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Reconstruction of three-dimensional scroll waves in excitable 
media from two-dimensional observations using deep neural 
networks

Jan Lebert1, Meenakshi Mittal1,2, Jan Christoph1

1Cardiovascular Research Institute, University of California, San Francisco, USA

2University of California, Berkeley, USA

Abstract

Scroll wave dynamics are thought to underlie life-threatening ventricular fibrillation. However, 

direct observations of three-dimensional electrical scroll waves remain elusive, as there is no direct 

way to measure action potential wave patterns transmurally throughout the thick ventricular heart 

muscle. Here, we study whether it is possible to reconstruct simulated scroll waves and scroll wave 

chaos using deep learning. We trained encoding-decoding convolutional neural networks to predict 

three-dimensional scroll wave dynamics inside bulk-shaped excitable media from two-dimensional 

observations of the wave dynamics on the bulk’s surface. We tested whether observations from 

one or two opposing surfaces would be sufficient and whether transparency or measurements of 

surface deformations enhances the reconstruction. Further, we evaluated the approach’s robustness 

against noise and tested the feasibility of predicting the bulk’s thickness. We distinguished 

isotropic and anisotropic, as well as opaque and transparent excitable media as models for cardiac 

tissue and the Belousov-Zhabotinsky chemical reaction, respectively. While we demonstrate that 

it is possible to reconstruct three-dimensional scroll wave dynamics, we also show that it is 

challenging to reconstruct complicated scroll wave chaos and that prediction outcomes depend 

on various factors such as transparency, anisotropy and ultimately the thickness of the medium 

compared to the size of the scroll waves. In particular, we found that anisotropy provides crucial 

information for neural networks to decode depth, which facilitates the reconstructions. In the 

future, deep neural networks could be used to visualize intramural action potential wave patterns 

from epi- or endocardial measurements.
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I. INTRODUCTION

Scroll wave dynamics occur in excitable reaction-diffusion systems, termed ‘excitable 

media’. They are conjectured to underlie life-threatening heart rhythm disorders, such 

as ventricular fibrillation. In the heart, nonlinear waves of electrical excitation propagate 

through the cardiac muscle and initiate its contractions. The electrical waves are conjectured 

to degenerate into electrical scroll wave dynamics and spatio-temporal chaos via a cascade 

of wavebreaks during the onset of ventricular fibrillation. However, while the dynamics 

of scroll waves have been studied extensively in computer simulations [1–3], the direct 

visualization of scroll waves throughout the depths of the heart muscle remains a challenge.

Spiral wave-like action potential waves can be imaged on the heart surface during 

ventricular tachycardia or fibrillation using voltage-sensitive optical mapping [4–8], and 

the surface observations are in agreement with simulated three-dimensional scroll wave 

dynamics [3]. Otherwise, only few and indirect experimental evidence of scroll waves in the 

heart exists. Voltage-sensitive transillumination imaging was used to measure projections of 

scroll waves on the surface of the isolated right ventricle of porcine and sheep hearts [9–11]. 

The right ventricles are thinner than the left and can therefore be penetrated (~ 0.5 cm) by 

near-infrared light, making them semi-transparent. Consequently, it was possible to locate 

focal wave sources inside the volume of the right ventricle using transillumination imaging 

[12, 13]. More recently, it was shown that ultrasound imaging can reveal mechanical vortices 

in the ventricles of whole isolated porcine hearts, which co-exist with electrical vortices 

on the epicardial surface, suggesting that the heart’s mechanical dynamics reflect electrical 

scroll wave dynamics [7, 14]. However, it remains difficult to extrapolate the measured 

projections or surface observations of the electrical dynamics into the depths of the 

cardiac muscle, and eventually correlate them with mechanical measurements. Fully three-

dimensional reconstructions of scroll waves were obtained in the Belousov-Zhabotinsky 

chemical reaction, which is a transparent excitable medium that exhibits similar but much 

slower wave dynamics than in the heart, using optical tomography [15–19] and magnetic 

resonance imaging [20]. In contrast, three-dimensional action potential waves have been 

directly measured in small rat and zebrafish hearts using laminar optical tomography [21] 

or light-sheet microscopy [22]. However, attempts to obtain three-dimensional visualizations 

of scroll waves inside the optically dense cardiac muscle of large mammalian hearts have 

not yet attained a similar quality, and better measurement and reconstruction techniques are 

needed.

Multiple numerical approaches for the reconstruction of scroll waves from surface 

observations have previously been proposed: Berg et al. [23] attempted to recover simulated 

scroll wave chaos from single-surface observations using a synchronization-based data-

assimilation approach. However, while the approach was successful at recovering scroll 

wave chaos from sparse measurements within the medium, see also [24], it was not 

suited to extrapolate scroll wave dynamics into the three-dimensional bulk-shaped medium 

from surface observations. Hoffman et al. [25, 26] analyzed dual-surface observations 

(comparable to measuring both the epi- and endocardium) using a different data-

assimilation approach, the local ensemble transform Kalman filter [27], and subsequently 

reconstructed simulated scroll waves successfully. The question remains if it is possible 
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to reconstruct truly complex three-dimensional scroll wave chaos from single- or dual-

surface observations. More recently, neural networks were used to predict cardiac dynamics 

from sparse or partial observations with promising results [28–30]. However, the task of 

predicting scroll wave dynamics from surface observations using neural networks has not yet 

been established.

Here, we provide a numerical proof-of-principle that deep encoding-decoding convolutional 

neural networks, under certain conditions, can be used to reconstruct three-dimensional 

scroll wave dynamics from two-dimensional observations of the dynamics, see Fig. 1. We 

show that scroll waves can be recovered fully when the size of the waves is in the order 

of the thickness of the medium, or when the waves are observed in transparent anisotropic 

excitable media as projections. In the latter case, the waves can be much smaller and 

more complicated. We tested several deep convolutional neural network architectures and 

analyzed their reconstruction performance depending on opacity, thickness and anisotropy of 

simulated excitable media.

II. METHODS

We performed simulations of three-dimensional electrical and electromechanical scroll wave 

dynamics in bulk-shaped isotropic and anisotropic (elastic) excitable media, respectively, 

and used neural networks to predict the three-dimensional wave patterns from a short 

sequence of two-dimensional observations of the dynamics on the bulk’s surface. We 

distinguished ‘laminar’ scroll wave dynamics consisting of 1–3 meandering scroll waves 

and ‘turbulent’ scroll wave chaos.

A. Scroll Wave Dynamics in Elastic Excitable Media

We simulated electrical scroll wave dynamics in bulk-shaped excitable media of size 

128 × 128 × dz voxels with varying thicknesses or depths dz ∈ 8, …, 40 . We used the 

phenomenological Aliev-Panfilov model [31] to simulate nonlinear waves of electrical 

excitation:

∂u
∂t = ∇ ⋅ (D∇u) − ku(u − a)(u − 1) − ur

(1)

∂r
∂t = ϵ(u, r)(ku(a + 1 − u) − r)

(2)

The dynamic variables u and r represent the local electrical excitation (voltage) and 

refractory state, respectively, and are dimensionless, normalized units. Together with the 

term ϵ(u, r) = ϵ0 + μ1r/ u + μ2 , the partial differential equations describe the local excitable 

kinetics and diffusive dynamics. The parameters k, a, ϵ0, μ1 and μ2, listed in Table I, influence 

the properties of the excitation waves. The partial differential equations were integrated 
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using the forward Euler method in a finite differences numerical integration scheme and 

used Neumann (zero-flux) boundary conditions. We simulated both isotropic

D = DisoI

(3)

and anisotropic excitable media with locally varying fiber direction with diffusion 

coefficients for the parallel D∥ fiber direction and perpendicular D ⊥ 1, D ⊥ 2 directions as 

described in [1]:

D =
D11 D12 0
D21 D22 0
0 0 D33

D11 = D∥ cos2(θ(z)) + D ⊥ 1 sin2(θ(z))
D22 = D∥ sin2(θ(z)) + D ⊥ 1 cos2(θ(z))
D12 = D21 = D∥ − D ⊥ 1 cos(θ(z)) sin(θ(z))
D33 = D ⊥ 2

(4)

Here, the fiber organization represents ventricular muscle tissue with muscle fibers aligned 

in sheets in the x-y plane and the sheet-fiber orientation rotating throughout the thickness 

of the bulk. D ⊥ 1 is the diffusivity perpendicular to the fiber axis in the x − y plane and 

D ⊥ 2 transmurally, for simplicity we set D⊥ = D ⊥ 1 = D ⊥ 2. We used a varying fiber angle θ(z)
ranging from 0° to 90° between the top and bottom layer of the bulk for the simulation depth 

dz = 24 voxels:

θ(z) = z ⋅ Δθ

(5)

For the other depths, dz ∈ 8, 12, 16, 20, 28, 32, 40 , we used the same Δθ as in the dz = 24 case. 

The ratio between the parallel D∥ and perpendicular D⊥ diffusion coefficients was set to 4 : 1. 

We chose D⊥ = Diso = 0.05, and adapted Δt for the Euler integration such that 500 simulation 

time steps correspond to about 0.5 – 1.0 scroll wave rotations. The simulation time steps 

required for one scroll wave rotation fluctuates and depends on the parameter values as well 

as an/-isotropy. To save disk space, we stored only every 80th simulation time step as one 

‘snapshot’, such that 5 snapshots covered about a half to one scroll wave rotation, see also 

Fig. 3.

In addition to the purely electric simulations, we also simulated electromechanical scroll 

wave dynamics in deforming excitable media, as described in [24]. In short, we coupled 

a three-dimensional mass-spring damper system with hexahedral cells and tunable fiber 

anisotropy [32] to the electric simulation. Each cell in the mechanical part of the simuation 

corresponded to one cell or voxel in the electrical part of the simulation. Active tension 

generation in each cell was modelled using an active stress variable Ta that is directly 

dependent on the excitation variable u, as described in [33]:
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∂Ta
∂t = ϵ(u) ⋅ kTu − Ta

ϵ(u) = 10 if u < 0.05
1 if u ≥ 0.05

(6)

The axis along which each cell exerts active contractile force could be pointed into an 

arbitrary direction, and, throughout the bulk, the axis alignment matched the rotating 

orthotropic fiber alignment already defined in the electrical part of the simulation. The 

mechanical parameter kT and other parameters shown in Table I influence the magnitude of 

contraction and the properties of the elasticity of the mass-spring damper system. The elastic 

medium’s boundaries were non-rigid and confined by elastic springs acting on the medium’s 

boundary, see [24] for details. In general, the electromechanical simulation produces three-

dimensional deformation patterns that are highly correlated with the electrical scroll wave 

chaos.

We simulated two different regimes of scroll wave dynamics: 1) a ‘laminar’ regime with 

1–3 meandering scroll waves with wavebreaks as shown in Figs. 4 and 5 and 2) a fully 

‘turbulent’ scroll wave chaos regime as shown in Figs. 7–9, see Table I for the respective 

parameter values. For both parameter regimes, we performed 125 isotropic and anisotropic 

simulations of electrical scroll wave chaos for different bulk depths dz ∈ 16, 24, 32, 40
voxels for the ‘laminar’ regime and dz ∈ 8, 12, 16, 20, 24, 28, 32  for the ‘turbulent’ regime. 

100 simulations were used during generation of the training dataset and 25 simulations 

were exclusively used for evaluation. Furthermore, we performed 125 simulations of 

electromechanical scroll wave chaos for a thickness of dz = 24, with the same split between 

training and evaluated dataset. The electrical and mechanical parameters were identical 

in each simulation. However, the initial conditions ut = 0(x, y, z), rt = 0(x, y, z) were randomized 

and therefore different in each simulation. We used cross-field stimulation to set ut = 0, rt = 0

such that two scroll waves are induced at random positions x1, y1 , x2, y2 . Additionally 

we added a small amount of Gaussian noise (standard deviation σ = 0.1) to the initial 

conditions ut = 0, rt = 0. With both parameter sets, the dynamics quickly diverged. We discarded 

the first 75 snapshots of each simulation (approximately 15 scroll wave rotation periods) 

and used the remaining 500 snapshots (approximately 100 scroll wave rotation periods) 

for generating the training or evaluation data, respectively. If the excitation in a simulation 

decayed (ut ≈ 0 ∀(x, y, z)), we restarted the simulation with new initial conditions ut = 0, rt = 0. 

The training dataset consists of 20,000 randomly selected samples from the 100 training 

simulations, and the evaluation dataset uses 5,000 randomly chosen samples from the 

25 evaluation simulations. Consequently, training and evaluation datasets were completely 

separate datasets. The numerical simulation was implemented in C++, the source code for 

the simulations is available in [24].
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B. Deep Learning-based Reconstruction of Scroll Wave Dynamics

We implemented and tested deep neural networks, which each analyze a short temporal 

sequence of 5 subsequent two-dimensional snapshots of electrical wave patterns ut(x, y) to 

reconstruct a single fully three-dimensional snapshot ut(x, y, z) of scroll wave dynamics:

u1(x, y), …, u5(x, y) u1(x, y, z) .

(7)

We found empirically that 5 snapshots provide sufficient information about the dynamics, 

see also [28] or [35]. We also tested reconstructing the dynamics with a series of 10 

snapshots and did not observe an improvement in performance compared to 5 snapshots. 

Consequently, we used 5 snapshots by default. Further, we found that the reconstruction 

accuracy does not depend on whether the network analyzes the current snapshots plus 4 

snapshots sampled in the past or in the future with respect to the current snapshot, or 

whether 2 are sampled in the past and 2 in the future, respectively. The two-dimensional 

snapshots, see Figs. 2, 3 and 6, are either i) the top surface layer (single-surface mode, Fig. 

2a):

ut(x, y) = ut(x, y, 1),

(8)

ii) both the top and bottom surface layer (dual-surface mode, Fig. 2b):

ut(x, y) = ut(x, y, 1), ut x, y, dz ,

(9)

iii) both the electrical wave dynamics and the mechanical displacements d = (dx, dy) which 

occur in corresponding electromechanical simulations from the top surface layer (single-

surface mode), see Fig. 2c):

ut(x, y) = ut(x, y, 1), dx(x, y, 1), dy(x, y, 1) ,

(10)

or iv) a projection of all u-values along the z-direction (depth) of the bulk (Fig. 2d):

ut(x, y) = 1
dz

∑i = 1

dz ut(x, y, i) .

(11)

For the top+bottom case (iii) and the mechanical displacement case (iv), we interleaved 

the snapshots. The neural network architectures we chose require three-dimensional input 

samples ((128,128, 5) for case (i) and (ii)), whereas in cases (iii) and (iv) the sample 

shape is (128, 128, 5, 3) and (128, 128, 5, 2) respectively. We changed their shape to be 
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three-dimensional by stacking the components: e.g. in case (iv) the resulting shape is (128, 

128, 10) using the top layers for the even indicies and bottom frames for the odd indices 

u1(x, y, 1), u1 x, y, dz , u2(x, y, 1)…u5 x, y, dz .

We evaluated four different neural network architectures with basic and more intricate 

designs for the three-dimensional bulk prediction task (Eq. 7). While we primarily use 

a U-Net [36] architecture, we validate it against a generic Encoder-Decoder architecture, 

TransUNet [37] and MIRNet [38]. The Encoder-Decoder convolutional neural network 

(CNN) is similar to the architecture we previously used in [28, 35]. It consists of an 

encoder stage where the spatial resolution is progressively decreased, a latent space, and a 

decoder stage where the spatial resolution is progressively increased back to the original 

resolution. The encoding and decoding steps consist of three steps, in each two padded 

two-dimensional convolutional layers (2D-CNN) with filter size 3×3 and rectified linear unit 

[39] (ReLU) activation are applied, followed by batch normalization [40] and maxpooling 

(encoder) or upscaling (decoder), respectively. The number of filters in 2D-CNN layers in 

order are 128, 128, 256, 256, 512, 512, 256, 256, 128 and 128. The U-Net architecture 

is identical to the Encoder-Decoder CNN architecture, except that skip connections are 

added between the encoder and decoder stages (see [36]). The TransUNet combines the 

U-Net architecture with self-attention mechanisms of Transformers [41] in its the latent 

space. The MIRNet architecture is different from the other evaluated architectures, as it 

contains parallel multi-resolution branches with information exchange, as well as spatial and 

channel attention mechanisms [38]. It aims at maintaining spatially-precise high-resolution 

representations through the entire network, while simultaneously receiving strong contextual 

information from the low-resolution representations. The number of trainable parameters for 

each network architecture and training times are listed in Table II. For all neural network 

architectures we use the generalized Charbonnier loss function [42, 43]:

l(u, u) = (u − u)2 + ϵ2,

(12)

where u is the three-dimensional ground truth, u the prediction and we choose ϵ = 0.001. The 

Charbonnier loss function behaves like L2 loss (mean squared error) when u ≈ u and like L1 

loss (mean absolute error) otherwise. We evaluated the accuracy of the predictions on the 

evaluation datasets with the root mean squared error (RMSE) on each z-axis layer:

RMSE(z) = 1
N ∑

x, y, t
(u(x, y, z, t) − u(x, y, z, t))2 .

(13)

To validate our findings, we studied if a neural network can accomplish a simpler task 

than the three-dimensional prediction: estimate the depth dz of the simulation bulk from 5 

two-dimensional observations. We tested both a depth regression and a depth classification 

neural network, which each predict the depth dz of the simulation bulk
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u1(x, y), …, u5(x, y) dz .

(14)

The depth regression network predicts the depth dz as a continuous value, while the depth 

classification network predicts the depth dz as one of {8, 12, 16, 20, 24, 28, 32}. For 

this task we used the encoder part from the Encoder-Decoder architecture, followed by a 

global average pooling layer, two dense layers with 1024 filters with batch normalization 

and ReLU activation, and ultimately an output dense layer with one filter (for regression) 

or seven filters (for classification). For the depth classification neural network we used 

a categorical cross-entropy loss function with a softmax activation function for the last 

layer, and for the depth regression network mean squared error as loss function and ReLU 

as activation function. The datasets for the depth estimation was generated from the bulk 

prediction task datasets. We used 4,000 random samples for each depth for the training 

dataset and 500 samples for the evaluation dataset (in total 28,000 training samples and 

3,000 evaluation samples).

All networks were trained for 20 epochs using the Adam [44] optimizer with a learning rate 

of 10−3 for the bulk prediction tasks and 10−5 for the depth regression and classification 

task. We used a batch size of 32 for the Encoder-Decoder and U-Net architectures and a 

batch size of 4 for TransUNet and MIRNet. All neural network models were implemented 

in Tensorflow [45] using Keras [46]. Training and reconstructions were performed on a 

NVIDIA RTX A5000 graphics processing unit (GPU).

III. RESULTS

Using deep convolutional neural networks, it is possible to reconstruct three-dimensional 

scroll wave dynamics inside an excitable medium when the medium’s thickness is not 

much thicker than the scroll wave, see Fig. 4 and section III A. Reconstructions become 

increasingly difficult in thicker excitable media or with smaller scroll waves and more 

complicated dynamics, see Figs. 5, 9a) and sections IIIA–IIIC. However, complicated scroll 

wave chaos can be reconstructed in transparent anisotropic excitable media, see Figs. 8d), 

9b), 10c,f), or with dual-surface observations in thinner opaque excitable media, see Figs. 

5c) and 8b) and section IIIB.

A. Medium Thickness vs. Scroll Wave Size

The size of the scroll waves with respect to the thick ness of the medium determine 

how well scroll wave dynamics can be reconstructed in opaque media. We simulated 

‘laminar’ scroll waves, see Figs. 4 and 5, and ‘turbulent’ scroll wave chaos, see Figs. 7, 

8c) and 9a), in opaque bulks with varying thicknesses. While the reconstructions from 

single surface observations are very accurate for the ‘laminar’ scroll wave dynamics in 

the thinner bulk (with thickness dz = 24) shown in Figs. 4a,b) and in Supplemental Video 

1 [34], reconstructions become more and more inaccurate with increasing thickness and 

prediction depth. The reconstructions of the ‘laminar’ scroll wave dynamics in the thicker 

bulk (with thickness dz = 40), shown in Fig. 5a,b) and in Supplemental Video 2 [34], exhibit 
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artifacts towards the bottom half of the bulk. Accordingly, the vortex filaments computed 

from the predicted scroll wave dynamics (red) deviate substantially from the gound-truth 

vortex filaments (gray) in the lower half of the bulk, see Fig. 5d). With increasing bulk 

thickness, the three-dimensional character and complexity of the wave dynamics increases, 

which is reflected by the dissociation of the top and bottom layers, see Figs. 6 and 

7, and by the intramural alignment of the vortex filaments in Fig. 5d). The degree of 

dissociation and the average scroll wave size relative to the medium’s thickness determine 

the prediction accuracy at deeper layers. In opaque excitable media, the reconstructions 

become increasingly difficult the deeper one aims to predict, and they do not appear to 

succeed deeper than one scroll wavelength, see Figs. 5b), left panel in 8b,c) and 9a).

Correspondingly, the plots in Fig. 10a,d) show how the prediction error increases 

with increasing depths z (with bulks depths dz = 8, 12, …, 40) in opaque excitable media 

with ‘laminar’ and ‘turbulent’ scroll wave dynamics, respectively. The error increases 

approximately linearly and faster with thicker bulks and with ‘turbulent’ than with ‘laminar’ 

scroll wave dynamics. The average single-surface reconstruction error for the ‘laminar’ 

scroll wave in the thin opaque bulk (dz = 16) shown in Fig. 4b) is better than 95% (note that 

a root mean squared error of 0.1 (RMSE) corresponds to about 0.05 mean absolute error 

(MAE)), whereas in thicker bulks or with ‘turbulent’ dynamics the prediction accuracy can 

become much worse. We compared the error profiles obtained with the deep learning-based 

reconstruction with a naive reconstruction in which the top layer is simply repeated in each 

following layer in Fig. S2 [34]. The naive reconstruction produces significantly steeper error 

curves with both ‘laminar and ‘turbulent’ scroll wave dynamics. Overall, the reconstruction 

error fluctuates moderately over time, remains small at smaller depths, and increases as the 

reconstruction error increases with larger depths, see Fig. 12. Supplemental Videos 1–4 [34] 

give an impression of the temporal stability of the reconstructions.

B. Single-Surface vs. Dual-Surface Observations

Low prediction depths in opaque excitable media can be compensated to a certain extent 

by analyzing both the top and bottom surface layers in dual-surface mode rather than 

single-surface mode, respectively. Figs. 5c) and 8b) demonstrate how the reconstruction 

improves in a thick bulk with the ‘laminar’ scroll wave and in a thin bulk with ‘turbulent’ 

scroll wave chaos, respect tively. The vortex filaments (red) in the thick bulk in Fig. 5c) 

match the gound-truth vortex filaments (gray) much better in dual- than in single-surface 

mode. The plots in Fig. 10b,e) and 11 show how the profile of the reconstruction error 

changes in dual-surface mode. Surprisingly, the network does not appear to benefit from the 

additional information in dual-surface mode with scroll wave chaos: the steep linear increase 

in the error persists and the error at midwall is comparable to the error in single-surface 

mode, see Fig. 10e). Nevertheless, with larger scroll waves or thinner bulks the error slightly 

decreases at midwall, see Figs. 5c), 10b) and 11b).

C. Opaque vs. Transparent Excitable Media

Figs. 8 and 9 show comparisons of reconstructions obtained in opaque and transparent 

excitable media, respectively. The reconstructions succeed in transparent excitable media 

of any thickness (that we tested) under the condition that they are anisotropic, but are 
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difficult to obtain in thicker opaque excitable media. Fig. 8 shows cross-sections along the 

depth of the bulk (z-direction) whereas Fig. 9 shows layers parallel to the surface in the 

x − y plane. Correspondingly, panels c,f) in Fig. 10 show that the reconstruction error stays 

small along the bulk’s transmural axis in transparent anisotropic excitable media (see also 

additional plots in Fig. S1 with isotropy). In anisotropic transparent excitable media, the 

prediction error remains small (< 0.1 RMSE) with both the ‘laminar’ and ‘turbulent’ scroll 

wave dynamics and with various bulk thicknesses (dz = 8 − 32). However, the reconstruction 

completely fails in isotropic transparent excitable media, see right panel in Fig. 8d) and also 

Fig. S1 [34].

D. Anisotropy

While ventricular muscle tissue is highly anisotropic (orthotropic muscle fiber organization), 

the Belousov-Zhabotinsky chemical reaction is isotropic. Both systems exhibit scroll waves, 

but the scroll wave morphology can be very different in anisotropic versus isotropic 

excitable media. In anisotropic media, scroll waves are elongated in fiber direction as 

they propagate faster along the fiber direction. This phenomenon can often be observed 

in optical mapping recordings. In the simulated anisotropic bulk, the waves are elongated 

differently at different depths, which is presumably why the reconstructions succeed in 

transparent excitable media as shown in Fig. 10c,f). By contrast, in isotropic excitable media 

the scroll waves are similarly shaped throughout the bulk, and therefore the network cannot 

distinguish scroll waves closer to the surface from scroll waves deeper in the bulk, see 

also discussion and Fig. S1 [34]. Anisotropy does not affect the reconstructions in opaque 

excitable media, as the reconstruction does not rely on depth information.

E. Analyzing Surface Deformation

If the network analyzes the mechanical deformation of the surface in addition to the 

excitable wave patterns visible on the same surface, the reconstruction improves slightly, see 

plot ‘Top + Motion’ in Fig. 11a). We tested this behavior with ‘turbulent’ scroll wave chaos, 

the U-Net architecture and the single-surface configuration shown in Fig. 2c), and found 

that the reconstruction improves slightly, but not substantially. This is a surprising finding, 

because deformation on the surface may also result from contractile activity further within 

the bulk. The reconstruction error does not rise as steeply with increasing depth as when 

analyzing electrics in single-surface mode alone. The reconstruction accuracy improves by 

roughly 25% at midwall (with a bulk thickness of dz = 24 layers). We found that there was 

no significant difference between analyzing only two-dimensional in-plane displacements 

u = ux, uy  with x- and y- components versus three-dimensional displacements with also a 

z-component, see also eq. (10) in section IIB. We cannot exclude that the latter finding is 

specific to our methodology and the mechanical boundary conditions that we used in the 

simulations.

F. Noise

Reconstructions can be performed with noise, see Fig. 13 and Supplemental Video 5 [34], 

if the network was previously trained with noise, similarly as described in [28] and [35]. 

The noise can be present in either the surface observations or projections. Fig. 13a,b) shows 
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reconstructions of scroll wave dynamics with noise in opaque and transparent anisotropic 

excitable media (thickness: dz = 24 layers), respectively. In single-surface mode with the 

opaque media, the slope of the reconstruction error is slightly steeper with noise than 

without. In transparent media, the error profile remains flat and stays below 0.1 (RMSE) 

with noise. We tested this behavior with Gaussian noise and noise levels of up to σ = 0.2, 

shown in Fig. 13 (top right in each panel).

G. Network Types

We tested several deep neural network architectures (basic Encoder-Decoder, U-Net, 

TransUNet and MIRNet, see also section IIB) on the ‘turbulent’ scroll wave chaos prediction 

task and found that the prediction behavior is very similar across the different architectures, 

see Fig. 14. We observed that the MIRNet architecture produces the lowest reconstruction 

error, while Encoder-Decoder, U-Net, and TransUNet all have similar but slightly higher 

reconstruction errors. In opaque excitable media, the prediction error (RMSE: mean root 

squared error) rises linearly and steeply with increasing depth equally with all networks, 

see Fig. 14a) with single-surface predictions in anisotropic bulk. All networks produce the 

same characteristic error profile and the error saturates at depths z > 15 equally with all 

networks, while MIRNet provides a slightly lower maximal error than the other networks. 

In transparent excitable media with anisotropy, see Fig. 14b), all networks achieve high 

prediction accuracies better than 95% (note that a RMSE of 0.1 corresponds to a mean 

absolute error (MAE) of about 5%), while MIRNet provides the highest prediction accuracy 

(97% – 98%).

We primarily used U-Net in this study because TransUNet and MIRNet provided either no 

or incremental improvements in prediction accuracy, while requiring significantly longer 

to train. U-Net required about an hour to train, while being competitive with the accuracy 

of MIRNet, which required almost a full day to train. All results in Figs. 4–13 were 

obtained with the U-Net architecture, if not stated otherwise. We tested several U-Net sizes: 

a small model with 0.5M parameters, a medium network with 2M parameters and a large 

model with 8M parameters, determined that larger models perform significantly better, and 

subsequently used the largest model. In some circumstances U-Net and TransUNet exhibited 

a significantly better reconstruction performance than the Encoder-Decoder network, but we 

did not observe significant differences between U-Net and TransUNet.

H. Depth Estimation

It is possible to estimate the thickness or depth dz of transparent bulks from projections of 

the corresponding scroll wave dynamics using either a regression or classification neural 

network. By contrast, it is not possible to reliably predict the thickness of opaque bulks 

using either approach. Fig. 15a) shows predictions obtained with a regression neural network 

in transparent media, which estimates the depth accurately with floating point precision 

(with a certain degree of uncertainty). Fig. 15c) shows a confusion matrix with depth 

predictions obtained with a classification neural network also in transparent media, which 

performs better than the regression. Out of ~ 500 predictions per thickness, only few 

attempts falsely classify the thickness (off-diagonal values). For both panels a) and c), 

predictions were made from two-dimensional observations as shown in Figs. 6c) and 15e). 
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In particular, Fig. 15e) shows how the contrast of the waves decreases with increasing bulk 

thickness as more and more waves are superimposed and the signal is averaged along the 

z-axis. The neural network presumably associates the bulk’s thickness with the contrast.

Both the regression and classification neural networks are not able to predict the depth of 

opaque media correctly, see Figs. 15b,d). The classification neural network predicts random 

thicknesses and fails completely at correctly classifying the bulk’s actual thickness. For both 

panels b) and d), predictions were made from two-dimensional observations as shown in 

Fig. 6a) or b). The data demonstrates that predicting the extend of scroll wave chaos is 

challenging with opacity, at least with our methodology. While scroll wave dynamics can 

vary qualitatively with different bulk thicknesses, in particular with thinner bulks, as shown 

in Figs. 6–8, there is a critical thickness beyond which the dynamics are dominated by the 

intrinsic excitable kinetics and are less influenced by the bulk’s geometry and its boundaries, 

thus making depth predictions from surface observation challenging.

IV. DISCUSSION

We demonstrated that deep neural networks can be used to reconstruct three-dimensional 

scroll wave dynamics from two-dimensional observations of the dynamics on the surface 

of excitable media. Reconstructions succeed throughout opaque excitable media when the 

scroll wave size is not much smaller than the medium’s thickness. Large scroll waves can 

be reconstructed even if they take on complex shapes and produce significant dissociation 

between the two opposing surfaces of the medium. However, multiple layers of scroll waves 

are challenging to reconstruct in opaque media, even when the dynamics are analyzed 

in dual-surface mode. Reconstructions can be performed particularly well in transparent 

anisotropic excitable media, in which it is possible to reconstruct also complicated scroll 

wave chaos far into the medium.

That encoding-decoding convolutional neural networks can reconstruct three-dimensional 

dynamics from two-dimensional observations is facilitated by their training on tens of 

thousands of similar examples. Further generalization can be achieved by diversifying 

the training dataset, e.g. by adding simulations with a broad range of parameters 

to the training data or by performing data augmentation, see also Fig. 14 in [28]. 

The amount of information that encoding-decoding convolutional neural networks can 

extract from the short sequence of snapshots to perform the 2D-to-3D prediction task 

is remarkable. However, it is also revealing that the dual-surface reconstruction does 

not provide any benefit or synergistic effects over the single-surface reconstruction. 

It is as if the network performs two separate reconstructions from either side. This 

highlights fundamental limitations of convolutional encoding-decoding neural networks in 

this particular application.

One interesting detail we found in transparent excitable media is that the reconstruction 

outcomes are very good with anisotropy, but poor with isotropy. Scroll wave chaos cannot 

be reconstructed at all in isotropic transparent excitable media, and reconstructions of 

simpler scroll wave dynamics exhibit artifacts. These findings show that anisotropy is crucial 

because it implicitly encodes depth. The neural network learns to associate the alignment 
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of the waves with the underlying fiber alignment which varies with depth. Moreover, it is 

able to decode this encoding even when multiple waves are superimposed in the projections, 

see Figs. 6c), 9b) and 15e) and Supplemental Video 3 [34]. Accordingly, the reconstructions 

exhibit artifacts or fail entirely in isotropic transparent excitable media as the network 

lacks depth information. Presumably, it would equally fail in anisotropic excitable media 

with uniform linearly transverse anisotropy. Unfortunately, this means that this feature 

cannot be exploited and is neither directly applicable to ventricular fibrillation, because the 

ventricular muscle is opaque, nor to the Belousov-Zhabotinsky reaction, which is transparent 

but isotropic.

Nevertheless, our methodology could still be used to reconstruct intramural action potential 

waves including scroll waves inside cardiac tissue: 1) Transillumination imaging [9–13], 

near-infrared optical mapping [47], or other optical techniques [21, 22], which allow 

imaging of action potential waves deeper inside cardiac tissue, could be used in the 

transilluminated right ventricle, in the atria or in small animal hearts such as mouse or 

zebrafish hearts. The muscle fiber architecture in the projections of the transilluminated 

translucent tissues could enable the depth encoding. 2) Dual-surface imaging with 

superficial electrode mapping or fluorescent dyes lacking the penetration depth (such as 

Di-4-ANEPPS) could be used to reconstruct ‘laminar’ episodes of ventricular tachycardia or 

fibrillation or atrial fibrillation. The wavelengths of single scroll waves or macro-reentries 

during ventricular arrhythmias are larger than the thickness of the right and left ventricular 

walls. The atria, which exhibit epi- and endocardial dissociation during atrial fibrillation 

[48–52], are presumably thin enough for dual-surface reconstructions to succeed. However, 

the training data would have to account for the complex anatomy of the atria [53] as well 

as the particular wave dynamics. Whether it will be possible to create ground-truth data 

or to train a neural network on simulated data and subsequently apply it to experimental 

data needs to be determined in future research. We found in previous work that the 

latter approach is in principle feasible, see Figs. 7 and 8 in [28]. Lastly, the deep learning-

based reconstructions can be performed very efficiently within milliseconds on a graphics 

processing unit, and they do not require the collection of long time-series data.

We have recently used similar encoding-decoding convolutional neural networks for the 

prediction of electrical scroll wave chaos from three-dimensional mechanical deformation 

[35], as well as for the prediction of phase maps and phase singularities from two-

dimensional electrical spiral wave dynamics [28]. While the networks performed very well 

in these applications, some of the results presented in this study, particularly the results 

for scroll wave chaos, are more sobering. Our study is another example of the more 

general notion that cardiac dynamics, and chaotic dynamics more generally, are challenging 

to predict [29, 54–58]. It is well known that classical deep learning approaches excel 

at interpolating, but do not perform well at extrapolating, which is what we aimed to 

do in this study. Therefore, the complete reconstruction of complicated fine-scaled scroll 

wave dynamics from surface observations in opaque excitable media will require more 

sophisticated techniques than encoding-decoding convolutional neural networks.
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V. CONCLUSIONS

We demonstrated that it is possible to reconstruct three-dimensional scroll wave dynamics 

from two-dimensional observations using deep encoding-decoding convolutional neural 

networks. Reconstructions succeed under two conditions: either i) the medium is transparent 

and anisotropic with spatially varying anisotropy or ii) the medium is opaque and the 

dynamics are observed on two opposing surfaces while the scroll wavelength is not 

much shorter than the medium’s thickness. In the future, our methodology could be used 

to reconstruct transmural action potential wave dynamics from epicardial or endocardial 

measurements.
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FIG. 1. 
Deep learning-based reconstruction of scroll wave chaos inside a three-dimensional volume 

from partial observations of the dynamics on its surface. Scroll wave chaos is a model for 

the electrophysiological dynamics underlying ventricular fibrillation. Computer simulations 

were performed in isotropic and anisotropic bulk-shaped excitable media. A neural network 

(NN) predicts scroll wave dynamics underneath the bulk’s surface from a short temporal 

sequence t1, …, t5  of two-dimensional observations (here shown for top layer).
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FIG. 2. 
Surface observations and projections of three-dimensional scroll wave chaos (‘turbulent’ 

parameter regime) in a bulk medium. a) Observation of the top surface of the bulk (layer 

1) in single-surface mode. b) Observation of the top and bottom surfaces of the bulk (layers 

1 and 24) in dual-surface mode. c) Observation of the electrical activity and mechanical 

motion on the top surface of the bulk (layer 1) in single-surface mode (red: motion vectors). 

In a-c), the medium is opaque and does not allow observations of the dynamics inside the 

medium below the top layer. d) Observation of the projection (transillumination) of the 

three-dimensional dynamics along the depth of the bulk. The projection is calculated by 

summing the values in all 24 layers along the z-axis for a specific (x, y)-coordinate and 

dividing the sum by the number of layers. All layers 1 – 24 are cross-sections in the x − y
plane.

Lebert et al. Page 19

Phys Rev E. Author manuscript; available in PMC 2024 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
Observations of three-dimensional scroll wave (‘laminar’ parameter set) on the top and 

bottom surfaces of an opaque medium, and in the projection of the full dynamics in a 

transparent medium in the bulk’s z-direction (depth). In each case, the neural network 

analyzes a short sequence of 5 snapshots, which are sampled at discrete times (red) over 

the period of the scroll wave from the simulation data, see section II B for details. In the 

simulations, one rotational period corresponds to about 500 simulation time steps.

Lebert et al. Page 20

Phys Rev E. Author manuscript; available in PMC 2024 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Predictions of three-dimensional ‘laminar’ scroll wave dynamics from two-dimensional 

observations using deep convolutional encoding-decoding neural network (U-Net) in an 

anisotropic excitable medium ( 128 × 128 × 24 voxels). a) Ground-truth scroll wave dynamics 

(5 random representative snapshots). The simulations exhibit scroll waves with meandering 

and curved vortex cores, see also Fig. 5d), wavebreak, and dissociation between the top 

and bottom surface dynamics, see Fig. 6. b) Predictions from two-dimensional wave pattern 

visible only on the top surface of the bulk when the medium is completely opaque. The 

reconstruction accuracy decreases slightly with increasing depth (wave pattern becomes 

fuzzy towards the bottom). c) Predictions from two-dimensional projection of the whole 

three-dimensional dynamics along the z-axis in a transparent medium. The prediction 

accuracy is slightly better than in b), particularly towards the bottom layers of the bulk. 

Overall, the predictions and the ground-truth are visually difficult to distinguish from each 

other. The data was not seen by the network during training. See Supplemental Videos 1–4 

for corresponding scroll wave dynamics [34].
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FIG. 5. 
Predictions of three-dimensional scroll wave dynamics (‘laminar’ parameter set) and their 

vortex filaments from either single- or dual-surface observations in a thick, opaque, 

anisotropic excitable medium ( 128 × 128 × 40 voxels), see also corresponding Supplemental 

Video 2 [34]. a) Ground-truth scroll wave dynamics. b) Prediction from the top surface only. 

c) Prediction from both the top and bottom surfaces. In dual-surface mode, the network is 

able to recover the dynamics sufficiently well. Arrow indicates direction of cross-sectional 

view. d) Ground-truth vortex filaments (gray) and vortex filaments calculated from predicted 

scroll wave dynamics (red). In single-surface mode, predictions become unreliable (wave 

pattern becomes fuzzy / vortex filaments do not match) towards the bottom of the bulk. 

Reconstructions performed with U-Net.
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FIG. 6. 
Different electrical wave patterns as seen in the a) top layer, b) bottom layer and c) 

projection of all layers of a three-dimensional bulk. Bulk sizes are 128 × 128 × 24 voxels 

(left and right) and 128 × 128 × 40 voxels (center), respectively. With increasing bulk 

thickness or smaller scroll waves, the top and bottom layers are dissociated because the 

dynamics become increasingly three-dimensional. The projection is calculated for a given 

(x, y)-coordinate by averaging the u-values (u ∈ [0, 1]) along the depth (z-direction) of the 

bulk. Data from left to right shown in Figs. 4, 5 and 9, respectively. The left and center 

snapshots are from the ‘laminar’ parameter regime, while the ones on the right are from the 

‘turbulent’ chaotic parameter regime.
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FIG. 7. 
Bulk thickness and transmurality of scroll wave dynamics. ‘Turbulent’ scroll wave chaos 

with different bulk thicknesses dz = 8, 12, 16, 20, 24 , also shown in corresponding cross-

sections. The dynamics are quasi two-dimensional with dz = 8. Dissociation between top 

and bottom layers starts to emerge at dz = 12 as the dynamics become increasingly three-

dimensional. At dz > 12 the dynamics are fully three-dimensional.
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FIG. 8. 
Predictions of (‘turbulent’) electrical scroll waves in subsurface layers of anisotropic (left) 

and isotropic (right) bulk tissue with dimension 128 × 128 × 24 voxels. a) Ground-truth scroll 

wave dynamics (representative snapshots) b) Prediction in dual-surface mode analyzing 

the top and bottom layers of an opaque bulk tissue. c) Prediction in single-surface mode 

analyzing the top surface layer of an opaque bulk. d) Prediction analyzing the z-projection 

of the dynamics along its depth (or z-axis) in a transparent bulk. The depth-profile of the 

prediction error (RMSE: root mean squared error) along the z-axis is shown to the right of 

each prediction. The reconstruction is successful in anisotropic transparent media, but fails 

in isotropic transparent media, as shown in d). In opaque media, the reconstruction performs 

sufficiently well in dual-surface mode with larger errors emerging at midwall of the bulk, 

as shown in b). In transparent isotropic media, the subsurface prediction fails because the 

network is unable to infer the depth of the layers. Cross-sections intersect the bulk at its 

center. All reconstruction with U-Net.
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FIG. 9. 
Predictions of electrical scroll waves within subsurface layers of a bulk-shaped ‘turbulent’ 

anisotropic excitable medium from observing either a) the top layer of the bulk or b) the 

projection of the three-dimensional wave pattern in a transparent bulk along its depth (or z-

axis). The bulk’s dimensions are 128 × 128 × 24 voxels and predictions were performed with 

the U-Net architecture. Predictions are shown for the 24 layers along the z-axis of the bulk, 

where the first layer is the top layer and the 24th layer is the bottom layer. First column: The 

five two-dimensional frames t1, …, t5  which are the input for the neural network prediction. 

Second column: Ground truth (GT) electrical excitation wave pattern within cross-sectional 

layers (1–24), of which layers 2–24 cannot be observed. Third column: Prediction of 

the current cross-sectional layer (1–24) by the neural network. Fourth column: Absolute 

difference per voxel between prediction and ground-truth.
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FIG. 10. 
Average reconstruction error over bulk depth (RMSE: root mean squared error along z-axis) 

in a,b,d,e) opaque or c,f) transparent excitable media with anisotropy (with varying bulk 

depths of dz ∈ 8, 12, …, 40 ). All reconstructions were performed with U-Net. a-c) ‘Laminar’ 

scroll wave dynamics as shown in Figs. 4 and 5: a) Single-surface mode, see also Figs. 

4b) and 5b). b) Dual-surface mode. c) Projection, see also Figs. 4c) and 5c). ‘Turbulent’ 

scroll wave chaos as shown in Fig. 7: d) Single-surface mode, see also Figs. 8c) and 9a). 

e) Dual-surface mode, see also Figs. 2b) and 8b). f) Projection, see also Figs. 8d) and 

9b). An error of 0.1 (RMSE) corresponds to a mean absolute error (MAE) of about 5%. 

In opaque excitable media, the reconstruction error increases approximately linearly with 

depth. In transparent media with anisotropy the error remains flat and below 0.1. We trained 

separate U-Net neural networks for each combination. See also Fig. S1 for a comparison 

with isotropic excitable media and Fig. S2 for a comparison of the deep learning-based 

reconstruction with a naive reconstruction in which the top layer is simply repeated in each 

following layer.
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FIG. 11. 
Comparison of reconstruction errors obtained with different imaging configurations in 

opaque anisotropic excitable medium (with thickness dz = 24 layers) with a) ‘turbulent’ 

scroll wave chaos and b) ‘laminar’ scroll wave dynamics. In the different configurations, the 

network (U-Net) analyzes i) in single-surface mode the electrics on the top layer (blue), ii) 

in single-surface mode the electrics and motion on the top layer (green), iii) in dual-surface 

mode the electrics on both top and bottom layers (orange), and iv) the z-projection of the 

three-dimensional electrics (red). All reconstruction errors were calculated per depth as root 

mean squared error (RMSE).
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FIG. 12. 
Average reconstruction error per layer (depth) over time in an anisotropic excitable medium 

with thickness dz = 24 shown for 5 different depths. Left: In opaque media and single-surface 

mode, the prediction error increases and fluctuates more with increasing depth. Right: In 

transparent media, the prediction error stays small throughout the different depths. Both 

plots derived for the ‘laminar’ scroll wave dynamics as shown in Fig. 4.
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FIG. 13. 
Noise does not pose a limitation for the deep learning-based reconstructions (performed 

with U-Net on ‘laminar’ scroll wave dynamics). Reconstructions succeed in the presence 

of various noise levels (σ = 0.05, …, 0.2) in both a) opaque and b) transparent anisotropic 

excitable media. Top: Gaussian noise with standard deviation σ was added onto the input 

images. Bottom: Reconstruction error profiles rise slightly with higher noise (light pink 

curve: σ = 0.0, black curve: σ = 0.2).
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FIG. 14. 
Reconstruction errors obtained with different neural network architectures for ‘turbulent’ 

scroll wave chaos in a bulk with thickness of dz = 24. a) Steep increase of reconstruction 

error with all networks (Encoder-Decoder, U-Net, TransUNet, MIRNet) in opaque excitable 

media from a single surface (top). b) Low and relatively flat reconstruction errors (below 

10%) with all networks in transparent anisotropic excitable media (projection). MIRNet 

performs slightly better than the other networks. All reconstruction errors stated as root 

mean squared error (RMSE).
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FIG. 15. 
Prediction of bulk thickness from surface observations of scroll wave chaos in a,c) 

transparent bulk medium with projection observations and b,d) opaque bulk medium with 

top surface observations. The bulk thickness was predicted using either a,b) a regression 

(black line shows ideal prediction dprediction = dtrue) or c,d) a classification neural network, 

respectively (all in anisotropic media). In transparent media, the thickness can be predicted 

from observations as shown in Fig. 6c), whereas in opaque media neither the regression 

nor classification neural networks predict the thickness correctly. e) Exemplary projection 
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images for bulk thicknesses or depths dz = 8, dz = 16, and dz = 32. Due to the averaging, the 

contrast of the waves decreases with increasing depths.
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Lebert et al. Page 34

TABLE I.

Electrical (top) and mechanical (bottom) parameters used to simulate two different regimes of scroll wave 

dynamics: a ‘laminar’ regime, see Figs. 4, 5, and a fully ‘turbulent’ scroll wave chaos regime, see Figs. 

6(right), 7 and 9. Electromechanical simulations were only performed with the ‘turbulent’ parameter set.

Parameter ‘Laminar’ Set ‘Turbulent’ Set

k 8 8

a 0.05 0.05

ϵ0 0.002 0.002

μ1 0.8 0.2

μ2 0.3 0.3

kT — 3

kij — 5

kj — 0.5

kf — 4

cf — 10
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Lebert et al. Page 35

TABLE II.

Different neural network architectures used in this study and their respective number of trainable parameters 

and training times for 20 epochs. Training was performed on a single NVIDIA RTX A5000 GPU.

Model Parameters Training Time

Encoder-Decoder 6,829,309 44 min

U-Net 8,278,168 55 min

TransUNet 406,899,608 19 hours

MIRNet 145,358,026 17 hours

dz Regression 426,593 5 min

dz Classification 432,743 5 min
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