. For instance, 

with rs1050976 and rs3184504, there were no additional independent samples to investigate whether 

small sample size is driving the apparently high between-study heterogeneity. While these SNPs 
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could be forward imputed into other large GWAS datasets, it is not clear that the between-study 

heterogeneity will be reduced, especially if imputation quality is low. Also, this present study did not 

investigate the secondary and tertiary signals at loci identified by fine-mapping in the Trynka et al.76 

study and we did not perform MA by FE, RE, RE2, and BE on all SNPs from each dataset. Finally, 

the I2 statistic is based on Cochran’s Q statistic and if Q < (k – 1), where k is the number of studies, 

then the heterogeneity truncates to zero103. Although the data suggests that heterogeneity below 50% 

has little effect on the overall p-value, the possibility of a false negative cannot be ruled out.  

The present study is the first study that the author is aware of that applies FE and RE based 

MA models for GWAS MA of celiac disease, including the newly developed BE model and the P-M 

plot framework developed by Han et al.101. This case study demonstrates that if Dubois et al.72 and 

Trynka et al.76 performed their respective studies with either FE, RE, RE2, or BE, rs1050976, 

rs10903122 and rs13314993 from the RUNX3 gene would not have been identified as GWS at p < 

5x10-8, most likely because of the high degree of between-study heterogeneity that exists at those 

sites, although they may have been presented as loci with suggestive evidence of association. 

However, and perhaps most importantly, this study demonstrates that FE-CMH and FE-CLR with 

ethnic collection membership as a covariate is effectively equivalent to the ideal FE and RE hybrid 

strategy that outlined by Han et al.101. 
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Chapter 4: Association Analysis of the Extended MHC Region in Celiac 
Disease 
 
The very strong genetic effects on celiac disease from the known HLA high-risk loci, and the 

complex nature of the major histocompatibility complex (MHC), have greatly complicated any 

thorough statistical genetic analysis of the region. The purpose of this study was to test the 

hypothesis that additional novel celiac disease loci exist within the extended MHC (xMHC). A total 

of 1898 SNPs were tested for association with celiac disease across the 7.6 Mb xMHC region using 

1668 cases and 517 controls. A conditional inference based recursive partitioning method was 

implemented to create an informative factor variable of the known HLA-DQA1 and HLA-DQB1 

high-risk genotypes that was included in a multiple logistic regression model for association testing. 

A linkage disequilibrium (LD) based fine-mapping method was implemented to estimate the number 

of independent celiac disease loci present in the xMHC after accounting for the known HLA effects. 

Four novel and independent celiac disease loci were found to be statistically significant within the 

classic MHC region. This is the first comprehensive celiac disease association analysis of the xMHC 

that accounts for the known HLA disease genotypes and the genetic complexity of the region. 

 
4.1. Introduction 

Celiac disease is a common T cell mediated, auto-immune disorder that is triggered by ingestion of 

dietary gluten. The population prevalence of the disease (which occurs primarily amongst 

Caucasians) is approximately 1%110, with mounting evidence in the literature that suggests that the 

incidence of disease is increasing111,112. Comorbid diseases that occur alongside celiac disease include 

autoimmune disorders such as type I diabetes, autoimmune thyroiditis, inflammatory bowel disease, 

and adult rheumatoid arthritis113–116. 
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 Association between histocompatibility antigens in the major histocompatibility complex 

(MHC) and celiac disease were first documented over 40 years ago117,118 followed by the 

identification of the HLA-DQ2 molecule about a decade later119. While several linkage studies were 

performed to identify highly penetrant genes, no other consistent high-risk loci were found other 

than at the HLA loci67,120–126. Within the last decade, genome-wide association studies (GWAS) and 

follow-up studies of celiac disease have identified and replicated 39 non-HLA loci that are associated 

with celiac disease, explaining about 5% of the estimated disease risk68,69,71–73. The strongest GWAS 

associations were in the MHC region, with the most strongly associated SNP explaining about 35% 

of the disease risk. 

 HLA class II molecules such as the DQ2 molecule are necessary components in the 

development of celiac disease by encoding the cell surface proteins on CD4+ T lymphocytes that 

recognize gliadin, a component protein of gluten127. The specific DQ serotype expressed is 

determined by the alleles in the HLA class II genes, HLA-DQA1 and HLA-DQB1. Over 90% of 

celiac disease cases express HLA DQ258,128–130. Another 5% of celiac disease cases express DQ8131–133, 

while the remaining 3–5% of celiac disease cases carry neither DQ2 or DQ8, although most of these 

cases will carry at least the DQB1*02 allele. However, as approximately 30% of Caucasians carry the 

genotype to express HLA DQ2, but only about 1% develop the disease, the HLA association is 

considered to be necessary but not sufficient in the etiology of celiac disease134–136. 

 This study represents the first investigation of the extended MHC (xMHC) region of 

chromosome 6 for additional, non-HLA, disease-associated common variants. Studies of the non-

HLA associations in the MHC have been conducted in related autoimmune diseases such as 

systemic lupus erythematosus (SLE)137 and type 1 diabetes (IDDM)138–140.  These studies have found 

evidence for novel, HLA independent genetic associations within the MHC region. Although the 

specific statistical methods implemented in these previous studies are study-specific, these studies 



 44 

shared a common methodological approach, wherein the underlying information about the known 

high-risk HLA alleles was captured to account for the known risk alleles in an association analysis. In 

the present study, a similar approach was taken to account for the known HLA risk alleles and test 

the hypothesis that there are additional disease-associated common variants in the xMHC region 

other than the known HLA-DQA1 and HLA-DQB1 disease alleles. This chapter was adapted from 

a previously published manuscript in the journal, PLOS ONE74. 

 

4.2. Methods 

Conditional inference based recursive partitioning 

A conditional inference based recursive partitioning method was used to partition individuals into 

strata based on combinations of their HLA-DQA1 and HLA-DQB1 genotypes that minimized 

within-strata heterogeneity. Recursive partitioning is a two-stage process in which predictor variables 

(in this case, the HLA high-risk genotypes) are selected and then the sample is subjected to a series 

of binary splits141. In this study, to select the predictor variables to be included in the recursive 

partitioning model, a global test of independence between all the input variables and the outcome 

was carried out. If the null hypothesis of independence could be rejected at a pre-determined p-value 

threshold of 0.05, the input variable with the strongest association to the response was selected. The 

extent of association was measured by the p-value corresponding to a test of the partial null 

hypothesis of a single input variable and the response variable. A binary split was then imposed on 

the selected input variable. These steps were repeated until the global null hypothesis of 

independence could be rejected. A five-level factor variable was created from the terminal nodes of 

the binary inference tree resulting from the binary splitting process. The terminal nodes of the 

inference tree determined which strata each individual belonged to with respect to their HLA-
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DQA1 and HLA-DQB1 genotypes. The conditional inference based recursive partitioning was 

performed using the PARTY package in R142. 

Linkage disequilibrium (LD)-based SNP Grouping 

A data-reduction method was implemented to group sets of SNPs that had highly correlated 

associations with celiac disease and determine how many of the SNPs showing significant 

association were likely to be independent with respect to LD, i.e., in linkage equilibrium. The SNPs 

were grouped together into LD groups (or ‘clumps’) by p-values and LD (measured by r2) in sliding 

windows, wherein the SNP with the most statistically significant association, or ‘index’ SNP, was 

considered an independent locus. The non-index SNPs had to meet a pre-specified secondary p-

value threshold and physical distance threshold (in kilobases from the index SNP) in addition to the 

LD threshold for each LD-based group. The ‘clump’ procedure in PLINK143 was used to compute 

the LD-based SNP grouping analysis. 

Association analysis 

Logistic regression models were used to perform the association analysis. The genotypes 1/1, 1/2 

and 2/2 were unphased and encoded as 0, 1 or 2 to indicate the number of minor alleles present. 

The multi-level factor variable computed to account for the HLA-DQA1 and HLA-DQB1 

haplotypes was included in a multiple regression model along with the SNP genotype. All simple and 

multivariate regression models were fit to the data using PLINK and the GenABEL package in 

R143,144. 

Study subjects 

As part of the celiac disease GWAS, the North American Celiac Disease Genetic consortium was 

formed and is comprised of Dr. S. Neuhausen at COH and Dr. C. Garner at UC Irvine, Dr. J. 

Murray at the Mayo Clinic, Dr. A. Fasano at the University of Maryland, and Dr. P. Green at 

Columbia University with study subjects enrolled in previous studies at each center. Subjects had 
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already been coded and made non-identifiable. The City of Hope IRB approved this study in 

January 2010 (protocol 09169). All Mayo Clinic subjects had been previously enrolled under an 

approved IRB protocol 1173-99. Samples from the University of Maryland were collected under 

three approved IRB protocols (H-27784, H29090, and H-29938). Samples from Columbia 

University were collected under an approved IRB protocol AAAE8893 (as well as a previous 

protocol 8562). Written informed consent was collected from each participant as was described in all 

of the protocols. 

 All of the 2300 subjects were Caucasian as nearly all celiac disease cases are of Caucasian 

descent. Of the cases, 532 were from COH, 743 from the Mayo Clinic, 423 from the University of 

Maryland, and 66 from Columbia University for a total of 1764 cases. Of the controls, 177 were 

from COH and 359 from the Mayo Clinic for a total of 536 controls. Blood samples were collected 

for serological testing and extraction of DNA for genetic studies. All sites used the same serological 

test, a similar questionnaire, and the same criteria for diagnosing celiac disease. The following criteria 

had to be met to be defined as a celiac disease case: 1) test positive for a celiac disease specific 

autoantibody (IgA EMA and IgA tTG antibodies); 2) a proximal small intestinal biopsy that is 

compatible with celiac disease; 3) clinical and/or histological improvement under a gluten-free diet. 

While the majority of cases fulfilled all three criteria, a small proportion of subjects that were 

diagnosed before modern serology came into use, did not have a celiac disease specific serology, 

while another small minority of subjects did not have a small intestinal biopsy. As sensitivity and 

specificity for the IgA tTG and IgA EMA tests was reported be nearly 100%, those who tested 

positive for both IgA tTG and IgA EMA were considered to be positive for celiac disease145,146. A 

small intestinal biopsy was performed on about 90% of those who had a positive serology, and all 

biopsies were positive for celiac disease. All self-reported celiac cases were not included as cases. All 

unaffected controls had a negative serology for celiac disease. 
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HLA typing 

The first step in determining the HLA-DQA1 and HLA-DQB1 alleles in the cases and controls was 

to directly sequence the HLA genotypes of 95 individuals. These 95 samples were positive controls 

for the high-throughput HLA genotyping of the remaining case and control individuals. Direct 

sequencing of the second exons of HLA-DQA1 and HLA-DQB1 by Sanger sequencing was 

performed using the ABI Prism BigDye Terminator cycle sequencing kit 3.1 (PE Applied 

Biosystems). Sequence alignment was performed using the Sequencher software (GeneCode 

Corporation, MI) and manually inspected as necessary. Sample DQ allele assignments were manually 

compared to DQ alleles from the dbMHC database (http://www.ncbi.nlm.nih. gov/gv/mhc). Using 

the samples with DQ alleles determined by direct sequencing, HLA-DQA1 and HLA-DQB1 

genotypes for the remaining samples were determined by one of two high-throughput DQ typing 

methods. 389 samples (from COH) were genotyped by an allele-specific PCR method developed in 

the Neuhausen laboratory by Feolo et al.147. The genotyping accuracy for this PCR method was 

greater than 98%. A highly sensitive and specific tag SNP approach was implemented to genotype 

the remaining 1816 samples by using six SNPs to predict the four HLA-DQ types (DQ2.5, DQ2.2, 

DQ7, and DQ8) that are known to be associated with celiac disease148. Genotyping call rates ranged 

between 95% and 99% while duplicate concordance rates were greater than 99%. The concordance 

rate between direct sequencing and the tag SNP approach for the 95 samples that were directly 

sequenced was 100%. 

Genotype data 

2300 samples plus duplicates were genotyped at the Center for Inherited Disease Research (CIDR) 

at Johns Hopkins University using the Illumina 660W Quad platform. Individuals and SNPs with a 

missing genotype rate of 2% or more were excluded. Any SNP with a minor allele frequency (MAF) 

less than 0.03 or failing a test of Hardy-Weinberg equilibrium with a p-value less than 1.0x10-5 were 
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also excluded. Tests of familial relationships (second degree or higher) and validation of reported sex 

were carried out using the GWAS data.  Individuals with familial relationships or with misreported 

sex, that could not be resolved by reevaluation of the original records were excluded from the data. 

Multidimensional scaling and cluster analysis was performed to assess population stratification and 

admixture. A single predominant cluster was revealed and several ancestral outliers were excluded. 

After all QC steps, 2185 individuals, including 1668 confirmed celiac disease cases and 517 

unaffected controls, were used for association analysis in the current study. 1898 SNPs between 

positions 26,000,508 and 33,544,122 on chromosome 6p, encompassing the xMHC region were 

used for the current association analysis. 

 

4.3. Results 

The xMHC SNPs were analyzed for association with celiac disease using a simple logistic regression 

model that included only the SNP genotype. This analysis was performed to assess the associations 

between the xMHC SNPs and celiac disease without any adjustment for the known high-risk 

genotypes at the HLA-DQA1 and HLA-DQB1 genes. The result of this association analysis is 

shown in Figure 1. The SNP with the strongest association was rs2647044 with several other SNPs 

also showing significant association near the HLA-DQA1 and HLA-DQB1 genes. SNP rs2647044 is 

approximately 35 kb from HLA-DQB1 and 60 kb from HLA-DQA1 and in nearly perfect LD with 

both genes. Pairwise LD analysis, as measured by the r2 value, between rs2647044 and all other SNPs 

showed that there was no other SNP amongst those tested that were strongly correlated with 

rs2647044 (Figure 4.1). This was expected as tag SNPs chosen to be on the Illumina GWAS 

platform are selected to be highly informative, have low redundancy, and show low r2 values. In 

figure 1, recombination hotspots are also clearly apparent and show changes in the patterns of 

association between the SNPs and disease (Figure 4.1). 
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Figure 4.1. Association results for 1898 SNPs across xMHC, without accounting for the known 
HLA high-risk genotypes in the statistical analysis. Vertical bars indicate recombination rates 
generated from HapMap database. All pairwise linkage disequilibrium coefficients (r2) included the 
most significantly associated SNP, rs2647044. 
 

 As the HLA high-risk genotypes made it difficult, if not impossible, to identify independent 

associations, a statistical procedure was implemented to generate a categorical variable to represent 

the known HLA haplotype effects and this categorical variable was included in the logistic regression 

model. The HLA genotypes that impart the highest risk of developing celiac disease are HLA-

DQ2.5 and HLA-DQ8. Through in-trans combination of haplotypes, HLA-DQ2.2/7 also result in 
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the HLA-DQ2.5 genotype. HLA-DQA1 and HLA-DQB1 genotyping resulted in 16 possible multi-

haplotype categories. A conditional inference tree model based on the HLA-DQA1 and HLA-

DQB1 genotypes was computed that resulted in five terminal nodes (Figure 4.2). As was expected, 

the terminal node that predicted the highest proportion of celiac disease cases was the node for the 

DQ2.5 homozygotes (n = 279 samples), followed by heterozygote terminal node with one copy of 

DQ2.5 and one non-DQ8 haplotype (n = 1073), and the DQ2.5/DQ8 heterozygote node (n = 148 

samples). The proportion of predicted cases dropped off significantly for the final two terminal 

nodes, with the worst prediction rate for those samples with both non-DQ2.5 and non-DQ8 

haplotypes (n = 470). A binary split could not be made at the DQ8 terminal node because there was 

no discernible difference in prediction rate between samples having 1 or 2 copies of the DQ8 

haplotype (n = 215). The conditional inference tree model did not provide evidence that the effects 

of either the DQ2.5 or the DQ8 haplotypes were multiplicative. The frequency distribution of the 

categorical variable created from the five terminal nodes of the recursive partitioning analysis is 

show in Table 1. Each binary split in the conditional inference tree was statistically significant at P < 

0.003. 
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Figure 4.2. Binary tree computed by conditional recursive partitioning on HLA-DQA1 and HLA-
DQB1 genotypes. 
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Table 4.1. Characteristics of Five-Level Variable for Known HLA High-Risk Alleles Computed by 
Conditional Recursive Partitioning. 
Genotype Cases Controls Total 
DQ2.5/DQ8 heterozygote 117 (0.07) 31 (0.06) 148 (0.07) 
DQ2.5 homozygote 266 (0.16) 13 (0.03) 279 (0.13) 
DQ2.5/non-DQ8 heterozygote 949 (0.57) 124 (0.24) 1073 (0.49) 
1 or 2 copies of DQ8 124 (0.07) 91 (0.18) 215 (0.10) 
non-DQ2.5/non-DQ8 212 (0.13) 258 (0.50) 470 (0.22) 
Total 1668 (1.00) 517 (1.00) 2185 (1.00) 
 
 
 

After performing a simple logistic regression, the xMHC SNPs were tested in a multiple 

logistic regression model that included the HLA haplotype categorical variable as well as SNP 

rs1063355. SNP rs1063355 was included in the adjusted association model because it is in the 3’ 

untranslated region (UTR) of the HLA-DQB1 gene and is strongly associated with the HLA-DQB1 

high-risk allele. While rs1063355 was amongst the Illumina GWAS SNPs it was not one of the 

tagging SNPs used to determine HLA high-risk alleles. SNP rs1063355 was included in the 

association model to reduce the possibility of the SNP being identified as an independent predictor 

of the disease and to account for possible residual effects from HLA-DQB1 that were not identified 

by the categorical variable. In a simple logistic regression model with only rs1063355, the SNP had a 

p-value of less than 1.0x10-17. When the computed categorical variable was added to the model 

Prs1063355 increased to 2.5x10-5, indicating that rs1063355 has a relatively less significant effect but still 

may have significant residual effects on the disease outcome. Figure 4.3a demonstrates the impact of 

the adjustment for the known HLA high-risk genotypes. While rs2647044 was still very significant 

(P = 3.85x10-20), rs9357152 (P = 7.28x10-24) became the most significantly associated SNP in the 

xMHC region when the HLA high-risk genotype effects were accounted for in the multiple logistic 

regression model. The SNP rs9357152 is not in LD with the HLA-DQA1 or HLA-DQB1 genes or 

any other SNPs in the xMHC region. In Figure 3b, magnified on the HLA-DQA1 and HLA-DQB2 
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intergenic region, several other SNPs (other than rs9357152) are observed to be significantly 

associated within the region. 

 

 
 
Figure 4.3. Association results for 1898 SNPs across (a) full xMHC, and (b) focused on the region 
around the known HLA class 2 celiac disease genes, accounting for known HLA high-risk genotypes 
in the statistical analysis. Vertical bars indicate recombination rates generated from HapMap 
database. All pairwise linkage disequilibrium coefficients (r2) included the most significantly 
associated SNP, rs9357152. 

 

A SNP fine-mapping method was carried out to identify a minimal set of SNPs that are 

likely to be independently associated with celiac disease across the xMHC. This fine-mapping 

analysis used the results from the adjusted association analysis that accounted for the known HLA-

DQA1 and HLA-DQB1 high-risk genotype effects. These minimal, independent sets of SNPs were 

created according to their correlated effects on the outcome variable, with each set identified by a 

single most informative index SNP that was most strongly associated with disease. The following 

parameters were implemented for the grouping: 1) index SNP significance threshold of P < 5x10-7; 

2) grouped SNPs significance threshold of P < 0.01; 3) a physical distance threshold downstream 
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and upstream of 250 kb over which the SNPs in the group can span; 4) an LD threshold of r2 ≥ 0.1 

with the index SNP.  

While these grouping parameters were chosen to be conservative, a sensitivity analysis was 

performed to determine the relationships between the parameter values used in the SNP grouping 

procedure and the number of index SNPs identified. As described above, the SNP grouping 

procedure depends on several user-defined input parameters. This analysis determined the sensitivity 

of the grouping procedure to the input parameter values and demonstrated that parameter values 

used in subsequent analyses were not arbitrary. This sensitivity analysis showed that the number of 

index SNPs depended largely on the significance threshold value of the index SNP and the LD value 

between the index SNP and the secondary SNPs that are within each group of SNPs. Figure 4a 

shows a linear relationship between the numbers of index SNPs identified and the r2 parameter, with 

r2 values ranging from 0.05 to 1.0. As the r2 value rises, the number of groups tended to rise while 

the number of secondary SNPs tended to decrease, resulting in more index SNPs. The relationship 

between the number of index SNPs and the r2 values between 0.01 and 0.15 is shown in Figure 4.4b, 

where the number of index SNPs reaches a minimum of six at an r2 value of 0.07. The threshold 

value for the r2 value was set at 0.10 as an optimal compromise between the ability to distinguish 

independent associations and accepting that long-range LD is predominant across the MHC and 

weak correlations between independently acting loci are likely. Figure 4.4c shows the relationship 

between the significance threshold for the index SNP [as measured by -log10 (p-value for 

association)] and the number of index SNPs is shown in Figure 4.4c. The number of index SNPs 

dropped off sharply as the index SNP statistical significance threshold increased [i.e., the p-value 

decreased and -log10 (p-value) increased], with the parameter showing a less discernible impact on the 

number of index SNPs starting at a p-value of 1.0x10-6 [-log10 (p-value) = 6]. The number of index 

SNPs tends towards zero as the index SNP threshold exceeds the minimum observed p-value of all 
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SNPs in the experiment. The index SNP p-value threshold of 5.0x10-7 [-1xlog10 (p-value) = 7] was 

selected because any value below this point has a strong effect on the number of index SNPs 

identified while still allowing for selection of many putatively independent loci. This sensitivity 

analysis determined that the secondary SNP significance level and the physical distance parameters 

had weak, indiscernible effects on the number of index SNPs identified (results not shown). 

 

 
Figure 4.4. Results of sensitivity analysis for SNP grouping analysis showing the relationship 
between the group linkage disequilibrium parameter (r2) and the number of index SNPs identified, 
with r2 ranging from (a) 0.05 to 0.95, and focused on the range from (b) 0.01 to 0.15. Results (c) 
show the relationship between the minimum statistical significance parameter for the association 
between the disease and the index SNP and the number of index SNPs identified. 

 

The fine-mapping procedure resulted in the identification of seven index SNPs in the 

classical MHC region associated with celiac disease, in addition to the known HLA high-risk 

genotypes that were accounted for in the adjusted analysis. The positions of these seven loci across 

the xMHC are shown along with the estimated rates of recombination in Figure 4.5, where all seven 

loci fall within the classical MHC region and are separated by hotspots of recombination. Table 4.2 

ranks the seven index SNPs by p-value, with all seven SNPs showing p < 5.0x10-7. Four of these 

SNPs had odds ratios greater than 1.0 indicating that the minor allele occurred with greater 
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frequency among cases, while the other three SNPs showed the opposite effect direction and the 

major allele occurred more frequently among cases. The top four index SNPs (rs937152, rs204991, 

rs2523674 and rs2517485) each tagged over 30 secondary SNPs for a combined total of 135 SNPs, 

while the other three index SNPs (rs2260000, rs9276435 and rs2844776) combined tagged a total of 

34 secondary SNPs (Table 4.2). 

Further verification of the independence of the seven index SNPs was conducted by 

simultaneously testing SNPs for association in two multivariate logistic regression models. In the 

first multivariate model, only the seven index SNPs were included as predictors of celiac disease. As 

reported in Table 4.2, five of the seven index SNPs remain statistically significant with p < 0.01 

when all of the index SNPs are simultaneously tested in a multivariate model. Two SNPs, rs2260000 

(p-value = 0.23) and rs2844776 (p-value = 0.052), did not remain statistically significant when tested 

simultaneously with the other five SNPs. The second multivariate logistic regression model included 

the seven index SNPs as well as the five-level factor variable capturing the known common HLA 

high-risk genotypes. This multivariate analysis revealed that four of the seven SNPs were still 

statistically significant predictors of celiac disease: rs9357152 (p-value = 0.00012), rs204991 (p-value 

= 0.0024), rs2523674 (p-value = 0.00693) and rs2517485 (p-value = 0.0022). 
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Table 4.2. Association Results for Seven Index SNPs Representing Independent Loci. 

SNP Position 

Minor 

allele 

Minor 

allele 

freq. P-value Odds ratio 

No. 

Secondary 

SNPs 

Multiple LR 

P-value NO 

HRA Adj.# 

Multiple 

LR P-value 

HRA Adj. 

Functional 

gene* 

rs9357152 32664960 G 0.12 7.28x10-24 0.24 (0.21-0.28) 34 4.0x10-4 1.2x10-4 HLA-DQB1 

rs204991 32161366 G 0.46 1.13x10-12 2.24 (2.00-2.51) 33 3.31x10-9 2.4x10-3 GPSM3 

rs2523674 31436789 A 0.35 6.55x10-10 0.57 (0.52-0.62) 33 1.4x10-3 6.93x10-3 HCP5 

rs2517485 31074101 A 0.49 2.03x10-9 1.77 (1.61-1.95) 35 6.53x10-5 2.2x10-3 
SEEK1/PSO

RS1C1 

rs2260000 31593476 G 0.22 5.90x10-8 0.60 (0.54-0.66) 15 0.23 0.39 BAT2 

rs9276435 32713867 A 0.40 3.28x10-7 1.82 (1.62-2.05) 5 1.4x10-4 0.10 HLA-DQA2 

rs2844776 30171827 G 0.37 4.17x10-7 1.65 (1.50-1.83) 4 0.052 0.096 TRIM26 

*Either the gene that the SNP occurs in, or the nearest gene within the same LD haplotype block as the index SNP.  
#Indicates adjustment for known common high-risk alleles by inclusion of the five-level variable computed by recursive 
partitioning. 
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Figure 4.5. Association analysis results and locations of seven index SNPs identified by grouping 
analysis of the xMHC. Recombination rates were estimated from HapMap data and are indicated by 
vertical bars. 

 

4.4. Discussion 

GWAS of celiac disease have thus far successfully identified 39 non-HLA loci showing genome-

wide significant association with celiac disease, with modest predictive information72,73. The high-risk 

alleles of the HLA-DQA1 and HLA-DQB1 genes may be considered necessary for development of 

celiac disease but are not sufficient. The xMHC region contains more than 250 expressed genes, 

many of which are involved in the regulation of the immune system149. However, it had not been 
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thoroughly investigated for additional celiac disease loci because of the complex nature of the 

analysis, which includes adjusting for the very strong effects of the known HLA disease alleles, the 

extraordinary genetic variation within the region, and complex patterns of linkage disequilibrium. A 

simple association analysis of the common variants within the region that does not take these 

complications into account would likely generate misleading results (as seen in the comparison of 

simple and multiple logistic regression models above). Statistical evidence was presented for four 

novel and independent celiac disease susceptibility loci within the classical MHC region. An 

informative measure of the known high-risk HLA genotypes was computed by conditional inference 

based recursive partitioning and encoded as a categorical variable that was included in an association 

analysis of the 7.6 Mb xMHC region using a set of 1898 SNPs that passed rigorous GWAS quality 

control assessments. The conditional inference based recursive partitioning approach is superior to a 

sample stratification to account for the known HLA high-risk types because power is not lost from 

sub-sampling while creating an informative measure of the effect of the haplotypes. The 

classification and regression trees algorithm (CART) implemented by Nejentsev et al.140 has the 

potential problems of model overfitting and a bias towards selecting a model with too many binary 

splits because CART does not take statistical significance into account when making a binary split. 

The conservative fine-mapping method implemented in this study to identify the independent 

associations minimizes the probability of seeing false positive results. 

 The conditional inference based recursive partitioning analysis generated a variable that 

captured the effects of the known common HLA-DQA1 and HLA-DQB1 high-risk genotypes in a 

highly informative factor variable. Including this factor variable in the association analysis had a 

distinctly noticeable effect on the association results. Of the 671 SNPs that had p < 5.0x10-7 from the 

simple logistic regression analysis, only 48 SNPs had p-values less than this threshold when the 

known HLA effects were accounted for in the adjusted model. While this statistical adjustment likely 
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captured much of the known HLA effects, it is also very likely that the adjustment was incomplete. 

There are rare and low frequency risk alleles and genotypes in the HLA-DQA1 and HLA-DQB1 

genes that were not specifically identified by the factor variable because they are not common 

enough to be strong predictors of disease in the full sample. Furthermore, the complex genetic 

structure of the MHC is not completely resolvable by a straightforward statistical adjustment as 

employed in this study. While residual influence from the HLA-DQA1 and HLA-DQB1 high-risk 

genotypes cannot be entirely ruled out, it is not likely that the four independent disease loci 

identified in this study are due to correlation with the known HLA high-risk genotypes given the 

conservative approach that was taken in the study. The results presented here strongly suggest 

additional loci associated with celiac disease are present in the MHC region and may be identified in 

a study that incorporates rare and low-frequency variants (MAF ≤ 0.01 and MAF < 0.05, 

respectively) from either a custom, dense microarray chip such as the Illumina Immunochip 

platform or through resequencing. 

 Of the SNPs reported in Table 4.2, none occur in the exonic regions of genes or have a 

reported functional effect. Table 4.2 also lists the genes that each index SNP occurs in or if it’s not 

known which gene the SNP belongs in, the closest gene that is within the same LD haplotype block. 

SNP rs9357152 was previously reported to be associated with celiac disease68, occurs on the same 

haplotype block as rs9469220, a SNP reported to be associated with related autoimmune disease, 

Crohn’s disease150, as well as rs6457617, a SNP reported to be associated with another related 

autoimmune disease, rheumatoid arthritis151. While HLA-DQB1 is the closest gene to rs9357152 at 

approximately 45 kb centromeric, a moderate amount of recombination separates this index SNP 

from the HLA-DQB1 gene. SNP rs204991 is located on the third intron of the G-Protein Signaling 

Modulator 3 gene (GPSM3) and on the haplotype block that encompasses the entire gene. The 

nearest gene to rs2523674 is the gene, HLA Complex P5 (HCP5), which is about 4 kb away; there 
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are no other genes within 20 kb of this SNP. SNP rs2517485 is located about 10 kb from genes, 

SEEK1/PSORS1C1, that is implicated in susceptibility for psoriasis and systemic sclerosis disease. 

 The aim of this study was to test the hypothesis that the known HLA-DQA1 and HLA-

DQB1 celiac disease high-risk alleles were not the only celiac disease alleles within the xMHC region. 

While the results show evidence for additional, independent celiac disease loci within the 3.7 Mb 

classic MHC region, no statistically significant evidence was found for additional disease loci within 

the additional 4.1 Mb that make up the xMHC region in the adjusted analysis. The index SNPs that 

were identified, SNPs rs9357152, rs204991, rs2523674 and rs2517485, were the common (MAF ≥ 

0.05) markers with strongest evidence for association for the four new loci in the xMHC. Additional 

investigation in a follow-up replication study will be required to validate the reported findings and to 

locate additional novel disease alleles, including determining if these SNPs are causal, perhaps 

playing key roles in regulation of genes in the MHC region, or if they are only tagging causal variants 

that are not yet identified. 
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Chapter 5: Identification of Rare and Low-frequency Variants Associated with 
Celiac Disease in the 12 Previously Identified Regions and the MHC Region 
 
 Much of the heritability of celiac disease that is not attributed to the high-risk HLA loci has 

yet to be explained. Multiple GWASs have uncovered 39 non-HLA loci spread across 12 genomic 

regions on chromosomes 1, 2, 3, 4, 6, 11, 12, and 16 but explain less than 15% of the heritability of 

celiac disease. The purpose of this study is to use targeted resequencing data of regions previously 

identified to harbor common variants associated with celiac disease and identify rare and low-

frequency variants that may be associated with celiac disease. 

5.1. Introduction 
 
The role of common variants in the genetic susceptibility of celiac disease (CD) has been extensively 

interrogated by multiple genome-wide association studies (GWAS). The first GWAS of CD in 2007 

by van Heel et al.68 identified genome-wide significant (GWS) common risk variants in the LD block 

that includes the genes IL2 and IL21 on chromosome 4q27. Hunt et al.69 quickly followed up on this 

first GWAS of CD by identifying seven more risk regions associated with CD genome-wide, 

including regions that are known to harbor immune response genes such as CCR3, IL12A, 

IL18RAP, RGS1, SH2B3, and TAGAP. Another two novel regions associated with CD, 6q23.3 

(OLIG3-TNFAIP3) and 2p16.1 (REL) were discovered by Trynka et al.70 in 2009. A replication 

GWAS of celiac cases from the USA was performed by Garner et al.71, confirmed the associations 

found in five of the eight regions that had been previously identified and provided evidence for a 

new candidate gene on chromosome 2q31, ITGA4. This was followed by a study by Dubois et al.72 

that further identified 13 more regions with GWS evidence and another 13 regions with suggestive 

evidence of association with CD (p < 1x10-6). A fine-mapping study of 183 previously identified loci 

using a custom dense genotyping array that captures low-frequency and rare variants was carried out 

in 2011 by Trynka et al.73, and while this study did not find statistically significant evidence for low-
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frequency or rare variants, it did reveal evidence for another 13 novel celiac disease loci and brought 

the total number of non-HLA risk loci to 39. However, even with the identification of dozens of 

celiac disease risk loci, only about 14% of the heritability (excluding the HLA loci, which explain 

about 40% of the heritability) is accounted for by the non-HLA risk loci. 

 Under the common disease, common variant hypothesis (CDCV)152, a model that posits that 

complex diseases can be largely attributed to common variants (minor allele frequency (MAF) ��

5%), each common variant discovered by a GWAS is thought to explain several percent of the 

population risk for a given disease. GWASs make use of an array of polymorphic markers identified 

through large-scale projects such as the International HapMap Project153 and the 1000 Genomes 

Project154, that are hypothesized to indirectly represent causal variants via common variants(also 

known as ‘tag SNPs’) that are in association with a disease or trait. While GWASs have yielded 

scores of significantly associated common variants for many common diseases, the common 

variants have failed to explain a meaningful percentage of the heritability. This ‘missing heritability’ 

problem155, as it has come to be known, has driven the adoption of the common disease, rare variant 

model (CDRV)156. According to CDRV, much of the heritability of common, complex diseases is 

due to moderate-to-high penetrance rare variants. While CDRV recognizes the role of regulatory 

loci and the environment in the differential expression of a disease or trait, the model places much 

of the disease heritability on rare variants17. According to evolutionary theory, variants that are 

disease causing should not be common because disease tends to be deleterious to reproductive 

fitness and as such, disease causing variants should be selected against and prevents such variants 

from attaining a higher frequency in a population157,158. However, because selection does not remove 

every deleterious variant, the variants that have a more modest effect on reproductive fitness may 

attain a detectable population frequency and it has been argued that the assumption of purifying 

selection may be relaxed with humans152,159,160. Furthermore, data from population genetics studies 
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and data from whole-exome sequencing studies have demonstrated that there is an excess of rare 

variants, particularly nonsynonymous, deleterious variants161–163.  

Next-generation sequencing 

Next-generation sequencing (NGS), in the form of high-throughput whole-exome 

sequencing, whole-genome sequencing, or targeted resequencing of previously identified regions, has 

rapidly gained traction since its inception because it has allowed researchers to directly identify 

potentially causal variants by genotyping all bases at a given locus, including any rare variants, at a 

cost, both in terms of time and money, that is acceptable. Prior to NGS, automated Sanger 

sequencing, now known as “first-generation” sequencing technology, was the preferred technology 

to perform resequencing. Indeed, initial sequencing of the human genome was performed using 

automated Sanger sequencing at a cost of approximately $2.7 billion and over a ten year span of 

time164. Sanger sequencing itself was first introduced by Fred Sanger in 1977165 and except for 

automation and the use of fluorescent probes in place of radioactive probes, it has changed little 

since its introduction and is still widely considered the gold-standard for clinical cytogenetic 

applications. The primary strength of Sanger sequencing is its sequencing chemistry, which has been 

well refined over the last three decades and is still the most accurate sequencing method available 

and produces long reads of DNA fragments that range between 500 bases and 1 kilobase (kb) in 

length166. 

Sequencing throughput is a function of the number of sequencing reactions that can be run 

simultaneously and the lengths of the reads for each of these sequencing reactions and sequencing 

throughput has become the main limiting factor of Sanger sequencing. The throughput of Sanger 

sequencing is very limited because it requires electrophoretic separation of DNA fragments167. The 

most efficient automated Sanger sequencing machine can run only 96 sequencing reactions in 

parallel with a maximum output of 115 kb reads per day of operation. To deal with the problems 
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posed by the low throughput and high cost of Sanger sequencing, the NHGRI began funding NGS 

technology in 2004 with the dual goals of reducing cost to around $1,000 for a full human genome 

and significantly increasing throughput within a ten year timeframe168,169. 

 NGS technology (also known as “massively-parallel” sequencing or “second-generation”), is 

actually a collection of competing sequencing technologies developed over the last decade that have 

dramatically increased sequencing throughput by several orders of magnitude while simultaneously 

decreasing the cost by orders of magnitude as well. In principle, all of the competing NGS 

technologies read DNA fragments that have been immobilized on some template array and differ in 

template generation chemistry and detection methods167. 

 Before any sequences can be read using NGS technology, a sequencing library must be 

created. A sequencing library consists of fragmented, adapter ligated pieces of single-stranded DNA 

with fragment length depending on the particular technology170. The DNA fragments are attached to 

either a solid surface or to a bead. After library creation, the DNA fragments can either be clonally 

amplified and sequenced or sequenced directly. Clonal amplification of a sequence template is 

typically required in most NGS technologies for proper detection of the addition of a 

nucleotide171,172. However, DNA polymerases for template amplification do introduce mutations that 

can result in false positive genotype and variant calling further down the work flow. Despite the 

possibility of sequencing errors from amplification, the error rate is still lower overall than for NGS 

technologies that allow for single-molecule sequencing without clonal amplification; these single-

molecule sequencing technologies are currently immature relative to technologies requiring clonal 

amplification and will not be discussed here. 

 Despite the markedly improved throughput of NGS technologies, the most widely used 

platforms by Illumina and Roche 454 tend to have shorter average read lengths (36 to 150-bp and 

~400 to ~700-bp, respectively) than their first-generation sequencing counterparts164,167, though the 
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latest line of Roche 454 based platforms claim average read lengths up to ~1-kb. These shorter read 

lengths do make experiments such as the assembly of a genome de novo very difficult173 though not 

impossible. After fragmentation, the reads must be re-assembled and are typically done so by 

alignment back to the appropriate reference genome of the organism that is being sequenced. 

However, short-reads from most of the NGS instruments that are widely used do not align well to a 

reference genome for repetitive regions and may leave gaps in genome coverage in these regions. To 

aid in achieving optimal coverage of genomic regions using short-reads, a modification to the DNA 

library preparation allows for the generation and reading of both the forward and reverse template 

strands of a given short-read in what is known as paired-end sequencing. 

NGS Bioinformatics 

The high throughput nature of NGS technologies is one of the key benefits but has also 

become one of its limitations, a limitation that will probably be overcome in the years to come as 

informatics methods catch up to the data generation capabilities of the current NGS instruments. 

NGS technologies now routinely produce sequence data sets in the range of gigabases and that 

places a huge strain on every aspect of informatics, from data storage, quality control, annotation, 

variant calling, and interpretation of the data174. With Sanger sequencing, it was thought that data 

generation was the bottleneck; with NGS technologies the opposite has now become true with NGS 

instruments outpacing the development of innovative informatics methods to mine and interpret 

these huge data sets175. One of the first steps after data generation and base calling in an NGS work 

flow is the alignment of the short reads to a reference genome (unless de novo assembly is to be 

attempted), an area of bioinformatics research that is still actively producing new methods to allow 

for more efficient and accurate alignment of reads to a reference genome176. Many of the current 

crop of short read alignment algorithms are based around the “Burrows-Wheeler Transform” 

(BWT) compression algorithm177 or some form of hashing. Three of the most widely used alignment 
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packages are all based on the BWT algorithm: Bowtie178, SOAP2179, and BWA86,180. All three of these 

methods are very fast and memory efficient and have high sensitivity. However, hash-based 

algorithms such as Novoalign181 are still slightly more sensitive, particularly in aligning repetitive 

reads although these marginal sensitivity gains come at a high cost in terms of memory and time. For 

genomic regions with high levels of variation, alignment tends to be more error prone. In particular, 

the alignment of highly diverse regions such as the MHC region on chromosome 6 has remained a 

challenge. Some of the solutions suggested are the usage of paired-end or mated-end reads and the 

usage of longer reads. There is also active research in hybrid de novo assembly/alignment to reference 

approaches for assembling the reads for the MHC; these approaches will not be explored in the 

present study. 

After alignment of short reads, it is often necessary to recalibrate the Phred-scaled quality 

scores for each short-read182. The Phred score is given by the equation, QPhred = -10 log10 P(error), 

such that a 1% error rate in base calling equals a Phred score of 20. This recalibration must be done 

for accurate downstream analysis because the raw Phred score that is generated by the proprietary 

base-calling algorithms that are used in conjunction with a given NGS instrument may not be 

accurately reporting the true error rate183. As mentioned above, the Phred scores must be well 

calibrated because the genotype and variant calling is highly dependent on the base quality score. 

One widely used algorithm for recalibrating Phred scores has been implemented in the widely used 

variant calling package, GATK85, and takes the machine cycle and dinucleotide context into account 

when recalibrating the Phred scores. This recalibration algorithm operates by first estimating the 

empirical Phred score with respect to the reference genome and then estimating the recalibrated 

score by finding the difference between the empirical quality scores and the raw quality scores. 

Statistical tests for low-frequency and rare variants 
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In the last few years, NGS technology has delivered on the promise to provide a wealth of 

genotypic data that has long been sought after by researchers. However, there is substantial 

recognition that the ability to quickly and cheaply generate genotype data has outpaced the research 

community’s ability to interpret the data well. For instance, while statistical significance thresholds 

have more-or-less been agreed upon for GWASs (the now conventional p < 5x10-8 threshold for 

arrays having 1x106 SNPs), there is a paucity of simple statistical guidelines that are widely accepted 

for NGS-based studies184. The primary reason that simple statistical significance thresholds have not 

been as widely accepted is the different types of variants (i.e. nonsynonymous, synonymous, exonic, 

intronic, etc.) and their unknown prior probabilities in how they affect a disease or trait. 

As locus and allelic heterogeneity are high and variants of large effect for complex diseases 

are likely to be low-frequency or rare, a central challenge has been the development of statistical 

tests that are well powered to detect low-frequency or rare variants. To identify rare and low-

frequency variants associated with disease, three classes of tests have been developed: single-marker 

tests, multi-marker tests, and collapsing methods. Of these, the simplest and the least powerful is the 

single-marker class of tests. With case-control data, single-marker tests include the chi-square test, 

Fisher’s exact test, the Cochran-Armitage (CA) test for trend, and logistic regression. The CA test 

for trend assumes that the genotypes are ordered and tests for a linear trend in proportions that are 

weighted by the number of alleles185. The chi-square and Fisher exact tests test the null hypothesis of 

no difference in the genotype frequencies at a given variant between cases and controls with the key 

difference being that the Fisher’s exact test yields exact results and should be used when any 

genotype count is less than 5 in either comparison group, which is often the case with rare variants. 

In any case, even without the reduction of power that comes from adjustment for multiple 

comparisons (e.g., Bonferroni correction) across each variant, the markedly reduced power of single-

marker tests to detect rare and low-frequency variants associated with disease have been shown to 
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be very sensitive to sample size; extremely large sample sizes of tens of thousands of samples are 

required to detect association signals from rare or low-frequency variants185.  

Multiple marker methods that tests all variants simultaneously can be implemented using a 

multivariate test such as Fisher’s method or Hotelling’s T2 test. A multiple marker test has higher 

power to detect an association between a rare variant and a phenotype than a single-marker test 

unless there is only one clearly associated variant in the tested region or unit of interest. Perhaps the 

most simple multiple marker method, Fisher’s method combines single-marker tests across all 

variants and has the following test statistic, 

, 

where pi is the ith p-value from m single-marker tests. Given that H0 is true and all pi are truly 

independent of each other, then X2 follows a !2 distribution with 2m degrees of freedom. To 

implement Hotelling’s T2 test, indicator variables for case and control genotypes for variants across 

each individual must first be defined. The indicator variable for cases, Xij, is defined, 

, 

for the ith individual and jth variant. The indicator variable for controls, Yij, is defined similarly. 

Then, ,  and ,  where  is the 

number of cases,  is the number of controls, is the vector of expected indicator values across 
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test statistic,  
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where S is the covariance matrix of X and Y. Under H0, T
2 follows . Although multi-

marker tests are in general more powerful than single-marker tests, they are still sensitive to minor 

allele frequencies like single-marker tests. Furthermore, a simulation study by Li and colleagues186 has 

shown that the multiple marker method using Hotelling’s T2 test has significantly reduced statistical 

power as the number of rare causal variants increases. 

Collapsing methods (also known as “burden tests”, in reference to the genetic “burden” that 

is due to rare variants) may have the most power to detect an association between disease and rare 

variants because these methods aggregate or collapse low-frequency and rare variants before testing 

for association, and in aggregate form, low-frequency and rare variants may actually be common. 

Collapsing approaches apply either a univariate test (i.e. the Pearson !2 test) or a multivariate test to 

the aggregated or collapsed variants within a defined group (i.e. a gene or pathway), and have the 

increased power of a multi-marker test while avoiding the penalty of high degrees of freedom from a 

multivariate analysis of individual variants or the reduction in power from multiple comparisons that 

a single-marker test faces. For a univariate collapsing method, indicator variables for cases and 

controls, Xi and Yi respectively, must first be defined that indicate whether a rare variant is either 

present or not across all genotypes in each of i individuals, 

. 
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 Taking advantage of the increased power of a multivariate test, the combined multivariate 

and collapsing method (CMC) of Li and Leal186 was one of the first proposed collapsing methods 

that implemented a multivariate test such as Hotelling’s T2 test. The implementation of Hotelling’s 

T2 for CMC is the same as above except for the collapsing of n variants across k locus groups and 

each individual is represented by a k-vector of indicator variables for cases (i = 1, …, NA), Xi = (Xi1, 

…, Xik)
T, and for controls (i = 1, …, ), Yi = (Yi1, …, Yik)

T. Now, under H0, T
2 follows the 

 distribution, the k groups replacing the m markers. While CMC has a relatively high 

power to detect an association compared to multivariate tests, there is still a decrease of power when 

the number of noncausal variants is increased.  

A collapsing method based on a logistic regression framework was proposed by Morris and 

Zeggini187 that tests for either the presence or absence of at least one minor allele at any low-

frequency or rare variant. In this model, one must first sum all of the rare variants across a particular 

gene, 

, 

where Xi takes the value of 1 for each ith rare variant. After this collapsed variant is created, a logistic 

regression model may be fitted, 

 

and the following null hypothesis is tested: . The p-values are drawn from an asymptotic 

normal distribution of the Wald statistic. The primary limitation of the burden test approach is the 

assumption that all of the aggregated variants in a given gene act in one direction only (that is, the 

variants are either all deleterious or all protective). For genes that harbor deleterious, neutral, and 

protective rare variants that are associated with disease, this assumption of uni-directionality does 

not always hold well. 
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One of the many approaches that were developed to deal with the weakness of the 

directionality assumption is the C-alpha test developed by Neale et al.188. The C-alpha test works 

under the assumption that genes harbor a mix of deleterious, protective, and neutral rare variants in 

cases and controls and is able to maintain statistical power in the presence of deleterious, neutral, 

and protective rare variants by testing the variance of observed counts of a given rare variant against 

the expected variance of the given rare variant. The test statistic for C-alpha is, 

 

where ni is the number of cases and controls for the ith variant, yi is the number of cases for the ith 

variant and p0 is a common probability of seeing ni under the null hypothesis of no association. The 

variance of T is as follows, 

, 

where m(n) is the number of variants with count n and is the probability of observing u 

copies of the ith variants under the null. With T and c, one can simply estimate a Z statistic that 

follows an asymptotic N(0,1) under the null hypothesis of no association. Empirical p-values may be 

obtained by permuting case and control status. 

There is still some frustration in the field due to the lack of agreement and clarity in 

statistical guidelines for NGS-based studies that is partially alleviated by the gene-based burden test 

because the number of tests that are performed simultaneously is based on the number of genes 

being tested, a number which is orders of magnitude lower than the number of total variants 

genome-wide. As such, even if the conservative Bonferroni correction is applied for all genes, the 

statistical threshold is relaxed several-fold. For smaller studies like the present study, permutation 
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based testing may also be implemented in to estimate empirical p-values because asymptotic p-values 

may be artificially high in smaller studies189. 

Recent NGS studies 

In a recent large-scale NGS-based study involving the targeted resequencing of 202 genes in 

14,002 people, Nelson et al.190 found that 95% of all variants in the sample were rare (MAF ≤�

0.5%), that nearly 75% of the variants were only observed in 1-2 individuals, and that about 90% of 

the rare variants detected were novel (i.e. not reported in a previous study or database). The NHLBI 

Exome Sequencing Project191, found that nearly 90% of variants across (and nearly 75% of 

nonsynonymous variants) 15,336 genes were of recent origin. These large-scale sequencing studies 

provided the empirical evidence of the excess of rare variants predicted by population genetics 

theory and also provided evidence that a large proportion of rare variants are unique to a given 

sample set and that detection of rare variants would be relatively difficult in smaller disease-specific 

case-control studies. This has been reflected in the relative dearth of strong evidence for rare 

variants of large effect size in autoimmune disorders. An early study by Nejentsev et al.192 found 

significant evidence for association of nonsynonymous rare variants with type 1 diabetes in just one 

gene (IFIH1) in a resequencing of 144 regions identified by GWAS. In a resequencing study of 

inflammatory bowel disease by Momozawa et al.193 in which 70 candidate genes were resequenced, 

only low-frequency nonsynonymous variants were identified in IL23R. To counter the loss of power 

from the small sample sizes of resequencing studies of autoimmune disorders, a very recent, large-

scale study of six autoimmune disorders (including celiac disease) by Hunt et al.75 that performed 

NGS-based exon sequencing of 25 genes in 41,911 individuals from the UK, demonstrated that rare 

coding variants contributed much less of the unexplained heritability than expected and claimed that 

‘missing heritability’ of autoimmune disorders will probably not be explained by CDRV. 
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The present study attempted to identify candidate rare and low-frequency variants within 

genes associated with celiac disease from 13 regions (including the MHC region of chromosome 6) 

for future imputation and meta-analysis using a large GWAS collection from Dubois et al.72. This 

present study did not focus on definitive identification of individual rare or low-frequency variants 

associated with celiac disease because a priori, the present study, with ~500 samples, is not 

sufficiently powered to detect individual rare or low-frequency variants. The present study is 

distinguished from the Hunt et al.75 study because non-coding regions (e.g. intronic variants) have 

also been resequenced and will also be interrogated. 

 
 
5.2. Methods 

Samples 

From the 2,300 samples collected for a previous study by the North American Celiac 

Disease Consortium74, 250 celiac disease cases, 239 healthy controls of Caucasian ancestry were 

selected to be resequenced. Signed informed consent forms for all samples along with approval from 

each respective Institutional Review Board was obtained and detailed in the previous study.  

Sequencing 

100 bp paired-end reads from targeted sequences were obtained for 509 individuals. For 106 

samples, the sequencing libraries were enriched with Agilent SureSelect baits and 403 samples were 

enriched with Roche Nimblegen baits that cover 64 genes in 12 regions (table 5.1) across 

chromosomes 1, 2, 3, 4, 6 (non-MHC), 11, 12, and 16 previously found to be associated with celiac 

disease68,69,72,73. The MHC region (chromosome 6: 28.7 Mb – 33.5 Mb), with 202 genes, was covered 

only in the 403 samples that were enriched with the Roche Nimblegen baiting platform. All samples 

were sequenced at an average read depth of 35x on an Illumina GAIIx sequencing platform. To 

optimize variant calling, it has been shown that an average depth of 40x is desirable194; the present 
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study has an average depth, genome-wide of 35x, comparable to the average read depth reported in 

a recent large-scale study by Hunt et al.75. As such, depth of coverage for the present study is close 

to optimal for accurately detecting variant calls. 

 

Table 5.1. Twelve non-MHC regions that were resequenced and genes in those regions. 
Chromosome Position (Mb) Genes 

1 192.4 – 192.6 RGS1, RGS13 

2 60.9 – 61.9 
PAPOLG, FLJ16341, REL, PUS10, PEX13, KIAA1841, LOC339803, C2orf74, 
AHSA2, USP34, XPO1 

 181.7 – 182.5 UBE2E3, ITGA4, CERKL 

3 69.1 – 69.5 ARL6IP5, LMOD3, FRMD4B 

 159.5 – 159.8 SCHIP1, IL12A 

 187.8 – 188.7 LPP-AS2, LPP, FLJ42393 

4 122.9 – 123.6 KIAA1109, ADAD1, IL2, IL21 

6 127.9 – 128.9 C6orf58, THEMIS, PTPRK 

 159.3 – 159.6 OSTCP1, C6orf99, RSPH3, TAGAP 

11 128.3 – 128.5 ETS1 

12 111.7 – 113.1 
CUX2, FAM109A, SH2B3, ATXN2, BRAP, ACAD10, ALDH2, MAPKAPK5-
AS1, MAPKAPK, ADAM1A, TMEM116, ERP29, NAA25, TRAFD1, HECTD4, 
RPL6, PTPN11 

16 10.9 – 11.5 TVP23A, CIITA, DEXI, CLEC16A, SOCS1, TNP2, PRM3, PRM2, PRM1, RMI2 

 

Bioinformatics 

The BWA algorithm86 was used to perform mapping of the 100-bp paired-end reads from 

the 12 targeted regions while the recently introduced BWA-MEM algorithm180, optimized for reads 

that are 100-bp and greater and more robust to sequencing error by switching between local and 

end-to-end alignment, was used to perform the mapping for the MHC region. The GRCh37/b37 
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(hg19) reference human genome1, which includes the 6 alternate MHC haplotypes, was used as the 

reference genome for mapping all reads. After all reads were mapped, Picard and Samtools87 were 

used to reorder and sort the SAM/BAM files, mark duplicate reads, and synchronize mate-pair 

information between paired-end reads. Local realignment around indels and recalibration of base 

quality scores was performed before calling variants using the GATK UnifiedGenotyper85. Variants 

were filtered for quality, where only variants called with a Q score of 20 or greater were emitted. All 

variants were annotated using the Variant Tools package195 and the following databases: dbSNP 

138196, refGene197, and dbNSFP198. Any variants that were not in dbSNP 138, refGene, or dbNSFP 

were considered novel and analyzed separately. 

Statistical analysis 

To analyze low-frequency and rare variants, two collapsing type methods were implemented, 

the fixed threshold burden test of Morris et al.187 and the C-alpha test of Neale et al.188. For the fixed 

threshold burden test, p-values were asymptotically obtained after estimation of the regression 

coefficients. Under the C-alpha test, empirical p-values were obtained by permuting case and control 

status under the null hypothesis assumption that case and control status are swappable. As 

approximately 260 genes were tested, a p-value less than or equal to around 2x10-4 would indicate a 

significant finding (after Bonferroni correction given�= 0.05). To obtain empirical p-values at least 

this low, 10000 permutations were performed for each gene. In both tests, variants were grouped by 

gene and for both tests, fine-scale QC was performed wherein only variants within genes with less 

than 1% missing genotypes and less than 1% missing samples were tested. For either test, to test for 

low-frequency variants a MAF cutoff of 0.04 was set. To test for rare variants, only variants with 

MAF < 0.01 were included in the association tests. These MAF cutoffs were based on MAF 

definitions of low-frequency (0.01 ≤ MAF < 0.05) and rare (MAF < 0.01) found in the 

literature75,199–201. Variants and individuals with missing data were excluded during association testing 
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and not prior because missing data tends to occur non-randomly across the genome195. The burden 

and C-alpha tests were also performed with datasets that included only the known (i.e. in dbSNP 

138) non-synonymous variants from either the 12 non-MHC regions or the MHC region, only the 

novel (i.e. non-dbSNP 138) variants from the 12 non-MHC regions, only the novel non-

synonymous variants from the 12 non-MHC regions, and all non-synonymous (i.e. dbSNP 138 and 

novel) variants from the 12 non-MHC regions. 

 

5.3. Results 

For the 12 non-MHC regions, samples that were enriched on the Agilent platform had a median 

successfully mapped read rate of 97.3% while samples that were enriched using the Nimblegen 

platform had a median successfully mapped read rate of 97.8%. The median successfully mapped 

read rate for the MHC region was 99.75%. This marginally higher median map rate for the MHC 

region may be due to the usage of the optimized BWA-MEM algorithm180. The median GC content 

was 40% for the 12 non-MHC regions while the median GC content for the MHC region was 43% 

indicating little evidence of GC-content bias. After calling variants, the transition-to-transversion 

(Ti/Tv) ratio was estimated and for the 12 regions the Ti/Tv ratio was 1.95 and for the MHC region 

the Ti/Tv ratio was 1.98 which is very close to the ~2:1 ratio across the human genome202. To 

minimize testing erroneous variant calls, genotypes with an average read depth across samples less 

than 35 were excluded. A total of 21,061 variants were successfully called from the 12 non-MHC 

regions (intersection of both baiting platforms) while 49,162 variants were called from the MHC 

region. For the variants called from the 12 non-MHC regions, the Nimblegen baited samples had 

18,018 variants while the Agilent baited samples had 17,030 variants confirming a report that the 

Nimblegen baited samples yielded more variants [personal communication]. For the 12 non-MHC 

regions, 8,742 variants were flagged as non-coding variants (41.5%), while 13,601 (27.7%) variants 
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from the MHC region were non-coding (table 4.2). There were 1,616 novel (non-dbSNP 138) 

variants from the 12 non-MHC regions and of these variants, 1,332 (82.4%) were annotated with 

function (table 5.3); there were no novel variants from the MHC region. Of the 21,061 variants from 

the 12 non-MHC regions, there were 3 short insertions and 26 deletions. There was only one short 

insertion among the 49,162 variants called from the MHC region and no deletions. A large 

proportion of the variants that were called could not be annotated because their function and/or 

gene is either unknown or not validated at the present time. 

 

Table 5.2. Count of variants by type from the 12 non-MHC and the MHC regions. 
 Type non-MHC MHC 
Non-coding Intronic 8550 12398 
 3’-UTR 169 947 
 5’-UTR 21 231 
 Splice site 2 25 
Coding Synonymous 127 658 
 Frameshift 0 8 
 Missense 187 1107 
 Nonsense 4 33 
 
 
Table 5.3. Count of novel (non-dbSNP) variants from the 12 non-MHC regions. 
Non-coding Intronic 56 
 3’-UTR 6 
 5’-UTR 0 
 Splice site 56 
 Intergenic 1 
Coding Synonymous 71 
 Frameshift 0 
 Missense 1091 
 Nonsense 51 
 

 

Under the rare variant burden test of the genes from the 12 non-MHC regions, there were 

two signals that provided suggestive evidence of association, genes RSPH3 (chr. 6:159.39-159.42 

Mb, p = 2.65x10-3, 20/140 variants with MAF < 0.01) and PAPOLG (chr. 2:60.98-61.03 Mb, p = 
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6.0x10-3, 17/43 variants with MAF < 0.01). When the MAF threshold was increased to 0.04 to 

include low-frequency variants, TAGAP (chr. 6:159.46-159.47 Mb, p = 9.19x10-4, 27/64 variants 

with MAF 0.04) provided suggestive evidence of association. Rare and low-frequency burden tests 

of association that included only the novel variants, non-synonymous novel variants, and all non-

synonymous variants did not yield any evidence for association. When a C-alpha test was 

implemented for rare variants from the 12 non-MHC regions, two genes provided suggestive 

evidence of association, ARL6IP5 (chr. 3:69.13-69.16 Mb, p = 5.0x10-3, 25/57 variants with MAF < 

0.01) and LMOD3 (p = 5.0x10-3, 63/83 variants with MAF < 0.01). LMOD3 (chr. 3:69.16-69.17 Mb, 

p = 5.99x10-3, 70/83 variants with MAF 0.04) was still suggestive when the MAF threshold for the 

C-alpha test was increased to allow for the inclusion of low-frequency variants. A rare C-alpha test 

of all non-synonymous variants (dbSNP 138 and novel) provided evidence of an association with 

gene KIAA1109 (p = 1.0x10-4, 256/265) while a low-frequency C-alpha test of all non-synonymous 

variants did not yield any evidence of association with disease. 

In the MHC region, the rare variant and low-frequency burden tests did not yield any genes 

with even suggestive evidence of association. However, under the C-alpha test of rare variants from 

the MHC region, gene ABCF1 (p = 3.0x10-4, 35/44 variants with MAF < 0.01) provided significant 

evidence while genes MRPS18B (p = 8.0x10-4, 20/23 variants with MAF < 0.01) and NOTCH4 (p = 

9.0x10-4, 22/81 variants with MAF < 0.01) provided suggestive evidence of association. When low-

frequency variants were included in the C-alpha test of MHC genes, 10 genes were significant at p < 

1x10-4 while another 8 genes had p-values ranging between 2-4x10-4 (Table 5.4). As was the case with 

the rare and low-frequency burden tests of association for the 12 non-MHC region genes with only 

non-synonymous variants (dbSNP 138), both rare and low-frequency burden tests of association did 

not yield any statistically significant or even suggestive evidence of association. When a rare C-alpha 

test was performed on only the non-synonymous variants in the MHC region, gene BTNL2 (p < 

≤

≤



 80 

1x10-4, 6/9 variants with MAF < 0.01) was found to be significantly associated with disease. When 

the MAF threshold for the C-alpha test of non-synonymous variants in the MHC region was 

increased to 0.04, 4 genes were found to be associated with disease with statistically significant 

evidence (table 5.5). One of these genes, BTNL2, was detected in the rare C-alpha test and the 

results did not change when the MAF threshold was increased. The other three genes that yielded 

significant evidence of association under the low-frequency C-alpha test were COL11A2, PRRC2A, 

and TRIM40.  

 
Table 5.4. Results of C-alpha test of MHC genes (all variants) with MAF ≤ 0.04. 

Gene Variants tested/total variants PC-alpha  

AGPAT1 2/12 <1x10-4  

AIF1 2/5 <1x10-4  

ATF6B 5/39 <1x10-4  

DDX39B 13/61 <1x10-4  

C6orf10 84/597 <1x10-4  

PPT2 3/14 <1x10-4  

PPT2-EGFL8 8/33 <1x10-4  

RNF5 1/10 <1x10-4  

TNXB 34/186 <1x10-4  

MICA 92/277 <1x10-4  

BTNL2 9/205 2.0x10-4  

ATP6V1G2-DDX39B 17/76 2.0x10-4  

EGFL8 4/13 3.0x10-4  

PBX2 3/11 3.0x10-4  

PRRC2A 32/63 3.0x10-4  

MUC22 32/230 3.0x10-4  

ATP6V1G2 3/9 4.0x10-4  

GPANK1 4/16 4.0x10-4  
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Table 5.5. Results of C-alpha test of only non-synonymous variants in MHC genes with MAF ≤ 
0.04. 

Gene Variants tested/total variants PC-alpha  

BTNL2 6/9 <1.0x10-4  

COL11A2 7/8 8.0x10-4  

PRRC2A 16/19 7.0x10-4  

TRIM40 3/4 8.0x10-4  

 

5.4. Discussion 

 This study provides statistically significant evidence that there are rare and low-frequency 

variants associated with celiac disease. As this study did not re-sequence only the coding regions as 

has been done in a previous study75, non-coding region variants such as intronic variants, have been 

discovered to be associated with celiac disease. While this study in itself does not provide strong 

evidence to support CDRV, it has provided the identification of rare and low-frequency variants 

within regions that previously yielded common variants that may either be causal or involved in the 

expression of other genes that may be associated with celiac disease and candidates to be imputed 

and re-sequenced (or genotyped on a dense custom microarray) in a future study that has a much 

larger sample size, preferably in the tens of thousands. Regarding sample size, the present study, 

with approximately 500 cases and controls, is likely underpowered to detect rare and low-frequency 

gene-level associations across the whole genome. However, this study has shown that collapsing-

based testing approaches such as the burden test and the C-alpha test are adequately powered to 

detect disease associations at the gene-level when considering only the candidate regions that were 

re-sequenced (the 12 non-MHC and the MHC). 
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 Under a rare burden test, genes RSPH3 (Radial Spoke 3 Homolog) and PAPOLG (Poly(A) 

Polymerase Gamma) provided suggestive evidence of association with celiac disease. It is unclear 

what functional role that variants in either of these genes play in etiology of celiac disease and 

neither of these genes have any variants that have been previously associated with celiac disease, 

although PAPOLG has been previously found to be associated with a related autoimmune disorder, 

Crohn’s disease, in an Ashkenazi Jewish population203. However, PAPOLG is ~200kb downstream 

of and on the same LD-block on chromosome 2 as a gene known to harbor a common variant 

discovered to be associated with celiac disease, REL (V-Rel Avian Reticuloendotheliosis Viral 

Oncogene Homolog)72. Gene RSPH3 is also located downstream of and on the same LD-block on 

chromosome 6 as TAGAP (T-Cell Activation RhoGTPase Activating Protein), an immune response 

gene that harbors a common variant previously found to be associated with celiac disease69. When 

the MAF threshold for the burden test was raised to 0.04, TAGAP itself also provided suggestive 

evidence of association with celiac disease, supporting the hypothesis that genes with common 

variants associated with disease may also harbor rare and low-frequency variants associated with 

disease155. Further investigation needs to be conducted to determine if the associations from 

PAPOLG and RSPH3 are independent of REL and TAGAP, respectively, or if the rare and low-

frequency variants are in LD with the known common variants. 

 The C-alpha test of rare and low-frequency variants in both the 12 non-MHC regions and 

the MHC region yielded over a dozen signals with suggestive or significant evidence of association 

with celiac disease. Within the 12 non-MHC regions, the rare C-alpha test yielded suggestive 

evidence of association for two genes, ARL6IP5 (ADP-Ribosylation-Like Factor 6 Interacting 

Protein 5) and LMOD3 (Leiomodin 3), both in the same LD-block on chromosome 3; LMOD3 still 

provided suggestive evidence of association after the MAF was raised to 0.04. While neither of these 

genes harbor variants that have been previously found to be associated with celiac disease, both 
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genes are less than 50kb downstream of a gene previously found to harbor a common variant 

associated with celiac disease, FRMD4B (FERM Domain Containing 4B)72. Further investigation of 

the LD between ARL6IP5 and LMOD3 and FRMD4B is required to ascertain whether the signals 

that have been detected in this study are independent. The expression of ARL6IP5 is known to be 

upregulated by retinoic acid and retinoic acid as a co-adjuvant with IL-15 has been shown to be a 

promoter of inflammation in mouse models of celiac disease204, suggesting a pathway to further 

investigate in future studies.  When only all rare non-synonymous variants (dbSNP and novel) in the 

12 non-MHC regions were tested under C-alpha, a previously implicated gene with a highly-

significant common variant, KIAA110973, provided significant evidence of association with celiac 

disease, perhaps suggesting that the non-coding rare variants do not play a significant role in the 

development of celiac disease. 

 Within the MHC region, the rare C-alpha test provided suggestive evidence of association 

for three genes, ABCF1 (ATP-Binding Cassette, Sub-Family F, Member 1), MRPS18B 

(Mitochondrial Ribosomal Protein S18B), and NOTCH4 (Notch 4). ABCF1 and MRPS18B are 

within ~20kb of each other and are both associated with other autoimmune disorders (autoimmune 

pancreatitis and systemic lupus erythematosus, respectively). Notably, NOTCH4 is adjacent to the 

gene, GPSM3 (G-Protein Signaling Modulator 3), that harbors a common variant, rs204991, that was 

discovered to be associated with celiac disease in a previous fine-mapping study74. The low-

frequency C-alpha test of the MHC region yielded 10 genes with significant evidence and a further 8 

genes with suggestive evidence of association. Of the 10 genes with significant evidence of 

association, MICA (MHC Class I Polypeptide-related Sequence A) was the only gene that has been 

previously associated with celiac disease205,206. MICA is a gene that expresses HLA class I molecules 

that are overexpressed in epithelial cells in the small intestine in response to gliadin peptides and 

upregulates a natural killer cell receptor (NKG2D) on intra-epithelial lymphocytes that leads to 
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enterocyte death. Several of the other genes bearing significant or suggestive evidence of association 

have been found to be associated with other autoimmune or inflammatory diseases: DDX39B 

(DEAD Box Polypeptide 39B) and PRRC2A (Proline-Rich Coiled-Coil 2A) with rheumatoid 

arthritis; EGFL8 (Epidermal Growth Factor-Like-Domain, Multiple 8), GPANK1 (G Patch Domain 

and Ankyrin Repeats 1), and MUC22 (Mucin 22) with systemic lupus erythematosus; C6orf10 

(Chromosome 6 Open Reading Frame 10) with psoriasis; PRRC2A with insulin-dependent diabetes 

mellitus (type 1 diabetes); and BTNL2 (Butyrophilin-Like 2) with sarcoidosis, a rare inflammatory 

disorder. When only the non-synonymous variants are included in the rare and low-frequency C-

alpha tests, BTNL2 and PRRC2A still provide significant or suggestive evidence of association. Two 

additional genes, TRIM40 (Tripartite Motif Containing 40) and COL11A2 (Collagen, Type XI, 

Alpha 2) provide suggestive evidence of association. TRIM40 is known to be associated with 

systemic lupus erythematosus while COL11A2 is located very close (~1kb) to RXRB (Retinoid X 

Receptor, Beta), a gene that is involved in regulating the effects of retinoic acid. 

 The performance of the C-alpha test relative to the burden test in both the 12 non-MHC 

regions and the MHC region suggest that the rare and low-frequency variants in the genes that 

provided significant or suggestive evidence of association are more likely to not be unidirectional 

with respect to effect, especially in the MHC region. While the burden test was not able to detect 

even weak suggestive evidence of association for MHC region genes with low-frequency or rare 

variants, the C-alpha test was able detect significant evidence of association, particularly for low-

frequency variants in nearly 20 genes in the MHC region. This suggests that many of the genes 

providing suggestive or significant evidence of association in the MHC region likely have a mixture 

of deleterious, neutral, and protective variants within each gene and may explain why the burden test 

performed so poorly for genes in the MHC region. Conversely, it may be that the variants in the 

genes TAGAP, RSPH3, and PAPOLG tend to be unidirectional in effect and may explain why the 
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burden test was able to detect suggestive evidence of an association while the C-alpha test did not 

detect evidence of association at these genes. It is also worth noting how many low-frequency and 

rare variants were discovered at some genes, particularly, LMOD3 (over 80% of the variants at this 

gene are either low-frequency or rare), ABCF1 (80% of the variants at this gene are rare), and 

MRPS18B (nearly 90% of the variants at this gene have MAF < 0.01). Many of these low-frequency 

and rare variants are in intronic regions that would not have been detected by earlier studies such as 

Hunt et al.75 but may play a key regulatory role and may help explain the heritability of celiac disease. 

However, the MAF for each variant from the sample in this study may be biased by the small sample 

size. 

 The aim of this analysis was to test the hypothesis that rare and low-frequency variants in 

previously identified candidate genes are associated with celiac disease using targeted resequencing 

data from 12 non-MHC regions as well as the MHC region. The results provide evidence for rare 

and low-frequency variants associated with celiac disease in 26 genes, three of which have previously 

been identified in previous studies. Further investigation will be required to validate the novel 

associations with larger studies, preferably re-sequenced or through imputation of regions with 

suggestive evidence of association into a larger previous GWAS.  
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Chapter 6: Analysis of Imputed Low-frequency and Rare Variants 

As it is not always possible to directly genotype or sequence low-frequency and rare variants because 

of time and cost constraints, imputation has emerged as a very useful and cost-effective tool for 

human genetics researchers studying complex traits and diseases. While imputation of common 

(MAF ≥ 0.05) SNPs is now routinely done to impute both untyped and sporadically missing 

genotypes with very high accuracy, imputation of low-frequency and rare variants is still not a 

common practice because until recently, both the computational cost of running the algorithms for 

imputation and the lack of large, high-coverage reference panels to ensure accuracy for low-

frequency and rare variants have been the main hurdles. Now, with computationally efficient 

algorithms, access to high-performance compute clusters at low cost, and reference panels that take 

advantage of thousands of haplotypes that cover the entire genome, imputation of low-frequency 

and rare variants should become a common practice. This study imputes low-frequency and rare 

variants to perform gene-based and single-marker association testing of celiac disease cases and 

controls from a previous celiac disease GWAS dataset. 

6.1. Introduction 

 Recently, there has been a shift away from analysis of common variants to the analysis of 

low-frequency and rare variants in studies to determine the genetic susceptibility of many common, 

non-Mendelian diseases. With low-frequency and rare variants, a key issue that has come up is 

accurate genotyping as the allele frequencies fall because most of the microarray-based genotyping 

panels typically do not capture variants with a MAF < 0.05 with high accuracy. While denser 

microarrays have been developed that capture greater than 2 million variants and allow for detection 

of some low-frequency variants the gold standard for detecting low-frequency and rare variants 

remains sequencing and next-generation sequencing (NGS) although resequencing of large samples 

remains cost prohibitive at the moment207. The next best alternative is the imputation of missing 



 87 

genotypes that were not directly genotyped on a previous GWAS microarray by using a dense 

reference panel. The imputation of common variants is now highly accurate with very high posterior 

probabilities for imputed genotypes. Imputation of low-frequency and rare variants with high 

accuracy remains a challenge208,209 but methods and strategies have been developed210,211 to increase 

the number of low-frequency and rare variants that are accurately imputed. Figure 6.1 provides a 

short overview of how a researcher may go about performing imputation and association testing of 

low-frequency and rare variants under current best-practices guidelines.  

In the first step, thorough quality-control (QC) of the GWAS data for all samples with 

missing genotypes must be performed if the QC was not previously performed. Next, a reference 

panel must be selected to impute from. The reference panel may be from a previous GWAS, a large-

scale sequencing project such as the 1000 Genomes Project, or a combination of reference panels. 

The third step involves phasing the haplotypes of the GWAS samples while the fourth step is the 

actual imputation of missing genotypes. While the third and fourth steps may be performed 

simultaneously in one software package, current best-practices guidelines suggest splitting the two 

tasks because of the considerable time-saved from phasing the haplotypes in a separate software 

packaged optimized for phasing. Finally, association analysis—single-variant testing or gene-based 

testing—may be performed on the imputed genotypes. Mägi et al.201 successfully demonstrated that 

this approach could be used to impute rare variants (MAF < 0.01) into the WTCCC dataset and 

detect a genome-wide significant association of rare variants with coronary artery disease. 
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Figure 6.1. A simple flowchart of the steps to impute low-frequency and rare variants for 
association analysis. 

 

Imputation algorithms 

 Multiple imputation (MI) is the general approach underlying modern genotype imputation. It 

is an easily extensible method that overcomes problems inherent in unprincipled, deterministic 

methods of imputation such as carrying last measured values forward or single random imputation 

that yield standard errors that are much too small and biases downstream analyses212–215. MI is 

independent of the analysis model and has been implemented in several software packages in diverse 

disciplines over the last few decades. In principle, MI works by sampling multiple independent sets 

of the missing data from the posterior predictive distribution of the missing data given the observed 

data that is typically done using computational algorithms such as Markov Chain Monte Carlo 

(MCMC) rather than analytical methods. While the true values of the missing data is never known 

with full certainty, MI does fully account for any uncertainty in the missing values. Another way of 

viewing MI is that it is a general approach for estimating missing-data uncertainty. 

The IMPUTE v1216 method was developed from a hidden Markov model (HMM) originally 

developed for simulating coalescent trees217,218 and for linkage disequilibrium (LD) modeling. The 

HMM for each sample i’s genotypes Gi is 
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!" !! !,!,! = !" !! !,! ,!" ! !,!! . 

Here, Z is the vector of haplotype pairs from the reference panel, ! is the estimated mutation 

parameter, and ! is the estimated fine-scale recombination rate. The !"!(!|!,!) term is the model 

for how the haplotype pairs change and is determined by a Markov chain that switches back and 

forth between states conditional upon the recombination map, !, of the genome. The conditional 

probability of genotype i, !(!!|!,!), allows the observed genotype to be conditioned on the 

haplotype pairs that have been copied and have a mutation rate that is controlled by the parameter 

!. The estimates for the fine-scale recombination rate are obtained from the IMPUTE 1 homepage. 

One must also define the effective population size, !! . Finally, the exact marginal probability 

distribution for the missing genotype conditional on the observed genotype data in the vector, !! , is 

obtained using the forward-backward algorithm219. 

IMPUTE v2220, divides SNPs into two sets, T and U. T is the set of SNPs that are typed in 

the study sample and the reference panel whereas U is the set of SNPs that are untyped in the study 

sample but is genotyped in the reference panel. IMPUTE v2 uses the IMPUTE v1 HMM to 

estimate the haplotypes in T and proceeds to impute the alleles for SNPs in U by conditioning on 

the estimated haplotypes in T. The phasing of SNPs is performed by a Markov chain Monte Carlo 

(MCMC) algorithm in an alternating fashion where phasing and haploid imputation for a subset of 

SNPs. IMPUTE v2 can use either the haplotypes from the 1000 Genomes Project221 or the 

haplotype sets from the HapMap3153 as reference. More details of the IMPUTE v2 method will be 

covered below. 

The MACH algorithm222 implements an HMM model that is like the one used by IMPUTE. 

As it was designed to phase haplotypes, it is logically extended to perform imputation of missing 

genotypes as well. MACH iteratively updates the phase of each person’s genotype conditioned on 

the haplotype of the other individuals in the study dataset. The model is,  
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where !!! is the set of all the estimated haplotypes leaving out the haplotype of individual i, Z is the 

unknown states of the HMM, ! is a parameter that determines how much the copied haplotypes and 

!! are alike, and ! is the parameter that controls the transitions between the hidden states. At each 

iteration of the algorithm, ! and ! are updated based on changes in Z and the concordance rate 

between observed genotypes and the unknown genotypes that are in the hidden states. IMPUTE1 

differs from MACH in that MACH does not use fixed estimates of mutation rates or recombination 

rates. MACH estimates the mutation rates and recombination rates based on the sample data and 

performs the genotype imputation via maximum-likelihood. While this gives MACH some more 

flexibility to adapt to the data as it is analyzed, there is a cost to this approach in terms of cost of 

imputation accuracy210. 

The BEAGLE algorithm223 iteratively fits a model to the current set of estimated haplotypes 

and then resamples newly estimated haplotypes for each individual. The final missing genotypes are 

imputed from the model that has been fitted at the last iteration of the algorithm. Unlike IMPUTE, 

there are no parameters (i.e. H, Z, !, !) that need to be estimated. BEAGLE works in two steps: the 

first involves creating a tree of haplotypes that bifurcates from left to right across all haplotypes in 

the sample dataset where each edge is weighted by the count of haplotypes that go along that edge. 

The second step involves the parsimonious pruning of the tree produced in the first step. The 

number of edges in any particular region is determined by the LD in that region and it is this 

property that the method works off; the model can be adapted to the haplotype diversity in any 

given dataset.  

IMPUTE v2 has been shown to be the most accurate though it is only marginally more 

accurate than other methods207,210,224. While it has been noted220,223 that the HMM models used by 

both IMPUTE v1 and MACH scale non-linearly as the number of haplotypes in the reference panel 
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increases, the adaptive haplotype selection approach in IMPUTE v2 scales linearly with the number 

of haplotypes in the panel and overcomes this problem. As a result IMPUTE v2 is much faster than 

BEAGLE or MACH. 

IMPUTE v2 in detail 

To estimate the posterior probabilities of the missing genotypes (set U), IMPUTE v2220 switches 

between two steps, the first to phase the unphased SNPs and the second to impute missing 

genotypes by conditioning on the haplotype estimates from the phasing step. Let !!!,! be the set of 

the reference haplotypes from both T and U, !!! the set of reference haplotypes that are only in set 

T, and !!! the set of unknown study haplotypes in set T. Given !! in the study sample, then the 

haplotypes are represented, !!! = {!!,!! ,… ,!!,!!! } where !!,!!  is the haplotype for each sample i. In 

the first step, initial estimates for !!! are made by sampling from the conditional distribution 

Pr!(!!,!! |!!,!! ,!!, !!! ,!!! ,!). After these initial haplotype guesses are made, Markov chain Monte 

Carlo (MCMC) iterations are made to update each sample i in two steps.  

To be more specific, the first step in the MCMC iterations involves re-sampling !!,!!  for each 

sample i in T from the conditional distribution !"!(!!,!! |!!,!! ,!!, !!! ,!!! ,!), where !!,!!  is person i’s 

genotypes at the SNPs in T, !!, !!!  is the current haplotypes at SNPs for all individuals except 

person i, !!! represents the reference panel haplotypes at SNPs in T, and ! is the population-scaled 

recombination map. In other words, this first step phases a sample i’s observed genotype by 

sampling from the conditional distribution, !"!(!!,!! |!!,!! ,!!, !!! ,!!! ,!), which is specified by a 

hidden Markov model (HMM)216. This HMM uses fixed recombination rates225 for transition 

probabilities and a fixed mutation rate for the emission probabilities that is estimated from 

population genetics theory216. 
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In the second step, new alleles for the SNPs in set U, conditional on !!,!! ,!!!,! ,!and!! are 

imputed for each of the two haploids for each sample i where the !!,!!  were sampled in step 1. Only 

the reference haplotypes !!!,!are included in the state space of the HMM of step 2. For the actual 

imputation, the forward-backward algorithm is implemented in the ith haplotype in !!,!! . The 

posterior probabilities of the missing alleles are then estimated analytically. Allelic posterior 

probabilities can then be converted to genotypic posterior probabilities for each sample i under the 

assumption of Hardy-Weinberg Equilibrium. The missing genotype posterior probabilities are then 

summed across iterations, with a final posterior probability calculated by normalizing the summed 

posterior probabilities after all MCMC iterations are completed. 

 The computational burden of step one grows non-linearly (O(N2))as haplotypes are added 

and linearly (O(N)) as SNPs are added. To deal with the non-linear computational burden of 

phasing updates as haplotypes are added, the authors of IMPUTE v2 use an approximation of the 

conditional distribution that conditions the phasing updates on a subset of all haplotypes (rather 

than all haplotypes) in the sample space. To select the haplotypes for this subset, the algorithm first 

calculates the Hamming distance for each sample i’s best guess initial haplotype. The k haplotypes 

that have the smallest Hamming distance are then used by the HMM to sample new haplotypes for 

each sample. Recently, a more efficient phasing algorithm, SHAPEIT226, that also takes advantage of 

multi-threaded processors (a given in contemporary computers, especially in high-performance 

compute clusters), has become part of the “best practices” pipeline by Howie et al. 

(http://mathgen.stats.ox.ac.uk/impute/impute_v2.2.2.html#best_practices_for_imputation) to 

“pre-phase” the study sample genotypes so that IMPUTE v2 only needs to perform imputation and 

not phasing as well. While there is a marginal tradeoff in terms of imputation accuracy with pre-

phasing, the benefit tends to outweigh the cost, especially for datasets that contain tens of thousands 

of individual haplotypes to phase; whereas the phasing process using IMPUTE v2 alone may take 
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several days per chromosome, SHAPEIT can perform the same task in a day or less on a multi-core 

server. Another benefit to pre-phasing is that once a study sample chromosome has been phased, 

imputation of various stretches of the chromosome can be undertaken without having to perform 

the phasing each time. 

Choice of reference panel 

 To optimally impute low-frequency and rare variants with high accuracy (i.e. variants with a high 

information metric or r2), it is crucial to select the right reference panel. Before the advent of the 

1000 Genomes Project221, the standard for imputation reference panels was the latest HapMap 

dataset, the phase 3 reference panel153. The HapMap phase 3 (HMP3) data consists of genotype data 

from microarrays and sequencing: 1.6 million common variants from 1,184 samples as well as the 

sequence data for a subset of 692 of the 1,184 samples that comprises ten 100-kb regions. As the 

International HapMap Project was designed to catalog common variation across the genome for 

samples from African, Asian, European, and admixed populations from North and South America, 

the HMP3 data provides good coverage as a reference panel for common variants but provides 

sparse coverage for low-frequency and rare variants because for variants with MAF < 0.05 are less 

shared among related populations227. 

 To surmount the limitation posed by imputing from HMP3 data, 1000 Genomes Project221 

(1KGP) data may be used as the reference panel instead. Use of the 1KGP data as a reference panel 

is preferable over HMP3, especially for imputing low-frequency and rare variants because the 1KGP 

was designed to identify the majority (>95%) of variants that have a MAF ≥ 0.01 across the entire 

genome and MAF<0.01 within specific gene regions. The most recent published update to the 

1KGP is the Phase 1 dataset154 that includes data from 1,092 genomes (from European, African, and 

Asian populations) with the final phase to include data from 2,500 genomes. Studies by Jostins et 

al.228 and Sung et al.209, have shown a four-fold increase in successfully imputed low-frequency 
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variants (MAF < 0.05) and an eight-fold increase in successfully imputed rare variants (MAF ≤ 0.01) 

by employing the pilot 1KGP data (283 genomes) rather than the HMP3 data. 

Post-imputation 

After imputation of missing genotypes has been carried out, but before association testing of 

variants, an additional quality control step to assess the imputed genotypes must be taken to filter 

out poorly imputed variants when a set of directly genotyped variants is not available to compare the 

imputed genotypes to13. While each imputation method produces its own imputation quality metric, 

all metrics have a range between 0 and 1, where 0 indicates that there is no certainty about the 

imputed genotype and a value of 1 indicates perfect certainty about the imputed genotype by 

essentially comparing the observed variance of the estimated genotypes to the expected variance. It 

has been shown in the literature that all of the imputation quality metrics are highly correlated with 

each other.210 

 IMPUTE (v1 and v2) calculates a metric that is based on comparing the unknown 

population allele frequency !! to the estimated allele frequency !!. To calculate the information 

measure IA, the score, !(!), and information, !(!!), of the full data likelihood, !(!!) must be 

derived where 

! !! = !!
!!"!

!!! 1− !!
!!!!" ,  

! !! = ! !"# ! !!
!!!

= !!!!!!
!!(!!!!)

!,  

! !! = !!! !"# ! !!
!!!!

= !
!!!
+ !!!!

!!!!
! . 

Finally, the measure IA may be calculated as follows, 

!! = ! ! ! !!"# ! !
! ! !  . 
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Here ! = !!!!! !!"
!! , !!" is the genotype for individual i at SNP j, and ! = !!!!! !!" . IA has an upper 

bound of 1 and equals 0 when the mean variance of the imputed genotypes equals the expected 

variance if the alleles were sampled at the estimated allele frequency (i.e. total uncertainty for the 

given imputed genotype). 

The information measure produced by MACH is the !! measure222 and it is the ratio of the 

empirically observed variance of allele dosage at the jth SNP against the expected variance given 

Hardy-Weinberg equilibrium, 

!!! =
!!"
!!

!!!
! !

!!"!
!!!
!

!

!! !!! !!ℎ!"!! ∈ (0,1)
1!!ℎ!"!! = 0,! = 1

!.    

Here !!" is the expected allele dosage for a genotype at SNP j for individual i. While this ratio is 

nearly unity when there is high certainty for a genotype, it can actually go above one210. 

 BEAGLE’s information metric, R2, is an approximation of the correlation between the best 

estimate of the genotype and the actual genotype223. For the jth SNP this metric is defined, 

!!! =
!!!!"!!"! !

! !!!!"!!!!"
!

!!!!"! !
! !!!!"

! !!!!"!!
!
! !!!!"

! , 

where the !!" term is the imputed genotype in the ith individual at the jth SNP with the highest 

likelihood. 

Association testing methods       

With univariate tests it is often difficult to detect associations with low-frequency and rare variants 

(i.e. chi-square test or logistic regression). For single variant tests, packages such as SNPTEST 

account for the uncertainty in the imputed genotypes208. Alternatively, one may also filter out the 

low-quality imputed genotypes by applying some arbitrary cutoff threshold for whichever 

information metric is being used to assess the imputation quality at a given SNP. To gain more 
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power over univariate tests, low-frequency and rare variants may be combined across a gene (or 

some other unit, though it is usually gene-level) and this aggregated or collapsed variable is then 

tested for an accumulation of low-frequency or rare variants (discussed previously in chapter 4).  

 The present study attempted to identify imputed rare and low-frequency variants associated 

with celiac disease using a large dataset previously used in a GWAS73. Results from chapter 4 were 

used to determine which genes to impute in the large dataset. Both single-marker and gene-based 

tests were implemented to test for association. This study did not attempt to impute all rare and low-

frequency variants genome-wide. 

 

6.2. Methods 

GWAS dataset 

The study genotypes employed for imputing forward missing low-frequency and rare variants come 

from the Trynka et al.73 dense genotyping dataset that was previously employed in the meta-analysis 

study in chapter 3. Briefly, this dataset is comprised of 12,041 cases and 12,228 controls (n = 24,269) 

from seven distinct sample collections and contains 139,553 SNPs. This dataset has already been 

through stringent quality control to remove low-quality variants and low-quality samples. As this 

dataset has genomic coordinates from the b36/hg18 genome assembly, the liftOver229 program was 

used to map variant positions to those of the b37/hg19 genome assembly, the assembly that is used 

for the 1KGP Phase 1 reference panel. GTOOL220, a program that accompanies the IMPUTE v2 

package, was used to format the GWAS dataset for input into IMPUTE v2. Following best practice 

guidelines for efficient and accurate imputation using IMPUTE v2, the SHAPEIT2226,230 package was 

implemented to pre-phase the haplotypes in the Trynka et. al73 dataset. Default algorithm and model 

parameters were used: 7 burn-in iterations, 8 iterations for pruning the genotype graphs by the 

transition probabilities, 20 main iterations to estimate the final haplotype, 100 conditioning states per 
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SNP, a window size of 2 Mb, and an effective population size of 11,418 (estimated from HapMap 

populations for CEU). 

Imputation 

The IMPUTE v2 package was used to impute forward the missing low-frequency and rare variants 

in the Trynka et al.73 dataset. Best practice guidelines provided by the authors of IMPUTE v2 were 

followed to set algorithm parameters. The effective population size, !! , was set to 20,000, threshold 

for calling genotypes from the study sample was set at 0.9, the number of MCMC iterations set at 30 

(with 10 burn-in iterations), and the number of reference haplotypes to use as templates when 

imputing missing genotypes was set at 1000. The following genomic intervals were imputed: 

chromosome 2: 60,983,365-61,029,221 (PAPOLG); chromosome 3: 69,134,090-69,172,183 

(ARL6IP5 and LMOD3); chromosome 4: 123,073,488-123,283,914 (KIAA1109) chromosome 6: 

30,539,153-32,374,905 (part of the classical MHC region) and 159,393,903-159,466,184 (RSPH3 and 

TAGAP). These chromosomal regions were chosen for imputation because they yielded suggestive 

or significant evidence of association under gene-based association testing in chapter 4. 

Post-imputation filtering 

Filtering of imputed variants by the info score, IA, and subsequent conversion to the PED or VCF 

formats to be read into association testing packages was performed by GTOOL/QCTOOL. While 

there is no universally accepted cut-off value for a well-imputed variant, the literature suggests that 

an IA threshold greater than 0.3 is a widely used threshold for filtering out poorly-imputed 

variants13,201,222,231,232. Li et al.222 demonstrated that 70% of poorly imputed variants would be filtered 

out while less than 1% of well imputed variants would be filtered out with a threshold greater 0.3. 

For this study, variants were excluded from the final analysis dataset if IA < 0.4. 

Power analysis 
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A power analysis was carried out using the CaTS package233 using the following fixed parameters: 

250 cases and 250 controls to represent the resequenced dataset, 10000 cases and 10000 controls to 

represent the imputed dataset (maximum allowed by the software; 12,041 cases and 12,228 controls 

were included in this study), significance level of p = 5x10-8, assumed prevalence of disease set at 

0.01. Power was plotted as a function of the MAF (range from 0 to 0.3) for various genotype relative 

risk levels (range from 1.2 to 3) under an additive model. 

Gene-based association testing 

Analysis of low-frequency and rare variants was performed using the two collapsing type methods 

that were previously implemented in chapter 4, the fixed threshold burden test of Morris et al.187 and 

the C-alpha test of Neale et al.188. As described before, p-values were asymptotically obtained under 

the fixed threshold burden test and empirically under the C-alpha test. Under the C-alpha test, 10000 

permutations were performed for each gene. Under either test, variants were grouped by gene and 

fine-scale QC was performed as previously described. A MAF threshold of 0.01 was set for rare 

variant testing while a threshold up to 0.04 was set for low-frequency variant testing as rare variants 

are defined as having MAF < 0.01 while low-frequency variants have MAF < 0.05. To adjust for 

sample collection membership, an indicator variable for each of the seven collections was included 

in both the burden and C-alpha tests. As approximately 60 genes were tested, a p-value ≤ 8x10-4 

(after Bonferroni correction) was a statistically significant finding; any finding with a p-value greater 

than or equal to 1x10-3 was considered statistically suggestive evidence. 

Single-marker association testing 

A Cochran-Mantel-Haenszel based fixed-effects meta-analysis method implemented in PLINK234 

that incorporates a sample collection membership indicator variable to account for ethnic 

differences in a logistic regression framework was utilized. An established, conservative p-value ≤ 
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5x10-8 was considered genome-wide significant (GWS) evidence while a p-value > 5x10-8 and ≤ 

1x10-6 was considered borderline GWS evidence235.  

 

6.3. Results 

Imputation 

Imputation using the 1KGP Phase 1 reference panel154 yielded 25,104 successfully imputed variants 

across the 6 genes (on chromosomes 2, 3, and 6) and much of the MHC region. Of these imputed 

variants, 18,792 variants (approximately 75%) had an IMPUTE v2 info metric, IA ≥ 0.4 (table 6.1). 

High-quality imputation was not uniform across genes as evidenced by the difference between the 

percentage of variants with IA ≥ 0.4, where for instance, LMOD3 only had 1.9% of variants well-

imputed while RSPH3 had 63.4% of variants well-imputed. Of these 18,792 well-imputed variants, 

7,117 (approximately 38%) had MAF ≤ 0.04 and 4,321 (approximately 23%) had MAF < 0.01 (table 

6.2). 

 
 
Table 6.1. Total number of variants successfully imputed by gene/region and the proportion that 
are well-imputed. 
Gene/Genomic Region Total Number Imputed Imputed with IA ≥ 0.4 (%) 
ARL6IP5 290 38 (13.1%) 
LMOD3 258 5 (1.9%) 
PAPOLG 502 148 (29.5%) 
KIAA1109 4911 2328 (47.4%) 
RSPH3 421 267 (63.4%) 
TAGAP 148 73 (49.3%) 
MHC region 23,485 18,261 (77.8%) 
 

Table 6.2. Proportion of well-imputed variants that are low-frequency or rare. 
Gene/Genomic Region MAF ≤ 0.04 MAF < 0.01 
ARL6IP5 22/38 21/38 
LMOD3 1/5 1/5 
PAPOLG 50/148 29/148 
KIAA1109 1468/2328 1207/2328 
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RSPH3 164/267 49/267 
TAGAP 29/73 18/73 
MHC region 6,851/18,261 4,203/18,261 
 
 

Gene-based association test results 

Under the rare burden test, two genes provided significant evidence of association while another 

two genes provided suggestive evidence of association (table 6.3); only one of the genes with either 

significant or suggestive evidence was not from the MHC region (RSPH3). When the MAF 

threshold for the burden test was increased to 0.04, pPOU5F1 decreased and two other genes yielded 

significant evidence of association (table 6.4). All of the genes that yielded significant or suggestive 

evidence of association for the low-frequency burden test were from the MHC region. When only 

the non-synonymous (NS) variants are included in the rare burden test, one gene, AGER (p = 

1.24x10-4) had significant evidence. Under a low-frequency burden test of NS variants, one gene, 

POU5F1 (p = 4.52x10-5) had significant evidence of association while another two genes, LTB (p = 

8.60x10-4) and RSPH3 (p = 3.43x10-3) yielded suggestive evidence. 

 The rare C-alpha test yielded 35 genes with significant evidence of association with another 3 

genes providing suggestive evidence of association (table 6.5). All of these genes were located within 

the MHC region. The low-frequency C-alpha test (table 6.6) provided significant evidence of 

association for 46 genes and suggestive evidence for one more gene, all located within the MHC 

region. When the rare C-alpha test was restricted to NS variants only, 12 genes provided significant 

evidence of association while another 2 had suggestive evidence (table 6.7). The low-frequency C-

alpha test of only NS variants yielded 18 genes with significant evidence of association and 3 genes 

with suggestive evidence (table 6.8). Across the rare variants that were significant or suggestive, the 

average of the proportion of imputed variants for a given gene that are rare was approximately 40% 
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while for low-frequency variants this average is approximately 55%; the proportions are 

approximately 56% and 69%, respectively, when only NS variants are considered. 

 
Table 6.3. Results of burden test with MAF < 0.01. 
Gene Variants tested/total variants (%) PBurden 

POU5F1 26/96 (27%) 2.45x10-5 

LTB 2/3 (67%) 1.92x10-3 

PSORS1C3 12/72 (17%) 2.25x10-4 

RSPH3 57/214 (27%) 2.53x10-3 

 
 
Table 6.4. Results of burden test with MAF ≤ 0.04. 
Gene Variants tested/total variants (%) PBurden 

C6orf47 9/12 (75%) 1.58x10-6 

POU5F1 36/96 (38%) 7.45x10-6 

ATP6V1G2 7/14 (50%) 3.03x10-5 

CDSN 29/103 (28%) 1.11x10-3 

 
 
Table 6.5. Results of C-alpha test with MAF < 0.01. 
Gene Variants tested/total variants (%) PC-alpha 

AGER            9/20 (45%) < 1.00x10-4 
AGPAT1          16/33 (47%) < 1.00x10-4 
APOM            13/26 (50%) < 1.00x10-4 
C6orf15         4/22 (18%) < 1.00x10-4 
ATF6B           31/54 (57%) < 1.00x10-4 
C6orf47         8/12 (67%) < 1.00x10-4 
CSNK2B          1/3 (33%) < 1.00x10-4 
EGFL8           10/22 (45%) < 1.00x10-4 
BAG6            38/79 (48%) < 1.00x10-4 
GPANK1          21/47 (45%) < 1.00x10-4 
HCG22           24/100 (24%) < 1.00x10-4 
GPSM3           9/19 (47%) < 1.00x10-4 
LOC100507547    2/6 (33%) < 1.00x10-4 
HCG27           27/118 (23%) < 1.00x10-4 
LTA             5/14 (36%) < 1.00x10-4 
MCCD1           13/20 (65%) < 1.00x10-4 
MICB            36/189 (19%) < 1.00x10-4 
PBX2            10/25 (40%) < 1.00x10-4 
PPT2            19/44 (43%) < 1.00x10-4 
NOTCH4          56/182 (31%) < 1.00x10-4 
PPT2-EGFL8      28/68 (40%) < 1.00x10-4 
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MUC22           94/534 (18%) < 1.00x10-4 
PRRC2A          44/106 (42%) < 1.00x10-4 
MICA            133/374 (36%) < 1.00x10-4 
RNF5            3/13 (23%) < 1.00x10-4 
PSORS1C3        12/72 (17%) < 1.00x10-4 
SNORA38         1/2 (50%) < 1.00x10-4 
TNF             6/11 (55%) < 1.00x10-4 
TCF19           14/51 (27%) < 1.00x10-4 
HCG23           74/132 (56%) < 1.00x10-4 
PSORS1C1        119/407 (29%) < 1.00x10-4 
TNXB            139/288 (48%) < 1.00x10-4 
C6orf10         378/1042 (36%) < 1.00x10-4 
BTNL2           262/398 (66%) < 1.00x10-4 
CCHCR1          47/211 (22%) 3.00x10-4 

POU5F1 26/96 (27%) 1.50x10-3 

FKBPL 5/10 (50%) 1.60x10-3 

LTB 2/3 (67%) 3.50x10-3 

 
 
Table 6.6. Results of C-alpha test with MAF ≤ 0.04. 
Gene Variants tested/total variants (%) PC-alpha 

ATP6V1G2        7/14 (50%) < 1.00x10-4 
AGPAT1          19/33 (58%) < 1.00x10-4 
AGER            11/20 (55%) < 1.00x10-4 
APOM            15/26 (58%) < 1.00x10-4 
C6orf15         7/22 (32%) < 1.00x10-4 
C6orf47         10/12 (83%) < 1.00x10-4 
CSNK2B          2/3 (67%) < 1.00x10-4 
CDSN            29/103 (28%) < 1.00x10-4 
FKBPL           6/10 (60%) < 1.00x10-4 
ATF6B           41/54 (76%) < 1.00x10-4 
EGFL8           15/22 (68%) < 1.00x10-4 
DDX39B          72/95 (76%) < 1.00x10-4 
GPSM3           10/19 (53%) < 1.00x10-4 
BAG6            50/79 (63%) < 1.00x10-4 
HCG22           37/100 (37%) < 1.00x10-4 
HCP5            17/35 (49%) < 1.00x10-4 
GPANK1          32/47 (68%) < 1.00x10-4 
LOC100507547    2/6 (33%) < 1.00x10-4 
LST1            10/17 (59%) < 1.00x10-4 
LTA             7/14 (50%) < 1.00x10-4 
LTB             3/3 (100%) < 1.00x10-4 
HCG27           40/118 (34%) < 1.00x10-4 
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MCCD1           16/20 (80%) < 1.00x10-4 
MICB            71/189 (38%) < 1.00x10-4 
NCR3            19/30 (63%) < 1.00x10-4 
HCG23           121/132 (92%) < 1.00x10-4 
CCHCR1          71/211 (34%) < 1.00x10-4 
PPT2            24/44 (55%) < 1.00x10-4 
PBX2            17/25 (68%) < 1.00x10-4 
NOTCH4          81/182 (45%) < 1.00x10-4 
PPT2-EGFL8      39/68 (57%) < 1.00x10-4 
MUC22           175/534 (33%) < 1.00x10-4 
PSORS1C2        15/31 (48%) < 1.00x10-4 
RNF5            5/13 (38%) < 1.00x10-4 
PSORS1C3        24/72 (33%) < 1.00x10-4 
SNORA38         1/2 (50%) < 1.00x10-4 
TCF19           19/51 (37%) < 1.00x10-4 
TNF             8/11 (73%) < 1.00x10-4 
PRRC2A          65/106 (61%) < 1.00x10-4 
PSORS1C1        191/407 (47%) < 1.00x10-4 
BTNL2           366/398 (92%) < 1.00x10-4 
C6orf10         470/1042 (45%) < 1.00x10-4 
MICA            219/374 (59%) < 1.00x10-4 
TNXB            179/288 (62%) < 1.00x10-4 
POU5F1          36/96 (38%) < 1.00x10-4 
ATP6V1G2-DDX39B 81/120 (68%) 5.60x10-3 

 
 
Table 6.7. Results of C-alpha test with MAF < 0.01 including only non-synonymous variants. 
Gene Variants tested/total variants (%) PC-alpha 

AGER 2/3 (67%) < 1.00x10-4 
C6orf15 2/12 (17%) < 1.00x10-4 
CDSN 5/10 (50%) < 1.00x10-4 
ATF6B 5/5 (100%) < 1.00x10-4 
BAG6 2/3 (67%) < 1.00x10-4 
PSORS1C1 12/25 (48%) < 1.00x10-4 
BTNL2 19/31 (61%) < 1.00x10-4 
C6orf10 11/22 (50%) < 1.00x10-4 
TNXB 16/38 (42%) < 1.00x10-4 
NOTCH4 7/14 (50%) 2.00x10-4 
CCHCR1 9/25 (36%) 5.00x10-4 
LTB 2/2 (100%) 1.80x10-3 
MUC22 14/44 (32%) 2.40x10-3 
FKBPL 2/3 (67%) 2.60x10-3 
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Table 6.8. Results of C-alpha test with MAF ≤ 0.04 including only non-synonymous variants. 
Gene Variants tested/total variants (%) PC-alpha 

AGER            3/3 (100%) < 1.00x10-4 
C6orf15         5/12 (42%) < 1.00x10-4 
CDSN            5/10 (50%) < 1.00x10-4 
ATF6B           5/5 (100%) < 1.00x10-4 
BAG6            2/3 (67%) < 1.00x10-4 
PSORS1C1        15/25 (60%) < 1.00x10-4 
BTNL2           29/31 (94%) < 1.00x10-4 
C6orf10         12/22 (55%) < 1.00x10-4 
TNXB            24/38 (63%) < 1.00x10-4 
GPANK1 4/5 (80%) < 1.00x10-4 

MCCD1 3/4 (75%) < 1.00x10-4 

MICB 3/8 (38%) < 1.00x10-4 

MICA 14/29 (48%) < 1.00x10-4 

PSORS1C2 7/12 (58%) < 1.00x10-4 

PRRC2A 13/19 (68%) < 1.00x10-4 

NOTCH4          10/14 (71%) < 1.00x10-4 
MUC22           25/44 (57%) < 1.00x10-4 
CCHCR1          12/25 (48%) < 1.00x10-4 
LTB             2/2 (100%) 1.50x10-3 
NCR3 5/5 (100%) 1.90x10-3 

FKBPL           2/3 (67%) 1.50x10-3 
 

 

Single-marker association test results 

GWS evidence (p ≤ 5x10-8) of association with celiac disease with low-frequency or rare variants was 

found in 23 SNPs across 7 genes, all non-HLA genes within the classical MHC region; there was no 

GWS evidence of association with celiac disease in any of the non-MHC (table 6.9). Another two 

SNPs, both in the gene ABCF1 had borderline GWS evidence of association. Most of the GWS 

SNPs are low-frequency (MAF ≤0.04) with just four SNPs, one in gene C6orf10 and three in 

BTNL2, having MAF ≤ 0.01. All four of these rare variants were associated with a reduced risk of 

developing celiac disease; most of the GWS variants were associated with a reduced risk of 
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developing celiac disease. The four of five GWS (and two suggestive SNPs) SNPs associated with 

celiac disease had an OR that indicated a modest increase in risk with ORs ranging between 

approximately 2 and 3. There was one standout SNP, rs17201553 of TNXB, with an OR of 4.40. It 

is an intronic variant, as are most of the GWS SNPs, with only four exonic variants (all missense). 

Only one of the SNPs with suggestive or significant evidence of association, rs1264446, was also 

tested in a gene-based test using resequencing data (chapter 5). As expected from the power analysis 

(figure 6.2), there were no suggestive or significant low-frequency or rare SNPs with an OR < ~2 as 

even with ~24K samples (imputed dataset), this study is underpowered to detect GWS signals using 

a single-marker test. However, the power analysis had also revealed that at an OR of 2 or 3, the 

imputed dataset would increase the power to detect an association with rare variants from 0% to 

100% relative to the resequenced dataset. When considering an OR of 3, the imputed dataset would 

increase the power to detect an association with a low-frequency variant from 15% to 100%. 

 
 
Table 6.9. Fixed-effects (Cochran-Mantel-Haenszel) single-marker association results for low-
frequency and rare variant association with celiac disease. 
Gene SNP Alleles Position MAF PCMH OR (95% CI) Type 
ABCF1 rs1264446 A/G 6:30546395 0.013 1.24E-07 2.0 (1.53 – 2.60) Intronic 
 rs1264450 C/T 6:30541761 0.013 3.12E-07 1.96 (1.50 – 2.55) Intronic 
HCP5 rs2395029 G/T 6:31539759 0.024 9.49E-09 0.50 (0.40 – 0.64) Missense 
AIF1 rs28732150 A/G 6:31691203 0.039 2.59E-22 0.42 (0.35 – 0.50) Intronic 
BAT2 rs2280801 A/G 6:31700043 0.039 1.81E-23 0.41 (0.34 – 0.49) Missense 
TNXB rs41270450 C/G 6:32125151 0.026 2.53E-16 0.41 (0.33 – 0.51) Missense 
 rs41316748 C/T 6:32127490 0.024 1.40E-14 0.38 (0.29 – 0.49) Intronic 
 rs9267796 C/T 6:32131403 0.030 6.47E-26 2.47 (2.08 – 2.93) Intronic 
 rs28732167 A/G 6:32139882 0.032 1.53E-10 0.53 (0.44 – 0.64) Intronic 
 rs17201553 A/G 6:32148971 0.011 3.08E-42 4.40 (3.50 – 5.53) Intronic 
 rs9267799 C/T 6:32154922 0.030 1.19E-25 2.47 (2.08 – 2.94) Missense 
 rs17201560 C/T 6:32155246 0.029 3.93E-12 0.45 (0.36 – 0.57) Intronic 
 rs57740770 G/T 6:32175413 0.028 2.38E-26 2.56 (2.14 – 3.06) Intronic 
 rs28732173 A/G 6:32178988 0.026 9.04E-16 0.37 (0.29 – 0.47) Intronic 
PPT2 rs10947233 G/T 6:32232402 0.028 3.72E-10 0.32 (0.22 – 0.46) Intronic 
C6or f10 rs11751697 C/T 6:32374403 0.030 2.05E-23 0.40 (0.33 – 0.48) Intronic 
 rs3749967 C/T 6:32391822 0.030 2.05E-23 0.40 (0.33 – 0.48) Intronic 
 rs9268233 A/G 6:32397270 0.029 1.17E-38 3.21 (2.67 – 3.87) Intronic 
 rs28732193 C/T 6:32414900 0.025 1.26E-17 0.34 (0.26 – 0.44) Intronic 
 rs13196329 A/C 6:32433349 0.014 1.66E-09 0.49 (0.39 – 0.62) Intronic 
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 rs2076535 A/G 6:32447489 0.004 1.90E-18 0.12 (0.06 – 0.21) UTR-5’ 
BTNL2 rs13198563 A/G 6:32468893 0.009 9.40E-09 0.42 (0.31 – 0.57) Intronic 
 rs2076531 C/T 6:32471690 0.004 2.52E-20 0.11 (0.06 – 0.20) Intronic 
 rs2076528 G/T 6:32472172 0.004 8.68E-20 0.11 (0.06 – 0.20) Intronic 
 rs3763308 A/G 6:32482618 0.030 9.96E-11 0.57 (0.48 – 0.67) Intronic 
 
 
 

 
Figure 6.2. Power to detect an association as a function of the MAF for various genotype relative 
risks (color-coded). 
 
 

6.4. Discussion 

This study demonstrates that imputation of low-frequency and rare variants for association testing is 

not only feasible, but a desirable model, given that the cost to directly genotype or re-sequence 

samples to capture these low-frequency and rare variants remains high for the moment. Datasets 
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from previous GWASs with tens of thousands (some with hundreds of thousands) of samples are 

available and with high coverage reference panels like the 1KGP Phase 1 (and soon, the complete 

2,500 sample completed 1KGP panel), it is now a matter of imputing forward the missing genotypes 

in the large-scale GWAS datasets to test refined hypotheses on the etiology of complex traits and 

diseases using the low-frequency and rare variants and generate preliminary data for future projects. 

While few studies have employed imputation of low-frequency and rare variants201,207 for meta-

analysis, there is active research in this area with new as-of-yet unpublished methods to perform 

imputation using population-scale resource panels such as the data from the UK10K Project 

(http://www.uk10k.org) which seeks to sequence the full genomes of 4,000 individuals and exome 

sequence another 6,000 individuals and separately to combine the multiple large-scale reference 

panels such as the 1KGP and UK10K resources and perform what is known as “meta-

imputation”236.  

This study provides suggestive evidence that there are probably many low-frequency and 

rare variants, particularly in non-coding regions, that may increase understanding of the etiology of 

celiac disease as well as its heritability and have yet to be uncovered because previous GWAS of 

celiac disease have focused on common variants or variants within coding regions, such as the 

exome-sequencing based study conducted recently75. Under gene-based association tests of the 

imputed rare and low-frequency variants, one of the genes that yielded suggestive evidence of 

association with celiac disease in chapter 4, RSPH3, also provided suggestive evidence of association 

in the present study. Within the MHC region, nearly all of the genes that yielded either significant or 

suggestive evidence of association under the rare or low-frequency C-alpha test in chapter 4 were 

also significant when the imputed rare and low-frequency variants were tested, with the exception of 

genes COL11A2 and TRIM40. In addition to the 20 MHC genes identified by the C-alpha test in 
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chapter 4, this present study identified an additional 26 genes that have either significant or 

suggestive evidence of association.  

Interestingly, whereas the burden test yielded no significant or suggestive evidence of 

association for genes within the MHC region in chapter 4 with the resequenced data, the rare and 

low-frequency burden tests of the imputed variants provided evidence of six genes associated with 

celiac disease within the MHC region, one of which was identified when only the NS variants were 

included in the analysis, indicating that there may be rare or low-frequency variants within the MHC 

region that are unidirectional and that there may not have been sufficient depth of coverage in the 

resequencing study, inadequate sample size, or both. When only the imputed NS variants were 

included in the rare and low-frequency C-alpha tests, subsets of the genes found to have significant 

or suggestive evidence of association in the analysis of all imputed variants yielded evidence of 

association. No additional genes were discovered when only the NS variants were included in the C-

alpha tests. These observations provide evidence that rare and low-frequency NS variants may play a 

significant role in the etiology and severity of celiac disease. As noted before in chapter 4, for many 

of the genes with evidence of association, a large proportion have a MAF ≤ 0.04, and a small sample 

size may not be biasing the MAFs observed as was possibly the case with the much smaller 

reseqeuncing study in chapter 4. However, it may be the case that some of the rare and low-

frequency variants observed are specific to one of the seven sample collections that comprise the 

dataset.  

The rare c-alpha test of the imputed variants yielded approximately 9 times more genes with 

significant evidence of association than a rare burden test while the low-frequency C-alpha test 

yielded approximately 12 times more genes with significant evidence of association than a low-

frequency burden test. Given that the C-alpha test was designed to detect an association with disease 

in the presence of a mixture of protective, neutral, and deleterious variants, the results seem to 
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suggest that many of the imputed genes harbor rare and low-frequency variants that are not likely to 

be detected by a unidirectional test such as the burden test. However, while the rare and low-

frequency C-alpha tests only detected associations at genes within the MHC region, the rare burden 

test was able to detect suggestive evidence of association at one non-MHC gene, RSPH3, which—as 

noted above—was the only gene to provide suggestive evidence of association in both chapter 4 

with the resequenced variants and in the present study. 

Of the single-marker test results, the most interesting signals were the very rare (p = 0.004) 

SNPs associated with celiac disease that are harbored in the non-coding regions of C6orf10 and 

BTNL2 as well as the highly significant and high effect size intronic SNPs from TNXB (rs17201553 

with MAF of 0.011 and OR of 4.40 with p = 3.08x10-42) and C6orf10 (rs9268233 with MAF of 0.029 

and OR of 3.21 with p = 1.17x10-38). While the power analysis indicates that even this study is 

underpowered to detect rare variants with effect sizes < 2 with GWS, there is an indication that this 

study is well-powered to detect rare variants with effect sizes ≥ 2. The low-frequency SNPs from 

HCP5 and BAT2 that provided GWS evidence of association in the single-marker test along with 

the significant signals for the genes GPSM3, HCP5, and PSORS1C1 under the rare and low-

frequency C-alpha test of the imputed variants seem to strengthen the findings for common SNPs in 

a fine-mapping study of celiac disease conducted previously74. In the previous fine-mapping study, 

the common SNPs from HCP5 and BAT2 also were associated with lower risk of disease (OR of 

0.57 and 0.60, respectively). While the C-alpha test implemented in chapter 4 failed to find 

significant evidence of association between rare variants and celiac disease except in ABCF1, both 

the single-marker test and the gene-based burden and C-alpha tests of the imputed rare variants have 

provided GWS evidence of association with disease. 

 As mentioned above, imputation performance may be increased in future studies by 

combining multiple large reference panels. The authors of IMPUTE also note that while pre-phasing 
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is preferred because the marginal loss in accuracy is outweighed by the time saved (and ostensibly 

making a large-scale imputation project feasible in a finite amount of time), it may be worthwhile to 

go back and re-run the imputation for regions with suggestive evidence (such as ABCF1) by re-

running IMPUTE v2 with both the phasing and imputation steps (i.e. no pre-phasing via 

SHAPEIT). However, as IMPUTE v2 takes several orders of magnitude more time to perform 

phasing and imputation for each chromosome for 24K individuals, this author has found this 

approach infeasible in the limited timeframe of this dissertation project. It should be noted that the 

imputation performance (in terms of yielding well-imputed genotypes) for the genes/regions that 

were imputed were comparable to the performance seen by Mägi et al.201. While this study was 

focused on discovering imputed low-frequency and rare variants that are associated with celiac 

disease, a future study may focus on gene-based, genome-wide (i.e. not restricted to certain genes or 

regions) meta-analysis as implemented in an unpublished method such as RAREMETAL that was 

developed for the GSCAN project (“GWAS & Sequencing Consortium of Alcohol and Nicotine 

use”; http://gscan.sph.umich.edu). The RAREMETAL package was written to implement gene-

based tests (burden based, variable threshold, SKAT) in an meta-analysis framework. 

 The aim of this analysis was to test the hypothesis that imputed rare and low-frequency 

variants in previously identified candidate genes are associated with celiac disease. The results from 

this study provide evidence that imputed rare and low-frequency variants from nearly fifty genes 

(mostly within the MHC region) are associated with celiac disease in 26 genes, four of which have 

previously been identified in previous studies. Further investigation with directly genotyped or 

resequenced independent samples will be required to validate the novel associations. 
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Chapter 7: Discussion and Conclusions 

This dissertation project was undertaken to further the understanding of the genetic determinants of 

celiac disease. More specifically, this project has examined the existing literature on the genetics of 

celiac disease and aimed to investigate the validity of loci identified in previous celiac disease GWAS 

and interrogate the highly variable MHC region for evidence of associated loci that have been 

masked by the causal HLA alleles. This project has also investigated the use of NGS data to 

discover association signals amongst rare and low-frequency variants. Finally, this project aimed to 

investigate imputation of rare and low-frequency variants into a large-scale GWAS dataset. 

Chapter 3 

This study evaluated the relative performance of several meta-analysis methods to determine optimal 

methods for combining results from GWASs in the presence of between-study heterogeneity. Past 

studies have studied the role of heterogeneity in GWAS meta-analysis94,237 and the development of 

novel meta-analysis models to better adjust for the observed heterogeneity100,101. While previous 

large-scale GWASs of celiac disease72,73 have performed de facto meta-analyses of several diverse 

collections of samples by pooling data together that is equivalent to a fixed-effects meta-analysis, a 

critical investigation of between-study heterogeneity had not been performed.  

In this study, the between-study heterogeneity at each variant between the sample collections 

in each previous celiac disease GWAS72,73 was estimated and then used in the implementation of the 

novel random-effects based models that have recently been developed by Han et al.100,101. When the 

between-study heterogeneity is properly accounted for, one of the loci that had been significantly 

associated in the Dubois et al.72 study, RUNX3, is no longer significant under the novel random-

effects models when only considering the p-value of the association. However, a new plotting 

framework by Han et al.101 that utilizes their new test statistic, the m-value, which represents the 

posterior probability of effect existence in a given collection, provided evidence that the highly 
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heterogeneous variant in RUNX3 has a high posterior probability of effect existence in several 

collections. In the re-analysis of the Trynka et al.73 data, all of the variants that were significant in the 

original study were significant again when between-study heterogeneity was accounted for by the 

novel random-effects models. In the presence of moderate between-study heterogeneity, one of the 

novel random-effects models, the binary-effects model yielded marginally lower p-values than the 

pooling method employed in the original study at three variants. 

While some of the collections were genotyped in different laboratories and may still be 

subject to some laboratory-level bias, a bias due to genotyping platform is not likely to exist because 

all samples were genotyped on Illumina genotyping platforms. This study also lacks independent 

samples to further validate any of the novel signals from the Trynka et al. study. However, this 

limitation is present in many meta-analyses of GWAS because the rationale for performing a meta-

analysis is to avoid genotyping new samples in the first place. Finally, although the I2 statistic is 

based on Cochran’s Q statistic and truncates to zero if Q < (k – 1), since k never goes above 12 in 

either re-analysis. 

Chapter 4 

This study identified novel loci associated with celiac disease within the classical MHC region. The 

associations at these novel loci were found to be independent of the HLA-DQA1 and HLA-DQB1 

high-risk alleles. This study builds upon the North American replication GWAS performed by 

Garner et al.71 and was the first study to fine-map the extended MHC region in celiac disease cases 

and controls by implementing a novel statistical approach to adjust for the high-risk HLA alleles 

and grouping of variants at a locus by linkage disequilibrium. It is noteworthy that none of the four 

variants found to be independently associated with celiac disease are within exonic regions or known 

to have some functional importance in the development of celiac disease. However, three of these 

SNPs have previously been implicated in GWAS of related autoimmune disorders such as type 1 
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diabetes mellitus, systemic lupus erythematosus, and psoriasis. Notably, the most significant SNP, 

rs9357152, was significant in the first celiac disease GWAS68 and highly significant in a type 1 

diabetes mellitus GWAS. These pleiotropic variants strengthen the argument that autoimmune 

disorders such as type 1 diabetes mellitus, celiac disease, Crohn’s disease, systemic lupus 

erythematosus, and rheumatoid arthritis share a common genetic background80,238–240.  

One of the limitations of this study was the lack of an independent population outside of the 

North American sample to attempt a replication of the results. Also, as the high recombination rates 

and complex LD patterns within the MHC cannot be completely adjusted for by statistical methods, 

it may be that the HLA-DQA1 and HLA-DQB1 high-risk alleles are slightly correlated with the four 

independent variants. However, given that the approach taken to capture the effects of the high-risk 

HLA genotypes was based on a highly sensitive and highly specific HLA typing method and a 

parsimonious modeling method, this explanation is not likely. While rare and low-frequency variants 

were not included in this study because they were not included in the SNP panel used in this study, 

this study has provided evidence that a future dense genotyping or resequencing study may discover 

associations with rare or low-frequency variants at or near the implicated loci as was demonstrated in 

the resequencing study of chapter 4. 

Chapter 5 

This is the first study that has used targeted NGS resequencing to discover rare or low-frequency 

variants associated with celiac disease. Nearly all previous GWAS68,69,71–73 of celiac disease have been 

performed using microarray technology that focuses nearly exclusively on common variants with the 

exception of a recent, large-scale targeted exome sequencing study of autoimmune disorders75 that 

includes rare and low-frequency variants. However, this study differs from the aforementioned 

exome sequencing study by resequencing not just the exonic regions but entire genes or genomic 

regions that have at least one variant associated with celiac disease in previous GWAS (i.e. includes 
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coding and non-coding regions). The burden test has been shown to be sufficiently powered to 

detect gene-level associations when the effects of the collapsed variants are unidirectional (i.e. either 

deleterious or protective). In this study, the rare and low-frequency burden tests revealed suggestive 

evidence of association at genes within the 12 non-MHC regions that are either close to genes 

implicated by common variants in previous GWAS (RSPH3 and PAPOLG) or were previously 

found to have a variant significantly associated with celiac disease (TAGAP). In contrast to the 

burden test, the C-alpha test was specifically designed to test for a gene-level association in the 

presence of a mixture of deleterious, neutral, and protective variants.  

While the limited sample size of around 500 samples limits the power to detect rare and low-

frequency variants using single-variant tests, this study provided evidence that it is sufficiently 

powered to detect gene-level associations. It is also possible that the burden and C-alpha tests did 

not detect all of the gene-level associations of the rare and low-frequency variants and there may be 

a optimal method for detecting low-freq and rare variants in the regions that were re-sequenced. 

However, as there are now at least a dozen methods to test for rare and low-frequency associations, 

it was not feasible to evaluate all of the methods in the scope of this dissertation.  

In future resequencing studies of celiac disease, there are a couple of obvious routes to take: 

one is to increase the number of samples that are re-sequenced and the second is perform whole-

genome sequencing. Both of these future directions are becoming feasible as sequencing is now 

approaching the much sought after $1000 mark for a whole genome (Illumina has recently made the 

bold claim that it has reached this goal). Perhaps a more viable alternative in the near-future is to 

perform genotyping of all samples on another custom dense genotyping array that has the rare and 

low-frequency variants or, as explored in chapter 6, to impute the rare and low-frequency variants 

into an existing large-scale celiac disease GWAS dataset.   
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Chapter 6 

In this study imputed rare and low-frequency variants were found to be associated with celiac 

disease. These associations were found at the gene and single-variant levels. This is the first study to 

impute rare and low-frequency variants identified in previous GWASs of celiac disease into a large-

scale celiac GWAS dataset of approximately 12,000 cases and 12,000 controls. The regions imputed 

include 12 non-MHC regions and the classical MHC region. These results are important because 

they provide further evidence that rare and low-frequency variants that were not genotyped or 

sequenced in previous studies are involved in the etiology of celiac disease and an impetus for future 

investigation by direct genotyping or resequencing of associated loci in another large-scale celiac 

disease dataset. The evidence to directly genotype or re-sequence samples is provided by the gene-

level replication of associations that were discovered in chapter 4, particularly the gene-level 

associations that were found in the MHC region as a majority of the genes yielding evidence of 

association in chapter 4 were again found to yield suggestive or significant evidence of association in 

this study. Furthermore, over two dozen additional genes provided evidence of association with 

celiac disease under the C-alpha test. Interestingly, whereas the burden test yielded no significant or 

suggestive evidence of association for genes within the MHC region in chapter 4 with the 

resequenced data, the rare and low-frequency burden tests of the imputed variants provided 

evidence of six genes associated with celiac disease within the MHC region, one of which was 

identified when only the NS variants were included in the analysis, indicating that there may be rare 

or low-frequency variants within the MHC region that are unidirectional and were not detected in 

chapter 4. When only the imputed NS variants were included in the rare and low-frequency C-alpha 

tests, subsets of the genes found to have significant or suggestive evidence of association in the 

analysis of all imputed variants yielded evidence of association. No additional genes were discovered 

when only the NS variants were included in the C-alpha tests. These observations provide evidence 
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that rare and low-frequency non-coding variants may play a significant role in the etiology and 

severity of celiac disease.  

Of the single-marker test results, the most interesting signals were the very rare (p = 0.004) 

SNPs associated with celiac disease that are harbored in the non-coding regions of C6orf10 and 

BTNL2 as well as the highly significant and high effect size intronic SNPs from TNXB (rs17201553 

with MAF of 0.011 and OR of 4.40 with p = 3.08x10-42) and C6orf10 (rs9268233 with MAF of 0.029 

and OR of 3.21 with p = 1.17x10-38). While the power analysis indicates that even this study is 

underpowered to detect rare variants with effect sizes < 2 with GWS, there is an indication that this 

study is well-powered to detect rare variants with effect sizes ≥ 2. The low-frequency SNPs from 

HCP5 and BAT2 that provided GWS evidence of association in the single-marker test along with 

the significant signals for the genes GPSM3, HCP5, and PSORS1C1 under the rare and low-

frequency C-alpha test of the imputed variants seem to strengthen the findings for common SNPs in 

a fine-mapping study of celiac disease conducted previously. In the previous fine-mapping study, the 

common SNPs from HCP5 and BAT2 also were associated with lower risk of disease (OR of 0.57 

and 0.60, respectively). While the C-alpha test implemented in chapter 4 failed to find significant 

evidence of association between rare variants and celiac disease except in ABCF1, both the single-

marker test and the gene-based burden and C-alpha tests of the imputed rare variants have provided 

GWS evidence of association with disease. 

 Imputation performance may be increased in future studies by combining multiple large-

scale reference panels that are not yet available. While there is a small marginal loss in accuracy from 

the pre-phasing of sample haplotypes, it is noted by the authors of the imputation software used in 

this study that the time saved will outweigh the marginal loss in accuracy because the amount of 

time necessary for the imputation software to phase haplotypes in real-time is several orders of 

magnitude higher. It should be noted that the imputation performance (in terms of yielding well-



 117 

imputed genotypes) for the genes/regions that were imputed were comparable to the performance 

seen by Mägi et al.. While this study was focused on discovering imputed low-frequency and rare 

variants that are associated with celiac disease, a future study may focus on gene-based, genome-

wide (i.e. not restricted to certain genes or regions) meta-analysis as implemented in an unpublished 

method such as RAREMETAL that was developed for the GSCAN project (“GWAS & Sequencing 

Consortium of Alcohol and Nicotine use”; http://gscan.sph.umich.edu). The RAREMETAL 

package was written to implement gene-based tests (burden based, variable threshold, SKAT) in an 

meta-analysis framework.  

Conclusions 

The results from chapter 3 reveal significant evidence that loci independent of the causal HLA 

alleles exist within the classical MHC region of chromosome 6 by accounting for both the effects of 

the high-risk HLA genotypes and the local LD patterns at associated loci and that further 

investigation of the MHC region is warranted. In chapter 4, the burden test and the C-alpha test 

provided significant evidence of association at the gene-level when rare and low-frequency variants 

are aggregated together and strengthens findings from previous GWAS and identified novel loci to 

investigate further, particularly in the MHC region. Chapter 5 evaluated FE and RE models of meta-

analysis and provides evidence that if genotype data for multiple collections is available, a pooled 

analysis is sufficient, even in the presence of between-study heterogeneity and that most of the 

previous GWAS results remain significant after accounting for between-study heterogeneity in RE 

models. Chapter 5 also reveals that if only summary statistics are available, an RE-based meta-

analysis may be necessary to account for between-study heterogeneity. Finally, chapter 6 provided 

evidence that high-quality imputation of rare and low-frequency variants using the latest imputation 

algorithms and reference panel is not only feasible but was able to replicate nearly all of the gene-
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level associations from chapter 4 and even detect more novel loci that are associated with celiac 

disease. 
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