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ABSTRACT OF THE THESIS

Multi-Dimensional Disentangled Representation

Learning for Emotion Embedding Generation

by

Evan Alexander Czyzycki

Master of Science in Computer Science

University of California, Los Angeles, 2022

Professor Majid Sarrafzadeh, Chair

In the natural language processing (NLP) research community, disentangled representation

learning has become commonplace in text style transfer and sentiment analysis. Previous studies

have demonstrated the utility of extracting style from text corpora in order to augment context-

dependent downstream tasks such as text generation. Within sentiment analysis specifically, disen-

tangled representation learning has been shown to produce latent representations that can be used

to improve downstream classification tasks. In this study, we build upon this existing framework

by (1) investigating disentangled representation learning in the multidimensional task of emotion

detection, (2) testing the robustness of this methodology over varying datasets, and (3) exploring

the interpretability of the produced latent representations. We discover that closely following ex-

isting disentangled representation learning methods for sentiment analysis in a multi-class setting,

performance decreases significantly, and we are unable to effectively distinguish content and style

in our learned latent representations. Further work is necessary to determine the effectiveness of

style disentanglement for text in multi-class settings using adversarial training.
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1 Introduction

Latent representation learning is a machine learning technique where opaque random variables

can be inferred from empirical data. This has been shown to be useful across many domains,

particularly in those where there is significant interest in quantifying variables that are difficult,

expensive, or simply impossible to measure. Traditional methods within latent representation

learning include linear methods such as Principal Component Analysis (PCA), nonlinear methods

such as Gaussian Mixture Modelling [14]. With the increasing prevalence of deep learning and

the increasing accessibility of associated computational resources, many recent studies have found

success through training neural networks on a separate task and using a subset of the resultant

layers to produce latent representations. For instance, Li et al. investigated emotion recognition

through latent modelling of multi-channel EEG signals in this manner [8].

In the domain of natural language processing (NLP), latent representations are frequently used

via embeddings of text corpora. Generally, text embeddings aim to capture the linguistic properties

of input samples (usually words) as well as the relationships between them in a low-dimensional

vector space. Word2Vec [10] and GloVe [11] are common sets of word embeddings and are used

in various NLP tasks. Because these embeddings are generated without additional domain-specific

context, analysis atop these embeddings struggle to perform in context sensitive tasks such as

emotion detection [12]. Domain-specific embeddings generated using disentangled representation

learning are useful for such tasks since prior knowledge can be encoded within the embeddings

during training [15]. Latent representation learning has proven useful to this end via adversarial

disentangling of content and style embeddings for sentiment analysis [6]. However, sentiment anal-

ysis is traditionally framed as a classification problem along a single axis spanning negative and

positive sentiment. This does not easily extend to NLP classification tasks with many classes such

as emotion detection [16].
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In this study, we extend previous work in disentangled representation learning for sentiment

analysis by considering a multi-dimensional framework of emotion. Through disentanglement of

non-parallel text using variational autoencoders and adversarial loss functions, our model learns

distilled representations of multi-dimensional emotion, rather than one-dimensional sentiment. This

is done by distilling both style and content vector embeddings from the autoencoder output for use

in downstream tasks.

2 Related Work

2.1 Disentangled Representation Learning

Existing disentangled representation learning methods show promising results in intuitive domain

separation. This originates in computer vision with studies using adversarial encodings which frame

the task as an optimal transport problem between the latent and observed data distribution[13, 3].

In the context of NLP, disentangled representations are learned over a discrete space rather than a

continuous space. Previous work has shown that disentangled representations can be successfully

produced in a discrete autoencoder setting using task-specific adversarial regularization [6] that

is later leveraged to improve the ability to control text generation in variational autoencoders

[5]. Adversarial frameworks are common in domain separation for text style transfer since they

encourage the retention of relevant prior knowledge (e.g. sentiment, emotion).

2.2 Adversarial Training Frameworks for Representation Learning

Disentangled representation learning in text is often performed using simple feedforward neural

network architectures or more sophisticated variational autoencoder architectures. These models

are often trained using a framework which incorporates a multi-task adversarial learning objective in

order to separate style from content [4, 2]. In previous studies, this adversarial framework not only
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successfully separates content and style domains for style transfer, but also in doing so constructs

the inductive bias necessary for truly meaningful disentanglement [9]. These frameworks have been

used previously for sentiment transfer in text by linearly interpolating a style vector produced by

adversarial training over a multitask objective [17].

2.3 Textual Style Transfer

Seen originally in Fu et al.[4], a cumulative multi-task adversarial infrastructure for style transfer

is able to achieve state-of-the-art results in textual style transfer. This is later extended [7, 13] in

the domain of sentiment transfer and generation of styled text corpora. Multi-dimensional emotion

latent representation has been explored [16] in the form of a static, non-generative disentanglement

method using a simple projection of word embeddings onto an emotion subspace. However, discrete

multi-dimensional style transfer using variational autoencoders is relatively new and undergoing

active study. In this paper, we build upon an existing adversarial sentiment analysis framework to

encode latent representations of distinct emotions.

2.4 Emotion Unify Dataset

Emotion Unify Dataset is our chosen dataset for multi-dimensional emotion detection [1]. This is

an aggregate dataset over the following existing datasets:

• AffectiveText

• Blogs

• CrowdFlower

• DailyDialogs

• Electoral-Tweets

• EmoBank

• EmoInt

• Emotion-Stimulus

• fb-valence-arousal

• Grounded-Emptions
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• ISEAR

• SSEC

• Tales

• TEC

These datasets are aggregated over the following common label set of emotions:

• joy

• anger

• sadness

• disgust

• fear

• trust

• surprise

• love

• confusion

• anticipation

• noemo (no emotion)

3 Methods

In our analysis, we use a sequence-to-sequence variational autoencoder (VAE) to learn latent em-

beddings of text data with multi-class labels. This VAE uses a gated recurrent unit (GRU) recurrent

neural network (RNNs) as both an encoder and a decoder. The encoder in our architecture is a

bidirectional GRU RNN with a hidden dimensionality of 100, 8 hidden recurrent layers, and an

output size of 136 (style vector of dimensionality 8, and a content vector of dimensionality 128; this

mirrors the implementation found in John et al[7]). The decoder is a unidirectional GRU RNN

with an input size of 136, a hidden dimensionality of 100, and 6 hidden recurrent layers.

The data used in our experiments contained text data associated with emotion labels from the

Unify Emotion Dataset [1]. Our analysis was run on a subset of this dataset which is limited to

only three class labels. Our text data was preprocessed using a tokenizer built into SpaCy4. Tokens

4https://spacy.io/
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contained in the standard NLTK5 stopword list and all instances of punctuation were filtered out.

Then, tokens are transformed into word embeddings using the pre-trained distributed GloVe model

trained on 6 billion tweets. The word embeddings are vectors of length 100.

In order to ensure both separation of the style and content vectors and the embedding of our

prior labeling, we use a multitask loss function with several terms. Our loss function is a linear

combination of the following terms (where coefficients are hyperparameters):

1. Kullback-Leibler (KL) divergence of the style embedding

2. KL divergence of the content embedding

3. Cross-entropy loss of a logistic regression classifier predicting the multi-class label using the

style embedding

4. Adversarial cross-entropy loss of a logistic regression classifier predicting the word distribution

of the corpus using the style embedding

5. Cross-entropy loss of a logistic regression classifier predicting the word distribution of the

corpus using the content embedding

6. Adversarial cross-entropy loss of a logistic regression classifier predicting the multi-class label

using the content embedding

The full loss formula is:

loss = a(1) + b(2) + c(3)− d(4) + e(5)− f(6) (1)

where a, b, c, d, e, and f are hyperparameters.

5https://www.nltk.org/
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We maximize terms (1) and (2) to most closely approximate the prior distribution with our

generative model John et al [7]. We maximize terms (3) and (5) in order to ensure that style

information is contained in the style embedding and content information is contained in the content

vector respectively. We minimize terms (4) and (6) in order to ensure that style information is not

contained in the content vector and that content information is not contained in the style vector.

By optimizing this multi-task loss function, we generate style and content embeddings that encode

style and content information respectively with minimal overlap in information.

4 Experiments & Results

4.1 Reimplementation

We were able to successfully replicate the Text Style Transfer VAE model found in John et al [7].

Having implemented our model in PyTorch, we iteratively reproduced the fundamental elements

of the paper. We began by testing our implementation on the Yelp dataset used in the original

study under the context of binary sentiment classification. As seen in Figures 2 and 3, we were

successful in reproducing the results of the previous study. Then, we extended this framework to

train on the Emotion Unify Dataset [1]. We expected to find that the model could handle this level

of dimensionality and, upon clustering, observe clear segmentation into emotion classes.

4.2 Multi-class Emotion Detection Extension

As shown in Figure 3, we observe the KL-divergence decrease steadily for style and content vectors

when run on the original Yelp dataset. This mimics the results contained in the original study, and

this implies that we are able to successfully minimize our multipart loss function and disentangle

our text.

However, upon switching datasets to the Emotion Unify Dataset, we encountered multiple
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issues that resulted in poor performance. Firstly, switching to the Emotion Unify Dataset resulted

in greatly increasing the cardinality of our vocabulary. Our vocabulary increased from 9,000 words

when using the Yelp dataset to 60,000 words when using the Emotion Unify Dataset. This resulted

in a significant increase in training time, as a larger vocabulary size combined with a larger label

set size results in an exponential increase in compute time. The degradation in performance can

be observed by comparing Figures 2 and 3 with Figures 4 and 5.

We also observed that the model was very sensitive to the KL weight annealment scheduling

in both the Yelp and Emotion dataset. Unlike our experiment on the Yelp dataset however, the

KL divergence did not decrease in our experiment on the Unify Emotion Dataset. We believe the

cause of this to be the multi-class classification embedded into the loss functions that serve as the

adversarial regularization of the space. Because of the greater difficulty of multi-class classification

compared to binary classification, it was likely much more difficult to optimize over a loss function

that includes cross-entropy loss over a multi-class classification.

As a result, we were unable to see clear separation in the embedding space pertaining to each

class, indicative of more complex disentanglement than we had originally considered. This can be

observed by comparing Figure 2 in John et al. [7] and Figure 1 in this study which contain t-SNE

plots of the disentanglements in the original binary study and t-SNE plots of the disentanglements

in our multi-dimensional study respectively. It is apparent that we fail to produce clearly separated

groups over only three emotion classes.

In the original study, the authors linearly interpolate across the embedding space to achieve

style transfer across their binary classes. We recognize that this method becomes increasingly

complex with additional dimensions, even if we had observed clear separation in latent space. Text

style transfer over multiple classes therefore requires additional future study.
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5 Conclusion

5.1 Summary

Summarily, we were able to successfully reimplement existing methods in disentangled representa-

tion learning for sentiment analysis [7]. However, in extending this methodology to data containing

multi-class emotion labels, we see a significant degradation in performance. We were not able to

successfully produce disentangled clusters in latent space with as few as three labels. We believe

that the cause of this performance degradation is the usage of a multi-class cross-entropy loss

embedded in the overall loss function. Additional study is required to address this.

5.2 Future Work

As is apparent in our results, it is nontrivial to extend the methodology found in John et al. [7]

to a setting with more than two class labels. Before any additional study is conducted using the

Emotion Unify Dataset, we plan to reimplement the findings of John et al. [7] on this dataset. It

is illogical to continue extended study on this dataset if the results of the original study cannot be

reproduced on the new data. Following, we plan to investigate the effects of modifications to the

reimplemented loss functions, the performance impact of separate style vectors per label in the data

(e.g. 3 style embeddings for 3 labels), and the effects of modifications to the KL divergence loss

scheduler since this seems to be the most sensitive aspect of our model training. Given additional

computational resources and time, we also plan to perform a more exhaustive hyperparameter

search.
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(a) Content space (b) Style space

Figure 1: Style and content space generated over Emotion Unify Dataset.

Figure 2: ELBO convergence over Yelp training data in our reimplementation.

Figure 3: KL divergence convergence over Yelp training data in our reimplementation.
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Figure 4: ELBO convergence over Unify emotion training data.

Figure 5: KL divergence convergence over Unify Emotion training data.
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