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HIGH RISK AND COMPETITIVE INVESTMENT MODELS

F. THOMAS BRUSS and THOMAS S. FERGUSON

Universit�e Libre de Bruxelles

and

University of California at Los Angeles

Summary. How should we invest capital into a sequence of investment oppor-

tunities, if, for reasons of external competition, our interest focuses on trying to
invest in the very best opportunity? We introduce new models to answer such
questions. Our objective is to formulate them in a way that makes results high-
risk speci�c in order to present true alternatives to other models. At the same
time we try to keep them applicable in quite some generality, also for di�erent

utility functions. Viewing high risk situations we assume that an investment on
the very best opportunity yields a lucrative, possibly time-dependent, rate of
return, that uninvested capital keeps its risk-free value, whereas \wrong" invest-
ments lose their value. Several models are presented, mainly for the so-called
rank-based case. Optimal strategies and values are found, also for di�erent util-
ity functions, and several examples are explicitly solved. We also include results
for the so-called full-information case, where, in addition, the quality distribution
of investment opportunities is supposed to be known. In addition we present
tractable models for an unknown number of opportunities in terms of Pascal ar-

rival processes. E�ort is made throghout the paper to justify assumptions in the
view of applicability.

Keywords: Kelly betting system, utility, hedging, secretary problems, random

number of opportunities, di�erential equations, Euler-Cauchy approximation,
odds-algorithm, Pascal processes.

AMS Subject Classi�cation: primary 60G40, secondary 90A80.

Short title: HIGH RISK INVESTMENT MODELS

1. Introduction.

In the classical secretary problem, the selection of a secretary is a yes-or-no choice.
We cannot hedge our selection by selecting half of a secretary. In an attempt to make
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the selection process smoother, we may consider the following scheme which we view as a

suitable model for investment.

Each occasion for an investment will be called opportunity. Unless stated otherwise

we make no assumptions about the distribution of the value (or measurable quality) of
opportunities; indeed, we only suppose that we can rank opportunities with respect to
those observed before. In this case we speak of a rank-based model, and we will �rst
con�ne our interest to such models.

1.1 The model. The basic model is as follows: Our initial fortune is x0. We are

going to observe a known number, n > 0, of rankable opportunities sequentially in a
completely random order. At the �rst stage after observing the �rst opportunity, we may
invest any amount b1, 0 � b1 � x0, in that opportunity, leaving fortune x1 = x0 � b1 for

future investments. If, after all n opportunities have been observed, this opportunity is
best overall, then the return on our investment is y1 = �1b1 where �1 � 1 is a known rate
of return available at stage 1. If it is not best overall, we suppose we lose our investment.

Similarly, at stage k = 2; 3; : : : ; n, if the kth opportunity is relatively best and our

remaining (uninvested) fortune is xk�1, we may invest any amount bk, 0 � bk � xk�1,
in the kth opportunity and the return on the investment will be yk = �kbk if the kth

opportunity is best overall (=0 otherwise), where �k � 1. Our problem is to choose a
sequence of investments to maximize the expected value of our total fortune after the
proceedings have concluded. No interest accumulates on uninvested capital or on lost
capital.

More generally, we may have a utility function de�ned on fortunes, and we may wish to
maximize the expected value of the utility of our total fortune at the end of the proceedings.
Typical utility functions for such investment problems are

u�(x) = (x� � 1)=� for � 6= 0

u0(x) = log(x) corresponding to � = 0.
(1:1)

This form of the utility functions is chosen because it is continuous in � at � = 0. The
case � = 1 corresponds to the linear utility of the description above. The use of these
utility functions for sequential investment problems goes back to Bellman and Kalaba in

the late 1950's. (See Bellman and Kalaba (1965).)

Variations of this basic model will be de�ned and studied in Sections 5. and 6.

1.2 Model characteristics and comparisons. A typical feature of portfolio selec-
tion problems is that investments are spread over a set of stocks or assets which jointly
contribute to the global objective which is usually the rate of return on all investments.

(For the objective of avoiding bancruptcy see e.g. the model by Assaf et al. (2000))

These contrast to the model we consider. Our model becomes an interesting al-
ternative in those cases where the investment has a speci�c target and where the best
opportunity is essentially the only one which is a winner. Here we want to invest in the

one which turns out best, or, alternatively, not to invest at all. In particular, we do not try
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to measure risk coherently (see e.g. Artzner et al. (1999)) but we just concentrate on the

optimization problem to select the best opportunity among those we consider as belonging
to the high-risk class.

The high risk is reected in our assumption that wrong investments are lost (or,
in reality, essentially lost). Since an opportunity cannot be best of all unless it is the

relative-best of those observed so far, we can limit our interest to investment decisions for

relative-best opportunities. A relative-best opportunity will be called record opportunity,
or simply record, throughout the paper.

We think here mainly of that kind of risk in investments which is linked to competition,

be it among those who provide investment opportunities to the investor, or else, be it simply

among investors themselves. As an example for the �rst case, we may think of several

ventures which follow one speci�c goal, as e.g. the development of a new technology, and

the best will get the whole market. The high risk for the investor stems here from the
competition among those who provide investment opportunities. The second case, i.e.
competition among investors, is not uncommon either. Some investors, as e.g. investment
funds, like to attract attention of the public by a high return (compared with competitors)
in order to attract more foreign capital in the future. Hence they typically specialize in
high risk investments, though not necessarily in targeted venture investments in order to
outperform competitors. We also mention that if, unlike in our present model, uninvested
capital is supposed to be lost, then some such problems become equivalent to the problem
of stopping (investing everything) on the last record. This problem is conceptually easier.
In the case of a record arrival process with independent increments, for instance, the odds-
algorithm (Bruss (2000), see Theorem 1 and 2.1), gives at once the form of the optimal

strategy and its value.

Since our present model is di�erent from the above models, the methods we apply are
also quite di�erent. Honoring the relationship in some of the assumptions with those in the
classical secretary problem we may name these models \secretarial investment models".
However, the chosen title indicates the goal of these models and is thus more informative.

Despite some relationship with the secretary problem (best-choice problem) it should

also be pointed out that this relationship has its limits. In particular, investment strategies
in our model cannot be seen as versions of randomized strategies for secretary problems.

So, for example, if investing, at a certain stage, 50 percent say, of the available capital
in an opportunity is an optimal decision (that is , this decision maximizes the expected

reward), then ipping a fair coin to decide whether to invest all or nothing, and to go on
optimally thereafter, is in general not optimal. Thus "hedging" by a partial investment

has a real meaning in this context.

1.3 The choice of the payo� structure. The payo� structure we propose raises

some questions and we should justify our choice.

We do realize that this choice may have disadvantages. In particular, it may seem
somewhat naive that we do not try to link the payo�s �k to the probability of the kth
opportunity being a record. Indeed, one feels that an investor would evaluate an opportu-

nity as being a record more likely if its rate � is itself a record compared with preceding
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observed rates. This argument seems then to imply that it would be better to con�ne

our interest to full information models and to try to link the rate � with the observed
value (that is, quality of rating or with another measure) under the hypothesis of a known

quality distribution of opportunities.

However, there are several major reasons why this is not an adequate idea. The �rst
important reason is that for (targeted) venture capital investments in new technologies,

a technological break-through of the chosen company is frequently the main ingredient of
success. History shows that small companies are often more exible and inventive and

compete well with large companies, even without adjustment for size. But their rate of

return would normally still be relatively modest by comparison since their marketing and
sales capacities are usually less developed than those of larger companies. Thus the rate of

return �k is linked with factors others than just the degree of a technological advantage.
Time is clearly an important such factor so that we should and do allow for the dependence

on k

The second reason for our preference for the proposed model is that full-information
models may not only be mathematically more diÆcult than rank-based models but, as we
think, hard to implement. It is clearly not obvious to estimate in practice the function
which determines the relationship between the return rate and the probability of success
of an opportunity. Moreover, this diÆculty is enhanced by barriers of secrecy which are
typically present in a competitive environment. Consequently, given that full-information
models are, in general, more sensitive to errors in the hypotheses than rank-based models,
this is a strong support for the latter.

The �k's are, as we pointed out already, usually supposed to depend on time. In some
continuous time models we denote the corresponding function accordingly �(t). Of course
it is understood, that the choice of �k or �(t) depends also intrinsically on the speci�c

problem. If the �k are chosen to be constant then we see them as average return rate per
monetary unit. Often the choice of monotone �k's is the most natural one, and we will
treat several such examples. But for the sake of generality we keep results in a form which
is independent of monotonicity assumptions.

Before summarizing our results we �rst derive the basic recursion equations for the
�xed-n problem, which is our basic model.

1.4 The Recursion Equations. Let Vk(x; y) represent the expected utility of the
�nal fortune using an optimal strategy, when at stage k, 1 � k � n, before we observe the
kth opportunity, we have an amount x available for future investments, and a preceding

investment that will return y if the present record is best overall. We �rst note that we

would invest in an opportunity only if it is a re cord because otherwise it cannot be best
of all. We now show that the initial (backward) condition and recursion equations are

Vn(x; y) =
n� 1

n
u�(x + y) +

1

n
u�(�nx) and

Vk(x; y) =
k � 1

k
Vk+1(x; y) +

1

k
max
0�b�x

Vk+1(x � b; �kb) for k = 1; : : : ; n� 1.
(1:2)
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Indeed, if at the kth stage, the kth opportunity is not a record, which happens with

probability (k � 1)=k, we proceed to the next stage with the same x and y; if the kth
opportunity is a record (with probability 1=k), the investment y is lost, but we now choose

to invest b in the kth opportunity to maximize our expected utility. This explains the

second line equations in (1.2). The �rst line (k = n) is just a special case: At the nth
stage, if the nth opportunity is a record, it is certain to be best overall, so we must invest
all our remaining fortune.

1.5 Summary of results. In this paper, we �nd the solution of the recursion
equations (1.2) for arbitrary � � 1. Two cases, � = 1 and � = 0, are somewhat special

so we treat them �rst separately. The log utility is a central case. The resulting optimal

rule, which may be seen as a Kelly betting system, has been studied extensively and

shown to have various optimality properties in standard investment problems for �xed n,
independent of the choice of a utility function. See, among others, Breiman (1961), Bell
and Cover (1980), Algoet and Cover (1988), and Browne and Whitt (1996)

We �nd that, in all cases, the optimal investment policy is a proportional investment
system, that is to say that if a record appears at stage k, it is optimal to invest some
proportion 0 � ak � 1, of the remaining fortune in this opportunity. Proportional invest-
ment systems in standard investment problems have also been studied extensively. See,

for example, Ethier and Tavar�e (1983), and also the surprising universal portfolio of Cover
(1991).

We �nd the asymptotic form of the optimal rules and payo�, for large horizon, n. We
also discuss briey so-called full-information risk investment problem. Borrowing again

from the terminology of secretary problems, (see Samuels (1991) for a survey), we use this
name for those models where, in contrast to the rank-based case, the distribution of the
qualities of opportunities is known. In our �nal section we drop the �xed-n hypothesis and
study the case where the number of opportunities may be unknown with some hypotheses
about the process of arriving opportunities.

2. Linear Utility

Let us �rst consider the case, � = 1, of linear utility. For simplicity, we take u1(x) = x

instead of u1(x) = x � 1 as de�ned in (1.1), because the optimization problem is clearly
equivalent. Then, according to the �rst equation in (1.2),

Vn(x; y) =
n� 1

n
(x + y) + �n

x

n
:

To compute Vn�1, we need to �nd max0�b�x Vn(x� b; �n�1b). But according to (1.2) with

u�(x) = x, this is linear in b and so its maximum occurs at either b = 0 or at b = x. Hence

max
0�b�x

Vn(x � b; �n�1b) = maxfVn(x; 0); Vn(0; �n�1x)g:

5



Therefore, from the second equation of (1.2),

Vn�1(x; y) =
n� 2

n� 1
[
n� 1

n
(x + y) + �n

x

n
] +

1

n� 1

n� 1

n
maxf1 +

�n

n� 1
; �n�1gx

=
n� 2

n
(x + y) + [

n� 2

n� 1
�n +maxf1 +

�n

n� 1
; �n�1g]

x

n

and the optimal investment at stage n� 1 is to invest everything on a record opportunity

if n� 1 � �n=(�n�1 � 1) and nothing otherwise. We see that the optimal return at stage
n� 1 has the same form as it does at stage n.

Using backward induction we arrive at the following theorem:

Theorem 1. In the case � = 1, we have

Vk(x; y) =
k � 1

n
[x+ y + ckx] (2:1)

for k = 2; : : : ; n, and

V1(x; y) =
1

n
maxf1 + c2; �1gx;

where cn = �n=(n � 1) and for k = n� 1; : : : ; 2,

ck = ck+1 +
1

k � 1
maxf1 + ck+1; �kg: (2:2)

An optimal investment policy is to invest everything in the �rst record, with arrival number

k, for which �k > ck+1 + 1.

Proof. We have seen that (2.1) holds for k = n. Suppose that (2.1) holds for k+1. Then
from (1.2)

Vk(x; y) =
k � 1

k
[
k

n
(x + y + ck+1x)] +

1

k
max
0�b�x

k

n
[x� b+ �kb+ ck+1(x� b)]

=
k � 1

n
[x+ y + ck+1x] +

x

n
maxf1 + ck+1; �kg

=
k � 1

n
[x+ y + (ck+1 +

1

k � 1
maxf1 + ck+1; �kg)x]

completing the induction.

Note that it is impossible to have anything invested when entering the �rst stage.
This is reected in the fact that V1(x; y) does not depend on y anyway.

2.1 Asymptotic form. We allow the �k and the ck to depend on n, say �k;n and

ck;n. We assume there is a continuous function, �(t) � 1 on (0; 1], such that �k = �(k=n).
We write the recursion (2.2) as

ck+1;n � ck;n

1=n
= �

n

k � 1
maxf1 + ck;n; �(k=n)g: (2:3)
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This shows that the ck;n are monotone decreasing. If we de�ne monotone functions fn(t)

on [0; 1] that interpolate the points (k=n; ck;n), then (2.3) becomes

fn((k + 1)=n)� fn(k=n)

1=n
= �

n

k � 1
maxf1 + fn(k=n); �(k=n)g: (2:4)

We will use (2.4) to derive a di�erential equation which will yield a useful limiting

optimal solution. To make precise what we understand here by "limiting optimal" we need

the following de�nition.

De�nition. 2.1 Let � be a real-valued function de�ned on [0; 1], and let S� be the set
of all return sequences ((�1;n; �2;n; � � � ; �n;n))n=1;2;��� satisfying �k(n);n ! �(t) whenever

k(n)=n ! t as n ! 1: For s 2 S� let �n(s) be the optimal expected utility for the
corresponding reward vector (�s1;n; �

s
2;n; � � � ; �

s
n;n). We say that an investment policy is

limiting optimal on S� with reward �(�) , if limn!1 �n(s) exists for all s 2 S
� and

satis�es

lim
n!1

�n(s) = �(�):

Theorem 2. If � is continuous on [0; 1] and �(t) > 1 on [0; 1[ then a limiting optimal

policy exists and is of the following form: Invest all available capital in the �rst record

opportunity whose arrival time t satis�es

�(t) � 1 + f(t); (2:5)

where f(t) is the solution of the di�erential equation

f
0(t) = �

1

t
maxf1 + f(t); �(t)g (2:6)

with boundary condition limt!0+ f(t) =1.

Proof. Let t 2]0; 1[ and (k(n)) be a sequence such that k(n)=n! t as n!1: For n �xed,
we de�ne k(n)=n as the arrival time of the k(n)-th opportunity on the interval [0; 1]. Fix

t with 0 < t < 1. Then the policy of investing in the �rst record after time t, satisfying a
certain condition, is de�ned as the policy of investing at the earliest record time k=n with
k=n � t (and satisfying the same condition), if such a k exists, and not to invest at all
after t, otherwise. Let us call this policy 'n-policy (for t)'. Each reward vector of length n

may have a di�erent n-policy.

Our attack of embedding a t-policy in a sequence of n-policies is as follows. We �rst

show that, as n ! 1, n-policies for t allow, for each s 2 S�, for a well-de�ned limiting
object ("t-policy") in the sense that the instruction of investing in the �rst record after

t stays is well-de�ned. This requires only to show, that the �rst record (if any) does
not appear (a.s) in a point of accumulation of records. We then show that, for some t�,
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the limiting optimal reward for n-policies does exist and that it is also achieved by the

t
�-policy, which we then can determine via the di�erential equation given in the Theorem.

For �xed n, let Ik be the indicator of the kth opportunity being a record. Let Rk;n =

Ik+1 + Ik+2 + � � � + In, that is, Rk;n denotes the number of records among the n� k last

opportunities. It is well-known that the Ij are independent with E(Ij) = 1=j. It is easy
to see from the generating function of Rk;n (and well-known) that, as k(n)=n ! t, Rk;n

converges in law to a Poisson random variable, R[t; 1], say, with parameter
R 1
t
(1=s)ds =

� log(t). Hence, for t > 0, the variable R[t; 1] is �nite with probability one, so that, for

n = 1, there is a.s. no accumulation point of records after time t. Hence, in particular,
there is no accumulation point t > 0 satisfying the investment condition �(t) > 1 + f(t).

To see that we can ignore the point t = 0, we show now that the investment condition

�(t) > 1 + f(t) cannot hold unless t > 0. According to (2.3), we have for all k � 2 the

inequality �ck+1;n + ck;n � 1=(k � 1), since all ck;n are nonnegative. Thus, as n!1,

c2;n � cn;n =

n�1X
k=2

(ck;n � ck+1;n)!1;

and so, since cn;n ! 0 by de�nition,

lim
n!1

c2;n = lim
n!1

fn(
2

n
) = lim

t!0+
f(t) =1:

Further, since the function � is continuous on [0; 1] it is also bounded, and hence �(t) >
1 + f(t) implies that t > 0.

Now for t > 0 the recursion equations (2.4) are just Euler-Cauchy approximations
to the di�erential equation (2.5). Since � is continuous, this holds for any s 2 �. Hence

fn(t)! f(t) for t 2 (0; 1] by standard arguments. See Henrici (1962) for example. Again,
since � is continuous, �(k(n)=n)! �(t) as k(n)=n! t, and hence from (2.1)

Vt(x; y) = lim
k(n)=n!t

Vk(n)(x; y) = t(x + y + f(t)x):

Consequently
� = lim

t!0+
Vt(x; y) = lim

t!0+
tf(t)x:

This completes the proof.

2.2 Computing the value. It is of interest to �nd the overall value of the investment
model, limt!0 Vt(x; y), for reasonable rate functions, �(t). Note that f(t) ! 1 as t ! 0.
If �(t) is bounded on the interval (0; 1), then there is an interval 0 < t < t0 in which

�(t) � 1 + f(t), and equation (2.5), f 0(t) = �(1 + f(t))=t, has the solution, f(t) = c=t� 1
where the constant, c, of integration satis�es f(t0) = c=t0�1. Thus f(t) = (1+f(t0))t0=t�1
for 0 < t < t0, and so

V0(x; y) = lim
t!0

Vt(x; y) = x(1 + f(t0))t0: (2:7)
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Any t0 such that �(t) � 1 + f(t) for 0 < t < t0 may be used in this equation. Some

examples will make this procedure clear.

2.3 Examples.

2.3.1 Constant return. As a �rst example, consider the constant return function,

�(t) � � > 1. The equation (2.5) becomes for 0 < t � 1,

f
0(t) = �

1

t

�
� if 1 + f(t) � �

1 + f(t) if 1 + f(t) > �

with boundary condition f(1) = 0. Since f(t) is decreasing, there is a unique point t0 such

that 1 + f(t0) = �. We then have

f(t) =

�
�� ln(t) if t0 < t � 1

(t0�=t)� 1 if 0 < t � t0

where
t0 = e

�(��1)=�
: (2:8)

The optimal �nal expected fortune is the limit of Vt(x; y) as t tends to zero as in (2.7),
namely,

Vt(x; y) = t[x+ y + ((t0�=t)� 1)x]! t0�x: (2:9)

For � = 2, this is essentially the three-value secretary problem of Sakaguchi (1984), where

our repective rewards 0; 1; 2 are replaced by �1; 0; 1. According to (2.8) we obtain t0 =
e
�1=2 and hence, from (2.9), a total optimal expected reward of 2e�1=2x for an initial
capital x.

2.3.2 Time proportional total return. As another example, consider �(t) = c(1 � t)
where c is a positive constant. Clearly, we would not invest if c(1 � t) < 1, i.e. we can
limit our interest, without further mentioning, to c > 1 and t < 1 � 1=c. Equation (2.5)
becomes

f
0(t) = �

1

t

�
1 + f(t) if f(t) � c(1� t) � 1
c(1� t) if f(t) < c(1� t),

with boundary condition f(1) = 0. For t close to 1, the upper inequality is satis�ed and

the di�erential equation f
0(t) = �(1 + f(t))=t has solution, log(1 + f(t)) = � log(t) + a0

for some constant of integration, a0. By the boundary condition, the constant must be 0,

and we have

f(t) =
1

t
� 1 for t1 < t � 1.

This holds for t from 1 down until 1 + f(t) = c(1 � t). This quadratic equation has two

roots t = (1�
p
1� (4=c))=2. We see that if c � 4, then t1 = 0. Assume then that c > 4.

The two roots are in the interval (0; 1) and straddle 1/2. Let t1 = (1 +
p
1� (4=c))=2

denote the larger root. Immediately to the left of t1, the di�erential equation becomes

f
0(t) = �c(1� t)=t, with solution

f(t) = �c log(t) + ct+ a1 for t0 < t � t1,

9



where a1 = (1=t1)�1+c log(t1)�ct1. This holds for t down to the root t0 of the equation,

1 + f(t) = c(1� t).

This equation has no simple solution so we consider a speci�c value of c as an example.

Suppose c = 16=3. Then t1 = 3=4, a1 = �5:20097, and t0 = :31289. For t < t0,

f
0(t) = �(1 + f(t))=t again, and

f(t) = 1=t� a2 for 0 < t � t0,

for some constant a2. In conclusion, the optimal strategy is to invest everything in the �rst

record that appears between t0 = :31289 and t1 = :75. The overall value of the investment
model is V0(x; 0) = xc(1 � t0)t0 = 1:1466x.

2.3.3 Principal and interest for the best. Take �(t) = 1+(1�t)pwhere p > 0 represents
an interest rate. Here interest means simple interest.

Equation (2.5) becomes

f
0(t) = �

1

t

�
1 + (1 � t)p if (1 � t)p � f(t)

1 + f(t) if (1 � t)p < f(t),

with boundary condition f(1) = 0. If p � 1, then f(t), being convex with slope 1 at t = 1,
is greater than (1�t)p for all t 2 (0; 1); so f(t) = (1=t)�1 and it is optimal never to invest.
Assume p > 1. Then to the immediate left of 1, we have f 0(t) = �(1=t)(1 + (1� t)p), and

f(t) = �(1 + p) log(t) � p(1� t) for t0 � t � 1,

where t0 is the root of the equation f(t) = (1�t)p below 1. Below t0, we have f(t) > (1�t)p
so that

f(t) =
1

t
� a1 for 0 < t < t0

where a1 is a constant that makes f(t) continuous at t = t0. The optimal strategy for
p > 1, is to invest in the �rst record, if any, to appear after t0, where t0 satis�es

�(1 + p) log(t0) = 2(1 � t0)p; 0 < t0 < 1:

For example, if p = e=(e � 2) = 3:7844 � � �, then t0 = 1=e. We note that if p does not
exceed 1 (that is 100 percent interest rate for the horizon [0; 1]) it is optimal to never

invest. Indeed, if we see a record at time t then this record is best overall with probability
t. In this case we obtain 1 + (1� t)p per unit of investment (and zero otherwise) whereas
we can keep the unit uninvested until the end and hence keep 1. But t(1 + (1 � t)p) > 1
implies p > 1=t � 1.

Compound interest. Similarly, if we want to model compound interest with interest

rate p percent per capitalization time unit on some horizon T , we simply adapt �(t)
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on the horizon. For continuous capitalization for instance we de�ne �(t) as the limit of

�k(n);n = (1+p
0
=n)(n�k)T as n!1 with k(n)=n! t and p

0 = log(1+p). We then obtain

�k(n);n = (1 +
p
0

n
)(n�k)T = (1 +

p
0

n
)(n(n�k)=n)T ! e

p0(1�t)T =: �(t):

Hence �(t) = (1+p)(1�t)T , as desired, and the procedure to compute the optimal strategy

and value is similar to above. Other capitalization periods can be handled similarly.

3. Log Utility

Now we look at the case � = 0 of log utility linear, which may be considered as the
most important utility function after linear utility. The recursion equations (1.2) become
now

Vn(x; y) =
n� 1

n
log(x + y) +

1

n
log(�nx) and

Vk(x; y) =
k � 1

k
Vk+1(x; y) +

1

k
max
0�b�x

Vk+1(x � b; �kb) for k = n� 1; : : : ; 1.
(3:1)

Solving the recursion we see that, in contrast to Theorem 1, we do not invest all or nothing
in a record opportunity. Rather the optimal investment is a proportion, ak, of our fortune,
where

ak =

�
k�k � n

n(�k � 1)

�+

: (3:2)

It is to be understood that ak = 0 if �k � 1.

Interestingly, this is just the Kelly betting system applied to the sequence of record
opportunities. See Kelly (1956). For log utility, with an investment opportunity a�ording
a return of � > 1 per unit invested with probability p and loss of the investment with

probability 1 � p, the optimal proportion of fortune to invest is a = (p� � 1)+=(� � 1).
Here, if the kth opportunity is a record, its probability of being absolutely best, and so

returning the reward �k, is p = k=n, leading to (3.2).

The remarkable feature of (3.2) is that, in contrast to the � 6= 0 case, no backward

computation needs to be done to �nd the optimal investment policy.

Theorem 3. For k = 1; 2; : : : ; n,

Vk(x; y) =
k � 1

n
log(x + y) +

n� k + 1

n
log(x) + ck; (3:3)

where cn = (1=n) log �n, and for k = n� 1; n� 2; : : : ; 1,

ck = ck+1 +
1

k

�
k

n
log(1 + (�k � 1)ak) +

n� k

n
log(1 � ak)

�
; (3:4)
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where the ak are given by (3.2).

It is optimal at a record stage k to invest the proportion ak of the remaining fortune
into the present record opportunity.

Proof. The proof is by backward induction.

From (3.1), the result is true for k = n. Suppose it is true for k + 1, that is,

Vk+1(x; y) =
k

n
log(x + y) +

n� k

n
log(x) + ck+1: (3:5)

Then

max
0�b�x

Vk+1(x� b; �kb) = max
0�b�x

�
k

n
log(x + (�k � 1)b) +

n� k

n
log(x � b) + ck+1

�
(3:6)

It is easy to check that the maximum occurs at b = akx. Thus the optimal investment in
a record at stage k is akx. Substituting this in (3.6), we �nd

max
0�b�x

Vk+1(x � b; �kb) =
k

n
log(x(1 + (�k � 1)ak)) +

n� k

n
log(x(1 � ak)) + ck+1

= log(x) +
k

n
log(1 + (�k � 1)ak)) +

n� k

n
log(1 � ak) + ck+1:

Substituting this and (3.5) into (3.1) completes the proof.

3.1 Asymptotic form. The asymptotic form of the optimal investment policy is
easy to �nd. We assume there is a continuous function, �(t) � 1 on (0; 1], such that

�k = �(k=n) and pass to the limit in (10) as n!1 and k=n! t. Writing ak;n for ak in
(3.2), we �nd

ak;n ! a(t) :=

�
(t�(t) � 1)=(�(t) � 1) if t�(t) > 1
0 if t�(t) � 1

(3:7)

We then have the following theorem analogous to Theorem 2 for linear utility.

Theorem 4. The limiting optimal expected fortune is

Vt(x; y) = lim
n!1

k=n!t

Vk(x; y) = t log(x + y) + (1� t) log(x) + f(t): (3:8)

where f(t) satis�es the di�erential equation

f
0(t) =

(
0 for t�(t) � 1

�
1

t
[log�(t) � (1� t) log(�(t) � 1) + t log(t) + (1� t) log(1 � t)] for t�(t) > 1,

(3:9)
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for t 2 (0; 1], with boundary condition f(1) = 0. The limiting optimal policy is to invest

proportion a(t) of the remaining fortune in a record that appears at time t.

3.2 Example. As an example, consider the constant return function, �(t) � � > 1.

The optimal investment policy is to invest proportion

a(t) =

�
(t� � 1)=(� � 1) if t > 1=�
0 if t � 1=�

of the remaining fortune on a record appearing at time t.

For �(t) = c(1 � t), the set of t on which investment is made is ft : t(1 � t) > 1=cg.
For c � 4, this is empty, while for c > 4, it is an interval symmetric about 1/2. For
�(t) = 1+ (1� t)p, the investment set is empty if p < 1, while if p > 1, the investment set
is an interval (1=p; 1), and the proportion of fortune invested at an opportunity occurring
at time t is a(t) = t� (1=p).

4. Arbitrary �.

Let us consider the case, � < 1, � 6= 0. For simplicity, we take

u�(x) = x
�
=�:

This di�ers from the utility of (1.1) only by a change of location. Then

Vn(x; y) =
n� 1

n
u�(x + y) +

1

n
u�(�nx) =

n� 1

n
[u�(x + y) +

�
�
n

n� 1
u�(x)]:

Theorem 5. In the case � < 1, � 6= 0, we have

Vk(x; y) =
k � 1

n
[u�(x + y) + cku�(x)] (4:1)

for k = 2; : : : ; n, and

V1(x; y) =
u�(x)

n

�
1 + c2 if �1 � 1 � c2

�
�
1 (1 + (�1 � 1)�1)

1�� if �1 � 1 > c2
; (4:2)

where cn = �
�
n=(n � 1) and for k = n� 1; : : : ; 2,

ck = ck+1 +
1

k � 1

�
1 + ck+1 if �k � 1 � ck+1

�
�
k (1 + (�k � 1)�k)

1�� if �k � 1 > ck+1
; (4:3)

where �k = (ck+1=(�k � 1))1=(1��). The optimal investment policy is the proportional

investment system, that is to invest a proportion, (1��k)=(1+(�k�1)�k) of the remaining
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fortune in the kth opportunity, if it is a record and if �k > ck+1+1. Otherwise it is optimal

not to invest.

Proof. We �rst show (4.1) by backward induction. Equation (1.2) shows that (4.1) holds
for k = n with cn = �

�
n=(n� 1) > 0. Suppose (4.1) holds down to k + 1. To show it holds

for k, we need to �nd

max
0�b�x

Vk+1(x � b; �kb) = max
0�b�x

k

n
[u�(x+ (�k � 1)) + ck+1u�(x � b)]:

Let �(b) = u�(x + (�k � 1)b) + ck+1u�(x � b). Then

�
0(b) = [

�k � 1

(x + (�k � 1))1��
�

ck+1

(x� b)1��
]: (4:4)

From (4.3) and the induction hypothesis, we see that ck+1 > 0. We note that �00(b) < 0 so
that �(b) is concave on (0; x). If �k � 1 � ck+1, then �

0(0) � 0 so that �(b) is decreasing
and takes its maximum value over 0 � b � x at b = 0. Otherwise, �(b) has a unique
maximum in the interval (0; x) at the root of �0(b) in that interval. Thus the optimal
investment in a record opportunity is b� where

b
� =

8<
:
0 if �k � 1 � ck+1

1� �k

1 + (�k � 1)�k
x if �k � 1 > ck+1,

(4:5)

where �k = (ck+1=(�k � 1))1=(1��). Noting that 1 + ck+1�
�
k = 1 + (�k � 1)�k, we �nd

max
0�b�x

Vk+1(x � b; �kb) =
k

n
�(b�) =

k

n
u�(x)

�
1 + ck+1 if �k � 1 � ck+1

�
�
k (1 + (�k � 1)�k)

1�� if �k � 1 > ck+1.

Finally we have

Vk(x; y) =
k � 1

k

k

n
[u�(x + y) + ck+1u�(x)] +

1

k

k

n
�(b�)

=
k � 1

n
[u�(x+ y) + cku�(x)]

for k = n; : : : ; 2, while for k = 1 the �rst term disappears and we have (4.2). In both cases
the ck are determined by (4.3) and the proof is complete.

Remark The fact that the optimal investment policy is a proportional investment

system follows from a general theorem in an unpublished paper of Ferguson and Gilstein
(1985). It depends strongly on the assumed form of the utility functions.

4.1 Asymptotic forms. We allow the �k and the ck to depend on n, and we assume

there is a continuous function, �(t) � 1 on [0; 1], such that �k = �(k=n). We see from (4)
that the ck are monotone decreasing. We rewrite the recursion (4.3) as

ck+1 � ck

1=n
= �

n

k + 1

(
1 + ck+1 if ck+1 � �k � 1

�
�
k

�
1 + (�k � 1)(

ck+1
(�k�1)

)1=(1��)
�1��

if ck+1 < �k � 1.
(4:6)
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The corresponding limiting result is given by the following theorem:

Theorem 6. As n tends to 1 and k=n ! t, then ck;n ! f(t) where f(t) satis�es the

di�erential equation,

f
0(t) = �

1

t

(
1 + f(t) if f(t) � �(t)� 1

�(t)�
�
1 + f(t)1=(1��)(�(t) � 1)��=(1��)

�1��
if f(t) < �(t)� 1

(4:7)

on (0; 1] with boundary condition f(1) = 0. The optimal investment policy is the propor-

tional investment system, to invest a proportion,

(1 � �(t))=(1 + (�(t) � 1)�(t)) (4:8)

of the remaining fortune in a record opportunity appearing at time t if �(t) > f(t) + 1,
where

�(t) = (f(t)=(�(t) � 1))1=(1��): (4:9)

The optimal expected fortune is

Vt(x; y) = t[u�(x + y) + f(t)u�(x)]: (4:10)

4.2 Dependence on �. It is of interest to compare how the optimal investment
policy changes with changing �. We take the case of constant �(t) � 2 as an example. For

� = 1, the optimal policy is a threshold policy that invests everything in the �rst record
after time t = e

�1=2 = 0:6065 : : :. For � = 0, it is the Kelly betting system that invests
proportion 2t� 1 of the fortune on a record opportunity that appears at time t > 1=2.

For �(t) � 2, the di�erential equation (4.7) becomes, for t in a neighborhood of 1,

f
0(t) = �

2�

t
(1 + f(t)1=(1��))1��:

This is a variables-separable equation, easily solvable by numerical methods. We plot in

Figure 1 the optimal investment proportions for � = 1, :5, 0 and �1. As � decreases from
1, the investment proportion is continuous in �, but the investor becomes more and more
conservative, so much so that when � = �1, the investor will even hedge by investing (very
small amounts) at unfavorable odds (t < :5).

� = 1 � = :5 � = 0 � = �1

0
0

1

1.61
0
0

1

1.54
0
0

1

1.5
0
0

1

1.46
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Figure 1.

5. Full Information.

In the full information version of the problem, each opportunity has an observable
value that determines the rank, the larger the better. The values are assumed to be i.i.d.

from a known continuous distribution, which, since we are interested only in the ranks, is
assumed without loss of generality to be uniform on (0; 1).

When dealing with full information problems, it is more convenient to let k denote

the number of stages to go rather than the number of stages from the beginning. Let the

values of the opportunities be : : : ; U2; U1 i.i.d. from a uniform distribution on (0; 1). Let

Vk(x; y; z) represent the expected utility of the �nal fortune using an optimal strategy,
when there are k stages to go, k � 1, before we observe Uk, the kth from last opportunity,

and we have an amount x available for future investments, and a current investment that
will return y if the current record of value z, is best overall. Then,

V0(x; y; z) = u�(x + y)

Vk(x; y; z) = zVk�1(x; y; z) +

Z 1

z

max
0�b�x

Vk�1(x � b; �kb; u) du

for k = 1; 2; 3; : : :,

(5:1)

where �k � 1 is the return on a successful investment on a record opportunity with value
Uk if it turns out to be absolutely best (largest). We can �nd useful formulas for the
optimal strategies for linear and log utiltites.

5.1 Linear Utility Let us �rst look at linear utility, � = 1, in which case the initial

equation is V0(x; y; z) = x + y. If U1 is a record, it is certain to be best overall, and it is
optimal to invest the whole amount x in it. This leads to

V1(x; y; z) = z(x + y) + (1 � z)�1x: (5:2)

Continuing, we �nd

V2(x; y; z) = z[z(x + y) + (1� z)�1x]

+

Z 1

z

max
0�b�x

[u(x� b+ �2b) + (1� u)�1(x� b)] du

= z
2(x + y) + z(1 � z)�1x+ x

Z 1

z

maxfu+ (1 � u)�1; u�2g du

= z
2(x + y) + c2(z)x

where

c2(z) = [z(1 � z)�1 +

Z 1

z

maxfu+ (1 � u)�1; u�2g du]:

An optimal strategy with 2 stages to go is to invest everything on a record of value U2 = u

if u+ (1� u)�1 < u�2.

Continuing the backward induction, we can prove the following theorem.
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Theorem 7. In the full information case with � = 1, we have

Vk(x; y; z) = z
k(x+ y) + xck(z) for k = 1; 2; : : : (5:3)

where c0(z) = 0, and for k = 1; 2; 3; : : :,

ck(z) = zck�1(z) +

Z 1

z

maxfuk�1 + ck�1(u); u
k�1

�kg du: (5:4)

An optimal strategy with k stages to go is to invest everything in a record of value Uk = u,

if and only if ck�1(u) < u
k�1(�k � 1).

5.2 The Full Information Three-Value Secretary Problem. Consider the case

with constant return, �k = � > 1 for all k. This may be considered as an extension to
the full information case of the three-value secretary problem of Sakaguchi (1984). On the

last stage, it is optimal to invest in any record. On the next to last stage, it is optimal

to invest in a record if its value, U2 = u, satis�es (1 � u)�=u < � � 1, or explicitly,
u > z2 := �=(2� � 1). To go further, we need to �nd ck(z) from (5.4). But since the
ck(z)=z

k are increasing in k, each cuto� point can be found from the previous one by
replacing the maximum inside the integral sign by u

k�1
�. Thus, with k stages to go, we

invest in a record opportunity with value Uk = z provided ck�1(z) < z
k�1(� � 1), where

ck(z) = zck�1(z) +

Z 1

z

u
k�1

� du = zck�1(z) +
�(1 � z

k)

k
:

For the purposes of �nding the optimal strategy, we have

ck(z) = �z
k

kX
j=1

z
�j � 1

j
:

Let z1 = 0, and for k > 1 let zk denote the root of ck�1(z) = z
k�1(�� 1) in (0; 1). Then it

is optimal, with k stages to go, to invest in a record of value Uk provided Uk > zk, where
z1 = 0 and for k > 1, zk satis�es

k�1X
j=1

z
�j
k � 1

j
=

� � 1

�
:

To get an idea of how much the information is worth to the investor, we may compare
return per unit available for investment of the full-information problem to that of the
rank-based problem when � = 2. In the rank-based problem with large horizon, the
optimal expected return per unit available for investment for large horizon is approximately

�e
�(��1)=� = 2e�1=2 = 1:21306, as found in the �rst example of Section 2.2. In the full

information problem above, it is approximately 1:4276, essentially twice the rate of return.

5.3 Log Utility. Consider now the case � = 0 of log utility. The initial equation is
V0(x; y; z) = log(x + y). If U1 is a record, it is certain to be best overall, and it is optimal

to invest the whole amount x in it. This leads to

V1(x; y; z) = z log(x + y) + (1� z) log(�1x) = z log(x+ y) + (1� z) log(x) + c1(z);

where c1(z) = (1 � z) log(�1). We can prove
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Theorem 8. In the full information case with log utility, it is optimal at stage k � 1 from

the end to invest proportion ak(u) in a record opportunity of value Uk = u, where

ak(u) =

�
(uk�1�k � 1)=(�k � 1) if uk�1�k > 1
0 if uk�1�k � 1.

The value functions satisfy

Vk(x; y; z) = z
k log(x + y) + (1� z

k) log(x) + ck(z);

where c0(z) = 0 and for k = 1; 2; : : :,

ck(z) = zck�1(z) +

Z 1

z

[uk�1 log(1 + (�k � 1)ak(u)) + (1� u
k�1) log(1� ak(u))] du:

6. Unknown Number of Opportunities

We now turn to the problem of an unknown number of opportunities. This case is
harder than the �xed-n case or the corresponding asymptotic case. Our interest will be

con�ned to the rank-based model with linear utility. We have given several reasons in the
Introduction why we think of rank-based models as usually being more adequate. Our
preference for linear utility is based on the facts that this utility function is commonly
seen as a resonable utility function and that it presents, at the same time, the easiest case.

6.1 The all-or-nothing-rule for linear utility. Similar to what we have seen in Section
2, linear utility implies again that we need only consider those investment strategies which
invest either nothing or, alternatively, all available capital on a record opportunity. To see

this, suppose that it is optimal to invest the fraction a with 0 < a < 1 in a present record
opportunity. The principle of optimality requires then that the contribution of each unit
of money invested now is expected to yield an at least as high contribution as using it for
optimal investments later on. But the expected contribution from the present amount of

investment increases proportional to a whereas the contribution of investments under an
optimal behavior in the future is proportional to 1 � a. Thus, since the model imposes
no constraint on the fraction of invested capital, we must, by the principle of optimality,

choose a = 1, if the expected present contribution is strictly higher, and a = 0 if it is

strictly lower. If the expected contribution from a unit of the present investment is equal

to the one reserved for future optimal investment then we are indi�erent to the choice of
a, that is, a = 1 or a = 0 are also optimal.

6.2 Aspects of statistical inference in modelization. Suppose now that we would like

to invest in one from an unknown number of opportunities arriving on some �nite horizon
[0; T ], say. Let N(t) denote the number of opportunities up to time t, 0 � t � T and

let N = N(T ). We suppose that the value of N is unknown and must be inferred from
sequential observation.
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There are several possibilities to model this situation. One is to suppose that all

opportunities have i.i.d. arrival times according to a known distribution F on [0; T ]. As
time progresses, one may update information about the value of N . For example, we may

estimate N by the maximum likelihood estimate, N̂ (t) = bN(t)=F (t)c (the greatest integer

less than or equal to N(t)=F (t)). We may then replace the �xed number n (in Subsection
1.1) at each arrival time, tk, by N̂(tk) = bk=F (tk)c and use the corresponding optimal
rule. However, this procedure is not simple to use because the optimal thresholds must be
recomputed each time a new record appears. Also, though we expect such procedures to

be reasonably good, we have no idea how close they are to optimal procedures.

Another way to model this situation is to assume that the counting process, N(t),
0 � t � T , belongs to a certain class and to update the knowledge of its parameters by

sequential observation. Clearly, one would �rst try relatively simple Poisson process. The
fact that the posterior law of N must be recomputed in general with the arrival of each

new record leads in general to the same diÆculty in computation.

6.3 Pascal Processes. For both classes of models however, there exist some special
cases for which these computational problems dissolve. A particularly nice case is the one
where the record process stays una�ected by updating the arrival process, N(t), or, in the

�rst model, una�ected by updating the law of N . This is the case of the Pascal processes
of Bruss and Rogers (1991). These are processes for which the distribution of N(t) given
N(s) for �xed s < t is Pascal (negative binomial). They can be obtained by either a
geometric prior for N in the �rst model, or by an exponential prior on the intensity rate
of the Poisson process in the second, or by limiting priors of these. Also, any strictly
monotone time-scale transformation of a Pascal process yieldss again a Pascal process.

A Pascal process has the remarkable property that the process of records forms a
Poisson process (see Bruss and Rogers (1991) p. 333). Note that the record process is
the only relevant process for decision making in our model. Thus, from the independent
increments property, statistical inference from the past of the process is redundant and the
optimal policy (if it can be computed at time 0) will be invariant on the whole investment
interval.

If �(t) denotes the intensity function of records and if '(t) represents the probability
of no records in the interval (t; T ), then �(t) and '(t) are related by

Z T

t

�(s) ds = � log'(t): (6:1)

We note that '(t) is, by de�nition, nondecreasing in t. We also note that the class of Pascal

processes covers the arrival process which de�nes the in�nite secretary problem of Gianini
and Samuels (1976) where the process of record arrivals is Poisson with intensity rate 1=t.

This is the case T = 1 and '(t) = t, because in the Gianini-Samuels model, arrival times
of di�erent ranks are uniform on [0; 1] and there is no record after time t i� rank 1 arrives

in [0; t]. Thus, from (6.1), �(t) = 1=t for 0 � t � 1. In general we have '(0) > 0, however,

because a Pascal process may show no arrivals at all, and thus no records.
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The optimal rule and optimal reward for a Pascal process is given in the following

theorem.

Theorem 9. Let (�t)0�t�T be a Pascal process with parameter function '(t) on some

horizon [0; T ], and let �(t) be a continuous reward function on this horizon. Then, for

linear utility, it is optimal to invest all capital in a record opportunity that appears at

time t if

�(t)'(t) � r(t); (6:2)

where r(t) satis�es the di�erential equation

r
0(t) = ��(t)

�
�(t)'(t) � r(t)

�+
(6:3)

subject to the boundary condition r(T ) = 1. If no such time exists it is optimal not to

invest at all.

The optimal reward is given by r(0) per unit of intial capital.

Proof. Let r(t) be the expected reward for one unit of available capital by investing
optimally after time t when t is not a record time, and let ~r(t) be the corresponding optimal
expected reward at time t if t is a record time. Note that if t is not a record time, then we
must pass over t so that r(t) is the same as the expected reward for optimal investments
after time t. If a record arriving at time t is selected for investment, then the expected
return is �(t)'(t). Hence, by the principle of optimality, for each record time t,

~r(t) = maxf�(t)'(t); r(t)g:

By the same principle, we must invest the given unit of capital if ~r(t) > r(t), that is, if
�(t)'(t) > r(t). According to the all-or-nothing rule for linear utility, we must then invest
all capital (see subsection 6.1), and we may do so if �(t)'(t) � r(t). This implies the �rst
statement of the Theorem with inequality (6.2).

We now derive the di�erential equation for r(t). If we have for some t0 2 (t; t + Æt) a
record time, then we obtain ~r(t0) under optimal continuation; otherwise we obtain r(t+Æt).

Using the Poisson property of the process of records, and its intensity rate at time t, �(t),
given through (6.1), this argument yields

r(t) = (�(t)Æt + o(Æt))~r(t0) + (1� �(t)Æt + o(Æt))r(t + Æt): (6:4)

We note that t0 ! t as Æt ! 0 and recall that �(t) is continuous. Hence, subtracting in
(6.4) r(t + Æt) from both sides, dividing by Æt and taking the limit as Æt ! 0 yields the

di�erential equation

r
0(t) = ��(t)

�
�(t)'(t) � r(t)

�+
:

This proves (6.3).
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Finally, since we do not invest (a.s.) at time 0, r(0) is the optimal reward per investment

unit by de�nition of r(t), completing the proof.

6.4 Example. Suppose �(t) is a constant, � > 1. From (6.1) we have �(t) =

'
0(t)='(t). Then (6.3) becomes, at least for t in a neighborhood of T ,

r
0(t) = �'0(t)� + ('0(t)='(t))r(t);

with solution, satisfying r(T ) = 1 (since '(T ) = 1),

r(t) = (1� � log'(t))'(t) (6:5)

as is easily checked. This holds for t down until, if ever, r(t) > �'(t), or '(t) < e
�(��1)=�.

From this point down to 0, r(t) stays constant. The optimal rule is to invest all capital in

the �rst record appearing after time

t
� =

�
'
�1(e�(��1)=�) if '(0) < e

�(��1)=�

0 otherwise.
(6:6)

If '(0) < e
�(��1)=�, the optimal expected reward equals r(0) = r(t�) = �e

�(��1)=�,
independent of '(t).

6.5 Modeling investment problems with Pascal processes. The case of an unknown
number of opportunities is the most realistic one for applications, and, to our knowledge,
Pascal processes provide the easiest access with explicit solutions. Therefore, we briey
show how to model problems with Pascal processes.

6.5.1 Very Weak Information. Suppose �rst that we have little information about the
dependence of arrival times of opportunities. We may have no idea about the location

of subintervals of [0; T ] where opportunities may be more likely, and neither about the
distribution of the total number of opportunities. Due to the lack of information it is then
natural to model the arrival process by a homogeneous Poisson process. Still, the question
remains how to choose the rate, �. If [0; T ] represents one year say, then a rate of 1 per

two months, or, in contrast, 6 per month, say, makes a huge di�erence for the distribution

of N = N(T ). But we would like to have a robust selection rule, one whose behavior is
rather independent of the choice of �, if this is possible.

The central point here is that we frame our (weak) knowledge in a compatible but
suitable way. It is known (see Bruss (1987 p. 924)) that if the rate � is random with expo-

nential density with parameter a (i.e. mean 1=a), then the arrival process N(t) becomes a
Pascal process with parameter function

'(t) = (t+ a)=(T + a):

(Here the Gianini-Samuels in�nite secretary problem model (1976) corresponds to the

limiting parameter function '(t) = t as a! 0 for T = 1).
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As an example, choose the horizon T to be one year, and the reward rate (per unit of

invested capital) � = 2 for the best opportunity. If we estimate � to be somewhere between
1=2 and 6 per month, say, then the choice '(t) = (t+a)=(12+a), with a somewhere between

1/6 and 2, would seem reasonable. (We may be slightly more sophisticated by maximizing,

as a function of a, the probability of the rate � falling between 1/2 and 6 per month, but,
as we shall see, it does not really matter.) We note that '(t) is strictly increasing so that
the inverse function '

�1 exists. Now, with � = 2,

'(t�) = '('�1(e�1=2) = e
�1=2 if '(0) < e

�1=2
:

The optimal reward r(t�) = r(0) is thus independent of a for

0 � a � 12e�1=2=(1� e
�1=2) = 18:4979 � � � ;

since '(0) = a=(12 + a). The optimal rule is not independent of a, however, since t� of
(6.6) depends on a in this range. Nevertheless, r(t�) of (6.5) is not very sensitive to a
wrong choice of t� = t

�(a) as Figure 2 illustrates.

This graph shows for � = 2 and for various values of a, the reward rinv(t) de�ned
as the expected return if we invest in the �rst record which appears after time t. The
lowest curve on the LHS is the case a = 0, really the limit as a ! 0, and is practically
indistinguishable form a = 1=6. (Recall that the smaller a, the more opportunities we
expect). Also plotted are the cases a = 1, a = 2, and a = 6 (highest curve on LHS).

The optimal reward r(t) is the maximum of the straight line on top and the corresponding
curve, each reaching its maximum value of 2e(1��)=� = 1:213 : : :. Note that the optimal
waiting times t� = t

�(a) are very close to each other, ranging from 7:278 at a = 0 to 6:491
at a = 2. Similarly the corresponding reward curves rinv are very at in this region.

2 4 6 8 10 12

0.8

0.9

1.1

1.2

a=0

a=1

a=2

a=6

Figure 2.
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Only when a is large compared to T does t�(a) become sensitive to the choice of a.

This contrasts a choice of large a compared to medium and smaller a (the curve for a = 6
is the attest curve). t�(a) moves to the left as a increases (very few expected arrivals).

To summarize the solution of this example: Observing the market for about 61
2
months and

then investing all available capital in the next record opportunity (if any), is an excellent

strategy, for few as well as many expected opportutinies, with an expected return of over
20 percent (moreover, the money could be placed on a �xed return contract for the �rst
six months, of course.)

6.5.2 Information on Arrival Time Densities. Now suppose that we have some prior

information which enables us to say when opportunities are more likely to arrive without

necessarily knowing the distribution of the total number of arrivals For instance, we may
know patterns of seasonal variation in arrival times, but we do not know yet whether it will

be, generally, a good year. Here we need an "inhomogeneous" version of a Pascal process.

A convenient way to model this situation is as follows. We draw a graph what we think
of as being the arrival time density f for opportunities on [0; T ]. Let F (t) =

R t
0
f(s) ds,

and let N be geometric with law P (N = n+1) = q
n
p for n = 1; 2; : : :. Here we may choose

p according to a prior belief on the size of E(N) = 1 + 1=p. The arrival process N(t) is
then Pascal with '(t) = p+ qF (t) (Bruss and Rogers p. 332), and the solution can again
be derived conveniently in the same way as in Example 6.6.1.

Again we can see that the solution is robust, both with respect to errors in p and with
respect to F . With this robustness in p and F it is an excellent model indeed, because the
choice of F allows for a great deal of exibility. However, we need that the assumption of
geometric prior is not unreasonable, because it is exactly there that the exibility stops.

The geometric prior can be shown to be the only prior with �nite expectation, which
generates in this model a Pascal arrival Process.
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