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Abstract

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this
paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast
microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions.
Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal
three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological
phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like
phenotype). Next, associations with molecular features were realized through (i) differential analysis within each
morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that
are predictive of the morphological signatures were identified. Specifically, PPARc has been associated with the invasive
stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARc has been validated through
two supporting biological assays.
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Introduction

Genome-wide association studies of expression and clinical data

have emerged as a powerful methodology for identifying

biomarkers of human diseases. While the literature is rich with

supervised or unsupervised clustering of genomic information [1],

methods for studying the relationships between genomic and

physiological responses remain limited. This paper contributes to

computational protocols for associating morphometric data,

collected through phase contrast microscopy, with genome-wide

gene expression data. While genome-wide array expression data

provide on average a few readouts with structured measurements

for an ensemble of colonies, imaging provides one readout per

colony and captures the inherent heterogeneity of a population.

However, images are composed of unstructured data that require

detailed segmentation and representation for the underlying

samples. The net result is subtyping, based on computed

morphometric features, and a list of associated genes against

computed morphometric features for further bioinformatics

analysis. This paper also demonstrates that some of the predicted

genes are biologically relevant and can be tested through both in

vitro and in vivo models.

Most of the existing methods for clustering (e.g., subtyping)

concentrate on either finding subpopulations for a collection of

‘‘OMIC’’ data or identifying groups of genes that can be

associated for each subtype. These methods relate a specific signal

across measured conditions, which is appropriate for a focused

experiment with a small number of conditions, and for partitioning

genes into disjoint sets, thus oversimplifying biological systems.

More effective clustering methods have focused on bi-clustering

[2–4], where bi-clustering aims to find a subset of genes that

behave similarly across a subset of conditions. Still, a more

effective method is to correlate expression data with known

pathways, because pathways represent higher-level biological

functions, where the correlation of real value data with known

non-numeric pathway data (e.g., KEGG, BRITE) is generally

performed through kernel canonical correlation analysis (KCCA)

[5]. The original canonical correlation analysis (CCA), developed

by Hotelling in 1936, finds projections from two real-value

datasets so that those projections have maximum correlations. The

kernelized version extends the CCA to non-numerical values.

With respect to the understanding of the mechanism of genome-

wide regulation and functions, experiments have to be coordinated

with the computational requirements to ensure the robustness of

any biological conclusion. This is often met by varying or

perturbing experimental conditions (e.g., multiple cell lines,

different treatment conditions). For example, in a recent paper,

microarray data were analyzed with the corresponding physiolog-
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ical responses and clinical metadata [6]. The experiment

incorporated NCI-60, a panel of cancer cell lines, that were

incubated with Docetaxel, and the impact of the drug was

characterized with GI50 (e.g., 50% growth inhibition dose

concentration in a 48-hour assay). Subsequently, genes strongly

correlated with GI50 were identified.

Experimentally, our method is based on three-dimensional cell

culture models, which introduce new computational opportunities,

because the assays were imaged with phase contrast microscopy.

One primary rationale for designing experiments in 3D cell

culture models is that the 3D systems provide a more faithful

replication of cell behavior in vivo than 2D substrata systems [7,8].

Mammary cells cultured on rigid 2D substrata rapidly lose many

aspects of their in vivo phenotype [9], but the use of 3D

extracellular matrix cultures (which restore the physiological cell-

ECM interactions) allow for a much more faithful replication of in

vivo phenomena in culture. For example, mammary epithelial cells

form polarized acini that vectorially secrete the milk protein, beta-

casein, when cultured within a 3D ECM gel [7], and breast cancer

cells can be readily distinguished phenotypically from non-

malignant breast cells simply by observing their aggressive growth

in these assays [10]. Our experiment consists of 24 cell lines from a

panel of non-malignant and malignant breast cell lines. We have

developed a computational protocol that quantifies colony

structures through segmentation and multidimensional represen-

tations. Such a multidimensional representation enables subse-

quent associations with expression data, as well as with the

identification of subpopulations among all the 24 lines.

Our proposed computational protocol consists of five major

steps: (i) colony segmentation, (ii) morphological feature extraction,

(iii) consensus clustering of morphological features, (iv) differential

analysis of morphological clusters with gene expression profiles,

and (v) association of cell-line-specific morphological features and

their gene expression signatures. These computational steps are

shown in Figure 1, where colonies in each phase image are

segmented from the background based on texture features.

Regions containing individual colonies are extracted and subse-

quently represented by multidimensional indices, such as size and

Zernike moments. Such a representation is translation and

rotation invariant. At this point, one path allows genes that are

predictive of morphogenesis to be identified. The second path

identifies subpopulations through a modified consensus clustering,

which finally leads to ranking those genes that differentiate each

subpopulation. A few of these genes are druggable targets, and one

has been selected for biological validation.

Results

Identification of sub-populations for the panel of cell
lines

Our data set includes 143 phase images from 24 breast cancer

cell lines grown in 3D. This data set has produced 1,057 colonies

from all 24 cell lines. Following segmentation and feature

extraction, each colony is represented with a multidimensional

vector as discussed in the Methods section. This is followed by

consensus clustering where the number of clusters is varied from 2

to 7 to examine near optimum partitioning.

In order to visualize clustering results, the consensus matrix is

traditionally treated as a similarity matrix and reordered using

hierarchical clustering. As a result, self similar signatures are placed

in close proximity. In this reordered consensus matrix, cell lines

with similar morphologies are adjacent to each other, and the

darker signal (in the map) reflects improved similarity for the

purpose of visualization. Ideally, for a perfect consensus matrix, the

displayed heat map should have crisp boundaries. These matrices

are generated for a number of clusters, ranging from 2 to 7; the

results are shown in Figure 2. The choice of maximum cluster

number (e.g., 7) is arbitrary, and the experiment can be repeated if

computed consensus matrices and subsequent analysis suggested a

larger number of subtypes, but this is biologically less feasible as

one is interested in the simplest partition. Consensus clustering

assesses stability for the identification of potential subpopulations,

and provides visual feedback as a potential component for the

decision-making process. For example, for n~2, the consensus

matrix has one large and one small block with crisp boundaries;

and for n~3, it appears that the large block for n~2 has been

partitioned into two other blocks. Therefore, a quantitative method

Author Summary

Cell culture models are an important vehicle for under-
standing biological processes and evaluation of therapeu-
tic reagents. More importantly, the literature suggests that
tumor cells grown in 3D exhibit pronounced drug and
radiation resistances that are remarkably similar to that of
tumors in vivo. Therefore, the needs for quantifying 3D
assays continue to grow. In this paper, we develop robust
computational methods to integrate morphometric and
molecular information for a panel of breast cancer cell lines
that are grown in 3D. Specifically, morphometric traits are
imaged through microscopy, and then quantified compu-
tationally. We then show that these morphometric traits
can identify subtypes within this panel of breast cancer cell
lines, and that the subtypes are clinically relevant in terms
of being ERBB2 positive or triple negative. These subtypes
and their representations are then associated with their
molecular data to reveal PPARG as an important marker for
triple-negative breast cancer. Finally, we design two
independent experiments to show the validity of this
marker in both 3D cell culture models and human breast
cancer tissue.

Figure 1. Computational pipeline for differential and associa-
tion studies between colony morphologies and gene profiles
for the panel of breast cancer cell lines cultured in 3D.
doi:10.1371/journal.pcbi.1000684.g001

Molecular Predictors of 3D Morphogenesis
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for assigning confidence to the selected number of clusters is

needed. This is based on computing consensus distribution [11].

By computing a cumulative distribution from consensus matrices

and evaluating proportional increase as a function of the number

of clusters, the shape of the concentration distribution can be

examined. The cumulative distribution function (CDF) is comput-

ed from the entire consensus matrix, whose elements are between 0

and 1. The shape of the CDF and its progression as a function of

increase in the number of clusters suggest the presence of desirable

subpopulations. An earlier paper by [11] evaluated this method

with synthetic and real data, proposed a new measure, a

‘‘concentration histogram’’ computed from the change in the

shape of the CDF, and suggested that the peak in the

concentration histogram corresponds to an estimate of the number

of clusters. The concentration histogram of Figure 3 suggests that

three clusters best represent the desired number of subpopulations.

Let’s examine identification of subpopulations as the number of

clusters increases. At n~2, one subpopulation contains three cell

lines of HS578T , MDAMB231, and MDAMB436, as shown in

Figure 4, where their fingerprints indicate large colony size and

complex texture representation displaying aggressive behaviors. At

n~3, the larger block of n~2 is approximately partitioned into

two subpopulations. One subpopulation corresponds to a round

symmetrical morphology expected from non-transformed 3D cell

culture models. The other population corresponds to a more

aggressive line labeled ‘‘grape-like’’ in the literature [12]. In

Figure 2. The consensus matrices for different numbers of clusters n based on morphological representations are shown. A darker
block indicates higher morphological similarity between two cell lines. One can hypothesize that the larger block for n~2 has been partitioned into
two blocks for n~3; however, the order is not preserved.
doi:10.1371/journal.pcbi.1000684.g002

Figure 3. The CDF and its derivative, computed from the consensus matrix, is used to identify the number of clusters. (A) CDF for
each cluster, and (B) change in CDF as a function of cluster size, indicates that three is the optimum number of sub-populations.
doi:10.1371/journal.pcbi.1000684.g003

Molecular Predictors of 3D Morphogenesis
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summary, the three clusters of round, grape-like, and stellate,

shown in Figure 5, suggest the best set of subpopulations, based on

morphological similarities. At n~4 spurious clusters (not shown

here) are generated that have no clear boundaries.

Molecular predictors of phenotypes
Examining the association between phenotypic signatures and

expression data is an exploratory step, which requires molecular

diversity in the data set to avoid homogeneity. Two distinct

approaches are applied, where each approach brings a unique

view to the data. (I) In the first approach, expression data

associated with each cell line are grouped into their corresponding

morphological cluster. As a result, genes that best discriminate

between different clusters can be ranked according to their

differential strength. (II) In the second approach, genes are ranked

against each morphological feature through linear or nonlinear

regression analysis. As a result, molecular predictors for positive or

negative correlation can be inferred.

Figure 4. Three cell lines displaying aggressive phenotypes are discovered with n~2. All other cell lines are grouped in a different
subpopulation.
doi:10.1371/journal.pcbi.1000684.g004

Figure 5. Three subpopulations of the 24 breast cancer cell lines grown in three-dimensional cell culture assay are revealed
through consensus clustering.
doi:10.1371/journal.pcbi.1000684.g005

Molecular Predictors of 3D Morphogenesis
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Molecular predictors of morphological subpopulations.

In this case, expression data associated with each cell line are

assigned to their own morphological cluster. The objective is to

identify genes that best discriminate each morphological cluster.

Accordingly, genes are ranked for three classification experiments,

where each experiment is one class versus the other two. The main

objective is to identify those genes that best predict round, grape-

like, and stellate clusters. Table 1 lists those genes, with false

discovery rate (FDR) of less than 0.001, that best discriminate

stellate versus the other two classes. Similar experiments for round

versus stellate and grape-like or grape-like versus stellate and round

did not reveal any gene with an FDR of less than 0:1. Hence, results

are not reported here.

Molecular predictors of morphological features. Both

linear and nonlinear prediction models are explored for molecular

predictors of morphological features. Although the simplicity of a

linear relationship is quite desirable, many naturally occurring

biological interactions are nonlinear. The analysis pipeline has three

components: (i) predicting genes that positively correlate with a

specific morphological features, (ii) predicting genes that negatively

correlate with the same morphological features, and (iii) validating

data with a functional analysis. In steps (i) and (ii), a correlation

coefficient is transformed into a p-value through permutation analysis.

Tables 2 and 3 summarize the top genes that best predict the

size of the colony for positive and negative correlation,

respectively, with FDRv0:02.

Table 1. Best genes for predicting the stellate cluster based on moderated t-statistic (FDRv0:001).

Gene symbol Gene description p-value FDR Expression level

PPARG peroxisome proliferator-activated receptor c 9.13E-15 9.54E-11 +

PARG poly (ADP-ribose) glycohydrolase 4.31E-09 1.73E-05 +

FADS1///FADS3 fatty acid desaturase 1 /// fatty acid desaturase 3 7.20E-09 1.73E-05 +

PALM2-AKAP2 paralemmin 2 - A kinase (PRKA) anchor protein 2 8.23E-09 1.73E-05 +

FADS3 fatty acid desaturase 3 8.66E-09 1.73E-05 +

TFPI tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor) 1.08E-08 1.73E-05 +

AKAP2/// PALM2/// PALM2-AKAP2 A kinase (PRKA) anchor protein 2 /// paralemmin 2 /// PALM2-AKAP2 1.16E-08 1.73E-05 +

LEPRE1 leucine proline-enriched proteoglycan (leprecan) 1 1.48E-07 1.80E-04 +

DAB2 disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila) 1.74E-07 1.80E-04 +

VCL vinculin 1.76E-07 1.80E-04 +

PALM paralemmin 1.90E-07 1.80E-04 +

PTGER4 prostaglandin E receptor 4 (subtype EP4) 2.87E-07 2.50E-04 +

CLCN6 chloride channel 6 3.84E-07 3.09E-04 +

DCBLD2 discoidin, CUB and LCCL domain containing 2 5.36E-07 4.00E-04 +

FSTL1 follistatin-like 1 9.66E-07 6.73E-04 +

FST follistatin 1.39E-06 9.10E-04 +

doi:10.1371/journal.pcbi.1000684.t001

Table 2. Genes that best predict the size of the colony in terms of positive logistic relationship (FDRv0:02).

Gene symbol Gene description r p-value FDR

PPARG peroxisome proliferator-activated receptor c 0.8667 1.82E-07 2.18E-03

LPIN2 lipin 2 0.8450 7.49E-07 4.48E-03

VCL vinculin 0.8145 3.95E-06 1.18E-02

INSIG1 insulin induced gene 1 0.7932 1.06E-05 1.41E-02

APBA2 amyloid beta (A4) precursor protein-binding, family A, member 2 (X11-like) 0.7884 1.31E-05 1.42E-02

CDH11 cadherin 11, type 2, OB-cadherin (osteoblast) 0.7860 1.45E-05 1.45E-02

DLC1 deleted in liver cancer 1 0.7890 1.28E-05 1.53E-02

PRR3 proline rich 3 0.7940 1.03E-05 1.54E-02

BCAT1 branched chain aminotransferase 1, cytosolic 0.7788 1.96E-05 1.67E-02

AXL AXL receptor tyrosine kinase 0.7697 2.81E-05 1.87E-02

RFTN1 raftlin, lipid raft linker 1 0.796 9.41E-06 1.88E-02

TMEM22 transmembrane protein 22 0.7705 2.73E-05 1.92E-02

AP1S2 adaptor-related protein complex 1, sigma 2 subunit 0.7718 2.59E-05 1.93E-02

doi:10.1371/journal.pcbi.1000684.t002
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Discussion

Morphological subtyping
We compare clustering results with those from interactive

methods and provide an interpretation of the morphological

similarities based on their known molecular predictors. In an

earlier paper [12], an extended set of similar data was analyzed

manually, and four subpopulations – round, mass, grape-like, and

stellate– were labeled. However, manual analysis of individual

colonies is extremely laborious and prone to user bias. Thus, we

have developed a computational protocol to identify subpopula-

tions. In our analysis, round and mass clusters are grouped

together, since they have no morphological differences when

imaged through phase contrast microscopy. However, the above

two phenotypes can be differentiated from each other under

fluorescence microscopy. The difference is due to the degree of

internal organization in these phenotypes. Round colonies tend to

have cells arranged in an approximately radial symmetry, while

mass colonies are significantly more disorganized. This can only be

visualized at higher magnification and confocal microscopy;

however, these data have not been included in our analysis.

Otherwise, Figure 5 is consistent with Table 1 in [12].

Results indicate that 8 out of 9 cell lines from the grape-like

subpopulation express high levels of ERBB2 as a result of

amplification of this gene [12], which is differentially expressed

between grape-like and round/stellate cell lines with p-value of

0:05. The exception is MDA-MB-468, which has a significant

amplification of EGFR. Collectively, these data suggest that the

deregulation of signaling through the EGFR/ERBB2 signaling

axis may make a strong contribution to the grape-like morphology

in culture. The stellate colonies are all negative for estrogen

receptors, progesterone receptors, and HER2, a phenotype termed

triple negative by pathologists and characterized by a very poor

prognosis in cancer patients, as this type of tumor is highly invasive

[13]. The invasive nature of the colonies formed by these cells in

the 3D culture assay may be reflective of the in vivo invasive

capacity of these tumor cells.

Molecular predictors of phenotypic response
Previous results for molecular predictors of morphological

subpopulations indicate that the gene expression profiles of stellate

colonies are the most distinct from the other two morphological

classes, which is consistent with their invasive mesenchymal

phenotype compared to the more epithelial colonies formed by

round and grape-like cells. A brief description of the molecular

predictors, listed in the previous tables, and their relevance is

provided below.

Consistent with the mesenchymal phenotype of these cells,

PPARc, the top gene on this list (Table 1), has been reported to

be a potent inducer of EMT in intestinal epithelial cells [14].

Similarly, DAB2 has been reported to be required for TGF-beta

induced EMT [15]. PPARc is a nuclear receptor protein, and

functions as a transcription factor. It is (i) regulated by

thiazolidinediones (TZD), a class of oral anti-diabetic drugs,

(ii) involved in proliferation and differentiation [14], and (iii)

shown to be highly expressed in metastasized human breast

tissue [16]. FADS1 is involved in the synthesis of highly

unsaturated fatty acids such as arachidonic acid [17], which (i)

are metabolites that activate PPARc [18], and (ii) can also be

converted to prostaglandins, by cyclooxygenases. The Prosta-

glandin EP4 receptor (PTGER4) was correlated highly with the

stellate phenotype and has been implicated in migration of

MDA-MB-231 cells in vitro [19]. Inhibition of EP4 has been

demonstrated to have anti-metastatic effects in preclinical

mouse models [20]. Poly(ADP-Ribose) glycohydrolase (PARG)

was also highly expressed in stellate cells. PARG and PARP

have been reported to localize to sites of DNA damage

(reviewed in [21]) and, intriguingly, mice deficient in PARG

are hypersensitive to both c-irradiation and alkylating agents

[22], suggesting that high levels of PARG may contribute to

resistance to DNA-damaging agents in cancer therapy. Stellate

cell lines also expressed relatively high levels of Tissue Factor

Pathway Inhibitor (TFPI), which is found at high levels in

patients with advanced cancer, yet has been proposed to have

anti-angiogenic and anti-metastatic functions [23]. Multiple

Table 3. Genes that best predict the size of the colony in terms of negative logistic relationship (FDRv0:02).

Gene symbol Gene description r p-value FDR

F11R F11 receptor 20.7162 1.78E-04 2.18E-03

ARHGEF5 Rho guanine nucleotide exchange factor (GEF) 5 20.7078 2.29E-04 4.48E-03

ITPKC inositol 1,4,5-trisphosphate 3-kinase C 20.7019 2.72E-04 9.50E-03

DSP desmoplakin 20.6997 2.90E-04 1.18E-02

CTAGE4 CTAGE family, member 4 20.6692 6.60E-04 1.41E-02

MKRN1 makorin ring finger protein 1 20.6639 7.55E-04 1.42E-02

HOXC13 homeobox C13 20.6662 7.12E-04 1.53E-02

SRCAP Snf2-related CREBBP activator protein 20.6709 6.32E-04 1.54E-02

PTPLB protein tyrosine phosphatase-like (proline instead of catalytic arginine), member b 20.6567 9.02E-04 1.63E-02

LIMK2 LIM domain kinase 2 20.647 1.14E-03 1.67E-02

RARG retinoic acid receptor, gamma 20.6712 6.26E-04 1.72E-02

TNK1 tyrosine kinase, non-receptor, 1 20.6415 1.29E-03 1.87E-02

MAPRE3 microtubule-associated protein, RP/EB family, member 3 20.6719 6.15E-04 1.88E-02

OVOL2 ovo-like 2 (Drosophila) 20.6419 1.28E-03 1.92E-02

CD79A CD79a molecule, immunoglobulin-associated alpha 20.6422 1.27E-03 1.93E-02

EPHB3 EPH receptor B3 20.6462 1.16E-03 1.96E-02

doi:10.1371/journal.pcbi.1000684.t003
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probes corresponding to PALM2/AKAP2, which are alternative

splicing variants of the same gene [24], were upregulated in

stellate cells. Although the function of PALM2 is not known,

PALM1 has been implicated in the filopodia and spine

formation during dendritic branching [25], so it is tempting to

speculate that PALM2 may contribute to the production of the

stellate processes seen in these cell lines. DCBLD2 is highly

expressed by metastatic cells in culture, and in lung cancer tissue

at both primary and metastatic sites [26].

PPARc was also the gene most strongly associated with colony

size (Table 2). Also highly associated was INSIG1, a PPARc
target gene [27], suggesting that the upregulated PPARc is

functionally active in these cells. Axl kinase levels also positively

correlated with colony size. Consistent with this, Axl activity has

been shown to augment MDA-MB-231 xenograft growth in

mammary fat pads and subsequent lung metastasis [28]. Of the

other genes associated with colony size, TMEM22 has been

reported to play a role in cell proliferation in renal cell carcinoma

[29].

Among the genes negatively associated with colony size

(Table 3), there are several tumor suppressor genes with roles

in normal mammary epithelium. F11R encodes the Junction

Adhesion Molecule A (JAM-A) gene. This gene is highly

expressed in normal mammary epithelium, but down-regulated

in invasive breast cancer cells [16]. TNK1, OVOL2, and EPHB3

are candidate tumor suppressor genes. Deletion of TNK1 in mice

results in spontaneous tumorigenesis in several tissues [30].

OVOL2 is a suppressor of c-MYC, and OVOL2-depletion by

siRNA promotes cell proliferation [31]. Overexpression of

EPHB3 in colorectal cancer cells inhibited proliferation in

monolayer culture and growth in both soft agar assays and as

xenografts [32].

Validation
Our validation strategy has two supporting components of in vitro

and in vivo experiments focusing on PPARc, since it is a druggable

target. PPARc is a hub for lipid metabolism and has been suggested

as a therapeutic strategy for epithelial tumor types [33].

Figure 6 shows an example of vehicle control, treatment with

PPARc inhibitor, and reduction in the proliferation rate, as

measured by the rate of metabolism of WST1. This result is

consistent with earlier reports in 2D culture [34] that GW9662

inhibited cell growth and the survival of MDA-MB-231.

In the second case, localization of PPARc was analyzed by

immunohistochemistry in normal breast tissue and in sections

from triple-negative breast tumors. Other researchers [35] have

examined PPARc expression in a large cohort of breast tumors,

although they did not specifically analyze triple-negative tumors in

their studies. Results are shown in Figure 7, and details are

included in Text S1.

Methods

Cell lines and their culture conditions in 3D
A panel of 24 breast cancer cell lines was cultured in 3D [12].

HMT-3522 S1 (S1) and HMT-3522 T4-2 (T4) mammary

epithelial cells were maintained on tissue culture plastic [36–39].

The following human breast cancer cell lines were maintained on

tissue culture plastic in the following manners: CAMA-1, Hs578T,

MCF-7, MDA-MB- 231, MDA-MB-361, MDA-MB-415, MDA-

MB-436, MDA-MB-453, MDA-MB-468, MPE-600, SK-BR-3,

and UACC-812 were propagated in DMEM/H-21 (Invitrogen)

with 10% fetal bovine serum (Gemini); AU565, BT-474, BT-483,

BT-549, HCC70, HCC1569, T-47D, ZR-75-1, and ZR-75-B

were propagated in RPMI 1640 (Invitrogen) with 10% fetal bovine

serum; and MCF-12A was propagated in DMEM/F-12 (Invitro-

gen) with 10 ng/ml insulin, 100 ng/ml cholera toxin, 500 ng/ml

hydrocortisone, 20 ng/ml EGF (Sigma), and 5% fetal bovine

serum. Three-dimensional laminin-rich extracellular matrix (3D

lrECM) on-top cultures [40] were prepared by trypsinization of

cells from tissue culture plastic, seeding of single cells on top of a

thin gel of Engelbreth-Holm-Swarm (EHS) tumor extract

(Matrigel: BD Biosciences; Cultrex BME: Trevigen), and the

addition of a medium containing 5% EHS. Cell lines with round

3D morphology were seeded at a density of 3:1|104 cells per

cm2; cell lines with stellate 3D morphology were seeded at

1:6|104 cells per cm2; and all other cell lines were seeded at

2:1|104 cells per cm2. All 3D lrECM cell cultures were

maintained in H14 medium with 1% fetal bovine serum, with

the exception of S1 and T4, which were maintained in their

propagation medium, for 4 days with media change every 2 days.

Image acquisition and RNA collection
(I) Cell lines were grown in 3D, and cultured colonies were

imaged with phase contrast microscopy at 106. Colonies were

isolated from 3D cultures by dissolution in PBS/EDTA [40]. (II)

Figure 6. Treatment of a MDA-MB-231 with a PPARG-inhibitor indicates reduction in the proliferation rate. (A) untreated line, (B)
treatment with Gw-9662, and (C) proliferation index. The proliferation index was determined by incubating cultures with cell proliferation analysis
reagent, WST1, on Day 5.
doi:10.1371/journal.pcbi.1000684.g006
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Purified total cellular RNA was extracted using an RNeasy Mini

Kit with on-column DNase digestion (Qiagen). RNA was

quantified by measuring optical density at A260, and quality

was verified by agarose gel electrophoresis. Affymetrix microarray

analysis was performed using either the Affymetrix high-density

oligonucleotide array human HG-U133A chip cartridge system

or the Affymetrix High Throughput Array (HTA) GeneChip

system, in which HG-U133A chips were mounted on pegs

arranged in a 96-well format. Robust multi-array analysis (RMA)

was performed to normalize data collected from different

samples. The details can be found in an earlier paper [12]. For

gene expression data, the sample size is small, and on the

average, there are two samples per cell line. Replicates are either

averaged or their medians are selected for representation. On the

other hand, the sample size for image-based data is quite large,

on the order of thousands.

Multidimensional profiling of colony morphologies
The first step in multivariate profiling is the segmentation of a

colony from its immediate background. Segmentation enables the

feature-based representation of each colony for subsequent

clustering and correlation analysis with expression data.

Colony segmentation. A robust method for delineating

samples imaged through phase contrast microscopy is through a

bank of gradient feature detectors at different scales and

orientations. The main advantage of a multiscale approach is

that proper scale (e.g., neighborhood support for computation of

the derivative and its orientation) is not known in advance. One

immediate consequence of this procedure is that ambiguities due

to single-point operations (e.g., thresholding) can be overcome in

favor of a more robust process. One implementation of multiscale

derivative computation is through a bank of Gabor filters. From

the perspective of a mammalian visual system, Gabor filters have

the same characteristic as cells in the visual cortex. From a

computational perspective, these filters have been shown to have

an optimal localization in both spatial and frequency domains

[41], and the filter bank can be designed so that the overlap

between individual filters is minimized.

In our implementation, rotation-invariant Gabor features are

used to characterize image gradient information at different scales

[42]. A 2D Gabor function g(x,y) and its Fourier transform G(u,v)
can be expressed as:

g(x,y)~
1

2psxsy

exp {
1

2

x2

s2
x

z
y2

s2
y

 !
z2pjWx

" #
ð1Þ

and

G(u,v)~ exp {
1

2

(u{W )2

s2
u

z
v2

s2
v

" #( )
, ð2Þ

respectively, where su~1=(2psx) and sv~1=(2psy). A set of

Figure 7. PPARG is expressed in triple negative human breast cancer tissue. (A–B) Localization of PPARc in normal and triple negative of
human mammary tissue sections indicates that (i) in normal tissue, localization is apical and unbound to the nuclear regions, and (ii) in triple negative
tissue, localization is nuclear-bound and heterogeneous. (C–D) Quantitative analysis on a cell-by-cell basis indicates that PPARc (i) is upregulated in
triple negative patients, and (ii) has a heterogeneous distribution.
doi:10.1371/journal.pcbi.1000684.g007
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Gabor functions can be generated by rotating and scaling g(x,y).

Let m and n be scaling and rotation parameters, respectively.

Then gmn(x,y)~a{2mg(x’,y’) where x’~a{m(x cos hzy sin h),

y’~a{m({x sin hzy cos h),aw1,m~0,1,:::,S{1, and n~0,

1,:::,K{1. To reduce the redundancy in the filtered images, the

filter parameters are chosen to ensure that the adjacent half-peak

magnitude iso-curves are tangential to each other in the frequency

domain. For example, Fig. 8 shows iso-curves of half-peak

magnitude at six different orientations and four scales (e.g., size)

[43].

By accumulating all rotated filters (e.g., integration over n), at

each scale (e.g., every m), a series of rotation-invariant filters,

g(R)
m (x,y)~

XK{1

n~0

gmn(x,y), m~0,1,:::,S{1, ð3Þ

whose entire half-plane frequency spectrum is shown in each

dotted region of Figure 8, are obtained. Thus, the filtered images

represent rotation-invariant texture properties of the input image,

I(x,y),

J (R)
m (x,y)~

X
x1

X
y1

I(x1,y1)g(R)
m (x{x1,y{y1), m~0,1,:::,S{1, ð4Þ

where each pixel is represented by an S-dimensional texture

feature vector. Subsequently, the K-means method is used to

delineate background and foreground pixels. The initial condi-

tion is set at the lowest and highest values of the filter response.

The end result is a binary representation of the original image

corresponding to one of the two classes; examples are shown in

Figure 9.

Phenotypic representation. Following segmentation,

morphometric properties of each colony are represented for

subtyping or clustering. However, such a representation has to be

invariant to rotation and translation (e.g., the area of a colony has

such a property), since orientation of a colony cannot be predicted

a priori [44,45]. Here, we opted to use Zernike moments, which

have been widely used for representation, and are shown to

outperform other moment invariants in shape-based classification

and recognition [45]. In our system, the first 10 orders of moments

are computed from the image gradient, which is invariant to

Figure 8. The elliptical contours indicate the half-peak
magnitude iso-curves of the Gabor filters, in the frequency
domain, at 6 orientations and 4 scales. At each scale, mean filter
response is invariant to rotation.
doi:10.1371/journal.pcbi.1000684.g008

Figure 9. Regions associated with the multicellular colonies are differentiated through proposed computational method. (a)(c)
original images of two types of colonies with contrast reversal (e.g., dark regions in the bottom row versus bright regions in the top row), and (b)(d)
the corresponding segmented results. Segmentation is feasible as a result of the Gabor filter bank that encodes oriented texture features.
doi:10.1371/journal.pcbi.1000684.g009

Molecular Predictors of 3D Morphogenesis

PLoS Computational Biology | www.ploscompbiol.org 9 February 2010 | Volume 6 | Issue 2 | e1000684



contrast reversal and shading, and then normalized to N (0,1).
Overall, each segmented colony is represented by a 33-

dimensional vector. Zernike moments of f (x,y) are defined as

[44]

Zmn~
mz1

p

ð
x

ð
y

f (x,y)Vmn(x,y)dxdy, x2zy2
ƒ1, ð5Þ

where m~0,1,2,:::,inf , jmj{n is even, and jnjvm, and Zernike

polynomials Vmn(x,y) are a set of orthogonal functions. The

background material on the Zernike polynomial is included in

Text S1.

Clustering of phenotypic signatures. Clustering of

phenotypic signatures contributes to the categorization of

morphological features and to the subsequent correlation

analysis of expression data. However, three issues need to be

addressed: (i) colonies have heterogeneous morphologies for the

same cell line; (ii) the number of colonies for each cell line is

unequal, ranging from a dozen to several hundred independent

samples; and (iii) there is no prior knowledge of the number of

clusters. An important aspect of clustering has to do with

validation, since some clustering methods (e.g., k-means) are

sensitive to the initial conditions, and others simply quantize the

space (e.g., hierarchical clustering) through an arbitrary threshold.

A proven method is consensus clustering, which is widely used for

class discovery and visualization of gene expression microarray

data [46]. This iterative method is based on resampling, and is

designed to partition the observed gene expression profiles into a

set of exhaustive and nonoverlapping clusters. In each iteration,

clustering is performed on a random subset of the data, and the

consensus across repeated runs is aggregated into a consensus

matrix, which represents the probability that a pair of cell lines will

be in the same cluster. Furthermore, visualization of the consensus

matrix enables the qualitative evaluation of the clustering results

(e.g., Are there crisp boundaries between clusters?). Our goal is to

partition morphometric fingerprints of colonies associated with 24

cell lines into a set of exhaustive and nonverlapping clusters. We

modified the consensus clustering method slightly:

1. Initialize the number of clusters to n~2.

2. Construct an equal number of samples, m (e.g., colony), from

each of the 24 cell lines through random sampling.

3. Cluster 24{by{m randomly selected samples using the k-

means method.

4. Construct a probability distribution function (PDF) for each

cell line. This PDF indicates the assignment of samples to each

cluster. In other words, each cell line will have its own unique

PDF given the number of clusters.

5. Construct the similarity matrix whose elements correspond to

the p-value computed through the Kolmogorov-Smirnov

(KS), which compares pairwise similarities between two

distributions.

6. Repeat steps 2 to 5 for a fixed number of k iterations, and

compute the consensus matrix (e.g., average or median over all

k similarity matrices).

7. Increase n and repeat steps 1 to 6 for each different n.

The KS test is nonparametric, makes no assumption about the

distribution of the data, and outputs a p value between two

distributions (e.g., pij ). Each element of the similarity matrix M is

represented as Mij~1{pij , and the final consensus matrix is

constructed by averaging all similarity matrices for all k iterations.

Subsequent visualization of the consensus matrix enables visual

feedback for the performance of the clustering results. In our

system, the number of iterations (e.g., k) and samples (e.g., m) are

set at 100 and 6, respectively.

Identification of molecular predictors for morpholo-

gical clusters. We have examined both linear and nonlinear

methods for differential expression between different clusters.

Additionally, the same biomarker has been identified through

gene set enrichment analysis (GSEA) [47]. Results from GSEA

and nonlinear analysis are shown in Text S1. Regardless of

linear and nonlinear cases, the main challenge is the limited

number of gene expression data. However, since the same

biomarker has appeared in both cases, we are limiting our

discussion to the linear method in the main body of text. In the

nonlinear case, the cross-validation error of the SVM rule with

Gaussian kernel is used for identifying differentially expressed

genes [48]. The details of the nonlinear method are summarized

in Text S1.

In the linear case, gene selection is based on the moderated t-

statistic [49], which uses the empirical Bayes method for

assessing differential gene expression. In the moderated t-

statistic, ordinary standard deviations are replaced by posterior

residual standard deviations, and the results are further

moderated across genes through the empirical Bayes approach.

The net result is an improved statistical stability given the

limited number of samples. The p-value is computed for each

gene based on the moderated t-statistic, and then adjusted

for multiple hypothesis testing. The adjustment is based on

Benjamini and Hochberg’s method to estimate the false

discovery rate (FDR) [50]. FDR controls the expected

proportion of falsely rejected null hypotheses in multiple

hypothesis testing to correct for multiple comparisons.

The method is implemented through the R limma package

[51].

Identification of molecular predictors for morphological
features

Both linear and nonlinear prediction models are explored to

identify molecular predictors. Each model produces a different

view of the analysis for subsequent biological validation. In linear

regression, the relationship between two variables (e.g., morphol-

ogy index and gene expression) is given by

y~azbx, ð6Þ

where the coefficients a and b are estimated by minimizing the L2

norm (e.g., sum squared error): SSerr~½
Pn

i~1 (yi{a{bxi)
2�R2,

where R2 is known as the coefficient of determination in statistics

and is the proportion of variability in a dataset that can be

accounted for by the model. A general definition is given by the

ratio of error in the fit (SSerr) to sample variance (SStot):

R2~1{
SSerr

SStol

, ð7Þ

where, as before, SStol~
Pn

i~1 (yi{�yy)2. In linear regression, the

square root of R2 equals the Pearson product-moment correlation

coefficient:

r~
1

N{1

XN

i~1

xi{�xx

sx

� �
yi{�yy

sy

� �
, ð8Þ
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where �xx is the sample mean and sx is the sample standard

deviation. Therefore, the Pearson product-moment correlation

coefficient measures the quality of least squares fitting to y and x

in Equation (6), i.e., the degree of linear relationship between

two variables. A value of z1 indicates a perfect positive

linear relationship, and {1 means a perfect negative linear

relationship.

In the nonlinear case, the relationship is modeled by a logistic

function [52]:

y~
1

1ze{(azbx)
, ð9Þ

where y samples are normalized to reside between 0 and 1.

Equation (9) can be rewritten as

z~ ln
y

1{y

� �
~azbx: ð10Þ

The Pearson product-moment correlation coefficient of the

transformed variable r~
1

N{1

XN

i~1

xi{�xx

sx

� �
zi{�zz

sz

� �
measures

measures the fitting quality of z and x in Equation (10), as well as

the quality of the logistic fitting to the original data y and x in

Equation (9).

In all cases, the p-value is computed through permutation. In

each permutation step, a subset of the data is used to compute the

corresponding Pearson product-moment correlation coefficients

based on a higher-level taxonomy for genes being either positively

or negatively correlated with morphogenesis. For each gene, from

their respective taxonomy, a p-value is then computed by

comparing its Pearson product-moment correlation coefficient r

with rm values, m~1,:::,M, from M permutated samples. For a

gene with positive r value, its p-value is:

p~
1

M

XM
m~1

u(rm{r), ð11Þ

where u(x) is 1 if xw0, and 0 otherwise. For a gene with negative

r value, its p-value is:

p~
1

M

XM
m~1

u(r{rm): ð12Þ

Validation
In vitro approach. In the first case, the triple-negative breast

cancer cell line, MDA-MB-231, was assayed in 3D cell cultures

maintained in H14 medium with 1% fetal bovine serum. The 3D

cultures were prepared in triplicate by seeding single cells on top of

a thin layer of Matrigel (BD Biosciences; Franklin Lakes, NJ) at a

density of 2,200 cells=cm2 and overlaid by 5% final Matrigel

diluted in a culture medium. GW9662 (Cayman Chemical; Ann

Arbor, MI), a PPARG inhibitor, was dissolved in DMSO (Fisher

Scientific; Hampton, NH) and added to the 3D cultures in the

final concentration of 10 mM at the time of seeding. The vehicle

control was pure DMSO. The culture medium and the drug were

changed every other day. Five images per well were collected after

five full days in 3D culture on an Olympus IX 81 (Melville, NY)

with 106N.A. 0.25 Plan APO optics with a Cooke Sensicam QE

air-cooled CCD camera, using IPLab 4.0.
In vivo approach. The PPARc antibody, from the EnVision

kit, was initially assayed at 1:25, 1:50, 1:100, and 1:200 dilution,

with 1:25 (1 mL of antibody per 25 mL of buffer) being selected as

the optimal dilution. Detection was performed using the Envision

System (DakoSytomation). Paraffin-embedded, triple-negative

(from three different patients) and normal tissue sections were

stained and scanned with an Aperio imaging system at 406. Since

these images have a very large format (e.g., approximately 50,000-

by-50,000 pixels), they were randomly sampled for quantitative

analysis. Each sampled sub-image is 1472-by-936 pixels, and the

amount of nuclear-localized PPARc was quantified using a

recently published method [53]. All nuclear segmentations were

manually corrected to exclude stromal cells based on their

morphology.

Supporting Information

Text S1 This file contains supplementary materials. Section 1

shows how pure thresholding fails in delineating foreground and

background. Section 2 provides a summary of Zernike polynomial

for representing morphometric traits. Section 3 summarizes

background on non-linear regression methods for identifying

molecular targets. Section 4 provides comparative analysis with

the Gene Set Enrichment Analysis (GSEA). Section 5 outlines the

details of validation protocol that includes quantitative image

analysis.

Found at: doi:10.1371/journal.pcbi.1000684.s001 (0.78 MB PDF)
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