UCLA

Posters

Title

Cooperative Acoustic Vehicle Localization (SYS 1)

Permalink

https://escholarship.org/uc/item/7vc0s6mp

Authors

Lewis Girod Andreas Ali Mani Srivastava <u>et al.</u>

Publication Date

2006

5 Center for Embedded Networked Sensing

Cooperative Acoustic Vehicle Localization

Lewis Girod, Andreas Ali, Kung Yao, Mani Srivastava CENS - http://research.cens.ucla.edu/

Introduction: Improving vehicle safety by position tracking in GPS-denied area.

Project Goal

- Assess use of audible acoustic ranging for vehicle safety applications in GPS-denied areas
- · Develop a testing platform to enable experimentation
- Perform some initial experiments to test signaling waveforms

Application Vision

Cooperative system System coordinates acoustic vehicle tracking via RF signaling, informs vehicle of position relative to potential hazard Receivers over road receive acoustic signals

 Emitters in bumper emit acoustic signals

Connection to 433

MHz radio logs synchronization

and break beam

Problem Description: Develop a system to acoustically track vehicle location and speed

- - Linear array of 14 microphones
- Sampled at 48KHz
- Suspended over the roadway
- Wirelessly synchronized to vehicle

 Two emitters: one on each side of the front bumper

Proposed Solution: Localization based on time of arrival using pseudo-noise sequence

System Architecture

Chirp Code Selection

- · Pseudo-noise repeating sequence of varying length
- Because these codes are very sensitive to Doppler shift, we needed to correct for Doppler shift in the detection process
- Chirp lengths of 512 chips and above had very few detection errors
- Shorter chirps tended to yield more detection errors. However, this might be compensated by higher chirp rates, lower processing overhead, and on-line filters, e.g., Kalman filters

Doppler Correction

- Current solution is based on the "brute force" approach
 - Test Doppler shifts in the neighborhood of last speed estimate in 0.2 m/s increments
 - Test all emitter/receiver pairs and find max confidence value
 - If peak confidence is at least 2 std. dev. above the mean, accept the estimated value
 - Else, double the Doppler search range and repeat

Velocity Estimation

- Velocity of car needed to correct for Doppler shift
- OBD reports in Km/H
- Appears to lag (internal smoothing filter)
- · Implemented acoustic velocity estimator
- Tracks OBD output, but with finer granularity and without lag

events

Driven from laptop inside the vehicle Connection to OBD-II port to record reported

Emitter Setup

vehicle speed

Synchronization Issue

- We implemented wireless synchronization
- Single broadcaster radio emits periodic signals
- Receivers feed correlated sync symbols into the ADC
- Offline processing matches up sync symbols
- Rate conversion to correct for ADC clock skew (166 PPM)
- For an on-line system, must be integrated into RF protocol

Position Tracking

