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Anthropogenic trace gases such as greenhouse gases and air toxics emitted to the 

atmosphere contribute to radiative forcing, degradation of air quality, and negative impacts 

on human health. Quantification and characterization of these important trace gases are 

required to mitigate the global climate crisis and improve the air quality. My dissertation 

focuses on constraining methane (CH4) emissions from California’s San Joaquin Valley 

(SJV) dairy farms and characterizing wildfire emissions using ground-based solar 

spectroscopy observations. Additionally, I characterize a portable gas chromatograph 

coupled to a photoionization detector (GC-PID) for measuring concentrations of air toxics 

at ambient levels.  

In the first study, I studied the seasonality of CH4 emissions from dairy farms across 

four seasons from Spring 2019 to Winter 2020 in the SJV to investigate whether emissions 

varied across time and to discern the environmental factors driving temporal differences. 

Measurements collected during different seasons provided insight into the meteorological 

and management factors that drive the time-varying patterns observed during the year. This 



 

 ix

research showed that seasonal variability exists within dairy farm emissions and mitigation 

should focus in the summer. 

Wildfires are increasing in the Western United States making it critical to 

understand the impacts of greenhouse gases and air pollutants emitted to the atmosphere. I 

used a ground-based remote sensing technique to measure the amount of greenhouse gases 

and aerosol present in the atmosphere. I isolated a large smoke plume from the Sequoia 

Lightning Fire Complex (SQF) and calculated variables to understand the fuel properties. 

This revealed that a significant amount of CH4 was emitted from the 2020 wildfire season. 

 In the third study, I characterized the performance of a compact GC-PID and 

optimize the configuration to detect ambient levels of benzene, toluene, ethylbenzene, and 

xylene isomers (BTEX). With an analysis time of less than 15 minutes, the compact GC-

PID is ideal for field deployment of background and polluted atmospheres for near-real 

time measurements of BTEX. The results highlight the application of the compact and 

easily deployable GC-PID for community monitoring and screening of BTEX. 
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Chapter 1: Introduction 
 
 
1.1       Greenhouse gases and methane 

 
Greenhouse gases alter the Earth’s climate by absorbing and emitting infrared 

radiation in the lower atmosphere. The increase of global greenhouse gas emissions since 

the preindustrial era (year 1750) has produced a radiative forcing of +3.32 Wm-2 with 

carbon dioxide (CO2) being responsible for 65% of the radiative forcing from greenhouse 

gases (Forster et al., 2021). The remaining balance is from non-CO2 greenhouse gases such 

as methane (CH4; 16%), nitrous oxide (N2O; 6%), and halocarbons (12%). These non-CO2 

greenhouse gases have more of a significant impact on the climate than CO2 due to their 

high global warming potential (GWP) that enables the trapping of heat more effectively 

per unit mass.  

Methane is a potent greenhouse gas and has a more powerful effect on the 

atmosphere than CO2 due to its GWP of 86 over a 20-year time scale (IPCC, 2014). Its 

GWP has become a concern as global CH4 levels have risen sharply since the pre-industrial 

era due to the imbalance between sources and sinks; levels have more than doubled 

increasing from 722 ppb to 1875 ppb (Dlugokencky et al., 2011). Methane’s strong GWP 

combined with its relatively short atmospheric lifetime of 12 years makes it an ideal target 

for mitigating the global climate crisis and meeting greenhouse reduction targets proposed 

by national and global organizations (UNEP, 2022).  

Global CH4 continues to increase primarily due to intensification of agriculture 

activities, waste management and oil and natural gas (ONG) production (Jackson et al., 



 

 2

2020; Saunois et al., 2020). In California, dairy farms, landfills, and ONG industries are 

the largest sources of CH4 contributing 56%, 22%, and 19% to the CH4 statewide emissions 

and have increased by 19, 19, and 11% between 2000 and 2019, respectively (CARB, 

2019). Regionally, the San Joaquin Valley (SJV) contains a large portion of ONG and dairy 

sources and has the largest CH4 emissions (0.94 ± 0.18 Tg/yr) in the state (Cui et al., 2019). 

The SJV is home to 90% of the state’s cattle that emit significant amounts of CH4 through 

the dairy cattle’s enteric fermentation and farm’s manure management (USDA, 2017).  

1.2       Air toxics and BTEX 

Air pollutants and air toxics are regulated by governmental agencies including the 

Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) 

under the Clean Air Act. These organizations set standards for pollutant levels that are 

considered safe for the population to breathe. As rules and regulations have been 

implemented such as the requirement of a catalytic converter in vehicles, air quality has 

improved, however some pollutants like benzene, ethylbenzene, toluene, and xylenes 

(BTEX) are still of concern for residents living near freeways and ONG sources (Bretón et 

al., 2017; Houghton et al., 1999). Prolonged exposure to the toxic volatile organic 

compound (VOC) family of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) 

is known to be carcinogenic to humans and may have adverse health effects on immune, 

metabolic, respiratory functioning as well as development (Bretón et al., 2017). This is 

particularly important for densely populated areas located within proximity to ONG and 

traffic sources. The Occupational Safety and Health Administration (OSHA) set a fixed 

standard of 1 ppm over an 8-hour averaging time for benzene. Ambient levels of BTEX 
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are often sub ppb levels but may be higher near traffic source and ONG activities (Weisel, 

2010). 

1.3       Motivation for Current Research 

Under California’s Global Warming Solutions Act of 2006 (Assembly Bill 32), the 

state mandated that greenhouse gases emissions were reduced to 1990 levels by 2020 and 

is currently committed to 40% reductions below 1990 levels by 2030 for all greenhouse 

gases (Senate Bill 32). In 2015, Assembly Bill 1496 required the state to locate and monitor 

CH4 hotspots. In 2016, Senate Bill 1383 specifically targeted the reduction of CH4 to 40% 

below 2013 levels by 2030 and called for the reduction of CH4 emissions from landfills, 

dairy livestock operations, and fugitive emissions from oil and gas to meet the reduction 

targets. Dairy farms, landfills, and ONG activities are the three largest contributors to the 

state’s CH4 budget, and as such, are critical to study for these regulations to be effective. 

Additionally, the understanding of how biogenic sources, such as wildfires, may contribute 

CH4 to the total budget will become important as climate changes and wildfires become 

more intense and frequent in the future. 

Many of the factors controlling greenhouse gas emissions are poorly quantified 

contributing to discrepancies between activity-based bottom-up inventories and top-down 

estimates derived from atmospheric observations. Several studies have determined that 

inventory-based CH4 budget in the state are underestimated by up to a factor of 2 (Cui et 

al., 2017; Guha et al., 2015; Jeong et al., 2013, 2016; Wecht et al., 2014) Therefore, 

improved flux estimations at local scales are needed to resolve discrepancies between 

bottom-up and top-down approaches to ensure the success of CH4 mitigation actions. While 
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progress has been made to constrain emissions of CH4, there is a lack of atmospheric-based 

observations to independently verify emissions and understand the inter-annual variability 

from the major CH4 sources. The California bottom-up emissions inventory for CH4 uses 

emission factors based on annually averaged meteorological inputs. The neglect of 

seasonal and spatial differences can introduce uncertainties in the CH4 emission factor that 

are used to calculate the emissions inventories. 

Although dairies dominate the CH4 source in the SJV, other emerging sources of 

CH4 may be important. California’s recent wildfire events are becoming more frequent and 

disastrous releasing large amounts of carbon in the form of CO2, CO and CH4 from biomass 

burning (Gutierrez et al., 2021; Navarro et al., 2016). The state currently reports wildfire 

CO2 emissions separately from anthropogenic sources and does not report the amount of 

CH4 generated from the burning of biomass (CARB, 2020). The accurate apportionment 

of CH4 in mixed source regions like the SJV will become increasingly important as 

wildfires have been frequently igniting in the Sierra Nevada and contributing fire-derived 

CH4 to the local atmosphere. The SJV saw high smoke days during the summers of 2020 

and 2021 adding to the already present greenhouse gas burden in the SJV (Cho et al., 2022). 

Apportioning CH4 emissions to their source and determining an accurate emissions 

quantification per sector are ongoing challenges for meeting California’s ambitious climate 

goals and combating the global climate crisis. 

Recent studies have shown elevated BTEX levels in urban areas and near ONG 

sources, however analytical methods limit the characterization and understanding of spatial 

distributions of BTEX in communities. Identifying the fine-scale spatial patterns of BTEX 
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hotspots can improve the accuracy of human exposure estimates of the surrounding 

communities and inform mitigation policy. We optimize the design of a GC-PID to detect 

ambient levels of BTEX and test the performance in laboratory and field settings for future 

studies focus on characterizing ambient concentrations and associated uncertainties for 

impacted communities. 

1.4       Overview of this Research 

 
In this dissertation, two long-term field campaigns were conducted in the SJV of 

California to investigate CH4 sources and emissions and one short term field campaign to 

investigate BTEX concentrations from roadways: 

1) Seasonal study of CH4 from dairy farms in the SJV took place at dairy farms 

north of Visalia, California (September 2018, March, June, and September 

2019, and January 2020). 

2) Remote sensing observations of CH4, CO2, CO, and aerosol optical depth 

(AOD) from the wildfires in the Sierra Nevada took place in Farmersville, 

California (September – October 2020). 

3) Mobile observations of BTEX took place in Riverside, California (February 

2020). 

The structure of this thesis is as follows. In Chapter 2, I quantify CH4 emissions 

from a 10x10 km2 dairy cluster in the SJV using a network of ground-based remote sensing 

solar spectrometers to detect enhancements of CH4. I measured over the course of 1 year 



 

 6

and explored how emissions change with seasons. I find that summer emissions are higher, 

followed by winter and the lowest emission were in spring and fall.  

In Chapter 3, I explore the use of ground-based solar spectroscopy as a new 

technique for studying wildfire emissions. I isolated a large wildfire plume that originated 

in the Sierra Nevada and calculate emission factors and modified combustion efficiency, 

two variables that describe fuel properties and combustion phase of the fire. I derive the 

AOD during the first few weeks of the fire and compare to a nearby AERONET site. 

Additionally, I calculate the amount of CH4 emitted from the wildfire using the state’s CO2 

wildfire inventory and field-based emission ratios. The novel application of the solar 

spectrometer to quantify wildfire emission ratios at large scales follows predictive 

relationships that are consistent with in situ studies, offering promise for extensive 

monitoring from ground networks and satellite remote sensing. 

In Chapter 4, I describe a portable GC-PID that I developed and optimized to 

measure and speciate for BTEX at ambient levels. I describe the performance of the 

instrument in laboratory and field settings including at different environmental conditions 

and in mobile campaign mode. I find that the GC-PID technique can speciate and detect 

BTEX at sub ppb levels showing great promise for screen for characterizing BTEX at a 

higher spatial resolution with possibility of establishing dense networks of VOC 

measurements.  

In Chapter 5, I briefly summarize the results of the studies and field campaigns. I 

pose future research questions and directions for greenhouse gas research in California, 
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remote sensing observations of dairy farms and wildfires, and future measurements of 

BTEX sources with the portable GC-PID.  
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Chapter 2: Solar column based CH4 emission estimates of 

dairy farms at local scales in the San Joaquin Valley 
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Abstract 

 

California dairy farms are estimated to emit close to 50% of the state’s methane 

(CH4) emissions, but the magnitude and the intra-annual variability from the dairy CH4 

source is highly uncertain. Quantifying and reducing CH4 is critical for meeting 

California’s climate targets and mitigating climate change. To help constrain CH4 

emissions from California dairies, we studied variations in dairy CH4 emissions across four 

seasons from spring 2019 to winter 2020. We measured total atmospheric column gradients 

(∆XCH4) from a dense group of dairies in the San Joaquin Valley (SJV) using portable 

EM27/SUN solar-viewing spectrometers placed upwind and downwind of ~40 dairy farms 

housing >30,500 cows. Measurements collected during different seasons provide insight 

into the meteorological factors that drive the time-varying patterns observed during the 

year. We estimate CH4 emissions using a mass balance approach and compare observed 

emissions to a facility-level emission prior. Analysis of the EM27/SUN measurements 

suggests that CH4 fluxes were larger in summer. We discuss these results in the context of 

bottom-up modeling driven by seasonal variations in farm management and climate. This 
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study will help constrain CH4 emissions from California dairies, examine how seasonal 

variability should be handled in these emissions estimates, and demonstrate new modeling 

approaches for analyzing XCH4 data at these fine scales. 

 
2.1       Introduction  

 
Global atmospheric methane (CH4) concentrations continue to rise mainly due to 

intensification of emissions from agriculture activities, waste management, and oil and 

natural gas (ONG) production (Jackson et al., 2020; Saunois et al., 2020). CH4 is a potent 

greenhouse gas with a global warming potential (GWP) of 86 over a 20-year time scale 

(IPCC, 2014) and for this reason has become a concern. The latest global CH4 budget 

estimates that agricultural sources enteric fermentation and manure management on dairy 

operations contribute 15% to the total emissions (Jackson et al., 2020). Methane’s strong 

GWP combined with its relatively short atmospheric lifetime of 12 years makes it an ideal 

target for mitigating climate change and meeting greenhouse reduction targets proposed by 

national and global organizations (Chen et al., 2016; Viatte et al., 2017).  

In California, the dairy sector is the largest sources of CH4 contributing 54% of the 

CH4 statewide emissions. Additionally, the emissions have increased by 20% between 

2000 and 2018, respectively (CARB, 2019; CARB, 2020). Regionally, the San Joaquin 

Valley (SJV) has the largest CH4 emissions (0.94 ± 0.18 Tg/yr) in the state (Cui et al., 

2019) and is home to 90% of the state’s dairy cattle that emit significant amounts of CH4 

through the dairy cattle’s enteric fermentation and the farm’s manure management (USDA, 

2017). Dairy farms in the SJV region use primarily a wet manure management method that 
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involves storing the manure in lagoons and ponds where it anaerobically decomposes to 

produce CH4 (Meyer et al., 2011). Methane is also generated through enteric fermentation 

by gut microbes in the cow rumen that is dependent on the composition of animal feed 

(Moraes et al., 2014). However, many of the factors controlling dairy farm emissions are 

poorly quantified, which contributes to nearly 2-fold discrepancies between activity-based 

bottom-up inventories and top-down estimates derived from atmospheric observations (Cui 

et al., 2017; Jeong et al., 2016; Miller et al., 2013; Trousdell et al., 2016).  Additionally, 

new mitigation techniques are being introduced to dairy farm manure management 

practices such as digesters and identifying the ideal measurement technique to capture 

changes will be necessary.  

California’s regulatory bottom-up inventory for CH4 from manure management and 

enteric fermentation uses emission factors based on annually averaged meteorological 

inputs set by the IPCC (CARB, 2019; Marklein et al., 2021). This neglects seasonal and 

spatial differences in emissions that can introduce uncertainties in the CH4 emission factor 

that are used to calculate the inventory. For example, a study of two dairy facilities in the 

SJV of California found that CH4 emissions from a liquid manure storage were between 3-

6 times higher in the summer than in the winter, accounting for 70-80% of total annual 

CH4 emissions (Arndt et al., 2018). Additional seasonal studies are necessary to understand 

how CH4 emissions from dairies change throughout the year, and how to extrapolate 

beyond measurement periods to annual estimates. 

Solar column gradients have previously been employed to estimate CH4 emissions 

from dairy farms in Southern California following the differential column measurement 
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technique with the EM27/SUN solar-tracking Fourier-transform solar spectrometers (FTS) 

(Chen et al., 2016; Viatte et al., 2017). Chen et. al (2016) demonstrated that a mass balance 

approach can be applied to measurements at upwind and downwind locations using a 

differential column technique to estimate emissions from a local source. Viatte et al. (2017) 

utilized a Weather Research and Forecasting model in large-eddy simulation mode (WRF-

LES) to model emissions from a group of dairy farms in a 6 km x 9 km area. Both methods 

proved to be effective in estimating emissions from dairy farms at the 1-10 km local scale. 

Column measurements are sensitive to sources nearby, regional, and continental scales. 

Using two or more solar column instruments, the long-range influence of time variations 

in the CH4 mole fraction of the incoming air mass can be reduced with simultaneous 

measurements at upwind and downwind locations (Chen et al., 2016). The EM27/SUN 

instruments have also been deployed for urban emissions studies to measure gradients and 

estimate emissions of CO2 and CH4 (Dietrich et al., 2021; Jacobs et al., 2020; Jones et al., 

2021; Makarova et al., 2020; Vogel et al., 2019; Zhao et al., 2019).  

In this study, we deployed EM27/SUN solar spectrometers to measure atmospheric 

columns of methane (XCH4) upwind and downwind of a small cluster of dairy farms in the 

SJV to estimate their emissions. The different environmental conditions across seasons in 

which we measured allow us to explore how farm management practices and temperature 

may influence CH4 emissions across seasons. The goals of this study are to help constrain 

CH4 emissions from California dairies, to examine how seasonal variability should be 

handled in these emissions estimates, and to demonstrate new modeling approaches for 

analyzing atmospheric columns of CH4 at fine scales. 
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2.2       Methods 

2.2.1 Study site 

Tulare County produces the most dairy products in the U.S. (USDA, 2017). The 

USDA 2017 Census estimated there were about 1 million (1,057,272) cattle and calves in 

Tulare County with milk cows (500,402) accounting for 47% of the county’s total livestock 

(USDA, 2017). We chose an isolated area with ~40 dairy farms north of the City of Visalia 

in Tulare County to estimate CH4 emissions from dairy farms using differential column 

measurements with mobile solar spectrometers. These measurements are described in the 

sections below and the setup is illustrated in Figure 2.1.  

2.2.2 Differential column measurements 

We used the differential column measurement technique to measure gradients in 

total column of methane (∆XCH4) of an area north of Visalia, CA containing a cluster (“the 

cluster”) of 41 dairy farms, 2 feedlots, and 1 landfill with an estimated total CH4 emissions 

of 29.7 Gg/yr (Marklein et al., 2021). Within the cluster we further targeted dairy farms in 

the area highlighted in Figure 2.1c. The dairy farms within the target area house more than 

30,500 milking cows and represent a variety of dairy farm sizes with individual farms 

housing 1,000 to 6,000 milking cows each. The majority of the farms within the cluster 

have a freestall feeding system consisting of a flush system that flows into the manure 

storage lagoons (Meyer et al., 2011). 

Prevailing wind directions in the SJV are from the northwest driven by the winds 

entering the San Francisco Bay and flowing to the southeast along the Valley (Frenzel, 

1962). The northwest corner of the dairy cluster was selected to measure a local 
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background whereas the downwind instrument captured CH4 enhancements as the air 

column traveled southeast across the dairies (Figure 2.1). The cluster is located 11 km north 

of the City of Visalia, such that it is upwind of the urban area under predominant 

northwesterly winds at midday. To the south and west of Visalia is another dairy area with 

the highest concentration of dairy farms in the SJV. Crop agricultural land surrounds the 

upwind and downwind sites with few nearby CH4 sources and is about 40 km away from 

upwind urban methane emissions from Fresno. This cluster of dairies is in relatively simple 

terrain, with 1 m of altitude difference between the upwind and downwind measurement 

sites. The cluster of dairies is located 20 km west of the Sierra Nevada foothills. Winds at 

sites close to the sidewall slopes reverse direction during the day which can be difficult to 

model (Zhong et al., 2004). 

Measurements at the SJV dairy cluster took place over 5 to 6 days in each of the 4 

seasons from March 2019 until January 2020. Total column averages of CH4 were 

measured continuously between 10 am and 6 pm at the upwind and downwind locations. 

The upwind location was consistent between measurement days, while the downwind 

location varied per day dependent on forecasted winds to maximize sensitivity to dairies 

of interest (Figure 2.1).   
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a) b)  

 

c)  
 

Figure 2.1. a) Dairy farms (shown in red) in California are concentrated in the San Joaquin Valley 
(SJV, shown in gray). b) Differential column measurements of methane were taken across a cluster of 
dairy farms in the SJV north of Visalia (yellow highlighted area). c) The EM27/SUN measurement 
locations northwest and southeast of the dairy farm cluster are represented by diamond shapes with the 
three downwind locations denoted as A, B or C, dependent on forecasted wind conditions. The target 
8 x 10 km2 area of dairy farms is highlighted, with dairy farms shown in red polygons and a nearby 
landfill represented by a yellow polygon.  
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2.2.3 EM27/SUN Fourier transform spectrometer 

Atmospheric column-averaged dry-air mole fractions (Xgas) of CH4, CO2, carbon 

monoxide (CO), and water (H2O) were retrieved from the EM27/SUN solar-viewing 

Fourier Transform Spectrometer (FTS). We use the same Bruker Optics EM27/SUN 

instruments as in Chen et al., (2016) and Viatte et al., (2017), designated as UA, DN, and 

HA (Bruker Optics nos. 34, 42, and 45), owned by Los Alamos National Laboratory 

(LANL), NASA Jet Propulsion Laboratory (NASA-JPL), and Harvard University, 

respectively. The EM27/SUN instrument is further described and characterized elsewhere 

(Gisi et al., 2012; Hedelius et al., 2016). The Xgas is retrieved from measured interferograms 

processed by the I2S and GFIT (GGG2014 version) retrieval algorithms automated by the 

EGI processing suite (Hedelius et al., 2016). Surface pressure is required to retrieve dry air 

columns in GGG and we use Coastal Environmental Systems ZENO weather station to 

record surface pressure for retrievals. Retrievals also require atmospheric profiles of 

temperature, pressure, altitude and water and these profiles were extracted from 

NCEP/NCAR reanalysis product (Kalnay et al., 1996). 

Extensive side-by-side measurements of the EM27/SUN instruments with 

instruments from the Total Column Carbon Observing Network (TCCON) were done 

before and after each measurement period to ensure system stability, correct for any biases, 

and tie our measurements to the World Meteorological Organization (WMO) scale. 

Differences between instruments can be due to resolution, instrument imperfections and 

instabilities, and instruments can drift noticeably when measuring over several months 

(Hedelius et al., 2016). For this reason, the EM27/SUN instruments were co-located within 
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a few meters from the aperture of the IFS125, high-resolution spectrometers that constitute 

TCCON, located at the California Institute of Technology (CIT) and NASA Armstrong. 

The ua instrument (LANL) was used during every collection period and used as a transfer 

standard to other instruments when the CIT TCCON instrument was not operational 

(Spring 2019 field campaign).  

To determine calibration factors, we assume a linear model forced through the 

origin for each gas: XTCCON = XEM27 RCH4 (Chen et al., 2016; Hedelius et al., 2016). We 

consider the different averaging kernels of the EM27/SUN and TCCON instrument 

following Hedelius et al’s., (2016) Equation A4 to adjust the EM27/SUN retrievals before 

comparing with TCCON. A summary of the correction factors is shown Appendix A1, 

Figure A1.1  

2.2.4 Wind observations 

We made micrometeorological measurements during all campaign periods at a 

single location inside the cluster dairy area (Figure 2.1c) with two 3-D sonic anemometers 

(CSAT3, Campbell Scientific, Inc.) mounted on a stationary tower at 3 and 10 m. We 

utilized winds measured at 10 m to drive a simple column model to estimate CH4 

emissions. Figure 2.2 shows wind conditions observed during seasonal measurement 

periods in March, June, and September 2019, and January 2020. The summer and fall 

months, June, and September, had consistent northwest wind directions with higher mean 

wind speeds of 3.28 and 2.64 m/s, respectively, while the winter and spring months, 

January, and March, were variable in wind direction with lower mean wind speeds of 1.89 

and 1.75 m/s, respectively.  
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Figure 2.2. Wind roses from sonic anemometer located within the dairy cluster. Data shown is only 
during measurement periods. 

 
 
2.2.5 Mass balance technique for estimating emissions of CH4 

We used a differential column measurements technique, and we adapted the simple 

column model described by Chen et al. (2016) to calculate CH4 emissions from the solar 

column measurements. The column-averaged dry-air mole fractions of CH4 (XCH4) were 

measured simultaneously northwest and southeast of a cluster of dairies in the SJV for 

several days during March, June, and September of 2019, and January of 2020. During the 

January campaign we had three EM27/SUN instruments and were able to set two 

downwind SE sites. The dairies in the SJV are sparse (Figure 2.1) compared to the dairy 

farms studied in Southern California by Chen et al. (2016) and Viatte et al. (2017) where 

uniform emissions were assumed over the 6 x 9 km Chino dairy area. The assumption of 

spatially uniform emissions is likely the largest source of error for this technique and may 

lead to overestimating dairy emissions. To mitigate this error, rather than assuming a 

uniform emission across the dairy cluster area, we modify Chen’s mass balance equation 
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to instead consider the area and length of dairy farm transected by the wind vectors. We 

also assume that air masses are well mixed horizontally as air masses transit over dairy 

farms. 

The CH4 emission rate (ECH4) is computed as the product of the CH4 enhancement 

(∆XCH4, ppb) (Equation 1), the mass-enhancement weighted wind velocity (U�, m/s), the 

vertical column air density (SCair, molecules/m2), and the area of the total dairy farm area 

(ADairy, m2) intersected by the wind vectors during each sampling period and is inversely 

proportional to the length of dairy farm intersected (LDairy, m) (Equation 2).  

∆XCH4 = XCH4, downwind – XCH4, upwind      (1) 

E��� =  ∆
��
 ����� �� ������
������        (2) 

 As suggested by Chen et al., (2016), we average XCH4 and other meteorological 

variables at 5 minutes to study emissions at local scales. The mean wind speed was 

obtained from the sonic anemometer present within the cluster of dairy farms further 

described in Section 2.2.4. To determine U�, a wind profile is approximated from 10 m to a 

mixing height (zemiss) assuming a log profile at neutral stability conditions (Chen et al., 

2016, Equations 11 and 13). The area density SCair was calculated from pressure measured 

at the surface by the ZENO weather station. The area of each dairy farm within the cluster 

was estimated by mapping polygons over dairy farms in Google Earth. We examined the 

intersection of 5-minute averaged wind vectors with dairy farms to estimate ADairy as the 

total area of intersected dairies, and Ldairy as the average length of wind vectors intersecting 

the dairy farms. An example of this can be found in the Appendix A1, Figure A1.2. The 5-

minute emission estimates were then averaged over a day. The mean daily emission 
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estimates are reported for each season with an uncertainty determined by the standard error 

of the mean.  

To apply the differential column measurements technique for estimating emissions 

from the dairy cluster, northwesterly winds are required to capture both a clean local 

background and an enhancement as an air mass travels over the dairies. We selected 

measurement periods where the wind conditions were favorable by filtering measurement 

periods for northwest winds (270° ≥ U� ≤ 360°) and wind speeds higher than 1 m/s. Due 

to the influence of wind direction on the magnitude of XCH4 observed from other dairies 

outside the cluster as discussed in Section 2.3.1, we remove initial observations to ensure 

we sampled the same airmass at both sites based on estimates of the time lag it took the air 

mass entering the domain to reach the downwind instrument. Half the travel time that it 

took the airmass to transit across the cluster was calculated as the ratio of distance between 

instruments and wind speed. We did not use measurement periods where the wind was 

from the south or east and excluded days where the greater SJV dairy farms primarily 

located south of our study area influenced measurements. Greater SJV dairy CH4 influence 

was verified by the footprint of the EM27/SUN from the atmospheric transport model 

WRF-STILT (Appendix A1, Figure A1.3).  

2.3       Results 

2.3.1 Observed gradients of XCH4 

We observed gradients in XCH4 between our NW and SE instruments that varied 

strongly over the course of the day with wind patterns. When predominant winds were 

from the NW, we observed positive ∆XCH4 values ranging from 2.1 to 23.7 ppb, with a 



 

 23

mean of 9.9 ± 5.7 ppb across seasons. Variability on the order of minutes in XCH4 in the 

timeseries is attributed to concentrated CH4 plumes traversing over the instruments, 

representing the influence from dairy farm activities at local scales. This difference 

between two instruments illustrates the ability of the differential column method to capture 

a CH4 enhancement from this dairy cluster. The ∆XCH4 means are 8.57 ± 0.59, 9.40 ± 0.54, 

3.95 ± 0.28, and 17.70 ± 1.86 (SEM, standard error of the mean) ppb for March 2019, June 

2019, September 2019, and January 2020, respectively. 

Occasional periods of S/SE winds, such as on the mornings of March 24 & 30, and 

during March 26, inverted the direction of the gradient. Many dairy farms are found to the 

south and west of the dairy farm cluster (Figure 2.1, b), and consequently during southerly 

wind periods the EM27/SUN instruments were sensitive to a different group of dairy farms 

in the greater SJV. Regional influence from dairy farms in the greater SJV is prominent 

during the early mornings before the southerly wind direction shifted to northerly winds. 

On some days, the influence of the large concentration of dairies SW of Visalia were 

observed (6/24, 9/11, 9/13, 02/02) measuring elevated XCH4 at both the NW and SE sites, 

while other days only one instrument captured the emissions from the greater SJV dairies 

(3/24, 3/30, 6/21, 6/22), suggesting spatially heterogenous wind conditions between the 

two sites (Appendix A1, Figure A1.3). On the contrary, when the wind direction was 

steadily from northwest, we measured consistently lower XCH4 than when the wind 

direction is from the south at both sites, suggesting we only were sensitive to the smaller 

group of dairies of interest (i.e., ~40 dairy farm cluster).  
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We filtered the data to isolate conditions that enabled us to detect the signal from 

the cluster. A total of 20 measurements days were collected between March of 2019 and 

January 2020. After filtering for ideal conditions (NW winds > 1 m/s) and removing days 

with greater SJV dairy farm emissions (e.g., 3/24 and 3/30), only 15 days met the filtering 

criteria and XCH4 values used to estimate emissions are shown as colored highlighted areas 

in Figure 2.3. The observed day-to-day variability in XCH4 in all seasons suggests a strong 

dependence on meteorological factors such as wind speeds and a diurnal cycle driven by 

wind directional shifts. The wind direction was predominantly from Northwest during the 

summer and fall months while it was more variable during the winter and spring months 

(Figure 2.2).   
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a)  
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c)  
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d)  
 

Figure 2.3. Column-averaged XCH4 measured at sites NW and SE of the dairy cluster, SE – NW 
column differences (∆XCH4) and wind vectors averaged every 5 minutes for a) March 2019, b) June 
2019, c) September 2019, and d) January 2020 seasons. Highlighted areas (yellow in March, June, 
September, and dark blue/green in January for the two instruments used) show time periods where all 
wind condition assumptions are met and used for estimating emissions. Negative values indicate 
winds were in opposite direction shifting the upwind and downwind locations. 
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2.3.2 Emission estimates of CH4 from the dairy cluster 

Using the mass balance approach, we computed emissions from the dairy cluster 

from ∆XCH4 measured when wind conditions meet the assumptions of the technique, 

namely, northwest winds above 1 m/s. We then compare observed emission rates to 

bottom-up (BU) emission estimates from dairy farms intersected by the five-minute 

averaged wind vectors where emissions are based on the number of cows, manure 

management practices, and state emission factors (Marklein et. al, 2021). We present this 

comparison as a scaling factor that informs us whether the calculated emissions are higher 

or lower than the bottom-up emissions. We calculated emission rates for each measurement 

day summarized in Figure 2.4. The mean daily emission estimates are reported for each 

measurement period with the standard error of the mean (i.e., 1-σ).  

Emission estimates of CH4 for each day ranged from 4.6 to 68.2 Gg CH4/yr with a 

mean of 35.9 ± 19.8 (1SD). The seasonal mean estimates were 28.1 ± 2.5, 48.1 ± 2.5, 26.2 

± 6, 35.0 ± 3.4 for March, June, September, and January, respectively (Table 2.1). 

Comparing the different instrument configurations among sampling date, and hence 

sensitivity to different dairies, we then computed a scaling factor that is a ratio of calculated 

emissions divided by the bottom-up emission estimate from the same sources. The bottom-

up (BU) emission estimates use the same five-minute averaged wind vectors intersecting 

dairy farms picked up by the measurements, with emissions estimates for these farms are 

based on the number of cows, manure management practices, and state regulatory emission 

factors (Marklein et. al, 2021). In January, two instruments were available to measure 

downwind of the dairy cluster at different sites (A and B) that had been measured in the 
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seasons prior. During northwest wind conditions, Configuration B was sensitive to more 

dairies than Configuration A. This was observed in the emissions estimate, but when 

compared to their respective bottom-up, the scaling factor agreed within error. We find that 

emission factors are uniform across the dairies with this approach, and although the two 

configurations are sensitive to different areas, and they give the same scaling it means the 

areas they are measuring are probably off from the prior in the same way. 

  Comparing the daily estimates to the bottom-up inventory, scaling factors had a 

mean of 1.9 ± 0.5, 3.7 ± 0.8, 1.6 ± 0.3, 2.6 ± 0.4 for March, June, September, and January, 

respectively (Table 2.1). The bottom-up prior does not consider seasonal differences, thus 

scaling factors are expected to reflect this. Scaling factors were larger than 1 in most cases. 

The range of measurements overlapped across most seasons, but emissions tended to be 

highest in summer with significantly lower emissions in fall (Figure 2.4b). 
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Figure 2.4 Estimated emission rate of CH4 from dairy cluster using the mass balance approach. The 
points are colored by configuration. The grey color denotes the corresponding bottom-up estimate 
based on a dairy prior by Marklein et al 2021. The comparison between the observation-based 
estimates and the bottom-up estimates are shown as a scaling factor with 1:1 line in grey in the bottom 
panel. 

 
 
 
 
Table 2.1. Summary of average seasonal mass balance emission rate estimates and the corresponding 
scaling factor after compared to bottom-up emissions summarized by season. 

 

Season Emission rate (Gg CH4/yr) Scaling factor 

Spring 28.1 ± 2.5 1.9 ± 0.5 

Summer 48.1 ± 2.5 3.7 ± 0.8 

Fall 26.2 ± 6 1.6 ± 0.3 

Winter 35.0 ± 3.4 2.6 ± 0.4 
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2.4       Discussion 

2.4.1 Differential XCH4 measurements for emission estimates from dairy farms 

Day-to-day variability was observed in the measured XCH4 from a dairy farm cluster 

with a strong dependance on wind conditions; a diurnal cycle was observed of winds 

shifting from southerly to northerly winds by midday. The shift in wind directions affected 

the magnitude of measurement signals and also determined what periods of stable wind 

conditions were appropriate to estimate emissions with the mass balance approach. 

Applying the differential column technique using only two instruments greatly reduces 

25% of measurements we can use when data is filtered for wind directions to ensure the 

same air mass is measured by both instruments. This highlights the importance of gathering 

large number of measurements when applying simple mass balance models that rely on 

particular wind conditions due to loss of data from stringent filters. Filtering for ideal 

conditions, we were able to use a simple mass balance column model to estimate emissions 

from the dairy farms within the cluster.  

Our measurement technique using ground-based remote sensing instruments 

measured a mix of dairy farm emissions coming from expected sources of CH4, enteric 

fermentation and anaerobic manure lagoons. Roughly 50% of annual CH4 emissions are 

expected from enteric fermentation while 50% is expected from manure management. 

Emissions of CH4 at the farm scale are expected from the manure lagoons, settling basins, 

feed lots, and open lots where dairy cows reside. While our measurement technique does 

not differentiate between the different sources, we can estimate total emissions from farms 

within the cluster of interest. Due to the different downwind measurement location 
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(configuration A, B, or C) and the fact that wind direction was variable, we were not 

sensitive to the same dairies each day; however, we are able to compare our atmospheric-

based emissions to a bottom-up inventory and across seasons, with the assumption that 

dairies in the cluster had similar management practices. 

2.4.2 Seasonal trends follow temperature and manure volatile solid availability 

We conducted seasonal measurements to estimate and determine the factors that 

influence dairy farm emissions in the SJV. Enteric fermentation emissions are largely 

driven by cow diet, which varies seasonally; however, these changes are small and not 

expected to yield a measurable difference in CH4 emissions. In contrast, we expect seasonal 

changes in CH4 emissions from the storage of liquid manure in anaerobic lagoons that are 

strongly dependent on volatile solid availability and lagoon temperature (Leytem et al., 

2017; Mangino et al., 2001). We find that emissions from the dairy cluster were highest 

during the summer with 47.7 ± 2.5 Gg/yr whereas the lowest emitting season was fall with 

26.2 ± 6 Gg/yr, through fall and spring were not statistically different. High summer 

emissions are consistent with the expectation of high temperatures driving the highest 

methane production rates, and low fall emissions are consistent with expected volatile solid 

availability, which reaches a minimum in fall due to substrate depletion following summer 

and annual lagoon cleanout. We find similar seasonal summer and winter patterns as 

Leytem et al. (2013) where CH4 emissions from lagoons dairy farms in Idaho were 

measured over the course of one year. The authors found that the spring and summer had 

similar CH4 emissions with equal contribution from open free stall area and wastewater 

ponds and lower emission in the fall and winter.  They observed a 33-35% drop from 
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manure lagoons during the fall and winter seasons relative to spring and summer. We find 

a 45% drop between summer and fall seasons from a mix of enteric fermentation and 

manure management. Assuming 50% of our CH4 estimates are from manure management, 

we expect a 23% drop from manure management. Winter is expected to have smaller 

emissions due to manure lagoon cleanout in September, however our observations match 

the same pattern that Jeong et. al, 2016 described in their SJV study. 

 
2.4.3 Seasonal emission trends correlate stronger with wind speed  

While temperature and manure volatile solid availability are thought to be the main 

drivers of CH4 emissions from manure management, other studies have observed that 

higher wind speeds have increased the rate of evasion of CH4 from lagoon surfaces (e.g., 

Leytem et al. 2016). Observations were collected during ambient temperatures ranging 

from 12.4 to 36.1°C and wind speeds from 1 to 9 m/s throughout the different seasons. The 

daily emission estimates and scaling factors had no correlation with temperature but 

showed a strong correlation with wind speed (Figure 2.6). The dataset of 5-min emission 

estimates (Figure 2.5) had very little relationship between CH4 emissions and wind speed 

(R2 = <0.01; P = 0.01) and no relationship between CH4 emissions and air temperature (R2 

= <0.01; P = 0.86). Linear regressions of meteorological variables and averaged emission 

estimates of CH4 reveal weak correlations with wind speed and air temperature (Figures 

2.5 and 2.6). Although we expected temperature to be the dominant driver of emissions 

from dairy farms (Mangino et al., 2001), these results demonstrate that other variables are 

important such as wind speeds and farm level activities. Summer emissions have been 
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observed to be highest at dairy farms in other studies (Arndt et al., 2018; Leytem et al., 

2017). However, studies (Heerah et al., 2021; Leytem et al., 2013) have noted the 

importance of other factors may influence emissions like wind speed, rainfall and volatile 

solid availability. Precipitation increases turbulent mixing of the lagoon surface and can 

add additional manure wastewater to lagoon in open dairies (Carranza et. al, In Prep). 

Interestingly, analyzing by season we find a negative relationship between emissions and 

air temperature in the winter (R2 = 0.35; P < 0.001) and summer (R2 = 0.04; P < 0.001). 

This negative relationship is opposite of what was expected since increased lagoon 

temperatures affect manure decomposition and consequently CH4 emissions. On the 

contrary, we found a stronger correlation between wind speeds and emissions for spring 

(R2 = 0.33; P < 0.001) and Fall (R2 = 0.11; P < 0.001). A diurnal dependence on wind 

speeds and temperature were also observed in Leytem et al. (2013) from on-farm 

measurements. We find that day-to-day variability in measured XCH4 is influenced by both 

winds and temperature, but wind speeds drive the differences across seasons more than 

temperature. The fact that the temperature and wind are positively correlated with 

temperature across the seasonal scales, but not the within the season, suggests that on 

longer-term time scales (e.g. monthly) temperature is a factor in the emissions but that at 

short time scales there are other factors that are more important. 
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Figure 2.5. Linear regressions of 5-min emission estimates of CH4 with wind speed and air 
temperature.  
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Figure 2.6. Linear regressions of daily emission estimates of CH4 and corresponding scaling factors 
with wind speed and air temperature. 

 
 
2.4.4 Comparison of emission factors for dairy cows in the SJV and Southern 

California 

We compared our results with emission estimates measured with EM27/SUN solar 

spectrometers to the dairy farms in Southern California measured by Chen et al., (2016). 

Chen et al. (2016) measured a gradient of ~10 ppb during low wind speed conditions (~2 

m/s) over a similar area of dairy farms (6 x 9 km2) and estimated between 22.5 to 25.5 Gg 

(± 26%) CH4/yr from the dairy source. We targeted ~40 dairies housing more than 30,500 

cows while the Chino study targeted over 90 dairies housing 115,000 cows (Viatte et al., 

2017). Our annual mean estimate from the 8 x 10 km2 area of dairy farms is 35.9 ± 19.8 

(1SD) Gg CH4/yr. Although we targeted fewer dairy farms with less cows overall, our 

estimates from the SJV dairy farms are greater than dairy farms in the Chino dairies. 

Comparing our estimates per cow head, SJV cows emit ~5 times more CH4 than Chino 
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cows. This highlights the magnitude of CH4 emissions emitted by SJV dairy farms and the 

differences in managing animal waste. At the Chino dairies, open lot style is predominant, 

and a mix of wet and dry manure management is practiced. Dry manure management is 

expected to produce less CH4 than the flushing of animal waste to manure lagoons. This 

demonstrates that wet manure management practices emit significantly more CH4 than dry 

manure management, and the differential column technique is able to detect differences of 

this magnitude. 

 
2.4.5 Differential column measurements to verify success of CH4 mitigation 

As the state of California invests in technology to mitigate emissions from dairy 

farms in the form of mechanical separators and anaerobic digesters, monitoring will 

become important to determine how effective these mitigation strategies are in reducing 

emissions of CH4. The question remains of which measurement technique will be most 

adequate in assessing potential emissions reductions in the atmosphere. Different 

techniques such as in situ, mobile, eddy co-variance and tower-based measurements have 

been used to determine emissions from dairy farm at a variety of spatial scales from on-

farm sources (<1km2), whole facility (1km2), local (10 km2) and regionally (100 km2). 

Within the cluster of dairies six of them are in the process of installing or are scheduled to 

install a digester. We estimated the effects of the 6 digesters installed in this cluster at the 

local scale and determined whether this technique will be able to detect reductions in 

emissions. Like in Marklein et al. (2021) following the USEPA, we assume a 75% 

efficiency in anaerobic digesters. We predict a total reduction of CH4 emissions by 3.29 
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Gg CH4/yr. Marklein et al. (2021) predicts that statewide manure emissions will be reduced 

by 26% from the implementation of mechanical separators and anaerobic digesters.  Given 

the variability in estimated emissions measured by the solar spectrometer, this technique 

would not be adequate for capturing reductions from digesters at local scales and reductions 

would likely fall within the expected error. 

2.4.6 Limitations to EM27/SUN differential CH4 column technique 

Our estimates of CH4 in the SJV are based on daytime measurements during a 

limited number of days throughout the year.  Solar column measurements are limited to 

daytime hours as the instrument requires the sun as the light source. For this reason, we 

were not able to capture nighttime emissions. As shown in Arndt et al. (2018), there are 

diurnal fluctuations in emissions from animal feeding throughout the day and lower 

nighttime emissions mainly due to less enteric fermentation from animals. Additionally, 

measurements were not continuous and only gathered a limited amount of 4-6 days per 

season. Unless instruments are secured properly as they have been done in long term 

network studies, measurements require a research team at two stations. Although a larger 

network of instruments would have been preferred, instrument availability was limited to 

two instruments that were used during most seasons except in January when three were 

available. For accurate measurement of emission reductions, more robust, continuously 

monitoring stations should be installed. 

2.5       Conclusions 

We have shown that XCH4 measurements using ground-based remote sensing paired 

with a mass balance model can be used to estimate emissions of CH4. Our findings show 
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that CH4 emissions from the dairy cluster were highest during the summer with 47.7 ± 2.5 

Gg/yr whereas the lowest emitting seasons were fall and spring with 26.2 ± 6 Gg/yr and 

28.1 ± 2.5, respectively. We find seasonal patterns consistent with Leytem et al. 2013 and 

Jeong et al 2016. These results demonstrate that other variables are important such as wind 

speeds and farm level activities and that on longer-term time scales (e.g. monthly) 

temperature is a factor in the emissions but that at short time scales there are other factors 

that are more important. This study contributes to the growing literature of work dedicated 

to understanding the distribution and processing controlling emission of CH4. Future work 

can involve long term monitoring stations with their locations optimized to capture 

emissions year-round in order to accurately investigate the dominant processes that control 

short- and long-term changes over the year. 
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aerosol optical depth from California’s Sequoia Lightning Complex Fire: Emission 
factors and modified combustion efficiency at large scales, Atmos. Chem. Phys. 
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Abstract 

With global wildfires becoming more widespread and severe, tracking their 

emissions of greenhouse gases and air pollutants is becoming increasingly important. 

Wildfire emissions have primarily been characterized by in situ laboratory, and field 

observations at fine scales. While this approach captures the mechanisms relating 

emissions to combustion phase and fuel properties, their evaluation on large scale plumes 

has been limited. In this study, we report remote observations of total column trace gases 

and aerosols in the 2020 wildfire season of smoke plumes from the Sierra Nevada of 

California with an EM27/SUN solar Fourier transform infrared (FTIR) spectrometer. We 

derive total column aerosol optical depth (AOD), emission factors (EF) and modified 

combustion efficiency (MCE) for these fires, and evaluate relationships between them 

based on combustion phase at large scales. We demonstrate that the EM27/SUN effectively 

detects changes of CO, CO2 and CH4 in the atmospheric column at ~10 km scales that are 

attributed to wildfire emissions. These observations are used to derive total column EFCO 
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of 120.5 ± 12.2 and EFCH4 of 4.3 ± 0.8 for a large smoke plume event in mixed combustion 

phases. These values are consistent with in situ relationships measured in similar temperate 

coniferous forest wildfires. FTIR derived AOD was compared to a nearby AERONET 

station and observed ratios of AOD to averaged air mole fraction of CO (XCO) were 

consistent with those previously observed from satellites. We also show that co-located 

XCO observations from the TROPOMI satellite-based instrument are 9.7% higher than our 

EM27/SUN observations during the wildfire period. Finally, we put wildfire CH4 

emissions in context of the California state CH4 budget and estimate that 213.7 ± 49.8 Gg 

CH4 were emitted by large wildfires in California during 2020, about 13.6% of the total 

state CH4 emissions in 2019. Our novel application of an EM27/SUN solar spectrometer 

to quantify wildfire emission ratios at large scales follows predictive relationships that are 

consistent with in situ studies, offering promise for extensive monitoring from ground 

networks and satellite remote sensing. 

3.1 Introduction 

Wildfires are a major source of air pollutants, including particulate matter (PM), 

carbon monoxide (CO), and greenhouse gases, primarily carbon dioxide (CO2) and 

methane (CH4) (Akagi et al., 2011; Wiedinmyer et al., 2011; Andreae, 2019). The high 

levels of PM and CO released from fires are dangerous to human health and degrade air 

quality on a local, regional, and global scale (Schneising et al., 2020; Aguilera et al., 2021). 

CO is an air toxic and is considered an indirect greenhouse gas as it is a major sink for the 

hydroxyl radical (OH), increasing the abundance of CH4 through photochemical feedbacks 

(Li et al., 2018) and also produces ozone (O3), a short-lived greenhouse gas. CO2 and CH4 
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are the dominant greenhouse gases and are responsible for most of the current 

anthropogenic climate change (IPCC, 2014). A majority of carbon emissions from 

wildfires are of CO2, CO, and CH4 (~95%) while the remainder are carbonaceous aerosols 

(~5%) (Sommers et al., 2014; Urbanski, 2014). Although emissions from fires are biogenic 

sources of CO2, they are released rapidly compared to the slow timescales of carbon uptake 

required to grow vegetation fuels. Increased fire activity increases atmospheric CO2 in the 

short term, and can locally alter the terrestrial carbon cycle balance by reducing 

photosynthetic CO2 uptake under high levels of vegetation disturbance (CARB, 2018). 

While CO2 losses can be estimated as a function of burned area and fuel consumption, 

emissions of CO, CH4, and aerosols are more difficult to estimate because they vary greatly 

with fire conditions. As global wildfires become more widespread and severe, tracking 

emissions of greenhouse gases and air pollutants from smoke will become increasingly 

important for efforts to track emissions of greenhouse gases and understand the impacts of 

fire on the atmosphere (Aguilera et al., 2021; Wilmot et al., 2022).  

Our understanding of the atmospheric impacts of increasing fire activity relies on 

accurate observations and process-based estimation of fire emissions that have been 

developed using in situ measurements (Urbanski, 2014). While several space-based 

instruments can retrieve and derive emissions of important trace gases globally, 

observations are limited by spatiotemporal coverage and focus on aerosol burden from 

smoke plumes with limited attention to trace gases, and a lack of integration of trace gases 

and aerosols. Ground-based solar spectrometers present a new technique to measure and 

understand fire emissions at regional scales, and temporally complement satellite 
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observations. Column measurements are insensitive to the planetary boundary layer growth 

and are less affected by nearby point sources than in situ measurements, making them a 

good candidate for regional-scale monitoring (Lindenmaier et al., 2014). The EM27/SUN 

is a ground-based remote sensing instrument that is relatively portable and robust for field 

deployments. These instruments are the basis for the ground-based network of FTIR 

COCCON (COllaborative Carbon Column Observing Network), which complements 

NDACC (Network for the Detection of Atmospheric Composition Change) and TCCON 

(Total Column Carbon Observing Network), two high resolution FTIR trace gas 

monitoring networks (Frey et al., 2019; Wunch et al., 2011; Toon et al., 2009; De Mazière 

et al., 2018). 

Field-based measurements of biomass burning in temperate forests are limited and 

sparse (Burling et al., 2011; Urbanski, 2014), despite the increase in burning activity in the 

Western U.S. (Zhuang et al., 2021). The EM27/SUN provides vertically integrated column 

measurements of CH4, CO2, and CO which allows for calculating modified combustion 

efficiency (MCE) and emission factors (EF) in the total column of smoke plumes 

downwind of wildfires. MCE values give insight into the relative amounts of flaming and 

smoldering combustion of the fire. Pure flaming combustion has an MCE of 0.99, while 

the MCE for smoldering varies from 0.65 to 0.85. A value near 0.90 indicates equal 

contributions of flaming and smoldering combustion (Akagi et al., 2011). EF are defined 

as the mass of gas or aerosol emitted per dry biomass consumed and are critical inputs for 

models to accurately calculate emissions and construct wildfire inventories (Urbanski, 

2014). Providing new EFs will help improve regional biomass burning estimates. Past 
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studies have derived atmospheric column-based EFs with respect to CO from wildfires 

using solar FTIR spectrometers (Kille et al., 2022; Paton-Walsh et al., 2005; Lutsch et al., 

2020, 2016; Viatte et al., 2014, 2015). The observed small changes in CO2 with respect to 

the large atmospheric background has limited previous FTIR-based studies in their ability 

to derive EFs with respect to CO2. This has consequently inhibited the calculation of MCE. 

Here, we present the first EFs with respect to CO2 and MCE for wildfires calculated by 

total-column FTIR.  

During part of the 2020 wildfire season, we deployed the EM27/SUN in the SJV 

downwind of two major wildfires, the Creek Fire and Sequoia Lightning Fire (SQF) 

Complex, in the Sierra Nevada. We report EFCO/CO2 and EFCH4/CO2 from the SQF Complex, 

a mixed conifer forest wildfire in the Sierra Nevada, and follow the wildfire’s combustion 

phases with MCE values. Furthermore, because ground-based column measurements 

operate on similar scales as satellites and regional atmospheric models (McKain et al., 

2015), we compared EM27/SUN measurements with satellite greenhouse gas observations 

from TROPOMI collected during the fires. We quantify MCE, EF for CO2 and CH4, and 

AOD enhancements from the SQF using EM27, we compare CO retrievals to TROPOMI, 

we compare AOD retrieval to an AERONET site, and we put wildfire CH4 emissions in 

context of the California state CH4 budget. Our work demonstrates a novel application of 

the ground based EM27/SUN solar spectrometers in wildfire monitoring and contributes 

to the development of techniques for analyzing remotely sensed greenhouse gas 

measurements. 
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3.2 Data Sources and Methods 

3.2.1 EM27/SUN Atmospheric Column Observations 

We measured the column-averaged dry air mole fractions (Xgas) of CH4, CO2 and 

CO (XCH4, XCO2, and XCO) in a location 60 km west of the SQF Complex (Castle and 

Shotgun fires) and 80 km southwest of the Creek wildfires in the Sierra Nevada, and 

southeast of major dairy farms in the SJV (Figure 3.1, panel a). The SQF Complex fires 

began on Aug. 19 after a dry thunderstorm and lightning event ignited the fires in the Sierra 

Nevada. By Sept. 12, the SQF Complex had grown to 283 km2. The Creek fire began on 

the evening of Sept. 5 and upper-level high winds produced a pyro-cumulus cloud on Sept. 

6 that reached an altitude over 15 km (Morris III and Dennis, 2020). Smoke filled the valley 

and smoky overcast skies remained in large parts of the SJV for the next two weeks as fires 

kept burning. In total, the SQF Complex consumed 686 km2 and Creek consumed 1515 

km2, placing both these fires among the top 20 largest California wildfires (Morris III and 

Dennis, 2020).  

The Bruker Optics EM27/SUN solar-viewing Fourier Transform Spectrometer 

owned by Los Alamos National Laboratory (LANL) collected continuous daytime column 

measurements in Farmersville, California (36.31, -119.19) from Sept. 8 until Oct. 17, 2020, 

for a total of 40 days of observations. The EM27/SUN solar spectrometer has been 

previously used to study emissions from urban and agriculture CH4 and CO2 sources (Chen 

et al., 2016; Viatte et al., 2017; Dietrich et al., 2021; Alberti et al., 2022a; Makarova et al., 

2021; Heerah et al., 2021). The recent addition of a CO detector in Bruker’s EM27/SUN 

Fourier Transform Infrared (FTIR) spectrometer increases the instrument’s utility for 
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measuring combustion sources and as a validation tool for TROPOMI column XCO as it 

covers the same spectral region (Hase et al., 2016). The EM27/SUN uses the sun as the 

light source which allows it to derive aerosol optical depth (AOD) as demonstrated by 

Barreto et al. (2020) at the TCCON FTIR and AERONET site at Izaña, Spain. In their 

study, TCCON spectra were degraded to the same resolution as the EM27/SUN (0.5 cm-

1) and they concluded that EM27/SUN spectra would be able to effectively derive AOD. 

Following their approach, we derive AOD for the wildfire period from our measurements. 

Further details of the AOD calculation are found in Section 3.2.4.  

EM27/SUN Xgas values were retrieved from unaveraged double sided 

interferograms using the I2S and GFIT (GGG2014 version; https://tccon-wiki.caltech.edu/) 

retrieval algorithms automated by the EGI processing suite (Hedelius et al., 2016). Surface 

pressure is required to retrieve dry air columns in GGG and we used Coastal Environmental 

Systems ZENO weather station to record surface pressure at our field site for retrievals. 

Retrievals also require atmospheric profiles of temperature, pressure, altitude and water 

and these profiles were extracted from NCEP/NCAR reanalysis product (Kalnay et al., 

1996). We calibrated the EM27/SUN via co-located measurements alongside the IFS125, 

a high-spectral-resolution FTIR operated by TCCON at the California Institute of 

Technology (CIT), both before and after the collection periods to determine calibration 

factors (Rgas) assuming a linear model forced through the origin for each gas, e.g., XTCCON 

= XEM27 Rgas (Chen et al., 2016; Hedelius et al., 2016). The TCCON network sets the 

standard as the current state-of the art ground-based validation system for remote sensing 

and satellite-based observations of greenhouse gases (Wunch et al., 2011), and TCCON 
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observations are tied to the World Meteorological Organization (WMO) standard 

greenhouse gas scale. Co-locating the EM27/SUN and TCCON instruments ensures 

system stability of the EM27/SUN after transportation to field sites. Co-located 

measurements were performed on Sept. 2–3, 2020 and Oct. 30–Nov. 1, 2020. Results of 

the correction factors from the co-located measurements are shown in Table A2.1 of 

Appendix A2. The TCCON instrument also uses the GFIT retrieval algorithm with the 

same a priori profiles; however, due to different instrument spectral resolutions and 

averaging kernels, we correct for the differences between the EM27/SUN and TCCON 

instrument following Hedelius et al., 2016 (Equation A4) to adjust the EM27/SUN 

retrievals before comparing with TCCON and deriving calibration factors. 

Prior to measurements in California, the EM27/SUN was stationed in Fairbanks, 

Alaska for several months. Given the different settings used with the CamTracker, the solar 

disk was not centered on the camera and this misalignment was found on Sept. 7. Based 

on co-located measurements with the CIT TCCON on Sept. 2 and 3, it was determined that 

the observations within the second detector of XCO were affected on the days prior when 

camera was misaligned (Sept. 2, 3, 6, and 7). For this reason, we report measurements of 

XCO, XCO2 and XCH4 beginning on Sept. 8 and use the Oct. 30 – Nov. 1 co-located 

measurements for calculating correction factors. AOD was derived from micro windows 

within the first detector, thus calculations of AOD were not affected. 
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Figure 3.1. a) Satellite imagery captured by NOAA-20 VIIRS of heavy smoke in California on 
September 12, 2020, highlighting fire and thermal anomalies in red (NASA Worldview; 
worldview.earthdata.nasa.gov), and with black diamond shape showing the EM27 measurement 
location and blue diamond shape the AERONET observational site. b) Inset shows more detail of the 
smoke plume within the SJV from the SQF Complex in the Sierra Nevada, shown by red thermal 
anomalies at the right of the image. c) Inset of TROPOMI XCO overpass at 2020-09-12 13:54 PDT. 
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3.2.2    TROPOMI Column Measurements 

 
TROPOMI is an instrument launched in late 2017 onboard the European Space 

Agency’s (ESA) Sentinel-5-Precursor (S5P). The instrument measures Earth radiance 

spectra in the ultraviolet (UV), NIR and SWIR allowing for measurements of a wide range 

of atmospheric trace gases and aerosol properties (Veefkind et al., 2012). The satellite has 

a sun-synchronous orbit with daily global coverage and a spatial resolution of 5.5 x 7 km2 

for CH4 and CO operational level 2 (L2) products. The offline (OFFL) CO total column 

L2 data product filtered for quality assurance values > 0.5 are used in this work as 

recommended in the product readme file 

(https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Carbon-Monoxide-

Level-2-Product-Readme-File, last access: 4 Aug 2022). This selection filters out high 

solar zenith angles, any corrupted retrievals, and influences from high clouds. The majority 

of the TROPOMI XCH4 product was flagged out near the observational site during our 

measurement period, and hence was not included in this analysis. Following Sha et al., 

2021, the TROPOMI CO column densities were converted to XCO (ppb) by using the 

modeled surface pressure and total column of H2O to calculate the column of dry air.  

We evaluated the agreement between the retrieved XCO from EM27/SUN and 

TROPOMI overpasses during the measurement period. This allows for a novel evaluation 

of the TROPOMI sensor under wildfire conditions of high XCO and aerosol loading in the 

atmosphere. A correction factor was calculated to account for differences in the a priori 

profile used in the retrieval of XCO in both instruments. We follow the a priori substitution 

method described in (Sha et al., 2021; Jacobs, 2021) to calculate an additive factor for the 
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EM27/SUN. Due to the possibility of measuring narrow smoke plumes on subgrid 

spatiotemporal scales, we perform a sensitivity study to determine the best co-location 

criteria for the EM27/SUN to TROPOMI comparison by varying the maximum radius (5 

– 50 km) from the observational site and averaging time (5 – 30 min) for the EM27/SUN 

measurements around the TROPOMI overpass time. We require a minimum threshold of 

at least three 1-minute averages within the averaging time aggregations. 

3.2.3    AERONET Data 

AERONET (http://aeronet.gsfc.nasa.gov/ accessed on 15 June 2022) is a global 

network of sun/sky radiometer with over 600 sites operated around the globe. AERONET 

observations include measurements of aerosol optical depth, microphysical and radiative 

properties. The stations are frequently calibrated, and they set the standard for aerosol 

measurements and validation for satellite products. AERONET measures AOD at several 

spectral windows from 340, 380, 440, 500, 675, 870, 940, 1020 and 1640 nm. The 

Ångström exponent (AE), describing the wavelength dependence of aerosol optical 

thickness, is calculated from the spectral AOD. We used the AERONET Level 2.0 version 

3 AOD and AE data from the Fresno_2 site (36.78, -119.77) that has been operating in the 

same location since 2012. This site is located about 90 km away from our EM27/SUN site. 

Further quality control information can be found in Giles et al., 2019. 

3.2.4    AOD Calculation 

To calculate AOD from the EM27/SUN solar measurements, we follow the 

methods described in Barreto et al. (2020) who found good agreement between AERONET 
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and TCCON FTIR-derived AOD at the high altitude Izaña Observatory in Spain. Their 

analysis was performed on degraded TCCON FTIR solar spectra (0.5 cm-1) to assess the 

capability of lower resolution FTIR EM27/SUN instruments to detect aerosol broadband 

signal. A recommended ten interferogram scans were co-added to increase the signal to 

noise ratio for a total integration of 1 minute. We calculated AOD from four recommended 

micro windows with high solar transmission centered at 1020.9, 1238.25, 1558.25, and 

1636 nm and compare to a nearby AERONET site located in Fresno, CA.  

We apply the methods further described in Barreto et al. (2020) that are based on 

the Beer-Lambert-Bougher attenuation law: 

�� =  ��,� ∙ � ! ∙ exp (−' ∙ (�)       (1)  

where Vλ is the measured solar irradiance at wavelength *, Vo,λ is the spectral irradiance 

outside the Earth’s atmosphere at wavelength *, d is the ratio of mean to actual sun-earth 

distance, and m is the optical air mass (Kasten and Young 1989). The Vo is derived from 

the Langley method by utilizing the measured solar intensity (V) versus the optical air mass 

(m) and extrapolating to an optical air mass of zero. The total optical depth ((�) is the sum 

of the optical depth of Rayleigh scattering ((+,�), gas absorption ((,,�), and aerosols ((-,�): 

(� =  (+,� + (,,� + (-,�.        (2) 

Barreto et al. (2020) carefully selected and evaluated several FTIR micro windows to 

minimize the gas absorption, thus (,,� is considered negligible. Rayleigh scattering is 

calculated following Bodhaine et al. (1999) using the pressure measured at the 
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measurement site by the ZENO weather station. The AOD (-,� can then be calculated by 

subtracting Rayleigh scattering from the equation below: 

 (-,� = /0123,4∙ 567∙8  /0 (24)
9 − (+,� .       (3) 

A cloud filter is applied to the spectra based on the measured fractional variation in 

solar intensity (fvsi). We set this quality filter to a maximum of 0.5% variability to ensure 

minimum cloud interference. The optical air mass range for Langley plot calibrations were 

performed from 1.5 > m > 7 to avoid large errors at smaller air masses and turbidity 

influence at solar noon. A plot of ln(Vo) is found in Appendix A2, Figure A2.1. displaying 

the calculated ln(Vo) over time from September to November 2020.  Mirror degradation 

and exposure to dust or ash from fires can be observed in a declining ln(Vo) and a sudden 

jump in ln(Vo) is observed in late October and early November after the mirrors were 

cleaned, suggesting that debris had diminished the solar intensity measured by the FTIR 

instrument. Due to the varying ln(Vo), we calculate AOD only for the first week of data 

collection (Sept. 8 – 15)  using the ln(Vo) obtained during the earlier period of September, 

summarized in Table A2.2 of Appendix A2. 

A time series of the FTIR-derived AOD for the four micro windows is shown in 

Figure A2.2 of Appendix A2 where a spectral dependance of the aerosol absorption can be 

observed in the plot with longer wavelengths recording smaller AOD. Although our FTIR-

derived AOD is limited to the spectral range from the FTIR detector (1020.9 – 1636 nm), 

we used the Ångström exponent to derive FTIR AOD at 500 nm to enable a comparison 
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with other studies shown in Figure 3.4. A plot of AOD at 1020.9 and 1636 nm with 

AERONET at 1020 and 1640 nm can be found in the Appendix A2, Figure A2.3. 

3.2.5    Estimating Emission Factors and Modified Combustion Efficiency 

We demonstrate the capability of ground-based solar column measurements to 

calculate important variables for fire research including EFs and MCE for determining fire 

emissions and understanding different combustion phases of wildfires. As a case study, 

Sept. 12 observations were selected as this day had the highest observed XCO and dominant 

influence from the SQF Complex (Figure 3.1b). The SQF Complex was a lightning-

sparked fire that began on Aug. 19, 2020, in the Sierra Nevada mixed conifer forest. We 

estimate emission ratios of CH4 and CO (ERCH4/CO2 and ERCO/CO2) by calculating the slope 

from a York linear regression of CO and CH4 excess mole fractions (∆XCO and ∆XCH4) 

relative to CO2.  

:;< =  =
 
∆>?7

= <@ABC <DEFGHB3IJK
>?7 @ABC  >?7 DEFGHB3IJK

.       (4) 

Emission factors (EFCH4/CO2 and EFCO/CO2) were then calculated as shown in 

equation 5 by multiplying the ER by the molar mass of either CO or CH4 (MMX), divided 

by the molar mass of carbon (MMC), and total carbon emitted (CT) while assuming 500 ± 

50g C is emitted per kilogram of dry biomass consumed (MBiomass) (Akagi et al., 2011; 

Burling et al., 2010). CT is given by Equation 6, where n is the number of carbon-containing 

species measured, Nj is the number of carbon atoms in species j, and ∆Cj is the excess 

mixing ratio of species j (Yokelson et al., 1999). 
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The MCE is commonly used as a relative measure between the smoldering and flaming 

combustion phases. Smoldering emissions have an MCE from 0.65-0.85, pure flaming 

emissions have an MCE of 0.99 and emissions near 0.9 have roughly equal amounts of 

flaming and smoldering combustion (Akagi et al., 2011). MCE was calculated by dividing 

excess mole fraction of CO2 (∆CO2) by the total excess mole fraction of CO and CO2: 

SW: = =�a7
=�ab ∆>?7

 .         (7) 

Due to averaging kernel differences across the trace gases, an averaging kernel 

correction is applied to Equations 4 and 7, see Appendix 2.1. The enhancement over 

background mixing ratios (∆Xgas) for each measurement day was calculated by subtracting 

the background (Xgas, bkdg) determined as the 2nd percentile of daily measured mixing ratios 

(Xgas). A sensitivity test showed that emission ratios did not significantly change if 

background was calculated using 1st-5th percentiles. The monthly background in 

September was 411.3 ppm for XCO2, 99.4 ppb for XCO and 1905.3 ppb for XCH4. The 

monthly average mixing ratios measured in situ at Mauna Loa for CO2 were 411.5 ± 0.2 

ppm and CH4 1884.7 ± 1 ppb during September 2020 (https://gml.noaa.gov/obop/mlo/). 
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3.3      Results 

3.3.1   Observations XCO, XCO2, and XCH4 from wildfires in the San Joaquin Valley  

The first week of trace gas measurements are shown in Figure 3.2 in addition to the 

daytime fire radiative power (FRP), an indicator of fire intensity measured by Visible 

Infrared Imaging Radiometer Suite (VIIRS) Active Fire and Thermal Anomalies product 

from NOAA-20. Fire-emitted CO can be observed in the timeseries and XCO is 

exceptionally high on Sept. 12, reaching mixing ratios 10 times higher than the previous 

days. A large smoke plume was captured by the NOAA VIIRS satellite on Sept. 12 

originating from the SQF Complex and traveling west directly over the measurement site 

as seen in Figure 3.1b. Sept. 12 also corresponds to the highest FRP during this record. The 

next day, Sept. 13, both fires remained active; however, their smoke plumes were 

transported northward as reflected by a lower XCO in our observations relative to Sept. 12. 

XCO2 and XCH4 were also enhanced on the Sept. 12 smoke event and followed the 

same trend as XCO over the course of the day. Over 30 dairy farms are located northwest 

of the measurement site and they are expected to influence observed XCH4 and XCO2; dairy 

influence is notable on days with predominantly westerly winds (e.g. Sept. 8 and 11). XCO, 

XCO2, and XCH4 averaged at 154 ± 78 ppb, 413 ± 1 ppm, and 1938 ± 27 ppb from Sept. 8 

to Oct. 17. XCO and XCO2 peaked on Sept. 12 at 1012.8 ppb and 421.6 ppm, while XCH4 

peaked on Sept. 28 at 2050.1 ppm due to dairy farms in the area. The measured XCO on 

Sept. 12, 2020, is the highest reported XCO value in EM27/SUN literature. Retrievals of 

Xgas using the EM27 in such dense smoke plume has not been reported in previous studies. 

Using this date as a case study, we calculate total column EF and MCE to study the 
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evolution of the fire over the course of the day further described in Section 3.3.4. We isolate 

the Sept. 12 fire smoke plume by taking the XCO mixing ratios that exceeded the 98th 

percentile (>335.1 ppb) from all observations over our measurement period. This period 

corresponded to mixing ratios recorded after 12:00 pm when XCO and XCO2 began to 

increase considerably. 

The time since emission of the observed smoke plume was estimated to be ~1.5 hr. 

This was calculated by dividing the distance away from the SQF Complex fire (~60 km) 

by the average wind speed (11.2 ± 0.8 m/s) at the height of the smoke plume (4.1 ± 1.2 

km). The height of the plume was determined by taking a mean of the available pixels 

within the smoke plume of aerosol layer height product from TROPOMI 

(http://www.tropomi.eu/data-products/aerosol-layer-height). The mean wind speed 

measured at 4.1 ± 1.2 km came from a 915 MHz Wind Profiler located in Visalia, CA about 

20 km west of the observational site (data available at: 

ftp://ftp1.psl.noaa.gov/psd2/data/realtime/Radar915/ ). 

  



 

 62

 

Figure 3.2. Timeseries of daytime FRP from VIIRS NOAA-20 of Creek fire (red) and SQF Complex 
(black) and of 5-minute mean observations from the ground-based EM27/SUN solar-viewing 
spectrometer during the first week of measurements September 8 – 15, 2020. 

 

3.3.2    Comparison of EM27/SUN and TROPOMI Retrievals 

In this section, we compare XCO retrieved from ground-based EM27/SUN 

observations downwind of the Sierra Nevada wildfires to satellite-based XCO retrievals 

from coincident TROPOMI overpasses. Previous studies of XCO and XCH4 comparisons 

between TROPOMI and EM27/SUN’s have used a TROPOMI soundings between 50 – 

100 km from the observational site and used EM27/SUN measurements between 40 mins 

– 1 hour TROPOMI overpass as a coincident criteria (Sha et al., 2021; Jacobs, 2021; Sagar 

et al., 2022; Alberti et al., 2022b). Given the spatial and temporal heterogeneity in smoke 

plumes from wildfires observed in Figure 3.1 and Figure 3.2, we perform a sensitivity study 

of different radii (10, 15, 20, 30, 40, 50 km) from our observational site and time averages 

(10, 15, 20, 30 mins) to determine adequate criteria for comparison during a wildfire event. 

An illustration of the sensitivity analysis is shown in Figure A2.5, Appendix A2.  
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We quantify the sensitivity of different TROPOMI radii and averaging times in 

comparison with our EM27/SUN data by calculating the mean difference, mean relative 

difference and R2 between the linear regression fits for the measurements. We find that all 

combinations produce a positive mean bias, meaning that TROPOMI overestimates XCO 

compared to the EM27 measurements. TROPOMI pixels within a radius of 5 km averaged 

with 30-minute aggregations of EM27/SUN gives the lowest mean difference of 10.64 ppb, 

mean relative difference of 5.5%, and highest correlation coefficient of 0.99, however, only 

4 points coincide during the measurement period. To maximize the number of coincidences 

while maintaining a low bias, we select 15 km as the maximum radius with a 30-minute 

averaging time. This gives a total of 19 coincident data points and mean difference of 17.2 

ppb, mean relative difference of 9.7%, and R2 of 0.97. A timeseries of the coinciding data 

pairs from the EM27/SUN 30-minute average observation period with TROPOMI overpass 

with 15 km radii are shown in Figure 3.3a and the correlations are shown in Figure 3.3b. 

Applying these spatial and temporal criteria results in large variance for the largest 

measured XCO due to heterogeneity in the smoke plume event. The EM27/SUN displays a 

larger variance than TROPOMI due to capturing the 30-minute temporal variability in the 

plume as it was transported above the instrument. We find a strong correlation between 

CO column averages with an R2 of 0.97 and a York linear regression fit of y = 1.36x – 

40.15. These results suggest an overestimation of 9.7% XCO from TROPOMI observations 

of wildfires. 
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Figure 3.3. a) Timeseries of coinciding EM27/SUN 30-minute average observation period with 
TROPOMI overpass 15 km from observation site. b) Correlation between coinciding TROPOMI and 
EM27/SUN data pairs. The error bars are the standard deviation of the TROPOMI averaged pixels at 
15 km and EM27/SUN 30-minute observation. 
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3.3.3    Aerosol optical depth derived from measured solar intensity 

We show a timeseries of AOD at 500 nm derived for the first week of measurements 

in Figure 3.4 (Sept. 8 – 15) plotted with AOD at 500 nm from an AERONET station in 

Fresno (Sept. 4 – 19), about 90 km north of the measurement site (Figure 3.1). Similar to 

observations of XCO, enhancements of AOD are observed through the week with the 

highest recorded AOD on Sept. 12. The observational sites were relatively far from each 

other (~90 km) and although smoke reaching the two sites varied over these spatial scales, 

the FTIR AOD follows the same inter-day trend as the AOD measured by the AERONET 

with a peak in AOD on the 12th. Intraday variability between the sites do not seem to 

follow the same trend. This suggests that the EM27/SUN AOD estimate was also able to 

qualitatively capture the increase in aerosols in the SJV as fires burned more intensely and 

smoke from fires moved into the valley due to synoptic conditions. Differences are 

observed in the AOD timeseries as these two sites were downwind of two different fires in 

the Sierra Nevada: the Creek Fire was located directly west of Fresno and the SQF 

Complex composed of the Castle and Shotgun fires was located directly west of the 

EM27/SUN measurement site. This may be the reason that the peaks observed at the FTIR 

site are not seen in the Fresno AERONET data. Ahangar et al. (2022) determined that the 

SJV air quality was mainly impacted during the Sept. 8 – 15 period with Creek and SQF 

Complex fires responsible for the majority of the smoke within SJV. Although the Creek 

fire began on Sept. 5, the air quality began to deteriorate a few days after, possibly due to 

the westerly downslope winds that pushed the smoke east of the Sierra Nevada at the 

beginning of the fire (Cho et al., 2022). Low AOD from AERONET was observed prior to 
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Sept. 8 with values of 0.50 ± 0.28, illustrating the air quality was cleaner and deteriorated 

after the activity from the Creek and SQF Complex fires increased (Ahangar et al., 2022). 
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Figure 3.4. FTIR AOD and AERONET AOD at 500 nm. The FTIR AOD at this wavelength was 
calculated using the Ångström exponent relationship. 

 

 
Figure 3.5. Scatterplot correlations of XCO and AOD at 500 nm from the FTIR for each day of the 
first week Sept. 8 -12. Low smoke days fall along the black line. The teal line corresponds to Sept. 12, 
the day of highest fire influence in our record. 
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3.3.4    Emission Factors and Modified Combustion Efficiency  

The average MCE for the smoke plume on Sept. 12 was 0.89 ± 0.21, meaning that 

observations of the smoke plume consisted of a mixture of flaming and smoldering 

combustion phases (Figure 3.6). During the flaming phase of a fire, CO2 is produced, and 

convection is created by high flame temperatures and produces lofting of smoke. High 

altitude smoke can be transported large distances, corroborated by observations of ash 

falling from the sky at the measurement site ~60 km away from the fire and clearly 

observable by satellite imagery (Figure 3.1b). In contrast to the flaming phase, smoldering 

fires burn at lower intensity, and incomplete combustion side products like CO, CH4, and 

organic carbon aerosol are produced. We observed a steady MCE as XCO, XCH4, and AOD 

increased, indicating influence of smoldering combustion (Figure 3.6, a-e). The MCE 

calculated from total column observations is averaged over the entire vertical plume as it 

was being transported over the measurement site. The advantage of a plume integrated 

MCE is that vegetation is burnt differently throughout the fire and the atmospheric column 

observations can represent the fire as a whole by integrating the smoke plume heterogeneity 

in the vertical atmospheric column. 

Emission ratios of CO and CH4 on Sept. 12 were calculated with respect to CO2. 

ERCO/CO2 was 0.116 and the ERCH4/CO2 was 0.0073 (Figure 3.6, f-h), resulting in an EFCO2 

of 1632.9 ± 163.3 g CO2 per kg biomass combusted, EFCO of 120.5 ± 12.2 g CO per kg 

biomass combusted, and a EFCH4 of 4.3 ± 0.8 g CH4 per kg biomass combusted. We 

compared findings from our gas measurements to literature values in temperate coniferous 

forest studies from the Sierra Nevada and other locations in North America summarized in 
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Table 1 and Figure 3.7. All the studies listed in Table 1 except for this study were based 

on aircraft measurements. Most recently, Prichard et al. (2022) compiled emission factors 

for North American conifer forests and found a fire average for EFCO2 of 1629.54 ± 63.43, 

EFCO of 104.01 ± 34.93, and EFCH4 of 5.05 ± 2.41. Burling et al. (2011) measured the Turtle 

Fire in the Sierra Nevada, and we find that our MCE overlaps within error with theirs. 

Finally, CH4 emissions reported for more smoldering fires that were characterized by direct 

O2/CO measurements for 1999 Big Bar fire (Lueker et al., 2001). Our atmospheric column-

based EF fall within the ranges of previous literature, highlighting the ability of the 

EM27/SUN solar spectrometer observations to be used for deriving important variables for 

fire research.  
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Table 3.1. Summary of past airborne studies modified combustion efficiency (MCE) and emission 
factors (EF, g kg-1) relative to CO2 for temperate coniferous forests in North America and Sierra Nevada. 

Studies MCE EF CO2 EF CO EF CH4 
 

North America 

Radke et al., 1991* – Conifer Forest 0.919 1641 93 3.03 
Yokelson et al., 1999* – Southeastern US 
Pine Forest understory 0.926 1677 86 - 

Yokelson et al., 2011 – Mexico Pine-oak 0.908 1603 103 3.66 
Burling et al., 2011 –Average conifer forests 
understory burns* 

0.936 ± 
0.024 1668 ± 72 72 ± 26 3.0 ± 2.4 

Urbanski et al., 2013 – Rocky Mts conifer 
forest fires 0.85 – 0.92 1527 – 1681 89.3 – 173 4.4 – 12.1 

Liu et al., 2017 – Study average  0.912 1454 ± 78 89.3 ± 28.5  4.9 ± 1.5 
 

Sierra Nevada 

Burling et al., 2011     

         Turtle Fire* (10-Nov-2009) 0.913 1599 97 5.51 

         Shaver Fire* (10-Nov-2009) 0.885 1523 126 7.94 

Yates et al., 2016 
    

        Rim fire (26-Aug-13) 0.94 1675 ± 285 92.5 ± 16 4.8 ± 0.8 

        Rim fire (29-Aug-13)  0.94 1711 ± 292 69.5 ± 12 4.7 ± 0.8 

        Rim fire (10-Sept 13) 0.88 1595 ± 272 138.4 ± 24 7.5 ± 1.3 

Liu et al., 2017     

        Rim fire (26-Aug-13) 0.923 1478 ± 11 78.7 ± 4 4.43 ± 0.25 

This study: SQF Complex fire+ 0.91 ± 0.01 1645.0 ± 164.5 111.0 ± 19.2 5.2 ± 1.1 
 
*Prescribed burns 
+ Measurement uncertainties were calculated by propagating the error from the linear regression standard error, CT, 10% error from 
MBiomass, and biased introduced from difference in instrument averaging kernel (Appendix A2.1). 
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Figure 3.6. Timeseries of September 12, 2020 of a) MCE, b-d), shaded grey area represents the SQF 
Complex fire plume. d-g) linear regression plots of ∆CO and ∆CH4 against ∆CO2 to calculate the 
slope that represents the ER.  
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Figure 3.7. Emission factors (g kg-1) as a function of MCE for temperate coniferous forests in Sierra 
Nevada wildfires.   

 
 
 3.3.5    Enhancement Ratios of SJV Greenhouse Sources 

 
The EM27/SUN’s location enabled us to sample transient fire plumes from local 

and state wildfires, but was also located near a large cluster of dairy farms, which are a 

large regional source of CH4 emissions (Heerah et al., 2021; Marklein et al., 2021). Dairy 

farms are known to emit significant amounts of CH4 from the animal’s enteric fermentation 

and on-farm manure management. Because fires also emit CH4, we explored whether dairy 

and fire sources in this region can be disentangled using ratios of the different species 

measured by the EM27/SUN. Furthermore, our measured XCH4 enhancement ratios relative 

to XCO2 enable us to investigate the contribution of state wildfires to CH4 emissions in 

2020. To constrain the observed enhancements, we compared the enhancement ratios of 

ΔXCH4/ΔXCO2 from September – October 2020 to enhancement ratios collected in 

September 2018 and 2019 in the same local area that characterize non-fire years. 

September 2018 and 2019 measurements are further described in the Appendix. We 
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focused on observation days with statistically significant correlations (n = 26 days) 

between CH4 and CO2 enhancements (R2 > 0.5 and p < 0.05) to characterize enhancement 

ratios of the SJV non-fire years.  

Figure 3.8 shows the ΔXCH4/ΔXCO2 enhancement ratios from September 2018, 

September 2019, and September – October 2020 measurements. We observe a clear 

influence of dairy farms with larger ΔXCH4/ΔXCO2 enhancement ratios of 38.4 ± 21.7 and 

30.5 ± 5.0 (ppb/ppm), respectively for September 2018 and 2019, exceeding ΔXCH4/ΔXCO2 

wildfire smoke periods. During our 2020 observations, ΔXCH4/ΔXCO2 reflecting dairy farm 

influence were found on some days in addition to less steep slopes from smoke influence. 

This is expected as elevated XCO2 and lower XCH4 are emitted from wildfires. The Sept. 12 

smoke plume event is highlighted in the figure and has a smaller enhancement ratio of 7.3 

(ppb/ppm) than dairy farms. Similar ratios of ΔXCH4/ΔXCO2 were found in Hanford, ~50 

km west of our observation site, from an aircraft study ranging from 35.9 – 44.4 (ppb/ppm) 

during a winter campaign (Herrera et al., 2021). Other column-based studies have 

determined the XCH4/XCO2 for urban sources in the Los Angeles City finding ratios for 

XCH4/XCO2 ranging from 6.65 to 9.96 (ppb/ppm) in 2015 (Chen et al., 2016). Wunch et al., 

2009 calculated XCH4/XCO2 ratio of 11 ± 2 and showed that urban fossil fuel and wildfire 

XCH4/XCO2 ratios are very similar due to incomplete combustion and ratios are not distinct 

enough to separate (Wunch et al., 2009). In the vicinity of the measurement site in the SJV, 

there is a strong influence of dairy farm agriculture and minimal urban emissions away 

from population centers, thus we are able to separate of XCH4/XCO2 from dairy sources, 

from fire or possible urban emissions. The CH4/CO2 enhancement ratios observed in this 
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area make it evident that dairy farms operations are the dominant source of CH4 during fire 

and non-fire periods. Nevertheless, CH4 enhancements during the strong smoke influence 

periods greatly exceeded CH4 enhancements from local dairy sources. The immense scale 

of 2020 wildfires, summing to 28% of the states’ CO2 budget for the year (CO2 Inventory 

Scoping Plan, 2022), in addition our observations of elevated fire derived CH4, suggest that 

these fires had a significant effect on the state’s CH4 budget. 

Given the importance of reducing CH4 emissions for meeting California’s climate 

goals, we calculate the amount of CH4 released from the wildfires that burnt in the state in 

2020 using estimated CO2 emissions from the state’s wildfire inventory along with 

emission ratios of CH4/CO2 from our study and the literature on fires in California. The 

California Air Resources Board (CARB) reported CO2 emissions of 106.7 Tg of CO2 was 

emitted from 2020 wildfires, with individual CO2 emission estimates from the top 20 

wildfires. We use estimated CO2 emissions from the top 20 wildfires to derive CH4 

emissions. The total emissions of CH4 are calculated by multiplying the emission or 

enhancement ratio of wildfire smoke and molecular mass ratios: 

:>c� = d:;>c�  ×  QRe

QRf7

g :>?!       (8) 

where ECH4 is the emissions of CH4 in Gg/yr, ERCH4 with respect to CO2 in mol/mol, 

MCH4 is the molar mass of CH4 and MCO2 is the molar mass of CO2, and ECO2 are the fire 

specific emissions in Gg/yr. ER from fires are dependent on vegetation type; fires in 

California fell into temperate forest, shrubland or grassland vegetation types (Xu et al., 

2022). Based on the generic vegetation classification from the FINN model 
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(https://www.acom.ucar.edu/Data/fire/), we classify the top 20 California wildfires of 2020 

into the three types based on the dominant vegetation. The ER for the general vegetation 

was derived from EFs summarized in Xu et al., 2020 and for the Creek and SQF Complex 

fires we averaged the EFs summarized in Table 1 for the Sierra Nevada and derive an ER 

shown in Table A2.3, Appendix A2. The top 20 wildfires represented 92% of CO2 

emissions released from wildfires in 2020 and emitted 213.7 ± 49.8 Gg CH4. Figure 3.9 

shows the estimated CH4 emissions from the top 20 largest wildfires of 2020 compared to 

CARB’s 2019 anthropogenic CH4 inventory emissions, the most recent inventory year 

available (CH4 Inventory Scoping Plan, 2022).  

 

             

Figure 3.8. Correlation plots of ΔXCH4 vs ΔXCO2 for SJV measurements collected during non-fire 
years in Sept. 2018 (blue) and 2019 (light blue), and during fire period of Sept. – Oct. 2020 (gray). 
The Sept. 12 smoke event (black) highlighted with a linear fit through that day’s data clearly shows a 
distinct ∆XCH4/∆XCO2 relationship from other data. 
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Figure 3.9. California CH4 emissions from 2020 calculated for the top 20 wildfires compared to the 
state’s anthropogenic CH4 emissions from the 2019 inventory (CARB, 2019). The industrial sector 
also includes oil and gas emissions.  

 
 
3.4 Discussion  

We made total column measurements of CO2, CO, CH4, and AOD with an 

EM27/SUN FTIR in the San Joaquin Valley (SJV), California during part of the wildfire 

season of 2020 from September to October. The emissions of the Creek and SQF Complex 

fires, two major wildfires burning in the Sierra Nevada, were sampled continuously in the 

SJV for over a month. We demonstrate that data from the EM27/SUN allows for 

calculating MCE and EFs in smoke plumes transported from wildfires, especially for high 

altitude smoke, adding important new estimates for fires in this region. For the Sierra 

Nevada, only three field-based studies have estimated emission factors in this area despite 

the increase in wildfires over burns the previous decade (Burling et al., 2011; Yates et al., 

2016; Liu et al., 2017). Our emission factor estimates from the September 12 event for CO 

(120.5 ± 12.2 g kg-1 dry biomass burned) and CH4 (4.3 ± 0.8 g kg-1 dry biomass burned) 
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are within the range of those reported from the Sierra Nevada conifer forests (Burling et 

al., 2011; Yates et al., 2016; Liu et al., 2017). Our atmospheric column-based estimates 

contribute to the limited number of EF for temperate forests and are particularly important 

given the scale of the fires that occurred in 2020 in California.  

Empirically quantified EFs in temperate conifer forests are limited in number and 

many of the measurements in these regions are from prescribed burning for land 

management (Burling et al., 2011; Akagi et al., 2011; Urbanski, 2013). Because prescribed 

burns typically occur during favorable atmospheric conditions, specified fuel, and during 

non-wildfire seasons, it is possible that prescribed burn EFs may not represent wildfire EFs 

that burn under different conditions favorable to wildfires (Urbanski, 2013). There is a need 

for biome-specific EFs to quantify the amount of trace gas or aerosol emitted per kilogram 

of biomass burned, and these EFs are essential model inputs for estimating total greenhouse 

gas and aerosol emissions of fires.  

Field measurements have also been limited in measuring a smaller fraction of the 

smoke plume. Airborne measurements are the most common method to estimate EFs from 

wildfires and involve aircraft equipped with fast response gas analyzers sampling through 

smoke plumes (e.g. Yokelson et al., 1999; Yates et al., 2016; Iraci et al., 2022). Although 

highly effective for large and remote wildfires, this method can be costly and logistically 

complex, limiting the number of fires sampled during a campaign period (Ross et al., 

2013). In situ stations downwind of fires are able to provide measurements when aircraft 

are unable to fly but they oversample in smoldering conditions where the fire burns less 

vigorously and emissions are released closer to the ground. Aircraft measurements tend to 
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sample lofted fire samples in the flaming phase, resulting in different emissions than a fire 

in situ measurements (Paton-Walsh et al., 2005). Although much has been learned from 

these methods, an average sample of the fire plumes is difficult to obtain due to variability 

in emissions from the fire burning at different stages (Paton-Walsh et al., 2005). Open-path 

FTIR measurements have allowed for “whole-fire” emission factors (Smith et al., 2014). 

Total-column measurements can provide a plume-integrated EF and MCE; however, 

calculating EFs with respect to CO2 in the vertical column has been challenging due to high 

atmospheric background (Kille et al., 2022; Paton-Walsh et al., 2005; Lutsch et al., 2020, 

2016; Viatte et al., 2014, 2015). Portable solar viewing instruments like the EM27/SUN 

have the advantage of remotely sampling total columns closer to the source and capturing 

a vertical integration of transported smoke plumes, contributing to the limited number of 

EFs across biomes and understanding impact on regional smoke influence background.  

Simultaneous measurements of ground-based total columns and satellites allow for 

a spatial and temporal understanding of the fire events.  The XCO enhancement from the 

2020 wildfires in the Sierra Nevada was also observed from space and smoke plumes up 

to ten times higher than the local background are visible in the TROPOMI soundings on 

the Sept. 12. smoke event. Pairing stationary ground-based column observations with 

satellites can help in understanding regional wildfires at a greater spatial and temporal 

scale. Although TROPOMI has daily global coverage with great resolution, daily snapshots 

are often not enough to understand the behavior of a fire. Conversely, stationary ground-

based instruments are limited to observing a point in space. As an instrument with 

capability of measuring atmospheric columns, the EM27/SUN can help close the gap in 
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the temporal scale of satellite observations. The EM27/SUN measured continuously in the 

daytime filling in the temporal gaps from the satellite TROPOMI’s single overpass 

observations. A sensitivity study showed that a smaller radius of 5 or 15 km from 

TROPOMI observations paired with 30-minute averaging around the overpass time gave 

better statistical agreement during wildfire events. This strong correlation of XCO between 

TROPOMI and the EM27/SUN has been observed before in urban sites (Sagar et al., 2022; 

Alberti et al., 2022b) and in rural Alaska (Jacobs, 2021). Jacobs (2021) found that wildfire 

influences in XCO resulted in high observational variance in EM27/SUN observations and 

they suggest that this may be due to spatial and temporal variability in the smoke plume 

measured by TROPOMI and the EM27/SUN. The 9.7% overestimation from TROPOMI 

found in this study may also be due to averaging of the smoke plume’s heterogeneity within 

each TROPOMI comparison point. Alternatively, Rowe et al. (2022) found that multiple 

scattering on aerosols may be responsible for 5-10% increased XCO observations from 

TROPOMI in thick smoke plumes.  

The air quality index in the SJV was at an all-time high in the hazardous range for 

weeks during the 2020 wildfire season (Morris III and Dennis, 2020) and AOD at the 

AERONET site in Fresno increased by three to five times higher than yearly average from 

2002-2019 (Cho et al., 2022). FTIR-derived AOD at 500 nm reached extreme highs during 

the Sept. 12 smoke plume event, and followed the same trend on other days as the trace 

gas enhancements. The slopes during low smoke and high smoke days were consistent with 

previous satellite observations by McMillan et al. (2008). Previously, simultaneous 

measurements of aerosols and trace gases from the same instrument has been limited due 
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to the aerosol burden interfering with retrieval of trace gases. For example, the majority of 

the TROPOMI XCH4 product was flagged out completely near the observational site during 

the Sept 7 – 15 period, and hence was not included in this analysis. The EM27/SUN 

demonstrated the potential to elucidate trace gas and aerosol relationships even during thick 

aerosol periods. Similarly, future studies may use simultaneous measurements from 

TROPOMI XCO product and AOD to study regional impacts from wildfires (Chen et al., 

2021). Scattered diffuse light during high aerosol loading from biomass burning may 

decrease the reliability of the AOD observations, thus further verification of the FTIR-

derived AOD during high aerosol loading is required. Since the nearest AERONET station 

was relatively far away from our EM27/SUN site, we cannot do a true side-by-side 

comparison. However, the FTIR derived AOD showed the same baseline pattern as the 

AERONET site in Fresno, demonstrating the ability of the EM27 to simultaneously 

measure AOD and trace gases through a thick plume of smoke which can elucidate 

mechanisms within smoke plumes.  

As fires become more frequent with climate change, monitoring trace gases and 

particulates may become especially challenging in mixed source areas like the San Joaquin 

Valley where concentrations can become amplified by stagnant conditions in the SJV. 

Moreover, the fire-added CH4 may hamper evaluation of greenhouse gas emission 

reduction initiatives at the state and at the global scale by adding unaccounted for CH4 to 

the atmosphere. Using CARB’s 2020 wildfire emission estimate for CO2, we calculated 

the CH4 contribution from the top 20 largest fires to be 213.7 ± 49.8 Gg CH4, respectively. 

These wildfires alone emitted 13.6% of the total state CH4 emissions, more than the 
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transportation, electric power, and commercial and residential sectors. While estimated 

CH4 emissions from wildfires are smaller in magnitude than inventoried emissions from 

agriculture and industrial sources, this source should be considered in the state’s inventory 

given its magnitude and large impacts on the atmospheric CH4 during wildfire periods. 

Additionally, wildfire emitted CH4 may be an important and unaccounted positive 

feedback to climate change given the effect of increasing temperatures on fire severity. 

3.5 Conclusions 

Over the past 50 years, approximately three quarters of the area burned by wildfires 

in California’s has been in North Coast and Sierra Nevada (Williams et al., 2019), 

highlighting the importance of studying emission factors from fires in these systems. 

However, there are surprisingly few observations of emission factors from these fires 

despite their importance to California’s greenhouse gas budgets and air quality. The 

ground-based EM27/SUN is a useful instrument for understanding emissions of trace gases 

and aerosols from wildfires at a regional scales. The portable nature of the EM27/SUN 

allows for deployment downwind of fires for calculating important variables like EF and 

MCE. Having alternate techniques to calculate emission factors that are not costly or 

complex to deploy adds to the small number of emissions required to accurately calculate 

emissions and construct wildfire inventories. Several studies have demonstrated the utility 

in FTIR-derived EF for studying whole fire emissions from open path instruments (Paton-

Walsh et al., 2014) and vertically integrated measurements (Viatte et al., 2013). Our total 

column MCE and EF with respect to CO2 are the first to be reported from ground-based 

FTIR measurements in California.  
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Wildfire smoke produced overcast skies throughout the Western U.S. during this 

period, with smoke plumes transported long distances. The EM27/SUN measures a 

vertically integrated regional signal but is limited spatially compared to observations from 

satellites. Here we show that a combination of the two can elucidate spatiotemporal 

variability of wildfire emissions. We find strong agreement between the EM27/SUN and 

TROPOMI, but TROPOMI overestimates observations by 9.7%. This is consistent with 

previous studies of EM27 XCO in rural Alaska (Jacobs, 2021) and Idaho wildfires (Rowe 

et al., 2022). Additionally, our solar spectral measurements were used to derive AOD. We 

compared to a nearby AERONET site and found AOD values at 1020.9 and 1636 nm that 

were consistent with AERONET observations. The Ångström exponent was used to 

calculate FTIR AOD at 500 nm to compare AOD to CO ratios with previous studies. AOD 

at 500 nm reached extreme levels of up to 15 during the smoke plume event. Good 

agreements were found of AOD to CO ratios with those observed in McMillian et al., 2008 

from MODIS AOD and AIRS CO.  

Finally, we find that a significant amount of CH4 was emitted from the top 20 

largest wildfires of 2020 in California. Given the importance of CH4 emissions reduction 

for the state, our study suggests wildfires are an important source of CH4 for California and 

may delay meeting the state’s ambitious goals of reducing emissions. Atmospheric 

monitoring of CH4 should account for wildfire periods, as they can significantly affect 

measured enhancements. Overall, our analysis demonstrates a novel application of the 

EM27/SUN solar spectrometers and will contribute to the development of techniques for 

analyzing remotely sensed greenhouse gas measurements from wildfires. 
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Abstract  

 

In this study, we test the performance of a compact gas chromatograph with 

photoionization detector (GC-PID) and optimize the configuration to detect ambient (sub-

ppb) levels of benzene, toluene, ethylbenzene, and xylene isomers (BTEX). The GC-PID 

system was designed to serve as a relatively inexpensive (~$10k) and field-deployable air 

toxic screening tool alternative to conventional benchtop GCs. The instrument uses 

ambient air as a carrier gas, and consists of a Tenax-GR trap preconcentrator, a gas sample 

valve, two capillary columns, and a photoionization detector (PID) with a small footprint 

and low power requirement. The performance of the GC-PID has been evaluated in terms 

of system linearity and sensitivity in field conditions. The BTEX-GC system demonstrated 

the capacity to detect BTEX at levels as high as 500 ppb with a linear calibration range of 

0-100 ppb. A detection limit lower than 1 ppb was found for all BTEX compounds with a 

sampling volume of 1 L. No significant drift in the instrument was observed. A time-

varying calibration technique was established that requires minimal equipment for field 

operations and optimizes the sampling procedure for field measurements. With an analysis 
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time of less than 15 minutes, the compact GC-PID is ideal for field deployment of 

background and polluted atmospheres for near-real time measurements of BTEX. The 

results highlight the application of the compact and easily-deployable GC-PID for 

community monitoring and screening of air toxics. 

4.1       Introduction 

The volatile organic compound (VOC) family of benzene, toluene, ethylbenzene, 

and xylene isomers (BTEX) are air pollutants that can cause detrimental health effects and 

degrade air quality through oxidation reactions (Calvert et al., 2002; WHO, 2018). BTEX 

compounds are monocyclic aromatics and are grouped together because of similarities in 

their structures, properties, and emission sources (ATSDR, 2004). BTEX compounds are 

emitted as byproducts of combustion of fossil fuels and biomass, including motor vehicles 

and wildfires, and through volatilization from crude oil or its derivatives, including 

gasoline and industrial solvents (Bretón et al., 2017; Koss et al., 2018; Marrero et al., 2016; 

O’Dell et al., 2020). BTEX compounds are classified as hazardous air pollutants (HAPs) 

and are regulated by a large number of agencies worldwide including the United States 

Environmental Protection Agency (US EPA) and the California Air Resources Board 

(CARB) (Houghton et al., 1999; Sekar et al., 2019).  

Among the BTEX family, benzene is the most dangerous as it is a well-known 

carcinogen and may have adverse health effects on immune, metabolic, respiratory 

functioning as well as on development (ATSDR, 2021a; Bolden et al., 2015, 2018; Wilbur 

et al., 2008). Ethylbenzene has been classified as a possible carcinogen, while toluene and 

xylene isomers can cause damage to the brain and central nervous system with long term 
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exposure (ATSDR, 2021b; Bolden et al., 2015). BTEX is ubiquitous in the environment at 

trace levels ranging from sub-ppb to tens of ppb in urban and industrial areas where 

atmospheric mixing ratios are higher (Baker et al., 2008; Bretón et al., 2017; Gilman et al., 

2013; Karl et al., 2009; Liu et al., 2009; Weisel, 2010a; Zeng et al., 2019). Although 

ambient atmospheric BTEX levels have dropped due to reformulation of gasoline (Sultana 

& Hoover, 2018), there is evidence of an increase of emissions from oil and natural gas 

operations (Halliday et al., 2016; Propper et al., 2015). As wildfire events become more 

common with climate change, exposure to BTEX may increase in rural areas (Dickinson 

et al., 2020; USGCRP, 2018). 

Monitoring of BTEX atmospheric background levels requires instrumentation that 

is sensitive to sub-ppb levels (Liu et al., 2009; Weisel, 2010b). Current techniques for 

measuring BTEX include ultraviolet (UV) spectroscopy, infrared (IR) spectroscopy, and 

gas chromatography (GC) coupled either to a flame ionization detector (FID), 

photoionization detector (PID) or to a mass spectrometer (MS) (Liaud et al., 2014; Parsons 

et al., 2011; Scott et al., 2020; Young et al., 2011). Traditional methods require ambient air 

samples to be drawn into sorbent material or collected in evacuated stainless-steel canisters 

then transferred to the lab for further analysis. More recently, open path Fourier-transform 

infrared spectroscopy (FTIR) and proton transfer reaction-mass spectroscopy (PTR-MS) 

have allowed for near-real time analysis in the field (Sahu et al., 2016); however, these 

techniques are expensive to purchase and operate due to their need for support gases, power 

requirements, or large physical size, and hence are not ideal for long-term stationary or 
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mobile monitoring (Parsons et al., 2011; Sydoryk et al., 2010; Warneke et al., 2011; Yuan 

et al., 2020).  

There is currently a need for more inexpensive, easy-to-operate screening methods 

to determine the presence of atmospheric BTEX levels, as elucidating the fine-scale spatial 

patterns of BTEX in populated areas can improve the accuracy of human exposure 

estimates for the surrounding communities and inform mitigation policy (Sekar et al., 

2019). The California Assembly Bill 617 calls for community-focused monitoring in 

disadvantaged and highly impacted communities (AB-617, 2017). This bill and the existing 

technology have popularized the use of low-cost and inexpensive sensors to provide an 

accessible screening method for communities due to the accessible prices, portability, and 

compact sizes (e.g. Purple Air, Clarity, etc. for particulate matter pollution) (AB-617, 2017; 

Spinelle et al., 2017). Numerous inexpensive sensors for BTEX and VOCs have been 

designed (Jian et al., 2013; Lara-lbeas et al., 2019; Skog et al., 2019; Spinelle et al., 2017); 

however, very few have the combination of sub-ppb sensitivity, selectivity, and relative 

low cost needed for ambient air monitoring. See Spinelle et al., 2017 and Lara-Ibeas et al., 

2019 for a summary of the latest laboratory prototypes and commercially available 

inexpensive BTEX sensors and GC’s (Lara-lbeas et al., 2019; Spinelle et al., 2017).  

As a common inexpensive option, PID can be used as a standalone instrument to 

measure total hydrocarbon presence in real time. Although PIDs have great sensitivity, 

they are not selective and cannot speciate VOCs. Pairing a PID with a GC allows for 

speciation of BTEX compounds and lower detection limits. In this study, the performance 

of an ultra-compact GC-PID is characterized for detecting BTEX at sub-ppb levels. The 
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instrument configuration is optimized for separation of BTEX compounds. This analytical 

instrument was developed for operation in the field to be used as a screening tool for onsite 

and near-real time analysis. This design uses ambient air as the carrier gas to minimize the 

need for support gases and a calibration strategy is established that is simple and requires 

minimal equipment. The compact BTEX GC-PID system is composed of the following 

modules: sampling, preconcentration, separation, and detection described in the following 

sections (4.2.2). The instrument was characterized in a laboratory setting (4.3.1) and was 

tested in the field (4.3.8). Section 4.4 discusses findings and offers recommendations 

followed by concluding remarks in section 4.5. 

4.2       Materials and Methods 

4.2.1    Prototype of a compact BTEX GC-PID system 

The compact BTEX GC-PID system is composed of the following modules: 

sampling, preconcentration, separation, and detection, further described in Section 4.2.2. 

The GC system was developed by SRI Instruments (Torrance, CA, USA) and is based on 

a simpler version of the commercial SRI BTEX GC-PID-FID with a built-in Method 5030 

compliant purge and trap concentrator. The modified BTEX GC-PID design (Fig. 1) has 

the advantage of a reduced size and weight (SRI 110 chassis model) that allows it to be 

field-deployable and convenient for measurements. The instrument weighs 15 kg with 

dimensions 36.8 cm x 21.6 cm x 34.3 cm. It is designed for field deployment in background 

and polluted atmospheres with automatic sampling every 12-15 minutes. The GC-PID 

instrument operates in isothermal mode where the BTEX molecules separate without an 

oven temperature ramp. BTEX concentrations measured by the instrument are reported as 
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mixing ratios defined as the ratio of the mass of the respective BTEX compounds to the 

mass of dried air in a given volume. 

A prototype GC was built by SRI Instruments and tested. Initially, the prototype 

was built with a distinct configuration to test for the desired sub-ppb limit of detection, 

selectivity, and separation for monitoring BTEX in ambient air. The column and backflush 

configurations tested is further discussed below. Ultimately, the configured system 

operates as follows: preconcentration of sample matrix on Tenax-GR material, separation 

by 15 m MXT-5 and 30 m MXT-1301 columns (Restek), followed by PID detection at 10.6 

eV. Instrument parameters and settings are modified with the PeakSimple software 

downloadable on the SRI Instruments’ website. The instrument operating principles are 

represented in the schematic shown in Fig. 2. Two instruments were tested with this 

configuration, which we henceforth refer to as GC1 and GC2.  
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Figure 4.1. Side view of the compact BTEX GC-PID prototype. The system has an ultra-compact 
chassis (SRI 110 chassis model) weighing 15 kg with dimensions of 36.8 cm x 21.6 cm x 34.3 cm. 
The low weight and dimensions make it an ideal instrument for stationary or mobile field deployment 
and monitoring of BTEX molecules at the ppb level.  
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Figure 4.2. Schematic of the compact GC-PID system operating principle with 10-port valve in 
“load” position (shown as the solid lines) and “inject” position (shown in the dotted line) in a 
precolumn backflush configuration. Principal components of the different modules are shown in 
different colors: sampling (orange), preconcentration (blue), separation (red) and detection (green). 

 
 
4.2.2    System integration and instrument operation 

The instrument operating principles are represented in the schematic shown in Fig. 

2 in a precolumn backflush configuration. When the valve is in “load” position, the vacuum 

pump pulls ambient air in through the solenoid (labeled “SOL) set to sample from inlet 1 

(labeled “#1 IN”), which is directed to the Tenax-GR trap, then out to vent, loading the 

Tenax-GR trap with sample at the adsorption temperature (40 °C). Any sample not 

adsorbed to the Tenax-GR material is vented out through port 2 (labeled “#2 OUT VAC. 

PUMP”). The trap is heated to the desorption temperature (180 °C) shortly thereafter. At 

the same time, a carrier gas has been flowing through the columns at a constant flow rate 

defined by the electronic pressure controller. Once the trap reaches desorption temperature 
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(180 °C), the valve is actuated to “inject” position where the carrier gas is directed towards 

the trap sweeping desorbed analytes into the analytical columns (labeled “MXT-

WAX/MXT-5” and “MXT-1/MXT-1301” in the diagram). The desorbed analytes are 

separated by boiling point before reaching the photoionization detector. The PeakSimple 

software displays a chromatogram in real time with automatic detection of peaks, 

integration and concentration calculation using a component and calibration file that has 

been saved prior to sampling. The BTEX molecules appear on the chromatograms based 

on their boiling point temperatures with benzene first followed by toluene, ethylbenzene, 

co-eluted meta- and para-xylenes (m,p-xylene) and finally ortho-xylene (o-xylene). The 

PeakSimple software allows the operator to modify instrument parameters and settings for 

desired sampling time, modification of event tables, calibration, and manual integration of 

peaks. 

The sampling module consists of an aquarium vacuum pump that pulls the sample 

matrix into the preconcentrator trap (Fig. 1). The two brass inlets (1/8” (3.175 mm) female) 

are connected to a two-position solenoid valve that allows for alternating measurements 

between a calibration standard and an atmospheric sample. The two-inlet option can be 

used for faster sampling as the valve switches between loading a sample and finishing the 

previous loaded sample or a calibration gas standard. A plastic male barbed hose fitting 

with 1” Teflon tube was connected to the brass inlets for all experiments and calibrations 

conducted in this study. 

The preconcentration module consists of a ¼” x 4 ½” (6.35 x 114.3 mm) stainless-

steel cylinder packed with 0.5 g Tenax-GR material (2,6-diphenylene-oxide polymer 
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resin). A volume of gas is pulled through the solenoid valve by a vacuum pump into the 

Tenax-GR trap. This concentrates the desired volume of sample, trapping volatile organics 

while largely excluding water before loading the gas into the column. The amount of 

sample that may be loaded on to the trap is limited by the trap’s adsorbent packing. How 

tightly packed the Tenax-GR trap is may affect the flow rate, thus flow rates for each 

instrument (GC1 and GC2) were determined to ensure the same sampling volume of 1 L. 

Sampling times of 1.75 minutes and 2.9 minutes were established for sampling 1 L volume 

for GC1 and for GC2, respectively. During trapping, ambient air or standard gases are 

flowed through the trap at 40 °C, until 1 L of this sample matrix has been passed through, 

depending on the flow rate through each instrument. The trap is then heated to an optimal 

temperature of 180 °C maintained for 4 mins to allow thermal desorption of BTEX 

molecules from the Tenax-GR material. The heating system consists of a thermocouple 

wire and aluminum block with a 100-watt cartridge heater wrapped around the Tenax-GR 

trap stainless steel tubing with a temperature ramp of 180 °C/minute. The trap is then 

cooled by a small fan within 3.45 minutes to 40 °C. 

The separation module consists of two coupled columns heated in a small air-bath 

oven at 60 °C. The oven houses the two columns, a small fan, and a 10-port gas sampling 

valve (Fig.1) that connects the entire system further described in schematic shown in Fig. 

2. The small fan circulates air inside the oven to keep an equal distribution of heat. A 

syringe injection port is included on the side of the oven wall to bypass the Tenax-GR trap, 

in cases when direct gas sampling is preferred. 
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Various column configurations and flushing methods were tested to optimize 

separation of BTEX with a stable baseline while maintaining a low cost for the GC 

measurement system. Table 1 describes the columns and flushing methods tested, labeled 

below as configuration a, b, and c.  

 

• Precolumn backflush to vent (configuration a & c): This method captures 

heavier molecules in the precolumn and prevents them from entering the 

analytical column and reaching the detector. The backflush is carried out at a 

user defined time to reject water and other high boiling point analytes while the 

analytical column runs at a constant flow. This configuration has the advantage 

of the sample matrix having little influence on measurement, allows faster 

sampling time prevents late eluting compounds from interfering with the 

subsequent runs, and prevents water in the sample matrix from reaching the 

column. 

• Backflush to detector (configuration b): This method bundles C6+ 

components that elute to the detector after the molecules of interest have passed 

through the analytical column. This method reduces analysis time and presents 

a summed total of C6+ molecules displayed in the chromatogram. It also 

prevents late eluting compounds from interfering with the subsequent runs. 
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Figure 4.3. Sample chromatograms for three different column and flushing configurations with 
injection of a 1 ppb BTEX standard. Configurations: a) Separation of heavier BTEX compounds is 
challenging with the selected columns. b) Heavier hydrocarbons are detected; however, the baseline is 
not stable and separation of heavier BTEX compounds remains challenging. c) Better separation is 
observed in the o-xylene; however, separation of ethylbenzene and m,p-xylenes still remains 
challenging. The baseline shifts when the 10-port solenoid valve rotates, and the precolumn 
configuration is no longer in series with the analytical column. This causes the column flow to increase 
and the baseline to shift as seen in c).  
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Table 4.1. BTEX GC-PID descriptions for configuration  a, b, and c. Configuration a and b had the 
same capillary columns with different backflushing method, while configuration c retained the 
precolumn backflushing method with new capillary columns. Only benzene and toluene limit of 
detections are show for comparison purposes. 

Configuration Capillary columns Backflush 

Method 

Analysis Time 

(min) 

Limit of Detection 

(ppb) 

a (Fig. 3 a) 15 m MXT-WAX 
15 m MXT-1 

Precolumn 
backflush 

12 Benzene   0.09 
Toluene    0.10 

b (Fig. 3 b) 15 m MXT-WAX 
15 m MXT-1 

Backflush to 
detector 

< 20 Benzene   0.37 
Toluene    0.11 

c (Fig. 3 c) 15 m MXT-5 
30 m MXT-1301 

Precolumn 
backflush 

< 15 Benzene   0.06 
Toluene    0.01 

 

 

Configuration a and b operated with the precolumn, a 15-m polar phase (0.53 mm 

ID x 2.0 µm MXT-WAX) capillary column and a 15-m long nonpolar phase capillary (0.53 

mm ID, 5.0 µm MXT-1) analytical column. The MXT-WAX column helps to remove 

water and VOC’s other than BTEX. In this configuration, complete separation of the 

heavier BTEX compounds is challenging with the selected columns. This first 

configuration was optimized for separation of benzene; however, it did not entirely separate 

ethylbenzene and xylene isomers without needing an oven temperature ramp, as seen in 

Fig. 3a. Configuration b had the same columns as configuration a, but was plumbed to 

backflush to the detector. While the backflush to detector provided information on the 

number of hydrocarbons present in the sample, the baseline was not stable or consistent 

(Fig. 3b). This leads to uncertainties when integrating the area of each analyte peak. Thus, 

we retained the precolumn to detector plumbing. Configuration c was plumbed with 

capillary columns MXT-5 with 15 m length (0.53 mm ID x 0.25 µm) and MXT-1301 with 

30 m length (0.53 mm ID x 0.3 um). The baseline proves to remain stable with a better 
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separation of the o-xylene, however separation of ethylbenzene and m,p-xylenes remains 

challenging (Fig. 3c). An oven temperature ramp is necessary to separate those two 

molecules; however, due to cost consideration the GC remained in isothermal mode with 

option c as the final configuration. Both GC1 and GC2 were sent back to the manufacturer 

to be configured with a precolumn backflush and capillary columns MXT-5 and MXT-

1301.  

Once molecules are separated within the analytical column, the carrier gas directs 

the analytes toward the detector. The BTEX GC-PID instruments are equipped with a PID 

detector (Andrews Glass) that responds to compounds whose ionization potential is below 

10.6 eV, this includes aromatics and molecules with double carbons. This particular PID 

has a krypton discharge lamp that fragments the VOC’s into negative and positive ions, the 

amplifier then measures the negative ions created by the lamp’s UV energy at 121 nm.   

4.2.3    Gas standards and carrier gas 

A certified gas mixture composed of 1 ppm of each of the BTEX compounds (1 

ppm of benzene, 1 ppm of toluene, 1 ppm of ethylbenzene, 1 ppm of m, p,-xylene and 1 

ppm of o-xylene) purchased from Restek (± 5% uncertainty) and MESA Specialty Gases 

(± 10% uncertainty) were used for experiments performed in the laboratory. In addition, 

we used a gas mixture of about 1 ppb of each of the BTEX compounds from Apel-Reimer 

Environmental, Inc. (± 20% uncertainty), NIST-traceable certified, for the time-varying 

calibration method.  

An internal air compressor provides the carrier gas from ambient air without the 

need for support gases (e.g. He, N2). The “Whisper Quiet” air compressor is built in the 
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chassis of the GC and controlled by an electronic pressure controller maintained at 9 PSI. 

The stream of air passes through the Sample Stream Dryer (SRI P/N 8690-0152) housing 

a Nafion permeable membrane dryer (Permapure P/N ME 110-24-COMP4) contained in 

the blue indicating molecular sieve to remove water vapor and other impurities from the 

ambient air carrier gas. The Nafion tube was cleaned as needed following the 

manufacturer's suggested procedure. The molecular sieve was heated regularly to the 

manufacturer’s recommended temperature to remove moisture from the desiccant beads as 

they turned brown when saturated. 

An experiment was conducted to determine the percent loss of humidity by passing 

a moist stream of air (62.6% relative humidity) through the Sample Stream Dryer. The 

Nafion dryer in molecular sieve significantly reduced the humidity to 32.3% in the air 

stream by close to 50% percent change. See section 4.3.6 for the effect of humidity on 

BTEX detection. 

4.2.4    Calibration methods 

Two calibration methods were explored with the GC system using the PeakSimple 

calibration tool. The first involved diluting 1 ppm BTEX standard with gas tight syringes 

and/or mass flow controllers in zero air within Tedlar bags. This method required 1000-

fold dilution of the 1 ppm BTEX gas standard. This calibration method requires delicate 

analytical tools which are not ideal to use in the field, thus the second method was preferred 

and used to characterize the instrument.  

The second method tested was the time-varying calibration method that takes 

advantage of the flexibility in the trap loading time to control the amount of sample 
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reaching the column and detector. This method relies on the fact that the sampling time on 

the Tenax-GR trap is linearly proportional to amount of sample loaded, and the area 

detected by the GC. The linearity of the calibration curve was explored to evaluate 

appropriate sampling volumes (and times) to cover the concentration range of interest 

(section 4.3.3). This time-varying method involves less equipment and is ideal for long-

term field campaigns where a standard gas can be programmed for automated 

measurements. 

4.2.5    Field deployments 

We deployed the GC in a mobile platform by powering it with deep cycle marine 

batteries coupled to a pure sine inverter. Ambient air samples were drawn in from outside 

of the moving vehicle through Synflex tubing connected to the GC inlet. The GC draws a 

maximum of 130 W when the Tenax-GR trap is heated and 60-70 W when idle. For field 

measurements without the need of wall power, the system can be powered for more than 6 

hours by deep cycle marine batteries connected in parallel to a pure sine wave inverter. A 

modified sine wave inverter was tested, and this method did not power the GC interior fans. 

The low power consumption makes it an ideal instrument for mobile measurements where 

power is limited.  

For outdoor deployments, we used an OMEGA sensor to record pressure, humidity, 

and temperature (OMEGA OM-CP-PRHTEMP101A). A GPS tracker used for field 

deployments to match sampling times with location of site sampled. 
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4.3      Results 

4.3.1    Instrument characterization 

Several experiments were conducted to characterize and optimize the performance of the 

BTEX GC-PID instruments for the detection of ambient levels of BTEX expected to be 

~1 ppb. We evaluated the performance by studying the following instrument parameters: 

linearity of the system, signal with sampled volume, calibration curve range, adsorption 

capacity of Tenax-GR material, instrument drift, and limit of detection in the sections 

below. 

4.3.2    Linearity of the system 

The detection range of the GC-PID system is limited by the adsorption capacity of 

the Tenax-GR trap in conjunction with the linear detection range of the PID lamp. The GC-

PID system relies on the adsorption of BTEX molecules onto the Tenax-GR trap to 

preconcentrate the analytes for detection at trace levels. PID lamps have excellent 

sensitivity, detection limits and extensive linear detection ranges, but the latter begins to 

deviate at higher ppm levels. We test the linearity of the system as a whole with influences 

from both the Tenax-GR trap and PID detector to determine the maximum range of mixing 

ratios that is measurable with the instrument. We made a saturation curve by loading 1 L 

samples of BTEX with mixing ratios ranging from 20 to 5000 ppb (Fig. 4). We investigate 

the detection limit further described in Section 3.1.3.  

Using a mass flow controller, a 1 ppm BTEX gas standard in zero air was diluted 

into Tedlar bags, and then were analyzed on the GC-PID to make the saturation curve. 

Prior to each measurement a trap blank was performed to ensure analytes are removed prior 
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to the next sample. The following concentrations were tested: 20, 38, 65, 100, 200, 400, 

500, 750, 1000, 2500, 3000 and 5000 ppb (Fig. 4). We observed that BTEX peak areas are 

linear at low mixing ratios, but curve toward an asymptote at higher mixing ratios as seen 

for all analytes by 1000 ppb. This experiment demonstrates that for a sampling volume of 

1 L, measurements up to 500 ppb can be made with confidence. Higher mixing ratios will 

be underestimated due to combined effect of detector linearity limitation and saturation of 

the Tenax-GR trap. We explore further the linearity of these curves in the next section 

(4.3.4) to further estimate a range of measurement accuracy. 

 

  

Figure 4.4. We evaluate the detection range of the BTEX GC-PID system  by measuring a wide range 
of mixing ratios until an asymptote is reached. The detection linear range (0-500 ppb) is magnified 
highlighted by the blue box. The R2 values for linear fits to each compound are all greater than 0.98. 

 

4.3.3    Detector signal vs sample volume 

We then evaluated the influence of varying sample volumes passing through the 

system to determine the range for the calibration curve using a time-varying method. At 

background, BTEX is expected to be below 1 ppb, while in the polluted atmospheric, 

mixing ratios vary greatly and can reach 10’s to 100’s of ppb. These experiments were 
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focused on expected ambient BTEX concentrations of 1 ppb. The gas standard composed 

of 1 ppb of each of the BTEX compounds was loaded onto the Tenax-GR trap while 

varying the sample volume from 1 to 10 L representing a concentration range of 0.5 ppb to 

5 ppb BTEX on the trap. A cleaning step was performed after each analysis to remove any 

BTEX molecules from the Tenax-GR preconcentrator and prevent influence on the 

following sample. The cleaning step involved heating the Tenax-GR trap for 3 minutes at 

the end of the analysis to vent out desorbed analytes followed by cooling of the trap. Blank 

runs verified that BTEX was fully desorbed before the subsequent analysis. Conducting a 

cleaning step proved to be an effective method for removing the effects of carry-over from 

near-background and polluted samples of over 100 ppb. One cleaning step removed 87.1% 

of carry-over, two cleaning steps removed 92.9% and four cleaning steps removed 95.6% 

of carry-over. Due to the effectiveness of one cleaning step, we apply this to experiments 

presented in this study. Cleaning steps were conducted as trap blanks and chromatograms 

were visually verified for significant removal of carry-over. 
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Figure 4.5. Linearity of detected signal to sampling volumes of BTEX compounds. Signal becomes 
saturated past 2 L, particularly evident for benzene. The error bars represent the standard deviation of 
the mean of triplicates of peak area. Note: error bars do not appear because they are smaller than the 
size of the symbol. 

 

We found that past 2 L of sample volume the relationship between the benzene 

sample volume and instrument response ceases to be linear (Fig. 5). Both GC1 and GC2 

showed the same behavior. Probable cause may be that the Tenax-GR trap gets saturated 

towards a large sample volume. However, linearity in benzene exists at the lower end of 

the sample volume (0.5, 1, 1.5 and 2 L) as seen in Fig. 5. For calibration purposes, we used 

volumes ranging from 0.5 to 2 L with 1 ppb BTEX gas standard corresponding to 0.5, 1, 

2, 3 ppb that represent expected ambient BTEX mixing ratios. A 1 L sampling volume was 

determined to be adequate. 

Once an adequate range was established for the calibration curve with the time-

varying calibration method at the range where linearity exists (0.5 - 2 L), a straight-line 

calibration model is evaluated. According to the USEPA Method 8000, a straight-line 
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calibration model can be used when the standard deviation of the calibration factors is less 

than 20%. The percent standard deviation of the calibration factors (%SD) is shown in 

Table 2. All BTEX compounds pass the %SD test, therefore the “single line through origin 

(Ax) [average calibration factor]” method is applied to the experiments conducted in this 

study and an example is plotted in Fig. 6. The calibration equation, y = mx, where y is 

detector response (peak area), m is the average calibration factor, and the x is concentration 

of analyte. We performed the calibration measurements on three different days and 

calculated the calibration equation (Table 2). We observed no significant differences in 

calibration curves amongst days. We performed a two tailed t-Test assuming unequal 

variances of the peak areas. The p-values are greater than 0.05 between dates showing that 

the calibration equation has a less than 5% chance of being different. 

 
 

 

Figure 4.6. Example of calibration curves for BTEX compounds with the time-varying calibration 
method using sampling volumes: 0.5, 1.0, 1.5 and 2.0 L. The horizontal error bars represent uncertainty 
from the certified gas standard, while the vertical error bars (smaller than symbol) represent random 
instrument error. The corresponding R2 is shown for each BTEX compound. 
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Table 4.2. Calibration curves for BTEX compounds. SD of slope indicates standard deviation of the slope 
in the calibration equation. A %SD lower than 20% indicates linearity exists in the calibration curve. N 
represents the number of points in the curve. 
 

Compound Date Calibration equation SD of slope R2 %SD N 

Benzene 

2/22/20 y=7.38x 1.10 0.97 7.38 4 

2/24/20 y=5.60x 0.80 0.97 5.67 4 

2/27/20 y=6.87x 1.50 0.97 6.79 3 

Toluene 

2/22/20 y=11.56x 0.60 1.00 11.11 4 

2/24/20 y=10.99x 0.90 1.00 11.11 4 

2/27/20 y=10.95x 1.30 0.97 10.74 3 

Ethylbenzene 

2/22/20 y=6.57x 0.30 0.99 6.12 4 

2/24/20 y=5.25x 0.80 0.97 5.00 4 

2/27/20 y=7.18x 1.20 0.89 7.36 3 

m,p-xylene 

2/22/20 y=9.24x 1.00 0.96 9.35 3 

2/24/20 y=8.44x 0.80 0.98 8.33 4 

2/27/20 y=9.13x 1.60 0.91 9.36 3 

o-Xylene 

2/22/20 y=2.80x 0.90 0.90 2.89 4 

2/24/20 y=2.67x 0.70 0.99 2.68 3 

2/27/20 y=4.23x 1.10 0.98 4.26 3 
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4.3.4    Detection limit 

Detection limits for each BTEX compound were determined based on analysis of 

7 replicate samples of the 1 ppb BTEX gas standard (Table 3). The detection limit (DL) 

was defined as 3.143 times the standard deviation (SD) of the 7 replicates (DL = SD x 

3.143) follow the recommended protocol from CARB (California Air Resources Board, 

2018). The sample volume at which the detection limit was computed was at 1 L, which 

represents the volume at which field measurements will be taken. A 1 ppb BTEX sample 

was introduced into the GC inlet through a Tedlar bag, a cleaning step was done in between 

every run. The detection limit of the GC system depends on preconcentration of the sample. 

A lower limit of detection can be achieved by introducing larger sampling volumes; 

however as seen in Fig. 5, linearity may not hold beyond sample volumes of 2 L. With a 1 

L sampling volume we achieve sub-ppb level detection limits on all compounds for both 

GC’s.  

4.3.5    System drift 

Table 4. Drift experiments using a 1 ppb BTEX gas standard organized by date. 

Observed benzene reported in area units (a.u.). For dates where number of 1 ppb gas 

standard samples (N) were > 1, the standard deviation is shown in parentheses. 

 

 

 

 

 



 

 117

Table 4.3. BTEX detection limits for each BTEX GC-PID instrument referred to as GC1 and GC2. 
 

Compound GC1 (ppb) GC2 (ppb) 

Benzene 0.06 0.19 

Toluene 0.10 0.28 

Ethylbenzene 0.37 0.18 

m,p-Xylene 0.33 0.32 

o-Xylene 0.21 0.16 

  

 

Table 4.4. Drift experiments using a 1 ppb BTEX gas standard organized by date. Observed benzene 
reported in area units (a.u.). For dates where number of 1 ppb gas standard samples (N) were > 1, the 
standard deviation is shown in parentheses. 

 

Date N Benzene (a.u.) 

10/9/2019 7 13.51 (0.19) 

11/25/2019 1 19.24 NA 

1/7/2020 1 15.72 NA 

1/14/2020 4 12.42 (0.11) 

2/19/2020 1 16.92 NA 

2/20/2020 3 14.94 (0.47) 

2/22/2020 4 14.15 (0.51) 

2/24/2020 1 10.65 NA 

2/27/2020 1 13.59 NA 

3/5/2020 3 11.45 (0.11) 
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4.3.6    Humidity effects 

Water vapor and condensation is known to reduce PID lamp response, therefore 

relative humidity (RH) effects on detection signal were tested. In the first experiment, we 

explore the influence that moist carrier gas may have on the analyte detection signal by 

removing the Nafion dryer from the system. We measured the same BTEX gas standards 

with moist carrier gas and dry carrier gas. We find that a moist carrier gas reduces the peak 

areas by 39.5%, 31.9% and 67.6% for benzene, toluene, and ethylbenzene-xylenes, 

respectively. This experiment demonstrates the importance of drying the carrier gas and 

the effectiveness of the Nafion dyer for reducing water vapor interferences. 

The second experiment was performed outdoors during a precipitation event where 

humidity levels were recorded to be higher than usual (Fig. 7). Ambient outdoor air was 

used as the carrier gas and dried as it passed through sample stream dryer (Nafion dryer in 

desiccant). We repeatedly measured the 1 ppb gas standard while using outdoor ambient 

air as a carrier gas. This experiment explored whether high humidity would affect detected 

signal isolating the influence of water vapor and possible condensation on the PID lamp. 

The measured RH ranged from 40% to 80%, pressure and temperature varied as well. A 

paired t-Test was performed on the measured concentrations pre-precipitation and post-

precipitation event to test whether the rain events were significantly different. The t-test 

showed there was no statistically significant difference between pre- and post- rain event 

in measured benzene and toluene mixing ratios with two-tail p-values of 0.4255 and 

0.0853, respectively. However, the t-Test showed statistically significant difference in 

ethylbenzene, m,p-xylenes and o-xylene measured before and after precipitation event with 
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two-tail p-values of 0.0133, 1.977 x 10-6, and 1.641 x 10-4. This indicates that humidity 

has a significant impact on the detection of ethylbenzene, m,p-xylenes and o-xylene. 

4.3.7    Validation with Conventional canister sampling with laboratory analysis 

To validate the performance of the BTEX GC-PID system, we compared the GC-

PID measurements to the conventional approach of collecting air in canisters followed by 

measurement in the lab by a traditional benchtop GC. Two whole air samples were 

collected in an evacuated 2 L electropolished stainless steel canisters then returned to the 

University of California, Irvine for analysis of BTEX on a multicolumn, multidetector GC 

system in the laboratory further described elsewhere (Colman et al., 2001). Vehicle exhaust 

from a gasoline-powered car was collected with the whole air canister while the GC’s were 

sampling at the same location. The canister was filled within 1 minute of opening the valve 

while the GC trapped the sample for 2 minutes. While it is difficult to compare the 

measured BTEX values because of this difference in timing of sample collection, BTEX 

measurements from canisters are bracketed by the measurements made by the field-

deployable GC-PID system (Fig. 8). Although emissions of vehicle exhaust were not 

uniform in time, the slope of the non-benzene compounds to benzene in Fig. 8 are similar 

between both methods both measurement methods. The toluene to benzene (T/B) ratio was 

1.76, within range of reported T/B literature values of close to 2 for traffic emissions in 

urban areas (Liu et al., 2009; Sahu et al., 2016). This gives confidence that the GC-PID 

instruments are not only capable of quick BTEX analyses, but also capable of measuring 

at high BTEX mixing ratios accurately before saturation occurs.  
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Figure 4.7. BTEX measured concentration of the 1 ppb gas standard. Measured pre-rain event relative 
humidity (RH) was 30-50%, while the post-rain event occurred during the increased relative humidity 
>50% RH. Error bars represent propagation of uncertainties from gas standard and random instrument 
error. 

 

 

Figure 4.8. Regression plots of BTEX compounds from vehicle exhaust measured by the compact GC-
PID instrument (blue) and samples collected in canisters (red) followed by analysis in a traditional 
benchtop GC. Error bars for the GC-PID are errors propagated from the calibration curve and error bars 
for the canister samples represent 5% precision accuracy from benchtop GC. 
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4.3.8    Mobile measurements of traffic emissions 

The GCs were placed aboard a mobile platform to demonstrate the ability of the 

compact GC-PID to measuring environmentally relevant BTEX patterns in a field setting. 

Ambient outdoor samples were drawn in from outside through Synflex tubing connected 

to the GC inlet. On February 24th, 2020, we sampled ambient outdoor air with the GC 

before rush hour (15:00 to 16:00 PST) and during the afternoon rush hour (16:00 to 20:00 

PST) at three locations: on the State Route (SR) 60, a heavily trafficked multi-lane highway 

in Riverside, California (24 samples); a local background measurement site location 6.5 

km east of the SR-60 (9 samples); and at nearby gas stations (5 samples) as shown on Fig. 

9. The local background site was chosen to be at a residential zone with minimum vehicle 

traffic and away from the major traffic source.  Background measurements were taken 

before, during, and after the freeway transects to get an idea of the enhancement in BTEX 

produced by the afternoon rush hour. A GPS tracker was used alongside the GCs to 

measure location of measurements on and off the freeway.  

We observed systematic differences between locations and over the course of the 

rush hour (Fig. 10). As expected, gas stations had the highest measured BTEX levels from 

evaporating fuels. Benzene was always higher at gas stations than on freeway or at the local 

background site, and other species tended to be higher at the gas station as well. On-

freeway levels tended to be higher than background when comparing similar time periods, 

but the increase in emissions over the rush hour was larger than the differences between 

locations. BTEX mixing ratios increased as SR-60 became congested as the day 

progressed. A similar increase was observed at the background site, with roughly a 
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doubling of the benzene mixing ratio from the start of rush hour to the end (Fig. 10). We 

plotted the ratios benzene for on-freeway samples, and generally saw a strong, linear 

relationship between benzene and the toluene, ethylbenzene, and the xylene isomers, 

giving confidence that the emissions were emitted from the same source (Fig. 11). The 

observed T/B ratio for on-freeway measurements was 1.47. This value is lower than what 

has been observed in studies from urban traffic, but in accordance with observations of a 

lower value when a strong diesel contribution is present (Li et al., 2017). The SR-60 is a 

main route for diesel trucks transporting goods to and from warehouses in the area. 

 

 

Figure 4.9. Map of freeway route on SR-60 with targeted gas stations and the local background 
measured 6.5 km east of the SR-60.  
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Figure 4.10. Timeseries of BTEX compounds detected by both GC1 and GC2 abroad a mobile 
platform before rush hour (15:00 to 16:00 PST) and during the afternoon rush hour (16:00 to 20:00 
PST). These results show the portability of the compact GC-PID for mobile applications. Error bars 
represent error propagated from instrument calibration. 

 

 

Figure 4.11. Benzene ratios for on-freeway emissions measured by GC1 and GC2 shown with a linear 
regression fit. 
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4.4       Discussion 

In this study, we demonstrated the capability of a small field-deployable GC-PID 

for measurements of ambient BTEX levels in field and mobile campaign settings. 

Although the compact build of the instrument allows for portability that is ideal for field 

measurements and screening analysis, there are disadvantages to having a small 

instrument footprint. The chassis can only accommodate a small oven, thus limiting 

column diameter and temperature programming. The BTEX compounds have a wide 

range of boiling point temperatures (80 to 138 °C), while the isothermal oven was set to 

60 °C. The oven was set closer to the benzene boiling point temperature, explaining why 

the heavier molecules are slow to elute and have broader peaks. A longer column gives 

better separation; however, the size of the oven limits the length and diameter of a 

column. Temperature programming was not included in this design due to added cost 

estimated at $5,000. 

Toxic VOC’s in urban air are of low concentration in often complex mixtures. 

Compounds with a similar structure as benzene (cyclopentane, pentane and cyclohexane) 

may show up as a small peak before benzene in the chromatogram. In our experiments, 

small unknown peaks were observed before the benzene peak. This becomes a concern 

when measuring polluted atmospheres because the area under the peaks can merge, 

resulting in a loss of the ability to resolve benzene. In addition, when higher mixing ratios 

are measured, carry-over from the previous sample is observed to influence the subsequent 

measurement. Regular heating of the trap is recommended to remove adsorbent from the 

trap. Tenax-GR material is commonly used as the adsorbent material for preconcentration 
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of BTEX, but other studies have shown that basolite C300 and  ZSM-5 zeolites can be a 

more effective adsorbent material (Lara-lbeas et al., 2019; Megias-Sayago et al., 2020).  

Using ambient air as the carrier gas is convenient for field measurements because 

it decreases the need for support gases. However, He and N2 are more efficient at pushing 

molecules through the capillary columns and give a better separation of peaks in the 

chromatogram. We use ambient air as the carrier gas because it avoids the use of support 

gases that need constant replacement. The purity of the carrier gas is another important 

factor to consider, such as presence of VOC’s and water vapor. The Tenax-GR trap 

amplifies the amount of BTEX in the sample, thus when measuring in polluted 

atmospheres, BTEX in the carrier gas would be of a negligible amount compared to that 

reaching the detector desorbed off the trap. Any contamination would show up as a constant 

background and not as a peak. However, an addition of a carbon trap can help reduce VOC 

impurities in the carrier gas which can be explored in future studies (Sorrels et al., 2018). 

Humidity has been shown to decrease the detected BTEX signal (You et al., 2020). We 

used several preventative measures in the design of the GC to remove water influence, such 

as: trap desorption to remove water in the sample, the precolumn backflush and the Nafion 

dryer which significantly decreases the amount of water in the sample. These measures all 

prevent water from reaching the detector; however, we saw that high humidity does indeed 

reduce the signal detected of ethylbenzene, m,p-xylene and o-xylene. Additionally, 

saturation of desiccant can affect the amount of water being removed from the stream of 

air. Daily calibrations done in the field include these uncertainties introduced by relative 

humidity and other environmental factors.  
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4.5      Conclusions 

This study characterized the performance of a small field-deployable GC as a 

BTEX screening tool in the field at near-real time measurements. Working closely with the 

manufacturer we were able to optimize the configuration for speciation of the BTEX 

compounds and detect at the expected atmospheric background levels. Monitoring of 

BTEX background levels requires instrumentation that is sensitive to ppb or sub-ppb levels. 

We demonstrate the detection range of the compact GC-PID to be below 1 ppb for all 

BTEX compounds and up to 500 ppb. Compared to other commercial systems available 

and laboratory prototypes, the BTEX GC-PID performs remarkably well.  

Three configurations were tested to determine the best selectivity and sensitivity. 

Two column configurations and flushing methods were explored: precolumn backflush 

method and backflush to detector. We observed a more stable baseline with the precolumn 

backflush; thus, we retained the precolumn to detector plumbing with capillary columns 

MXT-5 with 15 m length (0.53 mm ID x 0.25 µm) and MXT-1301 with 30 m length (0.53 

mm ID x 0.3 um). This strategy allows for minimal equipment and relies on ambient air as 

the carrier gas. We show that linear calibrations can be achieved within 0-100 ppb using 

the single line through origin (Ax) calibration method on PeakSimple. When expected 

concentrations are above this range, a non-linear method can be applied, when there are 

enough data points present to accurately describe the curve.  

  We demonstrate that the compact design of this GC-PID is ideal for field screening 

and testing. The design presents the opportunity to screen for BTEX at a higher spatial 

resolution with possibility of establishing dense networks of VOC measurements. Field-
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deployable GCs have the potential to aid in emergency air quality responses (e.g. refinery 

fires) and give near real-time air pollution measurements. Low-cost and inexpensive GCs 

offer an exciting alternative to conventional bench-top equipment accessibility allowing 

monitoring of pollutant with higher spatial resolution in impacted communities that can aid 

in air quality assessments in support of current regulations (e.g. Assembly Bill 617). 
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Chapter 5: Summary and recommendations for future work 
 
5.1     Summary of this work 

This dissertation characterizes and quantifies greenhouse gases, air pollutants, and 

air toxics from major sources in California by using novel atmospheric trace gas monitoring 

systems. 

 In Chapter 2, XCH4 observations from the EM27/SUN ground-based solar 

spectrometer were used to estimate CH4 emissions from dairy farms across seasons by 

using a simple mass balance technique. The mass balance method previously used by Chen 

et al., 2016 with EM27/SUN observations was improved by including the area of the 

source. Seasonality in CH4 emissions was observed from study of a 10x10 km2 dairy farm 

cluster, with highest emissions observed in the summer and winter. I explored specific 

meteorological variables that could be driving the seasonal differences and find that day-

to-day variability in measured XCH4 is influenced by both winds and temperature, but wind 

speeds drive the differences across seasons more than temperature. The SJV dairy livestock 

were found to emit ~5 times more CH4 than Southern California dairy farms, primarily due 

to the differences in animal waste management. Dry manure management practiced in 

Southern California produces less CH4 than the flushing of animal waste to manure 

lagoons, a wet manure management practiced heavily in the SJV. Nevertheless, the EM27 

technique was not precise enough to quantify expected CH4 emission reductions due to 

installation of anaerobic digesters. Hence, we conclude that EM27/SUN differential 

columns measurements can be useful for exploring emissions differences amongst seasons 
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and dairying regions, but are likely not ideal for verifying the effectiveness of CH4 

mitigation strategies 

In Chapter 3, I collected 2 months of atmospheric column observations during the 

2020 wildfire period to derive, for the first time, emission factors with respect to CO2 and 

modified combustion efficiency. These variables are commonly used in fire research to 

characterize fuel properties and combustion phases of wildfires. We measured the highest 

XCO ever recorded with the EM27/SUN from a large smoke plume that originated from the 

Sequoia Lightning Fire Complex. I used the solar spectra to derive the AOD and compared 

our AOD:CO based ratios to those measured from space of fires observed across the U.S. 

I also compared XCO ground-based observations to those of TROPOMI satellite and found 

the best coincident criteria during high XCO and aerosol burden. Additionally, using field-

based emission ratios I found that significant amounts of CH4 was emitted by Sierra 

Nevada wildfires during the 2020 wildfire season.  

Finally, in Chapter 4, I presented a newly designed and optimized portable GC-PID 

with capability of detecting and speciating the BTEX air toxics. Three configurations were 

tested to determine the best selectivity and sensitivity. I demonstrated through several in 

lab and field tests that the compact design of this GC-PID is ideal for stationary and mobile 

field campaigns in a variety of environmental conditions. The detection range of the 

compact GC-PID is below 1 ppb for all BTEX compounds and up to 500 ppb. Compared 

to other commercial systems available and laboratory prototypes, the BTEX GC-PID 

performs remarkably well.  
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5.2       Recommendations and future work 

In Chapter 2, the seasonal study from the dairy farm cluster was limited to 

measurements collected during the daytime hours and for 1-2 weeks at a time. Further 

studies need to focus on collecting a longer time series to better understand the day-to-day 

variability, seasonal effects, and transition of emissions across seasons. Lingering 

questions remain of whether daily variability is stronger than seasonal effects. Long-term 

monitoring stations with instrument enclosures at a safe location can help answer this and 

other research questions. Additionally, rapid changes are occurring at the dairy farms in 

the SJV from changing animal feeds to installing digesters. Each farm operates in slightly 

different fashion, thus documenting these changes at the farm level is important as well as 

understanding how each change reflects in the emitted amounts of CH4. 

The 10 x10 km2 cluster was a relatively small area to model that limited us to 

utilizing the mass balance technique instead of a transport model. Although real time wind 

measurements are better to use than modeled winds, the nature of the atmospheric column 

measurement is better described by mesoscale wind products that includes winds 

conditions in the upper atmosphere. We attempted to use the STILT model driven by wind 

products like the Weather Research and Forecasting (WRF) and High-Resolution Rapid 

Refresh (HRRR) model, however, these wind products added a lot of uncertainties for 

modeling a small area. Until improvements are made on these mesoscale wind products, 

versions like WRF-4dVar that use data assimilation to nudge results closer to reality can 

improve the modeling as well as creating our own wind fields over the small area and 

making assumptions that the winds are heterogenous during ideal conditions. 
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Possible research questions are posed below: 

• Is daily variability in CH4 from dairy farms due to changing wind speeds 

stronger than seasonal effects? 

• Can the impact of management in feed or waste on CH4 emissions across a 

dairy farm cluster be observed within the atmospheric column? 

• What spatial scale is the EM27/SUN technique better to capture changes in 

CH4 emissions (ex. 10’s vs 100’s km)? 

In Chapter 3, the wildfire study was conducted during the COVID-19 shutdown 

that limited measurements to a single location. Future studies can focus on “chasing” 

wildfire plumes by following predictions of smoke transport based on NOAA’s HRRR 

smoke product. This will increase the number of fire plumes measurements for determining 

a more accurate and representative emission factor of the temperate conifer forests in the 

Sierra Nevada or other vegetation types in the globe. Because the EM27/SUN measures at 

the scale of satellites, satellite derived emission factors can be validated with the 

EM27/SUN observations. This could enable spatial emission factors that inform how fuel 

properties and combustion phases are changing across space as a wildfire burns. Our 

emission factors were calculated for CH4 and CO, but there is a lot of interest for emission 

factors for PM2.5. Future studies can convert the FTIR-derived AOD to PM2.5 to provide 

those emission factors (Handschuh et al., 2022). Further verification of the FTIR-derived 

AOD product can involve side-by-side measurements at an AERONET location. Also, a 

clean atmosphere is recommended for determining a more reliable ln(Vo) variable, thus 

future SJV measurements can dedicate 1-2 days of measurements in a pristine atmosphere 
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like the mountains in the Sierra Nevada. Current work is being done to improve CH4 

retrievals from the TROPOMI satellite. During high aerosol loading TROPOMI CH4 has 

low data quality and limits the spatial observations of CH4 from wildfires, thus future 

analysis can focus on comparisons between EM27/SUN and TROPOMI CH4 during 

wildfires.  

Possible future research questions are posed below: 

• Does the vertically integrated emission factor represent the fuel properties of 

mixed vegetation? 

• Can emission factors of PM2.5 be calculated from the FTIR-derived AOD? 

• How do satellite emission factors compare to emission factors derived with the 

EM27/SUN? 

In Chapter 4, the GC-PID was extensively tested in the laboratory, but more field-

based testing is required to determine the ideal conditions for sampling in a moving vehicle 

and the self-calibration method when in a long-term stationary site. Due to a 2-minute 

sampling time, if vehicle speed is not consistent across measurements sources cannot be 

compared directly to each other due to oversampling in slow speeds and diluting the source 

at higher speeds. The calibration method that was proposed in Chapter 4 utilized a time-

varying method of standard concentration in Tedlar bags but requires personnel to refill 

the bags and change them out. When sampling for long periods of time in remote locations 

a self-calibration system would be ideal to conserve data quality. Future studies can 

monitor BTEX along with other trace gases like CH4, CO2, and CO.  Recent studies have 
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shown elevated BTEX levels observed in CH4 emission hotspots (Marrero et al., 2016), 

which are much easier to detect using techniques such as mobile and airborne surveys.  

Possible research questions are posed below: 

• Are CH4 hotspots an appropriate proxy for BTEX sources? 

• What are the fine-scale spatial and temporal patterns of BTEX and CH4 at the 

neighborhood level?  

• What are appropriate sampling strategies for mobile surveys and long-term 

stationary sampling of BTEX? 
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Appendix A1: Appendix to Solar column based CH4 emission 

estimates of dairy farms at local scales in the San Joaquin 

Valley 
 

A2.1 Tables 

 
Table AError! No text of specified style in document..1 Summary of emissions rates calculated using 
a mass balance approach. Standard error of the mean is shown for gradients and mean emission rates.  

 

Season Date Npts  
∆XCH4 

(ppb) 

Mean E BU ECH4 Scaling 

Factor 

Downwind 

Configuration (Gg CH4/yr)  (Gg CH4/yr)  

Spring 
3/25/19 41 10.1 ± 0.6 28.5 ± 2.4 15.5 ± 5.5 1.8 ± 0.2 B 

3/29/19 32 6.6 ± 0.9 27.7 ± 4.3 14.4 ± 5.1 1.9 ± 0.3 B 

Summer 

6/21/19 41 8.5 ± 1.5 37.7 ± 6 12.8 ± 4.6 2.9 ± 0.5 B 

6/22/19 60 5.9 ± 0.5 18.3 ± 1.6 12 ± 4.2 1.5 ± 0.1 A 

6/24/19 37 7.05 ± 3.1 49.8 ± 21.25  9.7 ± 3.4 5.5 ± 2.2 A 

6/26/19 69 12.1 ± 1.3 66.5 ± 6.6 11.5 ± 4.1 5.7 ± 0.6 A 

6/27/19 64 10.3 ± 0.6 68.2 ± 4.2 23 ± 8.2 3 ± 0.2 C 

Fall 

9/10/19 14 10.2 ± 1 38.4 ± 4.4 15 ± 5.3 2.5 ± 0.3 C 

9/11/19 59 7.1 ± 0.5 41 ± 2.8 22 ± 7.8 1.9 ± 0.1 C 

9/17/19 82 2.1 ± 0.3 13.4 ± 2.2 12.7 ± 4.5 1.1 ± 0.2 A 

9/19/19 59 2.7 ± 0.5 11.8 ± 2.0 12.3 ± 4.4 0.9 ± 0.2 A 

Winter 

1/23/20 33 21.4 ± 2.4 43.8 ± 6.8 12.5 ± 4.4 3.5 ± 0.5 A 

1/23/20 33 23.7 ± 3.1 52.3 ± 7.3 16.6 ± 5.7 3.2 ± 0.4 B 

1/28/20 30 8.7 ± 1 30.8 ± 4.2 9 ± 3.2 3.4 ± 0.5 A 

1/28/20 30 15.6 ± 0.9 43.9 ± 5.0 16.1 ± 5.7 2.7 ± 0.3 B 

1/31/20 10 5.9 ± 2.6 4.6 ± 2 8.8 ± 3.1 0.5 ± 0.2 A 

1/31/20 10 8.9 ± 2.4 7.0 ± 1.9 6 ± 2.1 1.1 ± 0.3 B 

2/2/20 38 15.9 ± 4.6 62.3 ± 20.6 16.4 ± 5.8 3.8 ± 1.3 B 
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A2.1 Figures 

 

 
Figure A1.1 The EM27/SUN solar spectrometers dn, ua and ha were co-located with the higher spectral 
resolution TCCON instrument to ensure system stability before and after each field campaign and to tie 
our measurements to the WMO scale. The correction factor (R) is shown for each instrument and season. 
The averaging kernel was considered when comparing these two instruments.  

 
 

 
 
Figure Error! No text of specified style in document.1.2 Example of mass balance technique. Locations 
of EM27 in magenta and cyan colors and 5-minute average wind directions in grey on March 25th, 2019. 
Schematic of wind vectors (grey) intersecting dairy farms (red) with dashed black lines representing 
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95% confidence interval of wind direction during measurement period. A mean emission of 28.5 ± 2.4 
(SEM) was calculated.  

March 29th, 2019 
   10 am -1 pm    2 - 6 pm 

  
 
 
March 30th, 2019 
   10 am -1 pm    2 - 6 pm 

  
 
Figure A1.3 March 29th and 30th, 2019, WRF-STILT footprints as contour plots for 10-1 pm and 2-6 
pm showing the Greater SJV dairy influence on March 30th. Winds were consistently NW on March 
29th. Red circles are dairy farms. 
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Appendix A2: Appendix to Ground solar absorption 

observations of total column CO, CO2, CH4, and aerosol 

optical depth from California’s Sequoia Lightning Complex 

Fire: Emission factors and modified combustion efficiency at 

large scales 
 

 
A2.1 Text 

 
A2.1.1   EM27/SUN Sensitivity 

 

The EM27/SUN has different instrument sensitivities defined by the averaging 

kernels (AK) for each species measured shown below in Figure C1. The difference in 

sensitivity for the trace gases may introduce a bias in calculated ERs and MCE. Most of 

the difference is expected to be at the height of the plume where the smoke is 

concentrated at 4.1 km (~600 hPa). Following the methods of Hedelius et al. (2018), we 

divide the enhancements of ∆XCO2 and ∆XCO by the averaging kernel at that smoke 

plume height: 

 

SW:hi j�kkljml5 (nop) = =�a!/�r(�s�)Rf7,tuu vwE
=�a!/�r(�s�)Rf7,tuu vwEb =�a/�r(�s�)Rf,tuu vwE

   

                          (Eq. C1) 

 

where AK600 hPa is the averaging kernel sensitivity for CO or CO2. The mean relative 

difference of the correction for the Sept. 12 plume event is -1.1%, thus not applying this 

correction would overestimate the MCE by 1.1%  
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Similarly for the ERs, we correct the enhancements prior to fitting the points with a linear 

regression for the Sept. 12 plume event: 

 

:;<,hi j�kkljml5 =  ∆</hi(xyh)N,tuu vwE
∆<Rf7/hi(xyh)N,tuu vwE

        

           (Eq. C2)    

 

Without applying this correction, ECH4 would be underestimated by 9.5% and ECO 

by 14.2% due to the difference in sensitivity.  

 

A2.1.2 Description of EM27/SUN measurements in the San Joaquin Valley during 

September 2018 and 2019 

September 2018 and 2019 measurements in the San Joaquin Valley took place 

over 5 to 6 days in each year. Total column averages of CO, CO2, and CH4 were 

measured continuously between 9 am and 6 pm at northwest (NW) and southwest (SE) 

locations with the Los Alamos National Laboratory (LANL) and NASA Jet Propulsion 

Laboratory (NASA-JPL) EM27/SUNs. The NW and SE observational sites were chosen 

to target dairy farms in the area north of Visalia, CA. The NW location was consistent 

between measurement days, while the SE location varied per day dependent on 

forecasted winds to maximize sensitivity to dairies of interest (Figure A2.6).   
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A2.2 Tables 

 
 
Table AError! No text of specified style in document..1 Summary of correction factors from co-located 
EM27 measurements with TCCON at Caltech. The EM27/SUN was co-located with the CIT TCCON 
for 2-3 days before (Sept. 2 and 3, 2020) and after (Oct. 30, 31 and Nov. 31, 2020) the field 
measurements. A summary of the correction factors is shown in Table A1. An averaging kernel 
correction has been applied to the EM27/SUN observations prior to comparison following Hedelius et 
al. (2016). Due to a camera misalignment on Sept. 2 and 3, XCO correction factors for those dates are 
not reported.  

 

Xgas Sept 2 & 3 Oct 30, 31 & Nov 1 

XCH4 0.9986 (0.0002) 0.9976 (0.0001) 

XCO2 1.0042 (0.0001) 1.0036 (0.0001) 

XCO - 0.9737 (0.0028) 

XH2O 1.0044 (0.0005) 1.0101 (0.0005) 

 
 

 
Table AError! No text of specified style in document..2 Mean values of ln(Vo) from September 14, 
19, and 24, 2020 used for deriving AOD. 

 
Window Mean ln(Vo) sd n 

1020.9 15.17 0.11 3 

1238.25 16.01 0.09 3 

1558.25 16.34 0.08 3 

1636 16.35 0.08 3 
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Table AError! No text of specified style in document..3 Emissions of the top 20 of 2020 wildfires. 
Emission ratios for Sierra Nevada fires (Creek, Castle and North Complex) were derived from EFs 
compiled in this study. The rest of the ER are derived from literature (Prichard et al., 2020; Xu et al., 
2022). 

 

Fire Name General Vegetation 
Wildfire Area 

Burned (acres) 
CO2 (Tg) ERCH4 CH4 (Gg) 

August Complex Temperate evergreen 1,032,700 27.7 0.0055 ± 0.0044 55.4 ± 44.3 

SCU Complex Grasslands and savanna 396,399 4.6 0.0043 ± 0.0028 7.2 ± 4.7 

Creek Temperate evergreen 379,882 13.8 0.0084 ± 0.0022 42.2 ± 11 

North Complex Temperate evergreen 318,777 10.9 0.0084 ± 0.0022 33.3 ± 8.7 

Hennessey Shrublands 305,352 3.5 0.0033 ± 0.0021 4.2 ± 2.7 

Castle Temperate evergreen 170,648 6.4 0.0084 ± 0.0022 19.5 ± 5.1 

Slater Temperate evergreen 157,430 6.7 0.0055 ± 0.0044 13.4 ± 10.7 

Red Salmon 

Complex 
Temperate evergreen 143,836 4.6 0.0055 ± 0.0044 9.2 ± 7.4 

Dolan Shrublands 124,527 2.1 0.0033 ± 0.0021 2.5 ± 1.6 

Bobcat Shrublands 115,998 2.5 0.0033 ± 0.0021 3.0 ± 1.9 

CZU Complex Temperate evergreen 86,553 5.4 0.0055 ± 0.0044 10.8 ± 8.6 

W-5 Cold Springs Grasslands and savanna 84,817 0.7 0.0043 ± 0.0028 1.1 ± 0.7 

Caldwell Grasslands and savanna 81,224 0.4 0.0043 ± 0.0028 0.6 ± 0.4 

Glass Shrublands 67,484 1.9 0.0033 ± 0.0021 2.3 ± 1.4 

Zogg Shrublands 56,338 0.7 0.0033 ± 0.0021 0.8 ± 0.5 

Wallbridge Shrublands 55,209 4.1 0.0033 ± 0.0021 4.9 ± 3.1 

River Shrublands 50,214 0.9 0.0033 ± 0.0021 1.1 ± 0.7 

Loyalton Grasslands and savanna 46,721 0.7 0.0043 ± 0.0028 1.1 ± 0.7 

Dome Shrublands 44,211 0.1 0.0033 ± 0.0021 0.1 ± 0.1 

Apple Shrublands 33,209 0.8 0.0033 ± 0.0021 1.0 ± 0.6 

Total         213.7 ± 49.8 
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A2.3 Figures 

 

 
 

Figure AError! No text of specified style in document..1 Absolute calibration for Langley exponential 
analysis of the EM27/SUN solar spectra over time from September to November 2020. Mirrors became 
significantly dirtier and dustier over the course of the measurement period. The ln(Vo) increased 
considerably after instrument mirrors were cleaned after the field campaign ended (black line).  

 
 
 

 

 
Figure AError! No text of specified style in document..2 Timeseries of AOD for the four micro 
windows from September 8 to September 15, 2020. 
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Figure AError! No text of specified style in document..3 Timeseries of AOD from FTIR for the 
1020.9 (red) and 1636 (blue) nm windows and AERONET (black) located in Fresno, CA ~90 km 
north of measurement site. 

 
 

 
Figure AError! No text of specified style in document..4 Averaging kernel (AK) of EM27/SUN of 
XCO and XCO2 colored by solar zenith angle (SZA).  
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Figure AError! No text of specified style in document..5 Results from sensitivity analysis with 
varying radius away from measurement site for selecting CO enhancements from TROPOMI pixels 
and varying aggregated times.  
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Figure A2.6. EM27/SUN observational sites at NW and SE and targeted dairy farms (red). Sources of 
methane in this area include dairy farms and a landfill.  




