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Image restoration is an inverse problem where the goal is to recover an image

from a blurry and noisy observation. An image restoration problem can be formulated

as a total variation regularized least-squares minimization where the objective function

is the l2-norm squares of the residue between the observation and the prediction. Since

the total variation norm is not differentiable, existing methods are inefficient.

In this dissertation, a fast numerical optimization method is proposed to solve

total variation image restoration problems. The method transforms the original un-

constrained problem to an equivalent constrained problem and uses an augmented La-

grangian method to handle the constraints. The transformation allows the differentiable

and non-differentiable parts of the objective function to be separated into different sub-

problems where each subproblem may be solved efficiently. An alternating strategy is
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then used to combine the subproblem solutions.

The image restoration method is extended to handle video restoration problems.

The proposed method considers a video as a space-time volume, and introduces a three-

dimensional total variation regularization function to enhance the spatial and temporal

consistency. The new video restoration framework opens a wide range of applications, in-

cluding video deblurring and denoising, disparity map refinement, and hot-air turbulence

removal.

Practical image and video restoration methods need to take into account spatially

variant blur and blind deconvolution issues. Therefore, spectral properties of the spatially

variant convolution matrices are studied. A fast and robust blind deconvolution method

for single image spatially variant out-of-focus blur removal is proposed.
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Chapter 1

Introduction

1.1 Motivation

Image restoration is an inverse problem where the goal is to estimate a sharp

image from noisy and blurry observations. Often, the degradation process is not re-

versible, thus making image restoration problems ill-posed. The goal of this dissertation

is to propose numerically stable and fast algorithms to perform image restoration, and

extend the idea to video problems.

f(x, y) h(x, y) + g(x, y)

η(x, y)

Object Imaging System Image

Figure 1.1: Block diagram of an imaging system

1
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Shown in Fig. 1.1 is the classical linear shift invariant imaging system [49]. The

light intensity at coordinate (x, y) 1 in space is denoted by a two-dimensional function

f(x, y). The imaging process is characterized by its impulse response (also known as the

point spread function, PSF) h(x, y). The observed image g(x, y) is

g(x, y) = h(x, y) ∗ f(x, y) + η(x, y),

where η(x, y) is the noise term and ∗ denotes the convolution operation:

h(x, y) ∗ f(x, y) =
∑
u,v

h(x− u, y − v)f(u, v).

Recovering f(x, y) from g(x, y) can be formulated as the minimization problem

minimize
f(x,y)

∑
x,y

|h(x, y) ∗ f(x, y)− g(x, y)|2 . (1.1)

However, the global minimizer of (1.1) may not be unique because the convolution op-

erator can be singular. In many cases, even if the convolution operator is non-singular,

finding the unique global minimizer is still challenging as the convolution operator may

be numerically rank deficient.

To obtain a good recovery result, prior knowledge of the image must be incorpo-

rated in solving (1.1). This leads to the question of choosing regularization functions for

(1.1), or equivalently the prior of f(x, y). However, the difficulty is that computationally

efficient priors are not necessarily effective (e.g., Tikhonov regularization) whereas effec-

tive priors may not be efficient (e.g., total variation regularization). Therefore, seeking

a good prior and developing an algorithm becomes the cornerstone of image restoration,

which is also the theme of this dissertation.

The concept of image restoration can be extended to video restoration. Consid-

ering a video as a sequence of consecutive images, the observed video sequence is

g(x, y, t) = h(x, y, t) ∗ f(x, y, t) + η(x, y, t),

where the third coordinate t denotes time. Recovering f(x, y, t) from g(x, y, t) is essen-

1In this dissertation, all coordinates are integer valued. Therefore, f(x, y) is a two-dimensional
discrete-time signal.
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tially the same as solving (1.1) in the three-dimensional space. Due to the additional

time coordinate, the prior of f(x, y, t) should consider the temporal smoothness. We

will discuss, later in this dissertation, that the temporal prior opens a wide range of new

applications in image and video processing. Specifically, motion blur problems, video

flickering issues, and distortion caused by hot-air turbulence can be solved using the

video restoration framework.

Finally, two restrictive assumptions made in solving (1.1) should be addressed.

First, h(x, y) is assumed to be known exactly, which never happens in practice. Sec-

ond, the imaging system is assumed to be spatially invariant (i.e., all pixels are blurred

equally), which is also not valid because most of the blurs are position dependent. There-

fore, for practical considerations, these two issues must also be solved.

1.2 Contribution

The dissertation achieves the following goals.

1. We propose an augmented Lagrangian method for solving total variation min-

imization problems. The proposed method supersedes the existing augmented

Lagrangian method by introducing an automatic parameter update scheme to im-

prove convergence. Convergence properties, warm start behavior and parameter

sensitivity are discussed.

2. We extend the augmented Lagrangian method for video restoration problems by

introducing the space-time total variation regularization function. Applications of

the new algorithm include video deblurring, video denoising, disparity refinement,

and hot-air turbulence removal.

3. We analyze the characteristics of spatially variant blurs. In particular, we propose

a systematic way of constructing a spatially variant convolution matrix. We also

provide an accurate upper and lower bounds on the eigenvalues of the convolution

matrix.

4. We seek invariant structures in spatially variant blurs. For spatially variant motion

blur problems, we transform the variant blur in space into an invariant blur in time

by embedding the blurred image into a space-time volume. For spatially variant
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out-of-focus blur problems, we transform the variant blur in space into two invariant

blurs in depth by introducing artificial backgrounds for different objects.

1.3 Organization

The organization of this dissertation is as follows.

Chapter 2 provides background materials of this dissertation. We start by intro-

ducing point spread functions and noise models. Since a bulk of this dissertation is about

numerical optimization, linkage between image processing and linear algebra is discussed.

In particular, the structures and properties of convolution matrices, diagonalization of

block-circulant-with-circulant-block matrices (BCCB matrices) are mentioned.

Chapter 3 reviews existing methods for image restoration. The methods we

consider include Tikhonov regularization, isotropic and anisotropic total variation (TV)

norms, and bilateral total variation (BTV) norms. For anisotropic TV, primal dual

interior point method for convex objectives (PDCO) is tested for feasibility study. For

bilateral TV problems, a projected sub-gradient method is tested.

Chapter 4 is one of the core chapters of this dissertation, which presents the

proposed image restoration algorithm in detail. Our proposed method differs from ex-

isting augmented Lagrangian methods by introducing an automatic parameter update.

Comparisons with other methods are discussed. Convergence proof is provided.

Chapter 5 is an extension of image restoration to video problems. In this chap-

ter, a video is considered as a space-time volume. A three-dimensional regularization

function is used to enforce the spatial and temporal smoothness of the solution. Appli-

cations including video deblurring and denoising, disparity map refinement and hot-air

turbulence removal are discussed.

Chapter 6 addresses the issue of blind deconvolution, which is used in the subse-

quent discussions in Chapter 7 and 8.

Chapter 7 concerns about the theoretical aspects of spatially variant blur prob-

lems. In particular, we propose a systematic method of constructing the spatially variant

convolution matrix. Having the convolution matrix constructed, we discuss the spectral

properties of the convolution matrix. We show the upper and lower bounds on the

eigenvalues of the convolution matrix.

Chapter 8 discusses the problem of removing spatially variant out-of-focus blur
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using a single image. It is an application of the materials developed in Chapter 4-7. In

this chapter, we show that it is possible to perform blind deconvolution on a two-layer

out-of-focus blurred image.



Chapter 2

Background

This objective of this chapter is to provide necessary prerequisites on image

processing and numerical linear algebra.

2.1 Point Spread Functions

We begin our discussion on the point spread function (PSF). PSF is the im-

pulse response of an optical system subjected to a point source input. There are three

commonly used PSFs in practice, namely the Gaussian PSF, disk PSF, and motion PSF.

• Gaussian PSF is defined as

h(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ,

where σ2 is the variance of the Gaussian PSF and it controls the spread of the

PSF. Gaussian PSF is used in astronomical imaging systems to model atmospheric

blur in which the light coming from outer space (e.g., stars) are scattered when

traveling through the atmosphere.

• Disk PSF is defined as

h(x, y) =

⎧⎪⎨⎪⎩1, if
√
x2 + y2 ≤ r,

0, otherwise ,

6
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where r is the radius. Disk PSF is used to model out-of-focus blur, a phenomenon

occurs when the image plane does not coincide with focal point of the lens. On

a single lens imaging system, out-of-focus blur is unavoidable sometimes because

when one object in a scene is focused, other objects at different depths are out of

focus.

• Motion PSF is defined as

h(x, y) =

⎧⎪⎨⎪⎩1, if vxy = vyx, and
√
x2 + y2 =

√
v2x + v2y

0, otherwise ,

where the vector v = (vx, vy) is the motion vector. The direction of v determines

the orientation of h(x, y), and the magnitude of v determines the length of h(x, y).

Motion blur is a common problem when the object is moving or when the camera

is not stationary.

2.2 Noise

We consider a noisy pixel as a random variable on the image grid. In this dis-

sertation, two types of noise will be studied - Gaussian noise and impulsive noise. For

simplicity, noise is assumed to be identically and independently distributed (i.i.d).

Gaussian noise is characterized by the normal distribution, with the probability

density function

pX(x) =
1√
2πσ2

e−
(x−μ)2

2σ2 ,

where μ is the mean, and σ2 is the variance. To denote a pixel η(x, y) as Gaussian noise

with mean μ and variance σ2, we write η(x, y) ∼ N (μ, σ2). Fig. 2.1(b) illustrates an

image corrupted by Gaussian noise with μ = 0 and σ2 = 0.01.

Impulsive noise is characterized by the probability of an observed image pixel hit-

ting the maximum (or minimum) of the allowed pixel intensity range, i.e., 0 ≤ g(x, y) ≤
255 for 8-bit gray-scaled images, or 0 ≤ g(x, y) ≤ 1 for normalize-scaled images. A pre-

cise definition of impulse noise is as follows: Let g̃(x, y) = g(x, y) + η(x, y) be a random

variable representing the sum of the image intensity g(x, y) and the noise η(x, y), the
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distribution ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Prob {g̃(x, y) = g(x, y)} = 1− α
Prob {g̃(x, y) = 1} = α

2

Prob {g̃(x, y) = 0} = α
2 ,

defines the probability that a pixel is corrupted, where 0 ≤ α ≤ 1 controls the amount

of impulsive noise. Fig. 2.1(c) illustrates an image corrupted by impulsive noise with

α = 0.05.

(a) Image (b) Gaussian Noise (c) Impulsive Noise
(σ2 = 0.01) (α = 0.05)

Figure 2.1: An illustration of two types of noise: Gaussian noise and impulsive noise.

2.3 Convolution Matrix

The convolution between an image f(x, y) and a PSF h(x, y) is

h(x, y) ∗ f(x, y) =
M−1∑
u=0

N−1∑
v=0

h(x− u, y − v)f(u, v), (2.1)

where ∗ denotes the convolution operation, M and N are number of rows and columns of

f(x, y), respectively. Since f(x, y) are h(x, y) are arrays, we write f and h for simplicity.

So (2.1) may be written as h ∗ f .
For the discussion of numerical linear algebra, it is often easier to express linear

operations as matrix-vector multiplications. Since convolution is linear, we define a

matrix known as the convolution matrix for representation. To do so, we first stack the
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columns of f(x, y) into a vector f according to the lexicographic order. That is,

f = vec(f(x, y)),

where vec is the vectorization operator that transforms a matrix A = (ai,j) to a vector

as vec(A) = [a1,1, a2,1, a3,1, . . . , am,n]
T . Vectorization of an M ×N image f(x, y) yields

an MN × 1 vector f . The array f and the vector f will be used interchangeably, and

should be clear from the context: For h ∗ f , f means an array, and for Hf , f means a

vector.

The convolution matrix H is a linear operator that maps a vectorized image f to

another vectorized image g following the rule

g = Hf = vec (h(x, y) ∗ f(x, y)) .

There are several important properties of H. First, the dimension of H is MN ×MN ,

which can be large if the image size is large. However, the number of non-zero entries

of H is only |Ωh| × |Ωf |, where Ωh is the support of h(x, y), Ωf is the support of f(x, y)

and |Ω| is the cardinality of the set Ω. Therefore, despite the large number of columns

and rows of H, H is sparse. Consequently, the computational cost of matrix-vector

multiplications, Hf andHT f , are inexpensive. Even if |Ωh|×|Ωf | is not small, the matrix-

vector multiplications Hf and HT f can still be efficiently performed if H is a block-

circulant-with-circulant-block (BCCB) matrix [61]. BCCB matrices can be diagonalized

using discrete Fourier Transform (DFT) matrices, which will be discussed next.

2.4 Matrix-vector Multiplications via Fourier Transforms

Definition 1. Given a two-dimensional discrete-time signal f(x, y), the two-dimensional

discrete Fourier Transform (2D-DFT) is [16]

[Ff ](u, v) def
=

M−1∑
x=0

N−1∑
y=0

f(x, y)e−j 2π
M

uxe−j 2π
N

vy,

where (u, v) is the coordinate in the Fourier domain, and j =
√−1.

We also define the discrete Fourier Transform matrix:
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Definition 2. The two-dimensional discrete Fourier Transform matrix is defined as

F = FM ⊗ FN ,

where ⊗ is the Kronecker product operator, and FN is the N -point one-dimensional DFT

matrix:

FN =
1√
N

⎡⎢⎢⎢⎢⎢⎣
1 1 1 · · · 1

1 WN W 2
N · · · WN

N
...

...
...

. . .
...

1 WN
N W 2N

N · · · WN2

N

⎤⎥⎥⎥⎥⎥⎦ ,

where WN = e−j2π/N , and j =
√−1.

With the definition of 2D-DFT matrix, we write the 2D-DFT of an image as

Ff = vec

⎛⎝M−1∑
x=0

N−1∑
y=0

f(x, y)e−j 2π
M

uxe−j 2π
N

vy

⎞⎠ .
2D-DFT matrices are unitary, i.e.,

FHF = FFH = I,

where (·)H is the Hermitian operator. Also, 2D-DFT matrices are symmetric, meaning

that

FT = F, F∗ = (F∗)T = FH ,

where (·)∗ denotes the complex conjugate.

The following theorem links convolution and the Fourier Transform.

Theorem 1. If H is a BCCB matrix, then it can be diagonalized by the 2D-DFT matrix

H = FHΛF,

where (·)H is the Hermitian operator, and Λ is a diagonal matrix with entries being the

eigenvalues of H.

Theorem 1 implies that matrix-vector multiplication Hf can be performed effi-

ciently as Hf = FHΛFf , which corresponds to the following 4 steps:
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1. Pre-compute the eigenvalue matrix Λ by applying a Fourier Transform to h(x, y).

2. Apply a Fourier Transform to the image f(x, y) to yield Ff .

3. Perform element-wise multiplication to yield ΛFf , because Λ is a diagonal matrix.

4. Apply an Inverse Fourier Transform to ΛFf and get FHΛFf .

The computational cost of Ff is in the order of n log n, where n is the number of variables

of f . Ff is typically implemented by Fast Fourier Transform (FFT).

2.5 Forward Difference Operators

Finally, we discuss the forward difference operators. The horizontal and vertical

forward difference operators Dx and Dy are defined by their operations on the image f :

Dxf =

⎧⎪⎨⎪⎩vec (f(x+ 1, y)− f(x, y)) , 0 ≤ x < N − 1

vec (f(0, y)− f(N − 1, y)) , x = N − 1

and

Dyf =

⎧⎪⎨⎪⎩vec (f(x, y + 1)− f(x, y)) , 0 ≤ y < M − 1

vec (f(x, 0)− f(x,M − 1)) , y =M − 1.

Fig. 2.2 illustrates the effects of these two operators.

(a) Image f (b) Dxf (c) Dyf

Figure 2.2: An illustration of Dx and Dy. Dxf is the horizontal gradient of the image
f and Dyf is the vertical gradient of the image f .
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The operators Dxf and Dyf can be performed through convolutions

Dxf = vec(f(x, y) ∗ dx(x, y)),
Dyf = vec(f(x, y) ∗ dy(x, y)),

where dx(x, y) = [1, −1] and dy(x, y) = [1, −1]T .
We also define the gradient operator ∇ on an image f as

∇f def
=

⎡⎣∂xf
∂yf

⎤⎦ =

⎡⎣fx
fy

⎤⎦ ,
where fx = ∂xf = Dxf and fy = ∂yf = Dxf .

The transpose of Dx and Dy are defined as

DT
x f =

⎧⎪⎨⎪⎩vec (f(x− 1, y)− f(x, y)) , 0 < x ≤ N − 1

vec (f(N − 1, y)− f(0, y)) , x = 0

and

DT
y f =

⎧⎪⎨⎪⎩vec (f(x, y − 1)− f(x, y)) , 0 < y ≤M − 1

vec (f(x, 0)− f(x,M − 1)) , y = 0.

In terms of convolution, DT
x f = vec(f(x, y)∗[−1, 1]), andDT

y f = vec(f(x, y)∗[−1, 1]T ).

D−2,0 D2,0 D2,−2 D−2,2

Figure 2.3: An illustration of finite difference operators Di,j.

As an extension to the two standard forward difference operators, we define the

generalized forward difference operator Di,j , with −P ≤ i ≤ P and −Q ≤ j ≤ Q for



13

some constants P and Q, as

Di,jf =

⎧⎪⎨⎪⎩vec (f(x+ i, y + j)− f(x, y)) , 0 ≤ x < N − i, 0 ≤ y < M − j
vec (f(i, j) − f(N − i,M − j)) , N − i ≤ x ≤ N − 1, M − j ≤ y ≤M − 1.

The interpretation of Di,j is as follows. It is the forward difference operator with differ-

ence interval i in the horizontal direction and j in the vertical direction. For example,

if i = 1 and j = 0, then the operator D1,0 is the standard forward difference operator

along the horizontal direction. Fig. 2.3 illustrates some Di,j.



Chapter 3

Existing Image Restoration

Methods

The objective of this chapter is to provide an overview of the existing image

restoration methods. Since the literature on image restoration is abundant, it is not

possible to discuss every single piece of work here. In order to align with the theme of

this dissertation, we focus on the category of numerical optimization based methods.

3.1 Least-squares Minimization

Using the matrix-vector notion of the convolution, we write Problem (1.1) in the

following way:

minimize
f

‖Hf − g‖2 . (3.1)

Problem (3.1) is known as the unconstrained least-squares minimization problem. It can

be solved by considering the solution of the normal equation

HTHf = HTg, (3.2)

which gives the pseudo inverse solution

f = (HTH)−1HTg. (3.3)

14
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Due to the large dimension of H, the normal equation (3.2) has to be calculated via large-

scale linear system solvers, such as LSQR [86]. However, H can be singular or numerically

rank deficient. Thus, (HTH)−1 in (3.3) causes serious perturbation when there is noise.

Another way to understand the limitation of (3.1) is by means of Fourier Trans-

forms. Letting

F (u, v) = F [f(x, y)] and G(u, v) = F [g(x, y)],
H(u, v) = F [h(x, y)] and N(u, v) = F [η(x, y)],

the relation g(x, y) = h(x, y) ∗ f(x, y) + η(x, y) can be written as

G(u, v) = H(u, v)F (u, v) +N(u, v).

Applying H∗(u, v) to both sides yields

H∗(u, v)G(u, v) = |H(u, v)|2F (u, v) +H∗(u, v)N(u, v),

and hence

F (u, v) =
H∗(u, v)G(u, v)
|H(u, v)|2 − H∗(u, v)N(u, v)

|H(u, v)|2 ,

assuming H(u, v) �= 0 for all u and v.

If N(u, v) = 0, i.e., the noiseless case, we have

F (u, v) =
H∗(u, v)G(u, v)
|H(u, v)|2 ,

which is equivalent to (3.3) in the Fourier domain. This method is known as the Inverse

Filter, or a special case of Wiener deconvolution.

If N(u, v) �= 0, then the term H∗(u, v)N(u, v) does not vanish. Therefore, if

|H(u, v)| contains small values, then applying |H(u, v)|−2 to H∗(u, v)N(u, v) amplifies

the noise as
H∗(u, v)N(u, v)

|H(u, v)|2 .

In the extreme case where min |H(u, v)| → 0, H∗(u,v)N(u,v)
|H(u,v)|2 →∞.

To summarize, the least-squares minimization (3.1) is not an appropriate method.
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3.2 Tikhonov Regularized Least-Squares

To improve the condition number of HTH, Tikhonov regularization can be used.

Tikhonov regularized least-squares problem is in the form

minimize
f

‖Hf − g‖2 + λ ‖Df‖2 , (3.4)

where λ is a regularization parameter. The operator D can be a forward difference

operator, or the identity operator.

To solve Tikhonov regularized least-squares problem, we realize that (3.4) is

equivalent to a damped least-squares minimization

minimize
f

∥∥∥∥∥∥
⎛⎝ H√

λD

⎞⎠ f −
⎛⎝g
0

⎞⎠∥∥∥∥∥∥
2

, (3.5)

which can be solved using conjugate gradient methods.

The optimality condition of (3.5) implies the following normal equation

(HTH+ λDTD)f = HTg. (3.6)

Comparing (3.6) and (3.2), we note that in (3.6) the k-th eigenvalue of HTH is perturbed

by the k-th eigenvalue of DTD. Therefore, the smallest eigenvalue of HTH+ λDTD is

always larger than that of HTH. Consequently, cond(HTH + λDTD) ≤ cond(HTH).

This explains why Tikhonov regularized least-squares problem is always more numerically

stable than the original least-squares minimization.

The choice of the regularization parameter λ is an important research topic,

but it is not the main subject of this chapter. We refer the readers to references such

as the methods of generalized cross-validation and the L-curve methods [54, Chapter

7], [82], [55].

An extension of Tikhonov regularized least-squares is the simple bound con-

straints least-squares:

minimize
f

‖Hf − g‖2 + λ ‖Df‖2

subject to l ≤ f ≤ u,
(3.7)
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where l and u are the lower and upper bounds of the optimization variable f . The bound

constraints are motivated by the fact that physical devices cannot display pictures beyond

the brightness limits: 0 ≤ f ≤ 255 for 8-bit gray scaled images, or 0 ≤ f ≤ 1 for images

in the normalized scale.

In [61], Kim considered a special case of (3.7) where f is constrained by f ≥ 0

and the operator D is the identify operator:

minimize
f

‖Hf − g‖2 + λ ‖f‖2

subject to f ≥ 0.
(3.8)

(3.8) is known as the Non-Negative Least-Squares (NNLS). The algorithm Kim used to

solve NNLS is the Primal Dual interior point method for Convex Objectives, abbreviated

as PDCO. In each major iteration of PDCO, a linear system is solved (inexactly) using LSQR

to determine a step. After a step is taken, the barrier parameter is reduced and a new

system of linear equations has to be solved. The algorithm stops when the dual gap is

reduced to a target value, or satisfies other stopping criteria.

3.3 Total Variation (Isotropic)

Since the introduction of the ROF model by Rudin, Osher and Fatemi in 1992

[95], total variation (TV) problem has been a popular research problem for more than a

decade. Total Variation norm (TV-norm) is a norm defined as

‖f‖TV =
∑
u,v

√
|fx(u, v)|2 + |fy(u, v)|2,

where fx and fy are the partial derivatives of f with respect to x and y, respectively.

Using matrix-vector notation, the total variation of an image is

‖f‖TV =
∑
i

√
[fx]

2
i + [fy]

2
i ,

where [x]i is the i-th component of the vector x.

There are various ways of using TV-norms in image restoration problems, for
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examples,

minimize
f

‖f‖TV

subject to Hf = g,
(3.9)

or

minimize
f

‖f‖TV

subject to ‖Hf − g‖2 = σ2.
(3.10)

In either case, when Lagrangian of the constrained problem is considered, both (3.9) and

(3.10) can be transformed to an unconstrained minimization problem

minimize
f

1
2 ‖Hf − g‖2 + λ‖f‖TV , (3.11)

for some appropriate choice of λ.

Problems (3.9)-(3.11) and other variations are known as the TV minimization

problems. Rudin, Osher and Fatemi [94, 95] tackled them by solving a time dependent

partial differential equation on a manifold determined by the constraints. However, their

approach is limited to the case where H = I. Later, Marquina and Osher [74] extended

the idea to H with BCCB structures. Blomgren, Chan and Mulet [14], Chan, Golub

and Mulet [22], Krishan, Lin and Yip [63] used interior point methods to solve Problem

(3.11). Chambolle [17] used a gradient projection method to solve (3.11) for the case

where H = I. The iterative shrinkage methods are discussed in [13], [41], [12] and [6].

3.4 Total Variation (Anisotropic)

Associated with the TV regularization is its l1 approximation problem

minimize
f

1
2 ‖Hf − g‖2 + λ ‖Df‖1 . (3.12)

The underlying approximation of this problem is that

‖f‖TV =
∑
i

√
[Dxf ]2i + [Dyf ]2i ≈

∑
i

|[Dxf ]i|+ |[Dyf ]i| = ‖Df‖1 ,
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where D = [DT
x , D

T
y ]

T . For clarity of the notation, we define

‖f‖TV 2 =
∑
i

√
[Dxf ]2i + [Dyf ]2i (3.13)

‖f‖TV 1 =
∑
i

|[Dxf ]i|+ |[Dyf ]i| = ‖Df‖1 . (3.14)

Problems associated with ‖f‖TV 2 are known as the isotropic total variation, and problems

associated with ‖f‖TV 1 are known as the anisotropic total variation.

Before the breakthrough of operator splitting method (See Ch. 4), there are only

few numerical solvers for anisotropic total variation problems, partly due to the fact

that the l1 approximation tends to perform slightly worse than the original TV problem,

as reported in [81], but mainly due to the fact that both isotropic TV (3.11) and the

anisotropic TV (3.12) involve non-differentiable terms.

3.4.1 Difficulty of Solving TV problems

To demonstrate the difficulty of solving the TV problems (both isotropic and

anisotropic), we extended the work of Kim and Saunders [61,96] by using interior point

methods (PDCO). For simplicity, we only consider the anisotropic case, and we denote D

to be the horizontal forward difference operator only, i.e., D = Dx.

PDCO solves the following minimization

minimize
x,r

φ(x) + 1
2‖D1x‖22 + 1

2‖r‖22
subject to Ax+D2r = b

l ≤ x ≤ u,
(3.15)

for some convex quadratic function φ(x), diagonal matrices D1 and D2, linear operator

A and the bounds l, u. We want to reformulate (3.12) to the form of PDCO.
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3.4.2 Primal Method

We first consider the primal problem of (3.12) by introducing an intermediate

variable u:

minimize
f ,u

1

2
‖Hf − g‖22 + γ ‖Df − u‖22 + λ‖u‖1

subject to 0 ≤ f ≤ 1, (3.16)

where γ is a parameter. The motivation is that if the constraint Df = u is satisfied, then

‖Df − u‖22 vanishes. As a result, (3.16) and (3.12) coincides. (3.16) can be expressed as

minimize
f ,u,r1,r2

1
2‖r1‖22 + 1

2‖r2‖22 + λ‖u‖1
subject to Hf + δ1r1 = g

Df − u+ δ2r2 = 0

0 ≤ f ≤ 1

(3.17)

by introducing two slack variables r1 and r2 such that

Hf + δ1r1 = g and Df − u+ δ2r2 = 0.

Next, we partition the slack variable u into its positive and negative parts so

that u = v −w, where v = [u]+ > 0 and w = [u]− > 0. Therefore, the l1-normed term

in (3.17) can be rewritten as

‖u‖1 = 1Tv + 1Tw.

Hence Problem (3.17) becomes

minimize
f ,v,w,r1,r2

1

2
‖r1‖22 +

1

2
‖r2‖22 + λ1T (v +w)

subject to Hf + δ1r1 = g

Df − (v −w) + δ2r2 = 0

0 ≤ f ≤ 1
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Re-scaling the constant λ, we have

minimize
f ,v,w,r1,r2

1
2‖r1‖22 + 1

2‖r2‖22 + 1T (v +w)

subject to Hf + γ1r1 = g

Df − (v −w) + γ2r2 = 0

0 ≤ f ≤ 1,

(3.18)

where γ1 = δ1
√
λ and γ2 = δ2

√
λ.

Finally, we realize that Problem (3.18) fits the form of PDCO, because

minimize
f ,v,w,r1,r2

(
0T 1T 1T

)⎛⎜⎜⎝
f

v

w

⎞⎟⎟⎠
︸ ︷︷ ︸

φ(x)

+
1

2

(
rT1 rT2

)
︸ ︷︷ ︸

rT

⎛⎝r1
r2

⎞⎠
︸ ︷︷ ︸

r

subject to

⎛⎝H 0 0

D −I I

⎞⎠
︸ ︷︷ ︸

A

⎛⎜⎜⎝
f

v

w

⎞⎟⎟⎠
︸ ︷︷ ︸

x

+

⎛⎝γ1I 0

0 γ2I

⎞⎠
︸ ︷︷ ︸

D2

⎛⎝r1
r2

⎞⎠
︸ ︷︷ ︸

r

=

⎛⎝g
0

⎞⎠
︸ ︷︷ ︸

b⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ ≤
⎛⎜⎜⎝

f

v

w

⎞⎟⎟⎠ ≤
⎛⎜⎜⎝

1

∞
∞

⎞⎟⎟⎠ .
Theoretically, the above formulation would allow us to solve (3.12) using PDCO.

However in practice, this is not possible for two reasons. First, the solution is very

sensitive to the choice of parameters γ1 and γ2. Small perturbations of γ1 and γ2 is

enough to cause divergence. Second, the matrix A =

⎛⎝H 0 0

D −I I

⎞⎠ is extremely large

in dimension, which causes many inner iterations (LSQR) for each outer iteration in PDCO.
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3.4.3 Dual Method

Another way to solve Problem (3.12) is to consider its dual:

maximize
μ,ν

−1
2‖μ‖22 − μTg

subject to |νi| ≤ λ, ∀i,
HTμ+DT ν = 0,

(3.19)

where μ and ν are the dual variables. The derivation can be found in the Appendix A.

With (3.19), the corresponding PDCO problem is

minimize
μ,ν,r

φ(μ, ν) + 1
2

∥∥∥∥∥∥D1

⎛⎝μ
ν

⎞⎠∥∥∥∥∥∥
2

+ 1
2‖r‖2

subject to
(
HT DT

)⎛⎝μ
ν

⎞⎠+D2r = 0,⎛⎝−λ
−∞

⎞⎠ ≤
⎛⎝μ
ν

⎞⎠ ≤
⎛⎝ λ

∞

⎞⎠ ,
where the convex function is φ(μ, ν), its gradient and hessian are defined as φ = gTμ,

∇φ = [gT , 0]T and ∇2φ = 0, respectively. The matrix A, diagonal matrices D1 and D2

in PDCO are respectively

A =
(
HT DT

)
, D1 =

⎛⎝I 0

0 10−3I

⎞⎠ , D2 = 10−3I.

The bounds on ν are numerically represented as −1020 ≤ ν ≤ 1020.

Fig. 3.1 shows the results of a deblurring problem

minimize
f

1

2
‖Hf − g‖2 + λ ‖Df‖1 ,

where the operator H is characterized by the point spread function h(x, y) = 1/10 for

x = 0, . . . , 9 and y = 0. The regularization parameter is λ = 10−3. The observed image

g is not corrupted with noise. As shown in the result, the recovered image is satisfactory.

However, when the noise term is not zero, or when the length of point spread function

is larger than 20 pixels, the computing time of PDCO increases exponentially.
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Fig. 3.2 shows the results of a denoising problem

minimize
f

1

2
‖f − g‖2 + λ ‖Df‖1 ,

where λ = 5 × 10−1. The observed image g is corrupted with Gaussian noise with

variance σ2 = 0.001. Similar to the deblurring problem, the computing time of PDCO

increases significantly when the noise level increases. While it is still possible to find a

reasonable solution, careful tuning of the parameters is needed.

Original f Observed g Solution μ Solution ν

Figure 3.1: Deblurring the image “cameraman.tif” using PDCO. The image is blurred
by a motion blur PSF, with (vx, vy) = (10, 0), and is not corrupted with noise. The
regularization parameter is chosen as λ = 10−3.

Original f Observed g Solution μ Solution ν

Figure 3.2: Denoising the image “cameraman.tif” using PDCO. The image is corrupted
by Gaussian noise, with variance σ2 = 0.001. The regularization parameter is chosen as
λ = 5× 10−1.

3.4.4 Summary of TV Problems

To summarize our finding of PDCO, we find that PDCO is sensitive to parameters,

such as γ1, γ2, the tolerance level for LSQR iterations, the rate of reduction of the bar-

rier parameter, etc. Examples above are two exceptional cases where we can tune the
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parameters appropriately. In most of other problems, as long as the image is changed,

or the point spread function is changed, or even if the noise statistics is changed, the

parameters need to be tuned again. Any slight deviation from the optimal parameter

would cause divergence.

3.5 Bilateral TV Regularization

The last method that we consider in this chapter is the bilateral total variation

(BTV), introduced by Farsiu, Robinson, Elad and Milanfar [37–39]. In 2009, Chan and

Nguyen applied the same idea to LCD motion deblurring problems [20]. BTV problem

has the following form:

minimize
f

1
2 ‖Hf − g‖2 +

P∑
i=1

Q∑
j=1

λi,j ‖Di,jf‖1
subject to l ≤ f ≤ u.

(3.20)

Clearly BTV problem is a generalization of the l1-approximation problem. Since there are

only few algorithms for the l1-approximation problems, there are also very few algorithms

for BTV problems. In the following paragraphs we present a sub-gradient projection

algorithm [20].

3.5.1 Gradient Project Method

Gradient projection algorithm is an iterative method that updates the current

solution by making a step along the direction of negative gradient. If the objective

function is not differentiable, then a sub-gradient is used instead of the gradient. After

a step is taken, the current solution is projected onto the constraint set to maintain

feasibility.

To use the sub-gradient projection method for BTV problem, we first compute

the sub-gradient of the objective function. Let

φ(f) =
1

2
‖Hf − g‖2 +

P∑
i=1

Q∑
j=1

λi ‖Di,jf‖1 ,
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the sub-gradient of φ(f) is

∇φ(f) = HT (Hf − g) +

P∑
i=1

Q∑
j=1

λiD
T
i,j sign(Di,jf),

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and sign(x) = 0 if x = 0.

The projection is defined as

[P(f)]i =

⎧⎪⎨⎪⎩u, if [f ]i ≥ u,
l, if [f ]i ≤ l.

(3.21)

where [f ]i denotes the i-th component of f .

Given the k-th iterate fk, the k + 1-th iterate is

fk+1 = P[fk − αk∇φ(fk)],

for some step size αk which satisfies the “square summable but not summable” rule

[11,15,100]:
∞∑
k=0

α2
k <∞ and

∞∑
k=0

αk =∞.

Here, we choose αk =M/(M +k), for some maximum number of iterations M , typically

M = 1000.

3.5.2 Application of BTV

An application of the sub-gradient projection method is the liquid crystal display

(LCD) motion blur reduction problem presented in [20]. LCDs are well known for its

slow response time, caused by the slow phase orientation of the liquid crystals in the

presence of electric field. Because of the slow response, fast moving objects in a scene

are often perceived as blurred on an LCD. To resolve this issue, one method is to syn-

thesize an image such that when it is displayed on the LCD, the perceived image looks

sharp. Or in other words, we need to over-sharpen an image so that it compensates the

distortion caused by the LCD. This problem is known as the inverse synthesis problem,
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and mathematically it is expressed as a BTV problem

minimize
f

‖Hf − g‖22 + λ
∑
i,j

‖Di,jf‖1

subject to 0 ≤ f ≤ 1.

Here, the image g is the target image, and H is the blur caused by the LCD. Our goal

is to synthesize f so that the residue Hf − g is minimized. The regularization function

involves four terms: D1,0f , D0,1f , D1,1f andD−1,1. The parameter λ is set as λ = 0.0015.

Fig. 3.3 and Fig. 3.4 show two examples. In both cases, the blurring operation

H is characterized by the motion PSF with (vx, vy) = (3, 0). The sub-gradient projec-

tion method is compared with two state-of-the-art inverse synthesis algorithms, namely

the modified Lucy-Richardson algorithm by Har-noy and Nguyen [56] and the motion

compensated inverse filtering (MCIF) by Klompenhouwer and Velthoven [62]. Peak-

signal-to-noise-ratio (PSNR) and the error
∑

i ‖Dif‖1 is listed in Table 3.1. It can be

seen that the BTV method reaches high PSNR while keeping the error
∑

i ‖Dif‖1 low.

In contrast, Lucy-Richardson method can give higher PSNR values, the error
∑

i ‖Dif‖1
is also more.

The drawback of sub-gradient projection method is the slow convergence. In

general, the rate of convergence depends on the spectral property of H, the update

scheme of step size, and the choice of sub-gradient.

Table 3.1: Comparisons between MCIF, Lucy Richardson and proposed method
Peak Signal to Noise Ratio Regularization Error

Video Name Methods PSNR (dB)
∑

i ‖Dif‖1
Original 34.43 4.8286 × 103

Stockholm MC Inverse Filter [62] 34.357 9.8488 × 103

Lucy Richardson [56] 40.35 1.0914 × 104

BTV 36.38 4.1443 × 103

Original 36.879 3.586× 103

Shield MC Inverse Filter [62] 36.943 7.432× 103

Lucy Richardson [56] 48.241 7.825× 103

BTV 38.540 3.437× 103

3.6 Summary

In this chapter we reviewed several algorithms for image restoration from the

perspective of regularization functions. For all discussed methods, the computation
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(a) Original (b) MCIF (c) LR (d) Proposed

Figure 3.3: Inverse Synthesis Example 1: The upper row shows the synthesized signal
that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal.
(a) Original Signal (b) Signal synthesized by MCIF [62], (c) Signal synthesized by Lucy
Richardson [56], (d) Signal synthesized by solving BTV.

(a) Original (b) MCIF (c) LR (d) Proposed

Figure 3.4: Inverse Synthesis Example 2: The upper row shows the synthesized signal
that is sent to the LCD. The lower row shows the (simulated) perceived LCD signal.
(a) Original Signal (b) Signal synthesized by MCIF [62], (c) Signal synthesized by Lucy
Richardson [56], (d) Signal synthesized by solving BTV.
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time is long, because the differentiable function ‖Hf − g‖2 and the non-differentiable

function ‖Df‖1 are handled simultaneously. In next chapter, we show that by splitting

the differentiable and non-differentiable functions into two different subproblems, the

problem can be solved more efficiently.
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Chapter 4

deconvtv for Image Restoration

This chapter presents a major contribution of the dissertation. We begin with

the development of operator splitting methods, followed by the proposed augmented

Lagrangian method. Properties of the algorithm including convergence, warm start and

automatic parameter selection will be discussed consequently.

Our main focus in this chapter is the following TV problem with l2-norm square

objective:

minimize
f

μ
2 ‖Hf − g‖2 + ‖f‖TV . (4.1)

Here, both isotropic and anisotropic TV norms will be discussed. We refer to this class

of problems as TV/L2. We are also interested in the following TV problem with l1-norm

objective:

minimize
f

μ ‖Hf − g‖1 + ‖f‖TV . (4.2)

(4.2) is referred to as TV/L1 problem. Again, both isotropic and anisotropic TV norms

will be discussed.

29
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4.1 Operator Splitting Methods

This section provides an overview of the development of operator splitting meth-

ods. Without lost of generality, we will focus on the following anisotropic TV/L2 prob-

lem:

minimize
f

μ
2 ‖Hf − g‖2 + ‖Df‖1, (4.3)

where D = [DT
x , D

T
y ]

T .

Operator splitting method is an important milestone of solving TV problems.

The idea is to separate the original TV problem into two (or more) relatively easy sub-

problems so that the solution of the original problem can be found by iteratively solving

the subproblems. In the development of operator splitting methods, two major branches

should be considered - “half quadratic penalty method” and “augmented Lagrangian

method”.

4.1.1 Half Quadratic Penalty Method

The half-quadratic penalty method is introduced by Geman, Reynolds and Yang

[45,46]. In this approach, Problem (4.3) is replaced by the equivalent problem

minimize
f ,u

μ

2
‖Hf − g‖2 +Q(Df ,u) + ψ(u),

where Q(t, s) and ψ(s) are chosen such that Q(t, s) is quadratic in t. The functions

Q(t, s) and ψ(s) are related to ‖Dt‖1 by

‖Dt‖1 = minimize
s

Q(t, s) + ψ(s).

The motivation of introducing the half-quadratic penalty function is to separate the

smooth objective and the non-smooth regularization function. Similar approaches have

been proposed, see, e.g., [3, 58,83].

Huang, Ng and Wen [57] considered the following half-quadratic penalty function

minimize
f ,u

μ

2
‖Hf − g‖2 + αk

2
‖f − u‖2 + ‖Du‖1 , (4.4)

where {αk} is an increasing sequence of penalty parameters. Given initial guesses f0 and
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u0, the algorithm defines a sequence of fk and uk such that

fk+1 = argmin
f

μ

2
‖Hf − g‖2 + αk

2
‖f − uk‖2 (4.5)

uk+1 = argmin
u

αk

2
‖fk+1 − u‖2 + ‖Du‖1 . (4.6)

This method is called Fast-TV. However, solving (4.6) is a difficult task. Although

Huang et al. used a fast algorithm by Chambolle [17] to solve (4.6), the overall speed of

Fast-TV is slow.

Wang et al. [112] considered another half-quadratic penalty function

minimize
f ,u

μ

2
‖Hf − g‖2 + αk

2
‖Df − u‖2 + ‖u‖1 . (4.7)

This method is named FTVd 3.0. The difference between Fast-TV and FTVd 3.0 is the

way of splitting the variables. In Fast-TV, the additional intermediate term is ‖u− f‖2
whereas in FTVd 3.0, the term is ‖u −Df‖2. Due to the similarity between these two

methods, it is expected that the subproblems are also solved similarly. For FTVd 3.0,

the two subproblems are

fk+1 = argmin
f

μ

2
‖Hf − g‖2 + αk

2
‖Df − uk‖2 (4.8)

uk+1 = argmin
u

αk

2
‖Dfk+1 − u‖2 + ‖u‖1 . (4.9)

Note that closed form solution exists for (4.9), and hence FTVd 3.0 is faster than Fast-

TV.

4.1.2 Augmented Lagrangian Method

The augmented Lagrangian method follows from the work of Rockafellar [91,92],

Bertsekas [10, 11, 33], and research in solving optimization problems associated with

partial differential equations [43, 47, 105, 106]. The idea of the augmented Lagrangian

method is to transform the original unconstrained minimization problem (4.3) to an

equivalent constrained problem:

minimize
f ,u

μ

2
‖Hf − g‖2 + ‖u‖1 subject to Df = u. (4.10)
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This constrained problem is solved using the properties of the augmented Lagrangian

function

L(f ,u,y, ρ) =
μ

2
‖Hf − g‖2 + ‖u‖1 − yT (u−Df) +

ρ

2
‖u−Df‖2 , (4.11)

where the vector y approximates the Lagrange multipliers associated with the constraints

Df = u, and ρ is a penalty parameter. To solve (4.11), one can solve a sequence of

unconstrained subproblems in the form

minimize
fk,uk

L(fk,uk,yk, ρ), for k = 1, 2, . . . ,

by using an alternating direction method (ADM)

fk+1 = argmin
f

μ

2
‖Hf − g‖2 − yT

k (uk −Df) +
ρ

2
‖uk −Df‖2

uk+1 = argmin
u

‖u‖1 − yT
k (u−Dfk+1) +

ρ

2
‖u−Dfk+1‖2

yk+1 = yk − ρ(uk+1 −Dfk+1).

The augmented Lagrangian method is named FTVd 4.0 [104]. Around the same period,

the augmented Lagrangian method is also discussed in a number of papers, such as

[2, 48, 117]. Esser [34], Goldstein and Osher [48], Wu and Tai [115] showed connections

between the augmented Lagrangian method to split Bregman iterative methods.

4.1.3 Other Methods

There are other methods that are worth mentioning, such as iterative shrinkage/

thresholding (IST) [41], two-step IST (TwIST) [12], Fast IST algorithm (FISTA) [6]

and sparse reconstruction by separable approximation (SpaRSA) [114]. However, these

methods are more focused on sparse reconstruction problems, i.e., the special case of

problem (4.3) where D is the identity operator.

4.2 Proposed Algorithm: deconvtv for TV/L2

In this section, we discuss the proposed algorithm for TV/L2 problems. The pro-

posed algorithm is named deconvtv, which stands for deconvolution for total variation
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problems. The algorithm shares a few common features with the existing augmented

Lagrangian methods. The major difference is the parameter update scheme which will

be discussed.

4.2.1 Overall Algorithm

To solve Problem (4.3), the proposed method follows from the classical aug-

mented Lagrangian method by reformulating the unconstrained minimization problem

as an equivalent constrained minimization problem:

minimize
f ,u

μ

2
‖Hf − g‖2 + ‖ux‖1 + ‖uy‖1 subject to Dxf = ux, Dyf = uy

For simplicity, we let D = [DT
x , D

T
y ]

T and u = [uT
x , u

T
y ]

T . Thus, the problem is

minimize
f ,u

μ

2
‖Hf − g‖2 + ‖u‖1 subject to Df = u. (4.12)

From Bersekas [11, Chapter 2], (4.12) can be solved using the properties of the

augmented Lagrangian function

L(f ,u,y, ρ) =
μ

2
‖Hf − g‖2 + ‖u‖1 − yT (u−Df) +

ρ

2
‖u−Df‖2 . (4.13)

Equation (4.13) states that the augmented Lagrangian function is the sum of three

functions. The first term is the objective μ
2 ‖Hf − g‖2 + ‖u‖1. The second one is a

function involving the Lagrange multipliers associated with the constraint u = Df , i.e.,

yT (u−Df). The sign of yT (u−Df) is negative, but a positive sign can also be used as

long as other steps are consistent. The third term is the quadratic penalty ρ
2 ‖u−Df‖2,

where ρ is a regularization parameter. In (4.13), the Lagrange multipliers y can be

partitioned as y = [yT
x , y

T
y ]

T .

The motivation of using the augmented Lagrangian function is that the saddle

point of L(f ,u,y, ρ) is also the solution of the constrained problem (4.13). To this end,

we find the saddle point of L(f ,u,y, ρ) by solving a sequence of sub-problems

minimize
fk,uk

L(fk,uk,yk, ρ), for k = 1, 2, . . . , (4.14)
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with an update in yk as

yk+1 = yk − ρ(uk+1 −Dfk+1). (4.15)

Problem (4.14) can be solved by considering the following two sub-problems

fk+1 = argmin
f

μ

2
‖Hf − g‖2 − yT

k (uk −Df) +
ρ

2
‖uk −Df‖2 (4.16)

uk+1 = argmin
u

‖u‖1 − yT
k (u−Dfk+1) +

ρ

2
‖u−Dfk+1‖2 , (4.17)

where (4.16) is known as the f -subproblem and (4.17) is known as the u-subproblem.

The methods to solve these two sub-problems will be discussed in the next subsection.

The parameter ρ is increased by ρ← γρ for some constant γ > 1 when

‖uk+1 −Dfk+1‖2 ≥ α‖uk −Dfk‖2,

for some constant 0 < α < 1. Details will be discussed in the coming sections.

Two pseudo-algorithms are shown in Algorithms 1 and 2. Algorithm 1 is known

as the exact method and Algorithm 2 is known as the inexact methods. The exact

method requires (fk,uk) to be solved simultaneously. It will be used in the convergence

proof. In practice, the inexact method is preferred because it allows subproblems to be

terminated in finite steps.

Algorithm 1 TV/L2 Proposed Method (Exact Version)

(Initialization) Input f0, u0, y0, ρ0, γ and α.
while Not converge do

// Solve for (fk+1,uk+1)
(fk+1,uk+1) = argmin

f ,u

μ
2 ‖Hf − g‖2 + ‖u‖1 − yk

T (u−Df) + ρk
2 ‖u−Df‖2

// Lagrange multiplier update
yk+1 = yk − ρk(uk+1 −Dfk+1)

// Penalty parameter update
ρk+1 = γρk if ‖uk+1 −Dfk+1‖2 ≥ α‖uk −Dfk‖2

k ← k + 1
end while



35

Algorithm 2 TV/L2 Proposed Method (Inexact Version)

(Initialization) Input f0, u0, y0, ρ0, γ and α
while not converged do

// Solve f subproblems
fk+1 = argmin

f

μ
2 ‖Hf − g‖2 − yT

k (uk −Df) + ρk
2 ‖uk −Df‖2

// Solve u subproblems
uk+1 = argmin

u
‖u‖1 − yT

k (u−Dfk+1) +
ρk
2 ‖u−Dfk+1‖2

// Lagrange multiplier update
yk+1 = yk − ρk(uk+1 −Dfk+1)
// Penalty parameter update
ρk+1 = γρk if ‖uk+1 −Dfk+1‖2 ≥ α‖uk −Dfk‖2
k ← k + 1

end while

4.2.2 f-subproblem

Minimizing the augmented Lagrangian function (4.13) involves solving two sub-

problems (4.16) and (4.17). In this subsection, we discuss the methods of solving the

f -subproblem.

The f -subproblem is (we drop the iteration number k for simplicity)

argmin
f

L(f ,u,y, ρ) = argmin
f

μ

2
‖Hf − g‖2 − yT (u−Df) +

ρ

2
‖u−Df‖2

= argmin
f

1

2

∥∥∥∥∥∥
⎛⎝√μH√

ρD

⎞⎠ f −
⎛⎝√μg√

ρu

⎞⎠∥∥∥∥∥∥
2

2

+ yTDf .

The optimality conditions for this minimization problem imply that f may be found by

solving the normal equation

(
μHTH+ ρDTD

)
f = μHTg + ρDTu−DTy,

which gives the pseudo inverse solution

f =
(
μHTH+ ρDTD

)−1
(μHTg+ ρDTu−DTy). (4.18)

An important observation here is that if H is a block-circulant-with-circulant-

block matrix (BCCB [61]), then H = FHΛHF where F is the discrete Fourier transform
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matrix, and ΛH is a diagonal matrix [80, Section 3.4]. Therefore, the inverse in (4.18) is

(
μHTH+ ρDTD

)−1
=
(
μFH |ΛH|2F+ ρFH |ΛD|2F

)−1

= FH
(
μ|ΛH|2 + ρ|ΛD|2

)−1
F,

where ΛD is a diagonal matrix such that D = FHΛDF. To summarize, the computation

involved in solving (4.18) includes

1. Pre-calculate ΛH and ΛD using Fourier Transforms.

2. Apply Fourier Transform to μHTg + ρDTu−DTy.

3. Apply element-wise division to the result of step 2 by μ|ΛH|2 + ρ|ΛD|2.

4. Apply inverse Fourier Transform to the result of step 3.

If H is not a BCCB matrix but has some other structures such as a product

of selection matrix and a discrete Fourier transform matrix (which is popularly used in

compressive sensing), there are also fast methods to solve the f -subproblem, see, e.g., [2].

If H is a general matrix, then we use an iterative algorithm to solve the f -subproblem,

for example conjugate gradient.

4.2.3 u-subproblem

The u-subproblem involves minimizing L(f ,u,y, ρ) with respect to u. It holds

that

argmin
u

L(f ,u,y, ρ) = argmin
u

‖u‖1 − yT (u−Df) +
ρ

2
‖u−Df‖2

= argmin
u

‖u‖1 +
ρ

2

∥∥∥∥u− (Df +
1

ρ
y)

∥∥∥∥2
2

. (4.19)

Since

x∗ = argmin
x

1

2
(x− a)2 + λ|x|

= max {|a| − λ, 0} sign(a).
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and (4.19) is a sum of independent sub-problems, the solution of (4.19) is

u = max

{∣∣∣∣Df +
1

ρ
y

∣∣∣∣− 1

ρ
, 0

}
· sign

(
Df +

1

ρ
y

)
, (4.20)

where “·” denotes element-wise multiplication. We can also write the solution as

ux = max

{∣∣∣∣Dxf +
1

ρ
yx

∣∣∣∣− 1

ρ
, 0

}
· sign

(
Dxf +

1

ρ
yx

)
,

uy = max

{∣∣∣∣Dyf +
1

ρ
yy

∣∣∣∣− 1

ρ
, 0

}
· sign

(
Dyf +

1

ρ
yy

)
,

where u is partitioned as u = [uT
x , u

T
y ]

T and y is partitioned as y = [yT
x , y

T
y ]

T .

For the case of isotropic TV problems, the u-subproblem is

argmin
u

L(f ,u,y, ρ) = argmin
u

‖u‖+ ρ

2

∥∥∥∥u− (Df +
1

ρ
y)

∥∥∥∥2
2

,

where ‖u‖ =∑i

√
[ux]

2
i + [uy]

2
i . In this case, we let

vx = Dxf +
1

ρ
yx and vy = Dyf +

1

ρ
yy.

Then, by [69, lemma 4], we have

ux = max
{√|vx|2 + |vy|2 − 1

ρ , 0
}
· vx√

|vx|2+|vy|2+ε

uy = max
{√|vx|2 + |vy|2 − 1

ρ , 0
}
· vy√

|vx|2+|vy|2+ε
,

(4.21)

where | · | is the complex modulus of the argument and ε = 10−8 is a constant. The

division is an element-wise division.

4.3 Proposed Algorithm: deconvtv for TV/L1

The algorithm described in the preceding section is for TV/L2 problems. For

TV/L1 problems, two intermediate variables r and u should be introduced. Hence,
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Problem (4.2) (anisotropic case) is modified as

minimize
f ,r,u

μ ‖r‖1 + ‖u‖1
subject to r = Hf − g

u = Df .

(4.22)

Similar to the TV/L2 problems, the augmented Lagrangian of (4.22) is considered:

L(f , r,u,y, z) = μ ‖r‖1 + ‖u‖1
− zT (r−Hf + g) +

ρo
2
‖r−Hf + g‖2

− yT (u−Df) +
ρr
2
‖u−Df‖2 .

Here, the variable y is the Lagrange multiplier associated with constraint u = Df and

the variable z is the Lagrange multiplier associated with the constraint r = Hf −g. The

parameters ρo and ρr are two regularization parameters. The subscripts “o” and “r”

stand for “objective”, and “regularization”, respectively. TV/L1 solving involves three

sub-problems, namely f -subproblem, u-subproblem and r-subproblem.

4.3.1 f-subproblem

The f -subproblem of TV/L1 is

minimize
f

ρo
2
‖r−Hf + g‖2 + ρr

2
‖u−Df‖2 + zTHf + yTDf , (4.23)

Using the first order optimality criteria, f can be found by considering the normal equa-

tion

(ρoH
TH+ ρrD

TD)f = ρoH
Tg +HT (ρor− z) +DT (ρru− y).

Similar to the TV/L2 case, if the matrix H is BCCB then H can be diagonalized using

the DFT matrix. Therefore,

f = FH(ρo|ΛH|2 + ρr|ΛD|2)−1F
[
ρoH

Tg +HT (ρor− z) +DT (ρru− y)
]
.
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4.3.2 u-subproblem

The u-subproblem of TV/L1 is

minimize
u

‖u‖1 − yT (u−Df) +
ρr
2
‖u−Df‖2 ,

which is the same as that of TV/L2. Therefore, the solution is

ux = max

{∣∣∣∣Dxf +
1

ρ
yx

∣∣∣∣− 1

ρ
, 0

}
· sign

(
Dxf +

1

ρ
yx

)
,

uy = max

{∣∣∣∣Dyf +
1

ρ
yy

∣∣∣∣− 1

ρ
, 0

}
· sign

(
Dyf +

1

ρ
yy

)
for the anisotropic case, and

ux = max
{√|vx|2 + |vy|2 − 1

ρ , 0
}
· vx√

|vx|2+|vy|2+ε

uy = max
{√|vx|2 + |vy|2 − 1

ρ , 0
}
· vy√

|vx|2+|vy|2+ε
,

(4.24)

for the isotropic case, where

vx = Dxf +
1

ρ
yx and vy = Dyf +

1

ρ
yy.

4.3.3 r-subproblem

Finally, the r-subproblem is

minimize
r

μ ‖r‖1 − zT r+
ρo
2
‖r−Hf + g‖2 , (4.25)

which is in the same form as the anisotropic u-subproblem. Therefore, using the shrink-

age formula, the solution is

r = max

{∣∣∣∣Hf − g +
1

ρo
z

∣∣∣∣− μ

ρo
, 0

}
· sign

(
Hf − g +

1

ρo
z

)
. (4.26)
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4.3.4 Overall algorithm

In TV/L1, the Lagrange multipliers y and z are updated as

yk+1 = yk − ρr(uk+1 −Dfk+1),

zk+1 = zk − ρo(rk+1 −Hfk+1 + g). (4.27)

The overall algorithm is shown in Algorithm 3.

Algorithm 3 Proposed Method (TV/L1)

Input g, H and parameters μ. Let k = 0.
Set parameters ρr (default = 2), ρo (default = 100), αo and αr (default = 0.7).
Initialize f0 = g, u0 = Df0, y0 = 0, r0 = Hf0 − g, z0 = 0.
Compute the matrices F [Dx], F [Dy ], F [H].
while not converge do

// Solve f subproblems
fk+1 = argmin

f

ρo
2 ‖rk −Hf + g‖2 + ρr

2 ‖uk −Df‖2 + zTkHf + yT
kDf

// Solve u subproblems
uk+1 = argmin

u
‖u‖1 − yT

k (u−Dfk+1) +
ρr
2 ‖u−Dfk+1‖2

// Solve r subproblems
rk+1 = argmin

r
μ ‖r‖1 − zTk (r−Hfk+1 + g) + ρo

2 ‖r−Hfk+1 + g‖2

// Lagrange multipliers update
yk+1 = yk − ρr(uk+1 −Dfk+1)
zk+1 = zk − ρo(rk+1 −Hfk+1 + g)
// Penalty parameter update
ρr ← γrρr if ‖uk+1 −Dfk+1‖2 ≥ αr‖uk −Dfk‖2
ρo ← γoρo if ‖rk+1 −Hfk+1 + g‖2 ≥ αo‖rk −Hfk + g‖2
k ← k + 1

end while

4.4 Selecting Parameters

Regularization parameters are crucial in the proposed method. In this section,

we discuss how to select parameters. We will focus on the TV/L2 problem.

4.4.1 Choosing μ

The regularization parameter μ trades off the least-squares error and the total

variation penalty. Large values of μ tend to give sharper results, but noise will be
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amplified. Small values of μ give less noisy results, but the image may be smoothed.

The choice of μ is not known prior to solving the minimization. Empirically, a reasonable

value of μ for a natural image typically lies in the range [103, 105]. Fig. 4.1 shows the

recovery results by using different values of μ.

Input μ = 102 μ = 103 μ∗ = 10352 μ = 105

Figure 4.1: Image recovery using different choices of μ. The optimal (in terms of PSNR
compared to the reference) is μ = 10352. The image is blurred by a Gaussian blur PSF
of size 9 × 9, σ = 5. Gaussian noise is added to the image so that the blurred signal to
noise ratio (BSNR) is 40dB.

One method to choose μ is to assume a noise model and estimate the noise power

σ2 [70, 71,88]. Consequently, we can consider the constrained minimization problem

minimize
f

‖Df‖1 subject to ‖Hf − g‖2 ≤ σ2. (4.28)

Let μ∗ be the optimal Lagrange multiplier of (4.28) and let f(μ∗) be the correspond-

ing solution. By complementarity conditions of problem (4.28), it holds that either

‖Hf(μ∗)− g‖2 = σ2, or μ∗ = 0. In other words, μ∗ is either the root of the function

‖Hf(μ∗)− g‖2− σ2, or μ∗ = 0. But if μ∗ = 0, then minimizing the Lagrangian of (4.28)

is equivalent to minimizing ‖Df‖1 and so the solution is f(μ∗) = 0. However, f(μ∗) = 0

is not meaningful in practice. Therefore, μ∗ must be a root of ‖Hf(μ∗)− g‖2 = σ2 (or

equivalently the root of ‖Hf(μ∗)− g‖ = σ).

The complementarity condition suggests a method to determine μ∗ for a given σ:

let φ(μ) = ‖Hf(μ)− g‖, our goal is to find a root of φ(μ) = σ. This root-finding strategy

is motivated by the work of Berg and Friedlander [9], where the authors considered

an approximated Newton method by exploiting the duality between LASSO and basis

pursuit problems. However, due to the presence of the differential operator D in problem

(4.3), the approach that Berg and Friedlander used cannot be applied to our problem.

Therefore, we propose to use a bisection method to find a root of φ(μ) = σ.

In Fig. 4.2, the blue solid line represents the trajectory φ(μ), the red solid line is
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Figure 4.2: Bisection method to find μ. Starting with two values μa < μb, we let
μ = (μa + μb)/2 and evaluate φ(μ). If φ(μ) > σ, then μa is replaced by μ. Otherwise μb
is replaced by μ. The process repeats until the target tolerance level is reached. In this
figure, the blue solid line φ(μ) is numerically calculated based on a dense grid of μ.

Algorithm 4 Algorithm to determine μ

Given σ, μmin, μmax. Let μa = μmin, μb = μmax.
while |φ(μ)− σ| > tol do

Let μ = (μa + μb)/2
Solve f(μ) = argmin

f

μ
2 ‖Hf − g‖2 + ‖Df‖1

Calculate φ(μ) = ‖Hf(μ)− g‖ − σ
if φ(μ) > σ then
μa ← μ

else
μb ← μ

end if
end while

the target noise level σ, and the black markers are the bisection steps. At each bisection

step, the algorithm calculates φ(μ), where μa < μ < μb is an interval containing the

optimal μ∗. If φ(μ) > σ, then we replace μa by μ. Otherwise if φ(μ) < σ, then we

replace μb by μ. The algorithm stops when |φ(μ) − σ| < tol for some tolerance level.

To increase the speed, we use a continuation scheme [53] by warm starting the

algorithm. Typically, the number of bisection steps is between 5 to 10. The initial

minimum and maximum μ are μa = 1 and μb = 106. Algorithm 4 summarizes the

bisection method to determine the optimal μ∗.
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4.4.2 Choosing ρ, γ and α

One of the major differences between the proposed algorithm and FTVd 4.0 [104]

is the update of ρ, because ρ is a fixed constant in [104]. However, as mentioned in [87],

the method of multipliers shows a faster rate of convergence by adopting the following

parameter update scheme:

ρk+1 =

⎧⎪⎨⎪⎩γρk, if ‖uk+1 −Dfk+1‖2 ≥ α‖uk −Dfk‖2,
ρk, otherwise.

(4.29)

Here, the condition ‖uk+1 − Dfk+1‖2 ≥ α‖uk − Dfk‖2 specifies the constraint

violation with respect to a constant α. The intuition is that the quadratic penalty

ρ
2‖u −Df‖2 is a convex surface added to the original objective function μ‖Hf − g‖2 +
‖u‖1 so that the problem is guaranteed to be strongly convex [91]. Ideally, the residue
ρ
2‖uk−Dfk‖2 should decrease as k increases. However, if ρ

2‖uk−Dfk‖2 is not decreasing

for some reasons, one can increase the weight of the penalty ρ
2‖u − Df‖2 relative to

the objective so that ρ
2‖u − Df‖2 is forced to be reduced. Therefore, given α and γ

where 0 < α < 1 and γ > 1, Equation (4.29) guarantees that the constraint violation is

decreasing asymptotically. In the steady state as k →∞, ρ becomes a constant [10].

The initial value of ρ is chosen to be within the range of [2, 10]. This value

cannot be large (in the order of 100), because the role of the quadratic surface ‖u −
Df‖2 is to perturb the original objective function so that it becomes strongly convex.

If the initial value of ρ is too large, the solution of the original problem may not be

found. However, ρ cannot be too small either, for otherwise the effect of the quadratic

surface ‖u−Df‖2 becomes negligible. Empirically, we find that ρ = 2 is robust to most

restoration problems.

Table 4.1 illustrates the sensitivity of the algorithm to the parameters ρ, γ and α.

In this test, twenty images are blurred by a Gaussian blur PSF of size 9×9 with variance

σ = 1. The blurred signal to noise ratio (BSNR) is 30dB. For each image, two of the three

parameters (ρ, γ and α) are fixed at their default values ρ = 2, γ = 2, α = 0.7, whereas

one of them is varying within the range specified in Table 4.1. The stopping criteria of

the algorithm is ‖fk+1 − fk‖2/‖fk‖ ≤ 10−3 and μ = 104 for all images. The maximum

PSNR, minimum PSNR and the difference are reported in Table 4.1. Referring to the

values, it can be calculated that the average maximum-to-minimum PSNR differences
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among all twenty images for ρr, γ and α are 0.311dB, 0.208dB and 0.357dB respectively.

For an average PSNR difference in the order of 0.3dB, the perceivable difference is small1.

Table 4.1: Sensitivity Analysis of Parameters. Maximum and minimum PSNR (dB)
for a range of ρ, γ and α. If a parameter is not the variable, it is fixed at the default
values: ρ = 2, γ = 2, α = 0.7.

Image no.
1.5 ≤ ρ ≤ 10 1 ≤ γ ≤ 5 0.5 ≤ α ≤ 0.9

Max Min Diff Max Min Diff Max Min Diff

1 28.6468 28.8188 0.1719 28.6271 28.7931 0.1661 28.5860 28.8461 0.2601
2 31.3301 31.4858 0.1556 31.7720 32.0908 0.3188 31.0785 31.5004 0.4219
3 31.7009 31.9253 0.2244 31.9872 32.0847 0.0976 31.7238 31.9833 0.2596
4 33.6080 33.8427 0.2346 33.9994 34.0444 0.0450 34.1944 34.6197 0.4252
5 36.2843 36.5184 0.2341 36.1729 36.3173 0.1444 35.9405 36.7737 0.8332
6 32.0193 32.3859 0.3666 32.2805 32.4795 0.1990 31.9998 32.4207 0.4208
7 29.2861 29.7968 0.5107 29.5890 29.7408 0.1518 29.8872 30.1685 0.2813
8 30.0598 30.4347 0.3749 29.6344 29.9748 0.3404 29.4519 29.7627 0.3108
9 34.4951 34.7675 0.2724 34.5234 34.7378 0.2144 34.3567 34.9726 0.6159
10 29.5555 30.1231 0.5676 29.3502 29.5715 0.2213 29.4009 29.6558 0.2549
11 28.6291 29.1908 0.5617 28.6711 28.9846 0.3135 28.7760 29.0099 0.2340
12 31.6657 31.7473 0.0815 31.2254 31.3172 0.0918 31.3596 31.5423 0.1827
13 35.5306 35.9015 0.3710 35.4584 35.7442 0.2858 36.0163 36.2163 0.2000
14 36.8008 36.9204 0.1196 37.1039 37.1956 0.0917 36.6822 37.1470 0.4648
15 32.0469 32.0969 0.0501 32.4076 32.5918 0.1843 32.0101 32.5421 0.5320
16 31.5836 31.6572 0.0736 31.5975 31.9582 0.3607 31.3778 31.6027 0.2249
17 32.2500 32.6248 0.3748 32.8744 33.0967 0.2223 32.5141 32.8665 0.3524
18 32.6311 33.0377 0.4066 32.2999 32.5472 0.2473 32.9494 33.1908 0.2414
19 28.4927 29.1870 0.6943 28.6654 28.8488 0.1834 28.7902 29.0220 0.2318
20 30.2615 30.6387 0.3771 30.3235 30.6007 0.2772 30.3351 30.7206 0.3855

4.5 Convergence

This section presents the convergence property of the algorithm. We discuss the

empirical convergence, followed by the proof.

4.5.1 Empirical Convergence

Fig. 4.3 illustrates the convergence profile of the TV/L2 algorithm in a typical

image recovery problem. In this test, the image “cameraman.tif” (size 256 × 256, gray-

scaled) is blurred by a Gaussian blur PSF of size 9 × 9 and σ = 1. Gaussian noise is

added so that the blurred signal to noise ratio (BSNR) is 40dB. To visualize the effects of

the parameter update scheme, we set the initial value of ρ to be ρ = 2, and let α = 0.7.

Referring to (4.29), ρ is increased by a factor of γ if the condition is satisfied. Note

that [104](FTVd 4.0) is a special case when γ = 1, whereas the proposed algorithm

1It should be noted that the optimization problem is identical for all parameter settings. Therefore,
the correlation between the PSNR and visual quality is high.
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allows the user to vary γ.

In Fig. 4.3, the y-axis is the objective value μ
2‖Hfk − g‖2 + ‖fk‖TV for the k-th

iteration, and the x-axis is the iteration number k. As shown in the figure, an appropriate

choice of γ improves the rate of convergence significantly. However, if γ is too large, the

algorithm is not converging to the solution. Empirically, we find that γ = 2 is robust to

most of the image and video problems.
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Figure 4.3: Convergence profile of the proposed algorithm for deblurring the image
“cameraman.tif”. The four colored curves show the rate of convergence using different
values of γ, where γ is the multiplication factor for updating ρr.

4.5.2 Convergence Proof

The overall idea of the convergence proof is as follows. There are two possible

situations about the penalty parameter ρk: either (1) ρk →∞, or (2) ρk → ρ∗ for some

ρ∗ < ∞. The first half of the proof is dealing with the case where ρk → ∞. We show

that Algorithm 1 and 2 converge in this case. The second half of the proof is dealing with

the case where ρk → ρ∗. In this case, the proof follows from Eckstein and Bertsekas [33].

The proof is given in Appendix B.

4.6 Warm Start

The proposed algorithm can be warm started. By warm start we meant to use

the solution of one problem as the initial guess to another problem. Specifically, if the
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solution of the previous problem is

(f (1),u(1)) = argmin
f ,u

μ

2
‖Hf − g‖2 + ‖u‖1 − yT (u−Df) +

ρ

2
‖u−Df‖2 ,

and the associated Lagrange multiplier is y(1) and the penalty parameter is ρ(1), then the

initial guess to the next problem is (f (1),u(1),y(1), ρ(1)). Note that using ρ(1) is crucial

to the convergence. If the initial ρ for the next problem is not ρ(1), but some small

values (e.g., ρ = 2 in our experiments), then the effect of warm start is not so apparent

because for small ρ, the rate of cost reduction relies mainly on the Lagrange multiplier

term yT
k (uk −Dfk). However, if ρ(1) is too large, then we might lose track in the first

few iterations of the next problem. Therefore, a practical strategy is to set the initial

guess as min{ρ(1), c}, for some constant c > 1. A typical value of c is c = 32.
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Figure 4.4: Warm and cold starting the algorithm for image restoration problems. The
computing time is reduced by using the warm start.

To illustrate the effectiveness of warm start, we show some results in Fig. 4.4. In

this experiment, we construct two observations g1 and g2 by adding two different noise

vectors to the ground truth image f , i.e., g1 = f + η1 and g2 = f + η2, where η1 �= η2.

Our goal is to recover f from g1, and f from g2. Suppose that (f (1),u(1),y(1), ρ(1)) is

the solution recovered from g1. To recover an image from observation g2, we can either

warm start the algorithm by using f0 = f (1), u0 = u(1), y0 = y(1), ρ0 = ρ(1) as the

initial guess, or we can cold start the algorithm with f0 = g2, u0 = 0, y0 = 0, ρ0 = 1

as the initial guess. As the results in Fig. 4.4 indicate, using warm start reduces the

computing time significantly.

Warm start is effective only when the perturbation is small, for example, the
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Figure 4.5: Warm and cold starting the algorithm for two video restoration problems
(frame 1 and 2 of stockholm.avi and shield.avi). In these two video problems, we
motion compensate the solution of the previous frame and use it as the initial guess to
the current frame. The results show that warm start is not suitable for video restoration
problems because motion compensation causes error. Note that the two video sequences
in this figure are originally blurred and so there is no ground truth f∗. f∗ is obtained by
solving the problem with extremely tight tolerance level tol = 1e-9.

bisection method mentioned in the previous subsection. However, warm start is not

suitable for restoring videos. To use warm start in restoring a video, we need to apply

motion compensation to the solution of the previous frame before using it as the initial

guess to the current frame. However, motion compensation causes error, especially if

there are local motions, occlusions or sub-pixel displacements across two consecutive

frames. Although one can use advanced motion compensation algorithms to reduce

the motion compensation error, these algorithms are extremely complex and so the time

spending on running these algorithms is even longer than starting the proposed algorithm

from scratch.

Fig. 4.5 compares the performance of warm starting and cold starting. The

motion map is found using [21] and the motion compensation is performed using bicubic

interpolation. The block size is 8× 8, and the searching accuracy is 0.25 pixel. It can be

seen that warm starting the algorithm performs worse than starting the algorithm from

scratch.

4.7 Numerical Results

In this section we compare the proposed method with other existing methods.

To begin with, we define the peak signal to noise ratio (PSNR) and the blurred signal
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to noise ratio (BSNR). PSNR measures the error between the recovered image and the

ground truth. A higher PSNR value usually implies better image quality. BSNR is the

ratio between the power of the observed image and the power of the noise. A higher

BSNR value usually implies lower observation noise. Mathematically, PSNR and BSNR

are defined as

BSNR = 10 log10
‖g‖2
‖η‖2 , PSNR = 10 log10

1

MSE
,

where g is the observed image and η is the noise. The mean square error (MSE) is given

by MSE = 1
N

∥∥∥f − f̃
∥∥∥2, where N is the number of pixels in the image f . f̃ is the ground

truth image.

In most of the experiments below, we mainly test for the deblurring problem

where images are blurred by a Gaussian blur PSF of size 9×9, variance 5, and added with

noise so that BSNR = 40dB. The Gaussian blur PSF can be implemented in MATLAB

as fspecial{’gaussian’, [9 9], 5}. Other types of PSFs can also be used, but the

results are similar.

The default parameters of the proposed algorithm are ρ0 = 2, γ = 2, α = 0.7.

These values are found empirically that balances PSNR and run time.

All experiments in this paper were run on a Dell-XPS PC, with Intel Q9550 Qual

Core 2.8GHz, 4GB DDR3 RAM, Windows 7 (64 bit), MATLAB 2009a.

4.7.1 Compare with standard deblurring algorithms

First, we compare the proposed method with standard image deblurring algo-

rithms, namely Wiener deconvolution, Lucy-Richardson deconvolution and regularized

least-squares deconvolution. In MATLAB, these functions are known as deconvwnr,

deconvlucy, and deconvreg.

The experiment setting is as follows. We first construct a blurry image by apply-

ing a Gaussian blur PSF (of size 9× 9, and variance 5) to the image. We also add noise

to the image so that the BSNR is 40dB. Then we recover the image using the proposed

algorithm (with μ = 5×103, α = 0.7, ρ0 = 2, γ = 2), deconvwnr (with damping constant

β = 2 × 10−3), deconvlucy (with damping constant β = 2 × 10−3, 25 iterations), and

deconvreg (with damping constant β = 0.25).

The results in Fig. 4.6 show that the proposed algorithm achieves the highest

PSNR value compared to other three standard deblurring algorithms.
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original image observed image proposed method

27.07dB, 0.24 sec

deconvwnr deconvlucy deconvreg

25.73dB, 0.02sec 24.99dB, 0.51 sec 26.53dB, 0.12 sec

Figure 4.6: Comparisons with three standard algorithms: deconvwnr, deconvlucy,
deconvreg. In each of the sub-figures, we show the PSNR value (dB) and the run time
(sec).

4.7.2 Compare with half-quadratic methods

In this experiment, we compare the proposed method with two half-quadratic

penalty methods, namely Fast-TV [57] and FTVd 3.0 [112] 2. Indirect comparisons

can be concluded from the experiments in [57] and [112]: in [57], it has been shown

that Fast-TV has higher PSNRs and shorter computing time when compared to TV-

Bect [7], Modified-TV [109], two-step iterative shrinkage/ thresholding TwIST [12], and

an interior point method [79]; in [112], it has been shown that FTVd 3.0 performs better

than ForWaRD [78]. Therefore, comparing with FTVd 3.0 and Fast-TV allows us to

conclude the performance of the proposed algorithm compared to these state-of-the-art

algorithms.

Fig. 4.8 shows the blurred images 3 and the restored images by using the proposed

method, FTVd 3.0 and FastTV. In this experiment, the algorithms are terminated when

the relative change satisfies ‖fk+1 − fk‖ / ‖fk‖ < 10−3. For FTVd 3.0 and Fast-TV, the

f and u subproblems are terminated when the relative change is less than 10−3. The

2MATLAB code is available at http://www.caam.rice.edu/∼optimization/L1/ftvd/v3.0/
3There are totally 20 images in this experiment. Dataset can be downloaded at http://

videoprocessing.ucsd.edu/∼stanleychan
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deconvwnr deconvlucy deconvreg

28.96dB, 0.05sec 30.64dB, 0.82sec 31.11dB, 0.12sec

Figure 4.7: Comparisons with three standard algorithms: deconvwnr, deconvlucy,
deconvreg. The image is blurred by a Gaussian blur PSF of size 9× 9, with variance 5.

regularization parameter μ in Problem (4.3) is the same for all three algorithms: μ = 0.1
‖η‖ ,

where η is the noise vector. As shown in Fig. 4.8, the images recovered by the proposed

algorithm are competitive with those recovered by FTVd 3.0 and FastTV. Table 4.2 lists

the PSNRs of the three methods 4.

The run time of the three methods is also listed in Table 4.2. Overall speaking,

the proposed algorithm is around twice as fast as FTVd 3.0, and is around 10 to 100

times faster than FastTV. As mentioned, since FTVd 3.0 and FastTV are already more

efficient than a number of other existing algorithms, we can conclude that the proposed

method has a state-of-the-art speed.

Fig. 4.9(a) shows the PSNR value as a function of the iteration number. In FTVd

3.0, since a continuation scheme is applied, the PSNR shows a “stair-case” characteristic.

Each jump corresponds to a major iteration, and between each jump there are a number

of minor iterations. Therefore, the total number of iterations is the product of the number

of major iterations and the number of minor iterations. In contrast, the proposed method

does not require any continuation scheme to control the penalty parameter. The PSNR

can reach the peak and maintain in a steady state in only few number of iterations.

4Complete list of results can be found in the supplementary document
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observed image proposed method FTVd 3.0 Fast-TV

1.54 sec 15.66 sec 102.40 sec

2.31 sec 20.95 sec 152.18 sec

Figure 4.8: Deblurring results of Building2.bmp and House2.bmp. The images are
blurred by a Gaussian blur PSF with size 9× 9, and variance 5, BSNR = 40dB. PSNR
and run time are listed in Table 4.2. (See supplementary document for more results.)

In Fig. 4.9(b), we show the run time as a function of the size of the point spread

function. Since increasing the size of the point spread function increases the condition

number of the blur operatorH, the number of iterations is expected to increase. However,

the rate of change of the increment using the proposed method is lower than that of FTVd

3.0. This is because FTVd 3.0 does not only involve the major iterations, but also the

minor iterations.

Compare with FTVd4.0

In this experiment, we compare the proposed algorithm with FTVd4.0, in which

the code is available online at http://www.caam.rice.edu/∼optimization/L1/ftvd/v4.0/.

For more details, see, e.g., Tao and Yang [104], and Li [69].

As we discussed in the introduction, the main difference between FTVd4.0 and

the proposed method is the update scheme for ρ. For FTVd4.0, we use the default setting

of ρ in FTVd 4.0, which is ρ = 10. For the proposed method, we set ρ0 = 2, γ = 2, and

α = 0.7.

The updating strategy of ρ in the proposed algorithm makes a difference in con-

vergence compared to FTVd4.0. Fig. 4.10 shows the history of PSNR and the relative
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Figure 4.9: Deblurring result of cameraman.tif, which is blurred by a Gaussian blur
PSF of size 9 × 9, variance 5, and with BSNR = 40dB. Left: PSNR history using the
proposed method and FTVd 3.0. Right: Run time as a function of size of the Gaussian
blur PSF (hsize).

change ‖fk+1 − fk‖ / ‖fk‖ of a problem. In terms of PSNR, the proposed algorithm con-

verges faster than FTVd4.0. In terms of relative change ‖fk+1 − fk‖ / ‖fk‖, the proposed
algorithm achieves faster reduction compared to FTVd4.0, especially when the number

of iterations becomes large.

Table 4.3 shows the PSNR, run time and number of iterations of 20 deblurring

problems. It can be seen that at a low tolerance level (‖fk+1 − fk‖ / ‖fk‖ ≤ 10−6), FTVd

4.0 takes excessive number of iterations to converge.

4.8 Summary

In summary, we discussed the proposed algorithm for image restoration. Con-

vergence properties, warm start properties and parameter selection methods have been

discussed. Numerical results showed that the proposed method out-performs existing

augmented Lagrangian methods and half-quadratic penalty methods. In next chapter,

we extend the proposed method to video problems.
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Table 4.2: PSNR values and run time for 20 images. Comparison between the proposed
method, FTVd [112] and FastTV [57]. In all the tests, we used a Gaussian blur PSF with
size 9 × 9, variance 5, and BSNR = 40dB. The stopping criteria is ‖fk+1 − fk‖ / ‖fk‖ <
10−3.

Image Size PSNR (dB) Time (sec)
Name rows cols Propose FTVd FastTV Propose FTVd FastTV

Barbara 512 512 25.33 25.31 25.00 1.02 9.53 84.50
Bicycles 512 768 26.77 26.75 21.34 1.91 14.42 128.97
Boat 512 512 31.53 31.40 31.01 0.96 8.72 84.52
Boat2 563 844 34.85 34.78 29.91 2.71 19.12 184.70
Boat3 570 856 38.11 38.00 34.04 2.33 16.25 168.11

Building1 588 883 36.34 36.01 32.41 2.25 17.89 172.02
Building2 513 644 28.20 28.18 23.03 1.54 15.66 102.40

Dog1 640 520 34.02 33.88 28.71 1.42 14.06 98.84
Fence 542 705 35.82 35.67 31.47 1.89 13.28 126.21

Fountain 573 717 34.30 34.09 29.25 2.05 23.46 159.64
House1 573 716 27.33 27.26 21.94 2.05 20.57 165.62
House2 576 864 27.63 27.62 22.20 2.31 20.95 152.18
Lady1 720 480 32.86 32.83 27.60 1.58 11.36 99.85
Lady2 775 517 36.34 36.30 31.64 1.97 14.80 129.65
Lena 512 512 35.05 34.99 34.57 0.96 7.86 83.39

Lighthouse1 404 606 28.75 28.71 23.43 1.16 8.92 86.72
Lighthouse2 720 480 31.78 31.71 26.43 1.47 11.13 99.79
Nature1 512 768 30.89 30.84 25.61 1.75 13.87 126.65
Show 507 692 29.69 29.55 24.33 1.51 17.69 122.90
Toy1 517 646 34.74 34.33 29.68 1.39 17.10 107.41
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Figure 4.10: Comparison between FTVd4.0 with ρ = 10 and the proposed algorithm
with ρ0 = 2, γ = 2, α = 0.7. Left: PSNR history of the proposed method and FTVd4.0.
Right: the history of relative change.
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Table 4.3: Results of deblurring 20 images, comparing the proposed method and
FTVd4.0 [104]. The stopping criteria is ‖fk+1 − fk‖ / ‖fk‖ < 10−6.

Image Size PSNR (dB) Time (sec) Iteration
Name rows cols proposed FTVd4.0 proposed FTVd4.0 proposed FTVd4.0

Barbara 512 512 25.30 25.27 2.86 21.72 35 197
Bicycles 512 768 26.76 26.75 5.39 32.93 36 193
Boat 512 512 31.40 31.34 2.84 19.56 35 178
Boat2 563 844 34.69 34.55 7.64 54.84 36 229
Boat3 570 856 37.88 37.72 6.71 51.19 34 228

Building1 588 883 35.95 35.68 7.15 49.10 35 204
Building2 513 644 28.18 28.10 4.58 29.42 35 201

Dog1 640 520 33.90 33.70 4.33 31.96 36 228
Fence 542 705 35.54 35.39 5.48 31.61 35 180

Fountain 573 717 34.04 33.81 6.06 45.96 35 229
House1 573 716 27.25 27.19 6.19 40.17 36 206
House2 576 864 27.61 27.59 6.35 45.96 35 213
Lady1 720 480 32.80 32.71 4.51 35.42 36 243
Lady2 775 517 36.22 36.09 6.02 43.80 36 237
Lena 512 512 34.95 34.84 3.01 25.64 37 236

Lighthouse1 404 606 28.71 28.69 3.42 21.82 35 201
Lighthouse2 720 480 31.68 31.60 4.58 30.60 37 210
Nature1 512 768 30.83 30.73 5.21 32.64 35 191
Show 507 692 29.59 29.46 4.88 33.36 35 214
Toy1 517 646 34.44 34.08 4.78 34.75 34 221



Chapter 5

deconvtv for Video Restoration

In this chapter, we extend the proposed algorithm for video restoration prob-

lems. The key difference between image and video is the additional time dimension.

Consequently, video restoration has some unique features that do not exist in image

restoration:

1. Motion information

Motion deblurring requires motion vector field, which can be estimated from a video

sequence using conventional methods such as block-matching [111] and optical

flow [72]. While it is also possible to remove motion blur based on a single image,

for example, [27, 30, 60, 67, 97], the performance is limited to global motion or at

most one to two objects by using sophisticated object segmentation algorithms.

2. Spatial variance versus spatial invariance

For a class of spatially variant image restoration problems (in particular motion

blur), the convolution matrix H is not a block-circulant matrix. Therefore, Fourier

Transforms cannot be utilized to efficiently find a solution. Videos, in contrast,

allow us to transform a sequence of spatially variant problems to a spatially in-

variant problem (See next section for more discussions). Consequently, huge gain

in speed can be realized.

3. Temporal consistency

Temporal consistency concerns about the smoothness of the restored video along

the time axis. Although smoothing can be performed spatially (as in the case

55
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of single image restoration), temporal consistency cannot be guaranteed if these

methods are applied to a video in a frame-by-frame basis.

Because of these unique features in video, we seek a video restoration algorithm that uti-

lizes motion information, exploits the spatially invariant properties and enforces spatial

and temporal consistency.

5.1 Related Work

There are many works on the problem of video restoration, especially in the do-

main of video super-resolution. In the work of Farsiu, Elad and Milanfar [36,37,39], video

super-resolution is formulated in a regularized least-squares minimization framework, in

which the bilateral total variation is used as the regularization function. Later, Takeda

and Milanfar [102,103] applied the concept of kernel regression to the video restoration

problem. Similar approaches can also be found in [81], where Ng et al. considered

isotropic total variation as the regularization function and incorporated the geometric

warp caused by motion. In [8], Belekos et al. proposed a novel prior that utilizes the

motion vector field in updating the regularization parameters so that the prior is both

spatially and temporally adaptive to the data. Recent work by Chan and Nguyen [20]

considered a regularization function of the residue between the current solution and the

motion compensated version of the previous solution.

It is worth noting that most of the above mentioned methods recover a video in

a frame-by-frame basis1. Additionally, all of these methods assume that the blur kernel

is spatially invariant. While this assumption is valid for many super-resolution scenarios

where multiple shots of the same object are used to fuse a higher resolution image, it is

invalid when the blur is caused by object motions. As a result, they are unable to handle

the spatially variant motion blur kernel.

Our proposed algorithm is inspired by the concept of “space-time volume”, which

is first introduced in the early 90’s by Jähne [59], and rediscovered byWexler, Shechtman,

Caspi and Irani [98, 113]. The idea of space-time volume is to stack the frames of a

video to form a three-dimensional data structure known as the space-time volume. This

allows one to transform the spatially variant motion blur problem to a spatially invariant

1A version of [8] is able to process multiple frames simultaneously, but in practice it only supports 5
frames at once.
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problem. By imposing regularization functions along the spatial and temporal directions

respectively, both spatial and temporal smoothness can be enforced.

The main drawback of space-time minimization is that the size of a space-time

volume is much larger than that of a single image (or 5 frames in the case of [8]).

Therefore, the authors of [98] only considered a Tikhonov regularized least-squares mini-

mization (Equation (3) of [98]) in which a closed-form solution exists. More sophisticated

regularization functions such as total variation and bilateral total variation do not seem

possible under this framework, for these non-differentiable functions are difficult to solve

efficiently.

The contribution of our work is summarized as follows:

• We extend the existing augmented Lagrangian method to solve space-time total

variation minimization problems. Augmented Lagrangian method was previously

used to image restoration only.

• Because of the space-time data structure, our proposed algorithm is able to handle

spatially variant motion blur problems (object motion blur). Existing methods

such as [8, 20,36,37,39,81,102,103] are unable to do so.

• Compared to [98] which is also a space-time minimization method, our method

achieves TV/L1 and TV/L2 minimization quality whereas [98] only achieves least-

squares minimization quality.

• In terms of speed, we achieve significantly faster computational speed compared to

existing methods. Typical run time to deblur and denoise a 300× 400 gray-scaled

video is a few second per frame on a personal computer (MATLAB). This implies

the possibility of real-time processing on GPU.

• The proposed algorithm supports a wide range of applications: (1). Video deblur-

ring - With the assistance of frame rate up conversion algorithms, the proposed

method can remove spatially variant motion blur for real video sequences. (2).

Video disparity - Occlusion errors and temporal inconsistent estimates in the video

disparity can be handled by the proposed algorithm without any modification.

(3). Hot-air turbulence - The algorithm can be directly used to deblur and remove

hot-air turbulence effects.
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5.2 Three-dimensional Operators

A video signal is represented by a three-dimensional function f(x, y, t), where

(x, y) denotes the coordinate in space and t denotes the coordinate in time. Suppose

that each frame of the video has M rows, N columns, and there are K frames, then the

discrete samples of f(x, y, t) for x = 0, . . . ,M −1, y = 0, . . . , N −1, and t = 0, . . . ,K−1

form a three-dimensional tensor of size M ×N ×K.

Same as the image restoration case, we use the bold letter f to represent the

vectorized version of the space-time volume f(x, y, t), i.e., f = vec(f(x, y, t)).

5.2.1 Three-dimensional Convolution

The three-dimensional convolution is a natural extension of the conventional

two-dimensional convolution. Given a space-time volume f(x, y, t) and the blur kernel

h(x, y, t), the convolved signal g(x, y, t) is given by g(x, y, t) = f(x, y, t) ∗ h(x, y, t) def
=∑

u,v,τ h(u, v, τ)f(x − u, y − v, t− τ). Using matrix-vector notations, we write

Hf = vec(g(x, y, t)) = vec(h(x, y, t) ∗ f(x, y, t)). (5.1)

The (three-dimensional) convolution matrix H is a triple block-circulant matrix - it has a

block circulant structure, and within each block there is a block-circulant-with-circulant

block (BCCB) submatrix.

5.2.2 Forward Difference Operators

We define the three dimensional difference operator as

D = [DT
x , D

T
y , D

T
t ]

T ,

whereDx, Dy andDt are the first-order forward finite difference operators along the hor-

izontal, vertical and temporal directions, respectively. The definitions of each individual
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sub-operators are

Dxf = vec(f(x+ 1, y, t)− f(x, y, t)),
Dyf = vec(f(x, y + 1, t)− f(x, y, t)),
Dtf = vec(f(x, y, t+ 1)− f(x, y, t)),

with periodic boundary conditions.

In order to have greater flexibility in controlling the forward difference along

each direction, we introduce three scaling factors as follows. We define the scalars

βx, βy and βt and multiply them with Dx, Dy and Dt, respectively so that D =[
βxD

T
x βyD

T
y βtD

T
t

]T
.

With (βx, βy, βt), we define the anisotropic space-time total variation norm as

‖f‖TV 1 =
∑
i

(βx|[Dxf ]i|+ βy|[Dyf ]i|+ βt|[Dtf ]i|) , (5.2)

and the isotropic space-time total variation norm as

‖f‖TV 2 =
∑
i

√
β2x[Dxf ]2i + β2y [Dyf ]2i + β2t [Dtf ]2i . (5.3)

When βx = βy = 1 and βt = 0, ‖f‖TV 2 is the two-dimensional total variation of f

(in space). When βx = βy = 0 and βt = 1, ‖f‖TV 2 is the one-dimensional total variation

of f (in time). By adjusting βx, βy and βt, we can control the relative emphasis put on

individual terms Dxf , Dyf and Dtf .

5.3 Proposed Algorithm

The proposed video restoration algorithm is a direct extension of the image

restoration algorithm. Therefore, instead of repeating the details, we focus on the mod-

ifications made to the three-dimensional data structure. Additionally, our discussion is

focused on the anisotropic TV/L2 problem. The isotropic TV/L2 problems and TV/L1

problems can be derived similarly.
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5.3.1 Algorithm

The core optimization problem that we solve is the following TV/L2 minimiza-

tion:

minimize
f

μ
2 ‖Hf − g‖2 + ‖Df‖1 , (5.4)

where μ is a regularization parameter. Since it has the same form as the image TV/L2

problem, the algorithm is essentially the same as the image case. However, in the video

restoration setting, the intermediate variable u and the Lagrange multiplier y consist of

three terms:

u =
[
uT
x uT

y uT
t

]T
, and y =

[
yT
x yT

y yT
t

]T
. (5.5)

Therefore, the solution of the f -subproblem is

f = F−1

[ F [μHTg + ρDTu−DTy]

μ|F [H]|2 + ρ(|F [Dx]|2 + |F [Dy]|2 + |F [Dt]|2)
]
, (5.6)

where F is the three-dimensional Fourier Transform operator. In practice, F is imple-

mented using three-dimensional Fast Fourier Transform (FFT3).

The solution of the u-subproblem is

ux = max

{
|vx| − 1

ρr
, 0

}
· sign (vx) ,

uy = max

{
|vy| − 1

ρr
, 0

}
· sign (vy) , (5.7)

ut = max

{
|vt| − 1

ρr
, 0

}
· sign (vt) .

In case of isotropic TV, the u-subproblem solution is

ux = max

{
v− 1

ρr
, 0

}
· vx

v
,

uy = max

{
v− 1

ρr
, 0

}
· vy

v
, (5.8)

ut = max

{
v− 1

ρr
, 0

}
· vt

v
,

where vx = βxDxf +
1
ρr
yx (similar definitions for vy and vt),

v =
√
|vx|2 + |vy|2 + |vt|2 + ε
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and ε is a small constant (ε = 10−8). Here the multiplication and divisions are component-

wise operations.

5.3.2 Comparison with Other Methods

The proposed algorithm belongs to the class of operator splitting methods. Table

5.1 summarizes the differences between the proposed video restoration method and some

existing methods. The speed comparison is based on deblurring “lena.bmp” (512× 512,

gray scaled), which is blurred by a Gaussian blur kernel of size 9 × 9, σ = 5, BSNR =

40dB. The machine used is Intel Qual Core 2.8GHz, 4GB RAM, Windows 7/ MATLAB

2010. Comparisons between FTVd 4.0 and the proposed method are based on ρr = 2.

If ρr = 10 (default setting of FTVd 4.0), then the run time are 1.56 sec and 1.28 sec for

FTVd 4.0 and the proposed method, respectively.

Table 5.1: Comparisons between proposed and other methods
FTVd 4.0 [104]

Fast-TV [57] FTVd 3.0 [112] Split Bregman [48] Proposed
Constrained TV [2]

Principle Half quadratic Half quadratic Operator Splitting Operator Splitting
Data Gray-scale image Gray-scale image Gray-scale image Gray-scale image

Color image Color image Color image
Video

Regularization Spatial TV Spatial TV Spatial TV Spatial-Temporal TV
Penalty Parameter ρr → ∞ ρr → ∞ constant ρr Update ρr based on

constraint violation
Speed 83.39 sec 7.86 sec 2.94 sec 1.79 sec

5.4 Application 1: Video Deblurring

In the following sections we demonstrate three applications of the proposed al-

gorithm, namely (1) video deblurring, (2) video disparity refinement, and (3) video

restoration for videos distorted by hot-air turbulence.

5.4.1 Spatially Invariant Blur

We first consider the class of spatially invariant blur. In this problem, the t-th

observed image g(x, y, t) is related to the true image f(x, y, t) as

g(x, y, t) = h(x, y) ∗ f(x, y, t) + η(x, y, t).
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Note that the spatially invariant blur kernel h(x, y) is assumed to be identical for all

time t.

The typical method to solve a spatially invariant blur is to consider the model

gk = Hfk + η,

and apply a frame-by-frame approach to recover fk individually. In [20], the authors

considered the following minimization

minimize
fk

‖Hfk − gk‖2 + λS
∑
i

‖Difk‖1 + λT ‖fk −Mk f̂k−1‖2,

where f̂k−1 is the solution of the k − 1-th frame and Mk is the motion compensation

operator that maps the coordinates of fk−1 to the coordinates of fk. The operators Di

are the spatial forward finite difference operators oriented at angles 0◦, 45◦, 90◦ and

135◦. The regularization parameters λS and λT control the relative emphasis put on the

spatial and temporal smoothness.

Another method to solve the spatially invariant blur problem is to apply the

multichannel approach by modeling the imaging process as [8, 81]

gi = HMi,kfk + η,

for i = k −m, . . . , k, . . . , k +m, where m is the size of the temporal window (typically

ranged from 1 to 3). Mi,k is the motion compensation operator that maps the coordinates

of fk to the coordinates of gi. The k-th frame can be recovered by solving the following

minimization [81]

minimize
fk

k+m∑
i=k−m

ai‖HMi,kfk − gi‖2 + λ‖fk‖TV 2, (5.9)

where ai is a constant and ‖fk‖TV 2 is the isotropic total variation on the k-th frame.

The method presented in [8] replaces the objective function by a weighted least-squares

and the isotropic total variation regularization function by a weighted two-norm on

gradient. The weights are adaptively updated (using residue and motion vector field)

in each iteration, and so the regularization function is non-stationary both spatially and
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temporally.

A drawback of these methods is that the image recovery result depends heavily

on the accuracy of motion estimation and compensation. Especially in occlusion areas,

the assumption that Mi,k is a one-to-one mapping [28] fails to hold. Thus, Mi,k is not a

full rank matrix and MT
i,kMi,k �= I. As a result, minimizing ‖HMi,kfk−gi‖2 can lead to

serious error. There are methods to reduce the error caused by rank deficiency of Mi,k,

for example the concept of unobservable pixel introduced in [81], but the restoration

result depends on the effectiveness of how the unobservable pixels are selected.

Another drawback of these methods is the computation time. For spatially invari-

ant blur, the blur operator H is a block circulant matrix. However, in the multichannel

model, the operator HMi,k is not a block circulant matrix. The block-circulant property

is a critical factor to speed as it allows the use of Fourier Transform methods. For meth-

ods in [8,81], conjugate gradient (CG) is used to solve the minimization task. While the

total number of CG iterations may be few, the per iteration run time can be long.

Table 5.2: Comparisons between video restoration methods
Belekos 2010 [8] Ng 2007 [81] Chan 2011 [20]

Approach multi-frames to multi-frames frame-by-frame frame-by-frame

Spatial Consistency
∑
i

∑
d∈{x,y}

(Ddf)
TAd

i (Ddf)
∑

i

√
[Dxf ]2i + [Dyf ]2i

∑
i ‖Dif‖1

Temporal Consistency
∑

i,j ‖fi −Mij fj‖2Bij
‖HMikfk − gi‖2 ‖fk −Mk f̂k−1‖2

Motion Compensation Required Required Required
Handle of Motion Blur spatially variant spatially variant spatially variant

operator operator operator
Objective Function weighted least-squares TV/L2 TV/L2 +

quadratic penalty
Solver Conjugate gradient Conjugate gradient Sub-gradient Proj.

Shechtman 2005 [98] Proposed
Approach space-time volume space-time volume

Spatial Consistency ‖Dxf‖2 + ‖Dyf‖2 ‖f‖TV 2

Temporal Consistency ‖Dtf‖2 ‖f‖TV 2, Equation (5.3)
Motion Compensation Not Required Not Required
Handle of Motion Blur 3D-FFT 3D-FFT
Objective Function Tikhonov TV/L2 or TV/L1

Solver Closed-form Closed-form + Shrinkage

Our approach to solve spatially invariant blur problem shares the same insight

as [98] which does not consider motion compensation. The temporal error is handled

by the spatio-temporal total variation ‖f‖TV 2 =
∑

i

√|[Dxf ]i|2 + |[Dyf ]i|2 + |[Dtf ]i|2.
An intuition to this approach is that the temporal difference fk − fk−1 can be classi-

fied as temporal edge and temporal noise. The temporal edge is the intensity change
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Original Blurred 28.06 dB [98] 33.85 dB

[81] 33.81 dB [20] 34.39 dB Proposed, 35.68 dB

Figure 5.1: “News” sequence, frame no. 100. (a) Original image (cropped for better
visualization). (b) Blurred by a Gaussian blur kernel of size 9×9, σ = 1, BSNR = 30dB.
(c)-(f) Results by various methods. (Table 5.3).

caused by object movements, whereas the temporal noise is the artifact generated in

the minimization process. Similar to the spatial total variation, the temporal total vari-

ation preserves the temporal edges while reducing the temporal noise. Moreover, the

space-time volume preserves the block circulant structure of the operator, thus leading

to significantly faster computation. Table 5.2 illustrates the differences between various

video restoration methods.

Table 5.3 and Fig. 5.1 show the comparisons between [98], [81], [20] and the

proposed method on spatially invariant blur. The four testing video sequences are blurred

by a Gaussian blur kernel of size 9× 9 with σ = 1. Additive Gaussian noise is added so

that the blurred signal to noise ratio (BSNR) is 30dB.

The specific settings of the methods are as follows. For [98], we consider the

minimization

minimize
f

μ‖Hf − g‖2 + β2x‖Dxf‖2 + β2y‖Dyf‖2 + β2t ‖Dtf‖2



65

Original Blurred 29.91 dB [98] 34.02 dB

[81] 33.87 dB [20] 33.88 dB Proposed, 34.74 dB

Figure 5.2: “Salesman” sequence, frame no. 10. (a) Original image (cropped for better
visualization). (b) Blurred by a Gaussian blur kernel of size 9×9, σ = 1, BSNR = 30dB.
(c)-(f) Results by various methods. (Table 5.3).

and set the parameters empirically for the best recovery quality: μ = 200, (βx, βy, βt) =

(1, 1, 1.25). For [81], instead of using the CG presented in the paper, we use a modi-

fication of the proposed augmented Lagrangian method to speed up the computation.

Specifically, in solving the f -subproblem we used conjugate gradient (LSQR [86]) to

accommodate the non-block-circulant operator HMi,k. The motion estimation is per-

formed using the benchmark full search (exhaustive search) with 0.5 pixel accuracy. The

block size is 8 × 8 and the search range is 16 × 16. Motion compensation is performed

by coordinate transform according to the motion vectors (bilinear interpolation for half

pixels). The threshold for unobservable pixels [81] is set as 6 (out of 255), and the

regularization parameter is λ = 0.001 (See Equation (5.9)). We use the previous and

the next frame for the model, i.e. m = 1 and let (ak−1, ak, ak+1) = (0.5, 1, 0.5) (Using

(1, 1, 1) tends to give worse results). For [20], the regularization parameters are also

chosen empirically for the best recovery quality: λS = 0.001 and λT = 0.05.

To compare to these methods, we apply TV/L2 (Algorithm 1) with the following
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Table 5.3: PSNR, ES and ET values for four video sequences blurred by Gaussian blur
kernel 9× 9, σ = 1, BSNR = 30dB.

“Foreman” “Salesman” “Mother” “News”

Blurred 28.6197 29.9176 32.5705 28.1106
[98] 31.6675 33.0171 36.1493 34.0113

PSNR [81] 32.5500 33.8408 38.2164 34.1207
(dB) [20] 33.2154 33.8618 39.6991 34.7133

Proposed 33.7864 34.7368 40.0745 35.8813
[98] 1.2067 1.1706 0.82665 1.3764

ES [81] 1.1018 1.0743 0.71751 1.2146
(×104) [20] 1.0076 0.9934 0.61544 1.123

Proposed 1.0930 1.0105 0.61412 1.1001
[98] 10.954 3.3195 3.7494 4.6484

ET [81] 10.827 2.4168 2.9397 3.7503
(×103) [20] 10.202 2.5471 2.7793 3.3623

Proposed 9.3400 1.9948 2.0511 2.6165

parameters (same for all four videos): μ = 2000, (βx, βy, βt) = (1, 1, 1). All other

parameters take the default setting: α = 0.7, γ = 2, ρr = 2. The algorithm terminates

if ‖fk − fk−1‖/‖fk−1‖ ≤ 10−3.

In Table 5.3, three quantities are used to evaluate the performance of the al-

gorithms. Peak signal to noise ratio (PSNR) measures the image fidelity. The spatial

total variation ES is defined as ES =
∑

i

√|[Dxf ]i|2 + |[Dyf ]i|2 for each frame and the

temporal total variation ET is defined as ET =
∑

i |[Dtf ]i| for each frame [20]. The

average (over all frames) PSNR, ES and ET are listed in Table 5.3.

Referring to the results, it can be observed that the proposed algorithm pro-

duces the highest PSNR values while keeping ES and ET at a low level. It is worth

noting that [98] is equivalent to the three-dimensional Wiener deconvolution (regular-

ized). Therefore, there exists a closed form solution but the result looks more blurry

than the other methods. Among the four methods, both [81] and [20] use motion es-

timation and compensation. However, [81] is more sensitive to the motion estimation

error - motion estimation error in some fast moving areas are amplified in the deblurring

step. [20] is more robust to motion estimation error, but the computation time is signifi-

cantly longer than the proposed method. The run time of [81] and [20] are approximately

100 seconds per frame (per color channel) whereas the proposed algorithm only requires

approximately 2 seconds per frame (per color channel). These statistics are based on

recovering videos of size 288×352, using a PC with Intel Qual Core 2.8 GHz, 4GB RAM,

Windows 7/ MATLAB 2010.
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Figure 5.3: “Market Place” sequence, frame no. 146. Top: The original observed video
sequences. Middle: Result of [98]. Bottom: Result of the proposed method.

5.4.2 Spatially Variant Motion Blur

The proposed algorithm can be used to remove spatially-variant motion blur.

However, since motion blurred videos often have low temporal resolution, frame rate up

conversion algorithms are needed to first increase the temporal resolution before applying

the proposed method (See [98] for detailed explanations). To this end, we apply [66] to

upsample the video by a factor of 8. Consequently, the motion blur kernel can be modeled

as

h(x, y, t) =

⎧⎪⎨⎪⎩1/T, if x = y = 0, and 0 ≤ t ≤ T,
0, otherwise,
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Figure 5.4: “Super Loop” sequence, frame no. 28. Top: The original observed video
sequences. Middle: Result of [98]. Bottom: Result of the proposed method.

where T = 8 in this case.

Fig. 5.3 shows frame no. 146 of the video sequence “Market Place”, and Fig.

5.4 shows frame no. 28 of the video sequence “Super Loop”. The videos are captured

by a Panasonic TM-700 video recorder with resolution 1920 × 1080p at 60 fps. For

computational speed we down-sampled the spatial resolution by a factor of 4 (so the

resolution is 480×270). The parameters of the proposed algorithm are chosen empirically

as μ = 1000, (βx, βy, βt) = [1, 1, 5]. There are not many relevant video motion deblurring

algorithms for comparison (or unavailable to be tested). Therefore, we are only able to

show the results of [98], using parameters μ = 1000, (βx, βy, βt) = [1, 1, 2.5].

As shown in Fig. 5.3 and Fig. 5.4, the proposed algorithm produces result with
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much higher quality comparing to the result obtained from [98]. We also tested for a

range of parameters μ and β’s for [98]. However, we observe that the results are either

over-sharpened (serious ringing artifacts), or under-sharpened (not enough deblurring).

5.4.3 Limitations

The proposed algorithm requires considerably less memory than other total varia-

tion minimization algorithms such as interior point methods. However, for high definition

(HD) videos, the proposed algorithm still has memory issue as the size of the space-time

volume is large. While one can use fewer frames to lower the memory demand, trade off

in the recovery quality should be expected.

Another issue of the proposed algorithm is the sensitivity to the frame-rate con-

version algorithm. At object boundaries where the motion estimation algorithm fails to

provide accurate estimates, the estimation error in the deblurring step will be amplified.

This typically occurs in areas with non-uniform and rapid motion.

5.5 Application 2: Video Disparity Refinement

5.5.1 Problem Description

Our second example is disparity map refinement. Disparity is proportional to

the reciprocal of the distance between the camera and the object (i.e., depth). Disparity

maps are useful for many stereo video processing applications, including object detection

in three-dimensional space, saliency for stereo videos, stereo coding and view synthesis

etc.

There are numerous papers on generating one disparity map based on a pair

of stereo images [1]. However, all of these methods cannot be extended to videos be-

cause the energy functions are considered in a frame-by-frame basis. Although there are

works in enforcing temporal consistency for adjacent frames, such as [84] and [35], the

computational complexity is high.

We propose to estimate the video disparity in two steps. In the first step, we

combine the locally adaptive support weight [118] and the dual cross bilateral grid [90]

to generate an initial disparity estimate. Since this method is a frame-by-frame method,

spatial and temporal consistency is poor. In the second step, we consider the initial
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video disparity as a space-time volume and solve the TV/L1 minimization problem

minimize
f

μ‖f − g‖1 + ‖f‖TV 2.
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Figure 5.5: Top: Before applying the proposed TV/L1 algorithm; Middle: After ap-
plying the proposed TV/L1 algorithm. Bottom: Trace of a pixel along the time axis.

There are two reasons for choosing TV/L1 instead of TV/L2 in refining video

disparity. First, disparity is a piece-wise constant function with quantized levels, and

across the flat regions there are sharp edges. As shown in Fig. 5.5 (bottom), the

estimation error behaves like outliers in a smooth function. Therefore, to reduce the

estimation error, one can consider a robust curve fitting as it preserves the shape of the

data while suppressing the outliers.

The second reason for using TV/L1 is that the one-norm ‖f − g‖1 is related to

the notion of percentage of bad pixels, a quantity commonly used to evaluate disparity

estimation algorithms [1]. Given a ground truth disparity f∗, the number of bad pixels of

an estimated disparity f is the cardinality of the set {i| |[f−f∗]i| > τ} for some threshold

τ . In the absence of ground truth, the same idea can be used with a reference disparity

(e.g., g). In this case, the cardinality of the set Ωτ = {i| |[f −g]i| > τ}, denoted by |Ωτ |,
is the number of bad pixels of f with respect to (w.r.t) g. Therefore, minimizing |Ωτ | is
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equivalent to minimizing the number of bad pixels of f w.r.t. g. However, this problem

is non-convex and is NP-hard. In order to alleviate the computational difficulty, we set

τ = 0 so that |Ωτ | = ‖f − g‖0, and convexify ‖f − g‖0 by ‖f − g‖1. Therefore, ‖f − g‖1
can be regarded as the convexification of the notion of percentage bad pixels.

5.5.2 Results - Video

Figure 5.6: Video disparity estimation for “Old Timers” sequence. First row: Left
view of the stereo video. Second row: Initial disparity estimate. Third row: Refinement
using the proposed method with parameters μ = 0.75, (βx, βy, βt) = (1, 1, 2.5), α = 0.7,
ρr = 2, ρo = 100, γ = 2. Last row: Zoom-in comparisons.

Two real videos (“Horse” and “Old Timers”) are tested for the proposed algo-

rithm. These stereo videos are downloaded from the following website:

http://sp.cs.tut.fi/mobile3dtv/stereo-video/

Fig. 5.6 illustrates the results. The first row of Fig. 5.7 shows the left view of the stereo

video. The second row shows the results of applying [90, 118] to the stereo video. Note

that we are implementing a spatio-temporal version of [90], which uses adjacent frames

to enhance the temporal consistency. However, the estimated disparity is still noisy,

especially around the object boundaries. The third row shows the result of applying

the proposed TV/L1 minimization to the initial disparity estimated in the second row.

It should be noted that the proposed TV/L1 minimization improves not only the flat
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Figure 5.7: Video disparity estimation for “Horse” sequence. First row: Left view of
the stereo video. Second row: Initial disparity estimate. Third row: Refinement using
the proposed method with parameters μ = 0.75, (βx, βy, βt) = (1, 1, 2.5), α = 0.7, ρr = 2,
ρo = 100, γ = 2. Last row: Zoom-in comparisons.

interior region, but also the object boundary (e.g. the arm of the man in “Old Timers”

sequence), an area that [90,118] are unable to handle.

5.5.3 Results - Image

The effectiveness of the proposed algorithm can further be elaborated by com-

paring to the 99 benchmark methods on Middlebury stereo evaluation website [1]. For

all 99 methods on Middlebury stereo evaluation website, we download their results and

apply the proposed algorithm to improve the spatial smoothness. Note that the proposed

algorithm is readily for this test because an image is a single frame video. In this case, we

set (βx, βy , βt) = (1, 1, 0). Fig. 5.8 show the results for two of the 99 methods (randomly

chosen) for the dataset “Tsukuba”, and Fig. 5.9 shows the percentage of error reduction

(in terms of number of bad pixels, with threshold 1) by applying the proposed algorithm

to all methods on the Middlebury database. The higher bars in the plots indicate that

the proposed algorithm reduces the error by a greater amount. It can be observed that

the errors are typically reduced by a large margin of over 10%. While there is less error

reduction for some datasets, it is important to note that error reduction is always non-

negative. In other words, the proposed algorithm always improves the initial disparity
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Algorithm no. 8 Algorithm no. 78

Figure 5.8: Image disparity refinement on algorithms no. 8 and 78 (randomly chosen)
from Middlebury for “Tsukuba”. Red box: Before applying the proposed method; Blue
box: After applying the proposed method. μ ∈ [0.1, 1] is found exhaustively with
increment 0.1, (βx, βy , βt) = (1, 1, 0), α = 0.7, ρr = 2, ρo = 100, γ = 2.

estimate. Furthermore, for every algorithm, we provide improvement in at least one of

the image sets.

5.5.4 Limitations

A limitation of the proposed algorithm is that it is unable to handle large and

consistent error results from poor initial disparity estimation algorithm. This happens

especially in large occlusion areas, repeating texture regions, or frames consisting of rapid

motions. We are currently seeking methods to feedback the TV/L1 result to the initial

disparity estimation so that the algorithm is more robust to these errors.

5.6 Application 3: Videos Distorted by Hot-Air Turbu-

lence

5.6.1 Problem Description

Our third example is the stabilization of videos distorted by hot-air turbulence

effects. In the presence of hot-air turbulence, the refractive index along the transmission

path of the light ray is spatially and temporally varying [93]. Consequently, the path

differences and hence the phases of the light rays are also spatially and temporally

varying. As a result, the observed image is distorted by geometric warping, motion blur

and sometimes out-of-focus blur. This type of distortion is generally known as the hot-air
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Figure 5.9: Percentage error reduction (in terms of number of bad pixels) by applying
the proposed algorithm to all 99 methods on the Middlebury stereo database.

turbulence effect.

There are various methods to overcome imaging through hot-air turbulence. For

example, the speckle imaging technique [93] assumes that the refractive index is changing

randomly but is also statistically stationary [50,51]. Consequently, by averaging enough

number of frames, the geometric distortion will be smoothed out. Then a deconvolution

algorithm can be used to remove the blur.

The drawback of the speckle imaging technique is that the average operation

makes the deblurring process challenging. Therefore, Zhu and Milanfar [119], Shimizu

et. al. [99] proposed to first compensate the geometric distortion using non-rigid regis-

tration [101], and then deblur the images using deconvolution algorithms. The limitation

is that non-rigid registration works well only when the geometric distortion can be ad-

justed by all the control points in the grid [101]. However, imaging through hot-air tur-

bulence contains both large area distortion (perceived as waving) and small disturbance

(perceived as jittering). If non-rigid registration has to be used to compensate small dis-

turbance, then the number of control points will be huge, making the computation not
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(a) input (b) step 1 [24,25] (c) step 2: our method.

Figure 5.10: Hot-air turbulence removal for the sequence “Acoustic Explorer” - using
the proposed method to reduce the effect of hot-air turbulence. (a) A frame of the
original video sequence. (b) Step 1: Apply gray level grouping [24,25] to the input. (c)
Step 2: Apply the proposed method to the results of Step 1.

practical. There are other methods such as lucky frame/region fusion approach [5, 42].

However, these methods cannot handle small disturbance effectively either.

Using the same methodology as we used for video deblurring, we consider the

video as a space-time volume and minimize the TV/L2 problem. Our intuition is that the

small hot-air turbulence can be regarded as temporal noise whereas the object movement

is regarded as temporal edge. Under this framework, spatially invariant blur can also be

incorporated. If the input video originally has a low contrast, a preprocessing step using

gray level grouping (GLG) [24,25] can be used (See Fig. 5.10).

5.6.2 Results

Fig. 5.11 shows the snapshots (zoom-in) of a video sequence “Acoustic Explorer”.

In this example, gray level grouping is applied to the input video so that contrast is

enhanced. Then the proposed algorithm is used to reduce the hot-air turbulence effect.

A Gaussian blur kernel is assumed in both examples, where the variance is determined

empirically. Comparing the video quality before and after applying the proposed method,

fewer jittering like artifacts are observed in the processed videos. While this may not be

apparent by viewing the still images, the improvement is significant in the 24fps videos2.

Fig. 5.12 shows the comparisons without the contrast enhancement by GLG.

Referring to the figures, the proposed algorithm does not only reduce the unstable hot-

air turbulence effects, it also improves the blur. The word “Empire State” could not be

2Videos are available at http://videoprocessing.ucsd.edu/∼stanleychan/deconvtv
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Figure 5.11: Zoom-in of “Acoustic Explorer” sequence frame no. 25-28 (object is 2
miles from camera). Top: input video sequence with contrast enhanced by gray level
grouping (GLG). Bottom: Processed video by applying the proposed method to the
output of GLG.

seen clearly in the input sequence, but becomes sharper in the processed sequence.

5.6.3 Limitations

The experiments above indicate that the proposed algorithm is effective for re-

ducing small hot-air turbulence effects. However, for large area geometric distortions,

non-rigid registration is needed. In addition, the general turbulence distortion is spatially

and temporally varying, meaning that the point spread function cannot be modeled as

one Gaussian function. This issue is an open problem.

5.7 Summary

In this chapter, we showed a video deblurring/denoising algorithm for spatial-

temporal data. The algorithm uses an augmented Lagrangian method to solve the opti-

mization problem. With the introduction of spatial and temporal regularization to the

spatial-temporal data, the solution of the algorithm is both spatially and temporally

consistent.

Applications of the algorithm include video deblurring, disparity refinement and

turbulence removal. For video deblurring, the proposed algorithm restores motion-

blurred video sequences. The average PSNR is improved, and the spatial and temporal
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Figure 5.12: Snapshot of “Empire State” sequence. Left: input video sequence without
GLG. Right: Processed video by applying GLG and the proposed method.

total variation are maintained at an appropriate level, meaning that the restored videos

are spatially and temporally consistent. For disparity map refinement, the algorithm

removes flickering in the disparity map, and preserves the sharp edges in the disparity

map. For turbulence removal, the proposed algorithm stabilizes and deblurs videos taken

under the influence of hot air turbulence.
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Chapter 6

Blind Deconvolution

In Chapters 4 and 5, the convolution matrix H is assumed to be known. While

this assumption makes the computation easy, in practice H can only be estimated and

is never known exactly.

The objective of this chapter is to address the issue of blind deconvolution, where

both H and f have to be solved from the equation g = Hf + η, with only g given.

Equivalently in terms of convolution, we must find h and f simultaneously from

g = h ∗ f + η,

where “∗” denotes convolution. Note that solving for h and f simultaneously is an ill-

posed non-linear minimization problem. Therefore, unless prior knowledge on h or f is

assumed, the problem is usually intractable.

Classical methods to solve blind deconvolution consider an alternating minimiza-

tion. At the k-th iteration, the methods solve the following pair of minimization problems

iteratively ⎧⎪⎪⎨⎪⎪⎩
fk+1 = argmin

f
‖hk ∗ f − g‖2 + λfψf (f)

hk+1 = argmin
h

‖h ∗ fk+1 − g‖2 + λhψh(h),

where ψf (f) and ψh(h) are two regularization functions. Some common choices [23,64,76]

include ψ(x) = ‖x‖2, ψ(x) = ‖x‖TV and ψ(x) = ‖x‖1, where x may be either f or h.

The difficulty of blind deconvolution is that the convergence of the alternating

minimization depends heavily on the initial guess. This is a dilemma because a good

79
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Figure 6.1: Blind deconvolution result using MATLAB’s command deconvblind.

initial guess is often a point close to the solution, which can only be found once the

problem is solved. As an illustration, we refer to Fig. 6.1 which shows a typical blind

deconvolution result using MATLAB’s standard command deconvblind. The initial

guess of this image is the input blurred image.

The objective of this chapter is to review the state-of-art blind deconvolution

algorithms [26,40,97,116], and discusses our modifications.

6.1 Estimate h

In classical blind deconvolution, estimation of the point spread function (PSF)

relies on solving the problem

minimize
h

‖f ∗ h− g‖2 + λh‖h‖2, (6.1)

where we choose the regularization function ψh(h) = ‖h‖2 as an illustration. (6.1) is a

least-squares fitting problem. The minimizer of (6.1) is the best fit to g and f . If f is

the true estimate, then the minimizer h is the best solution to the original problem in

the l2-norm residue sense. If f is an incorrect estimate, then h cannot be the solution of

the original problem, even if it is the minimizer of (6.1).

In [40], Fergus et al. found that h can be better estimated if we replace f by

∇f , where ∇f is the image gradient of f . The idea can be intuitively understood by

observing Fig. 6.2, which shows an image blurred by different Gaussian PSFs. When

the variance of the Gaussian PSF increases, the texture of the image is washed out, but

the edges can still be seen clearly. This result implies that a significant portion of the
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Figure 6.2: An image is blurred using Gaussian PSFs with different variance σ2. The
texture regions are smoothed when σ increases, but strong edges are still clearly seen
(although blurred).

information is preserved in ∇f . Furthermore, we note that if g = f ∗ h+ η, then

∇g = ∇f ∗ h+∇η

is also valid because convolution is a linear operation. Therefore, the following mini-

mization problem

minimize
h

‖∇f ∗ h−∇g‖2 + λh‖h‖2 (6.2)

is considered. Solving (6.2) is inexpensive, because closed-form solution exists

f = F−1

[
F [∇f ]F [∇g]
|F [∇f ]|2 + λh

]
,

where (·) denotes complex conjugate, and F is the Fourier Transform operator.

The drawback of (6.2) is that (6.2) still relies on the initial estimate of f . In

the typical setting where initially f = g, solution of (6.2) converges to the dirac-delta

function. In fact, if one wants to estimate h based on∇f , ∇f must be sharp, for otherwise

h ∗ ∇f is not a good prediction of ∇g. Now, the question is: how do we sharpen ∇f
without solving for h?
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6.1.1 Shock Filter

The question of how to recover edges ∇f from g is answered by Shan et al. [97],

Cho and Lee [26], and Xu and Jia [116]. Given a blurry image g, they applied a shock

filter [85], an iterative algorithm developed for anisotropic diffusion problems, to sharpen

the image. In the k-th iteration of the shock filter, the algorithm updates the image as

fk+1 = fk − β sign(Δfk)‖∇fk‖1.

Here∇f = [fTx , f
T
y ]

T is the gradient of f and Δf = f2xfxx+2fxfyfxy+f2y fyy is the Laplacian

of f . β(= 1) is the step size.

Algorithm 5 shows the pseudo-code of a shock filter. A Gaussian PSF is applied

to the initial guess to reduce noise before other operations. Fig. 6.3 shows the result

of a shock filtered image. It can be seen that the edges are recovered, whereas texture

regions are smoothed.

Algorithm 5 Shock Filter

Input: f and β.
Initialize f0 = f ∗ hG, where hG = Gaussian PSF with variance σ = 1.
while not converge do

fk+1 = fk − β sign(Δfk)‖∇fk‖1
k = k + 1

end while

Figure 6.3: Applying shock filter to a blurry image.

6.1.2 Strong Edge Selection

In (6.2), ∇f denotes all edges of the image. This includes both strong and weak

edges. However in [116], Xu and Jia find that only strong edges should be used.



83

To determine the strong edges of a given image f , Xu and Jia define a metric

R =

√|hA ∗ fx|2 + |hA ∗ fy|2
hA ∗

√|fx|2 + |fy|2 + 0.5
, (6.3)

where hA is a 5× 5 uniform blur PSF with entries being 1/25. In (6.3), the numerator

hA ∗ fx is the average of the horizontal gradient within a 5 × 5 window. Therefore, if

there are small objects/textures/noise, positive and negative gradients will appear in

the 5 × 5 window. Consequently, the average hA ∗ fx is small. On the other hand, the

denominator hA ∗
√|fx|2 + |fy|2 denotes the average of the absolute gradient within the

5× 5 window. Therefore, regardless of the sizes of the object, all the absolute gradients

within the window are positive. As a result, R differentiates the large objects versus

small texture in the window.

R M

Figure 6.4: Illustrations of R and M.

To rule out small values of R, we define a mask R̃ = max {R− τr, 0} where τr
is a threshold. Finally, we define

M = max
{
R̃ ·
√
|f sx|2 + |f sy |2 − τs, 0

}
,

where τs is also a threshold, f s is the shock filtered image, f sx and f sy are gradients of f s.

R and M are shown in Fig. 6.4.

In the following, we denote the edge selected gradients as

∇sf = edge selected gradient(f) = M · (∇f).
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Thus,

∇sf s = edge selected gradient(shock filtering(f)).

6.1.3 Solve for h

With the shock filter and edge selection method, the minimization of finding h

becomes

minimize
h

‖∇sf s ∗ h−∇sg‖2 + λh‖h‖2, (6.4)

where f s is the shock filtered version of f , and ∇s is the gradient operator with mask

M. Writing ∇sf s =

⎡⎣∂sxf s
∂syf

s

⎤⎦, problem (6.4) can be written as

minimize
h

‖∇sf s ∗ h−∇sg‖2 + λh‖h‖2

= minimize
h

∥∥∥∥∥∥
⎡⎣∂sxf s
∂syf

s

⎤⎦ ∗ h−
⎡⎣∂sxg
∂syg

⎤⎦∥∥∥∥∥∥
2

+ λh‖h‖2

= minimize
h

‖∂sxf s ∗ h− ∂sxg‖2 +
∥∥∂syf s ∗ h− ∂syg∥∥2 + λh‖h‖2

Solution of (6.4) exists in a closed form as

h = F−1

{
F(∂sxf s)F(∂sxg) + F(∂syf s)F(∂syg)
|F(∂sxf s)|2 + |F(∂syf s)|2 + λh

}
, (6.5)

where F is the Fourier Transform operator and ( · ) denotes complex conjugate. Here,

the multiplication and division equation are element-wise operations. Solving (6.5) is an

inexpensive procedure, because ∇sf s and ∇sg can be pre-computed.

6.1.4 Update f

Finding h is an iterative process in which f must be also be updated before a

new h is found. In fact, estimation of h must be solved via an alternating minimization,

for example, ⎧⎪⎪⎨⎪⎪⎩
fk+1 = argmin

f
‖hk ∗ f − g‖2 + λf‖f‖2

hk+1 = argmin
h

‖h ∗ ∇sf sk+1 −∇sg‖2 + λh‖h‖2.
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The minimization problem associated with f

minimize
f

‖h ∗ f − g‖2 + λf‖∇f‖2 (6.6)

has a closed form solution

f = F−1

{
F(h)F(g)

|F(h)|2 + λf [|F(∂x)|2 + |F(∂y)|2]

}
,

where ∂x = [1, −1] and ∂y = [1, −1]T are the horizontal and vertical gradient operators,

respectively.

There are other variations of the problem, such as the following problem sug-

gested by Xu and Jia [116]:⎧⎪⎪⎨⎪⎪⎩
fk+1 = argmin

f
‖hk ∗ f − g‖2 + λf‖∇f −∇f sk‖2

hk+1 = argmin
h

‖h ∗ ∇sf sk+1 −∇sg‖2 + λh‖h‖2,

where f s is the shock filtered version of f . In this case, the solution of the f -subproblem

is (dropping the index k)

f = F−1

⎧⎨⎩F(h)F(g) + λf

[
F(∂x)F(f sx) + F(∂y)F(f sy )

]
|F(h)|2 + λf [|F(∂x)|2 + |F(∂y)|2]

⎫⎬⎭ .
6.1.5 Overall Algorithm for Estimating h

Algorithm 6 Estimate h

Input: g, λh and λf .
Initialize f0 = g. k = 0.
while not converge do
∇sf sk = edge selection(shock filter(fk)).
hk+1 = argmin

h
‖∇sf sk ∗ h−∇sg‖2 + λh‖h‖2.

fk+1 = argmin
f
‖hk+1 ∗ f − g‖2 + λf‖∇f‖2.

k = k + 1.
end while

Algorithm 6 shows the overall algorithm to estimate h. We used (6.6) for updat-

ing f as an illustration. The algorithm is terminated when ‖hk+1 −hk‖2/‖hk‖2 ≤ 10−3.
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6.2 Hierarchical Image Pyramid

6.2.1 Image Pyramid

Since blind deconvolution is an alternating minimization approach, and the con-

vergence depends heavily on the initial guess, one method to improve the search is

by means of building a multi-scale image pyramid. Given an image g, we construct

a sequence of down-sampled images {g(i)} with a scaling factor
√
2 in each direction

(horizontally and vertically). Starting from the lowest resolution level to the highest

resolution level of the pyramid, we estimate the PSF h(i) at the i-th level by applying

Algorithm 6. The solution (h(i), f (i)) is then used as the initial guess of the next level

(see Algorithm 6.2.1). Fig. 6.5 illustrates an example of multi-scale pyramid.

Algorithm 7 Multi-scale pyramid

Compute {g(i)}Li=1.
for i = 1 : L do

Set initial guess h
(i)
0 = Bi-cubic interpolation of h(i−1) by a factor of

√
2.

Set initial guess f
(i)
0 = Bi-cubic interpolation of f (i−1) by a factor of

√
2.

Estimate new (h(i), f (i)) using Algorithm 6, with initial guesses h
(i)
0 , f

(i)
0 .

end for

Figure 6.5: A multi-scale pyramid. The scaling factor between adjacent levels is
√
2.

6.2.2 Overall algorithm
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Algorithm 8 Blind deconvolution

Input: g.
Initialize f0 = g.
Construct a multi-scale image pyramid of L levels.
for i = 1 : L− 1 do

// Determine h by solving the following pair of problems (Low Complexity)
Set k = 0.
while Not converge do
∇sf sk = edge selection(shock filter(fk))
hk+1 = argmin

h
‖∇sf sk ∗ h−∇sg‖2 + λh‖h‖2

fk+1 = argmin
f

‖hk+1 ∗ f − g‖2 + λf‖∇f‖2
k = k + 1

end while
f = Bi-cubic interpolation of f by a factor of

√
2.

h = Bi-cubic interpolation of h by a factor of
√
2.

end for
for i = L do

// Determine h with sparsity constraint (Intermediate Complexity)
Set k = 0.
while Not converge do

hk+1 = argmin
h

‖∇sf s ∗ h−∇sg‖2 + λh‖∇h‖1
fk+1 = argmin

f
‖h ∗ f − g‖2 + λf‖∇f‖2

k = k + 1
end while

end for
// Determine f using deconvtv (High Complexity)
f = argmin

f
μ‖h ∗ f − g‖2 + ‖f‖TV 2.

Algorithm 8 illustrates the overall procedures of blind deconvolution. The algo-

rithm basically contains two major steps. The first step is the estimation of h, which

is discussed in the previous section. The second step is the estimation of f . Given an

estimate of h, we use deconvtv to solve the following minimization problem

f = argmin
f

μ‖h ∗ f − g‖2 + ‖f‖TV 2, (6.7)

where ‖f‖TV 2 is the isotropic TV norm on f . However, solving (6.7) is only performed

after a good estimate of h is found. During the intermediate steps of estimating h, we

use the low complexity formulation (6.6).
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Note that there are two methods to find h. Starting from level 1 to level L− 1,

h and f are estimated via:

minimize
h

‖∇sf s ∗ h−∇sg‖2 + λh‖h‖2,

minimize
f

‖h ∗ f − g‖2 + λf‖∇f‖2. (6.8)

At level L, the algorithm solves

minimize
h

‖∇sf s ∗ h−∇sg‖2 + λh‖∇h‖1,

minimize
f

‖h ∗ f − g‖2 + λf‖∇f‖2. (6.9)

The difference between (6.8) and (6.9) is the norm of h. We chose ‖∇h‖1 in (6.9) because

‖∇h‖1 enforces sparsity on the gradients of h, for h are typically smooth. However,

minimizations involving ‖∇h‖1 are computationally more expensive. Therefore, the

algorithm only solves (6.9) in the final resolution level.

6.3 Results

(a) Input (b) Output (c) Estimated PSF

Figure 6.6: Blind deconvolution result.

Fig. 6.6(a) shows an image blurred by an unknown PSF. The goal is to recover

both f and h. The image size is 800× 800, and the PSF size is 33× 33. The initial guess

of the algorithm is f = g, where g is the input blurred image. Shock filter is applied

with β = 1, and maximum iteration is 5. During levels 1 to L− 1, the h-subproblem has
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Figure 6.7: Multi-scale pyramid. From low resolution to high resolution, the quality of
f and h increase.

the parameter λh = 0.01, and f -subproblem has the parameter λf = 2 × 10−3. At level

L, λh = 10, λf = 2× 10−3. The final step using deconvtv has a parameter μ = 5000.

The result is shown in Fig. 6.6(b), and the estimated PSF is shown in Fig. 6.6(c).

The run-time of the algorithm is 152 seconds on Intel Qual Core Q9550 2.8GHz, 4GB

DDR3 RAM, Windows 7/ MATLAB 2010.

Fig. 6.7 shows the intermediate steps of the algorithm. In particular, we show the

estimated h and f at each multi-scale level. It can be seen that the result improves when

resolution increases. Note also that during the intermediate steps, only the luminance

component of the color image is used. Full color image recovery is performed during the

final step (high complexity) to estimate f .

More results are shown in Fig. 6.8 and Fig. 6.9. The images were previously

used by Xu and Jia [116]. These two images were blurred by unknown motion blurs.

The size of the flower image is 700 × 494 with PSF size 35 × 35. The size of the wall

image is 463× 511 with PSF size 35× 35. As shown in both images, the recovered result

is significantly sharper than the input image.
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(a) Input (b) Output (c) Estimated PSF

Figure 6.8: Blind deconvolution on “flower” image. The run time is 100 seconds.

(a) Input (b) Output (c) Estimated PSF

Figure 6.9: Blind deconvolution on “wall” image. The run time is 79 seconds.

6.4 Summary

In this chapter, blind deconvolution is described as a non-linear optimization

problem. State-of-art algorithms observe that edges are easy to be sharpened than

texture. Also, sharp edges are useful in determining the PSF. Consequently, the blind

deconvolution is formulated as an alternating minimization problem in which the image

edges are used. For large scaled images, a multi-scale image pyramid is formed so that

solution of the current level is propagated to the next level as initial guess. Results show

that the blind deconvolution algorithm is able to recover blurred images distorted by

complicated blurs.

A limitation of the blind deconvolution algorithm discussed in this chapter is

the assumption that the blur is spatially invariant, meaning that all pixels are blurred

equally. In practice, spatially invariant assumption is difficult to be satisfied. For an

image having two objects at different layers of depth, only one object can be focused.
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Therefore, the blur is spatially variant. In the next two chapters, we will address the

issue of spatially variant blur.
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Chapter 7

Analysis of Spatially Variant Blur

The second assumption made in Chapter 4 and 5 is that blurs are always spa-

tially invariant. Consequently, the convolution matrix is always a block-circulant with

circulant-block (BCCB) matrix, which can be diagonalized using Fourier Transforms.

However, in practice, most blurs are spatially variant - pixels at different locations are

blurred differently.

This chapter addresses two issues of spatially variant blur. First, we propose an

efficient method to construct the convolution matrix. We exploit the submatrix structure

of the convolution matrix and systematically assigning values to the nonzero locations.

Second, we discuss the spectral properties of spatially variant convolution matrices. We

derive the upper and lower bounds of the condition numbers.

7.1 Constructing Convolution Matrices

7.1.1 Motivation

Let us recall the following classical spatially invariant imaging model:

g = Hf + η,

where H is the convolution matrix characterized by the point spread function h(x, y),

f is a vector representing the object (usually as an unknown variable), g is a vector

representing the observed image, and η is a noise vector.

As discussed in chapter 2, when point spread function (PSF) is spatially invariant,

92
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i.e., all pixels in the image are blurred uniformly, the forward operation Hf can be done

via Fourier Transforms. However, if the PSF is spatially variant (which is quite common

in out-of-focus and motion blur problems), Fourier Transforms cannot be used.

The effectiveness of computing a matrix-vector multiplication Hf is essential for

iterative methods such as PDCO [61], LSQR [86], RestoreTools [54], projected gradient

[17] and many others. In most of these papers, however, there is no discussion on how to

construct H from the PSF. While it is understandable that invariant convolution can be

performed via Fourier Transforms (which makes the construction of H not necessary),

variant convolution must require H.

In literature there are two classes of methods for constructing the convolution

matrix. The first class of methods considers spatially variant blur as a set of invariant

blurs. Each invariant blur is computed using using Fast Fourier Transform (FFT).

Popular image restoration tools such as RestoreTools [65] and HNO [55] belong to this

class. However, these methods fail in case of a complicated set of PSFs. The second

class of methods constructs the convolution matrix explicitly without partitioning the

image into blocks. In [108], Vogel provides codes to construct a small sized invariant

convolution matrices. However, he never consider the general variant convolution matrix.

Also, Vogel’s method is slow and memory demanding. MATLAB’s built-in command

convmtx2 is an efficient algorithm to construct a invariant convolution matrix. However,

there is no variant version of the program.

This part of the chapter addresses the issue of how to construct a spatially variant

convolution matrix efficiently. For small and medium sized images, constructing the

convolution matrix explicitly has the following advantages:

1. Having the sparse convolution matrix allows us to apply many powerful linear alge-

braic tools such as LU/ QR/ Cholesky/ SVD. Consequently, advanced algorithms

such as truncated singular value decomposition (TSVD [55]) can be applied.

2. If the PSF is spatially invariant and its support is small, the forward operation Hf

using the convolution matrix is much more effective than FFT. Consider an image

of n pixels and kernel of l entries. Cost for matrix-vector multiplication is O(nl),

but cost for FFT is O(n log n).

3. If the PSF is spatially variant, FFT methods cannot be used. Although one can

approximate the situation using locally spatially invariant PSFs, this will fail for
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large number of PSFs and small block size. Convolution matrix can resolve this

issue because once the matrix is constructed, cost of matrix vector multiplication

is O(nl), regardless the number of PSFs.

7.1.2 Algorithm to Construct the Convolution Matrix

Structure of H

The proposed algorithm is a systematic way of allocating PSF values into the

convolution matrix. Suppose that an image has size M × N , and the PSF has size

P × Q. Not considering the circular boundary conditions, the convolution matrix has

size (M+P −1)(N+Q−1)×MN . Partitioning the convolution matrix into submatrices

Hi,j (each has size (M + P − 1)×M) yields

H =

⎛⎜⎜⎜⎜⎜⎝
H11 H12 · · · H1l

H21 H22 · · · H2l

...
...

. . .
...

Hk1 Hk2 · · · Hkl

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

×
× ×

. . .
. . .

× ×
×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.1)

The (i, j)-th submatrix Hi,j the operation from the j-th column of the input to the i-th

column of the output. Since the PSF has a small support relative to the image size, most

of the off-diagonal submatrices are zero. The nonzero submatrices are located along the

diagonal, forming a banded diagonal of width Q submatrices, where Q is the number of

rows of the PSF. The right hand side of (7.1) shows an example of Q = 2.

Indexing

The proposed method introduces a 4-dimensional cube to allocate PSF values in

H, regardless of whether the PSF is spatially variant or not. The 4-dimensional cube

has size M ×P ×N ×Q. The (i, p, j, q)-th entry of the cube is the (p, q)-th kernel value

at pixel (i, j). Stacking the entries of the cube into a column vector, we denote it as Tval.

Corresponding to Tval there is a column index and a row index vector Tcol and

Trow respectively. The column and row indices run along the principle diagonal subma-

trices, then run along the submatrice on one-diagonal off the principal, two-diagonal off
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the principal and so on. Within each submatrix, the column and row indices also run in

the similar manner: first run along the principal diagonal, then run along one diagonal

off the principal and so on.

Note that the cube contains only the nonzero elements of the PSF. As compared

to [65] where a PSF is first padded with zeros to the size of image and then stored

as an entry of a cell structure, the proposed 4-dimensional cube requires much less

memory. Besides, it is possible to further reduce the memory of the proposed method

by considering repeating PSFs. This is a subject of our future work.

Boundary Conditions

One problem that we have not solved is the boundary issues. To handle the

boundary conditions, let us consider the case of periodic boundary condition. For a

fixed q-th column of the kernel, and fixed j-th column of the image, the (i, p)-th entry

should be reallocated to (i− p+1, p). Pictorially the (i, p)-th entry can be visualized as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · ·
· · · · · ·
· · · · · ·

× × × × ×
� � � � �
◦ ◦ ◦ ◦ ◦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · ·
× � ◦

× � ◦ ◦
× � ◦ ◦ ◦
� ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The reallocation of the (j, q)-th entry is performed similarly so that the (j, q)-th entry is

reallocated to (j − q + 1, q).

Finally, the nonzero submatrices in the first Q/2 rows of H has to be moved to

the last Q/2 rows, and vice versa for the non-zero submatrices in the last Q/2 rows.

This is illustrated in Eq. 7.2. Note that after moving the rows, size of H becomes
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(M + P − 1)N ×MN .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

◦
× ×

. . .
. . .

× ×
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × �
× ×

. . .

× ×
◦ × ×

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.2)

Since a submatrix has the same structure as that of H, applying the above method to

each submatrix the boundary conditions are satisfied. Note that size of H is reduced to

MN ×MN .

Fig. 7.1 is an example showing the location of non-zero entries of the sparse

matrix. The kernel used here has size 5× 7.

(a) sparse matrix (b) zoom in of (a)

Figure 7.1: Structure of the constructed sparse matrix.

7.1.3 Comparisons

In this section we compare the proposed method with state-of-art approaches,

namely bccb [108], psfMatrix [65], [55], and a straight forward for-loop approach. In

[108] Vogel did not explicitly mention about the construction of the convolution matrix,

but codes of constructing the matrix is available. psfMatrix is an FFT based approach,

where the convolution is defined through operations. The for-loop approach is a straight
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forward implementation of spatially variant PSFs. Suppose every pixel of an M × N
image f has a different PSF hx,y. Then the blurred pixel value at position (x, y) is

calculated using the following algorithm.

Algorithm 9 For-Loop implementation

for x = 1 :M do
for y = 1 : N do
g(x, y) =

∑
i,j hx,y(x− i, y − j)f(i, j)

end for
end for

Motion Blur using Proposed Method

Figure 7.2: Results by the proposed algorithm. The blur is calculated based on motion
vectors specified in the top row. There is no partitioning of the image into blocks.

In Fig. 7.2, the images are blurred according to the motion vector fields specified.

Although Fig. 7.2 shows a coarse set of motion vectors, the actual motion vectors used

for calculation are dense, i.e., every pixel has a different PSF. The effectiveness of the

proposed algorithm is that the convolution matrix constructed without requiring a special

model of motion, such as rotation and translation.

Comparing Spatially Invariant Blur

The purpose of this comparison is to show the proposed method for spatially

invariant cases. The image size ranges from SQCIF (176× 144) to CIF (352× 288). The

PSF is Gaussian with fixed variance σ = 3. Sizes of the PSF varies from 3× 3 to 7× 7.
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Results are shown in Table 7.1. As one can expect, explicitly constructing a convolution

matrix takes time. Therefore, the construction time of bccb and the proposed method

are longer than that of psfMatrix and for-loop, especially when image size increases.

However, as far as the matrix-vector multiplication is concerned, the proposed method

is faster than other methods.

Table 7.1: Invariant PSF. Time to construct the convolution, and time to perform one
matrix-vector multiplication.

Construction Time (sec)

image kernel bccb psfMat for-loop Propose
size size [108] -rix [65]

128x96 5x5 38.6572 0.0423 0.0014 0.5196
7x7 166.9316 0.0419 0.0014 3.3319

352x288 5x5 fail 0.1072 0.0015 30.742
7x7 fail 0.1002 0.0015 90.235

Matrix-vector multiplication Time (sec)

image kernel bccb psfMat for-loop Propose
size size [108] -rix [65]

128x96 5x5 0.0021 0.043 0.0754 0.0031
7x7 0.0032 0.0424 0.0773 0.0045

352x288 5x5 fail 0.1839 0.6357 0.0139
7x7 fail 0.1767 0.6357 0.0238

Comparing Spatially Variant Blur

This comparison concerns about spatially variant PSFs. First, an image is par-

titioned into blocks and each block is blurred using a (different) PSF. Therefore, smaller

block size implies more blocks and hence more PSFs. The PSFs in this experiments are

Gaussian PSFs with size 5 × 5. Its variance is a function of the position of the image.

Pixels around the center of the image have smaller variance, whereas pixels near the

edge of the image have larger variance.

As shown in Table 7.2, bccb fails to construct the convolution matrix due to lack

of memory. psfMatrix defines an object easily for large block sizes, but fails for small

block sizes. This is because psfMatrix has to store a large number of PSFs, and each

PSF has to be padded with zeros to make itself the same size as the image.

The time needed to construct a convolution matrix using the proposed method

is 10 seconds on average, and the computing time for a matrix-vector multiplication is

as short as 0.001 seconds. Compared to psfMatrix where the computing time can be
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as long as 20 seconds (image size 256× 256, block size 16× 16), the proposed method is

clearly better performed.

Table 7.2: Variant PSF. Time to construct the convolution matrix, and time to perform
one matrix-vector multiplication.

Construction Time (sec)

image block bccb psfMat for-loop Proposed
size size [108] -rix [65]

256x256 64x64 fail 0.2227 0.0015 10.3789
32x32 fail 0.7129 0.0015 10.6477
16x16 fail 2.6279 0.0014 10.8041
8x8 fail fail 0.0014 11.0712
4x4 fail fail 0.0014 11.7754

Matrix-vector multiplication Time (sec)

image block bccb psfMat for-loop Proposed
size size [108] -rix [65]

256x256 64x64 fail 1.1633 0.4112 0.0291
32x32 fail 4.3206 0.4102 0.0287
16x16 fail 23.439 0.4105 0.0424
8x8 fail fail 0.4137 0.0345
4x4 fail fail 0.4103 0.0320

Deblurring Study

The final experiment compares the performance of the methods for solving image

restoration problems. Here, our goal is not to test a specific image restoration algorithm

but to compare the speed improvement. Therefore, we illustrate the results by solving a

Tikhonov regularized least square problem using LSQR [86]: minimize ‖Hf−g‖2+λ‖f‖2,
with H being a spatially (in)variant convolution matrix, f a 256 × 256 image arranged

in lexicographic order, and g the observed image. Here we set λ = 10−2, tolerance

atol = btol = 10−6.

The proposed method explicitly constructs the sparse convolution matrices. There-

fore, the computing time for matrix-vector multiplication is significantly less than its

counterparts. Especially for spatially varying blurs, the proposed method is the only one

that successfully completes the task. Table 7.3 shows the timings, and Fig. 7.3 shows

some of the reconstructed images.
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Table 7.3: Computing time using LSQR.

A. spatially invariant

Method Construction Computation Total
Time (sec) Time (sec) Time (sec)

psfMatrix 0.1254 21.477 21.6024
Proposed 16.418 3.4811 19.8991

B. spatially variant (block size 16× 16)

psfMatrix 3.5319 > 1000 > 1000
Proposed 60.092 5.5031 65.5955

(a) Shift varying blurred (b) Reconstructed using LSQR

Figure 7.3: Image reconstruction of shift varying blur using proposed method with
LSQR. The average time for LSQR to converge is 60 seconds (gray scale), and 180
seconds (color).

7.2 Eigen-values of Spatially Variant Convolution Matrix

7.2.1 Motivation

A classical image restoration problem is to solve the following least-squares min-

imization

minimize
f

‖Hf − g‖2 + α‖Df‖2, (7.3)

where α is a regularization parameter and D is a linear transformation applied to f .

Problem (7.3) is also called the Tikhonov regularized least-squares. WhenH is a spatially

variant convolution matrix, many classical results cannot be applied. In particular, for

the case of spatially variant blur, the eigenvalues of H are not the Fourier coefficients.

In the following sections, we study the eigenvalues of HHH, which plays a vital
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role in solving (7.3). We estimate the upper and lower bounds on the largest and smallest

eigenvalues of HHH, and hence derive the bounds of the condition number of HHH. We

are particularly interested in spatially-variant convolution matrices arising from spherical

aberration and defocus with different object depths. As each pixel is approximately

blurred by a Gaussian point spread function (PSF), the eigenvalues of the PSFs are

nonnegative. Fig. 7.4 shows the simulation involving a spherical aberration and its

restoration result.

(a) Original image (b) Simulated blurred image (c) Restored image

Figure 7.4: An illustration of spherical aberration and restoration. The spatially variant
convolution matrix used in (b) is generated using [18]. The restoration is performed using
a modification of the least-squares total variation minimization [19].

7.2.2 Derivation of Upper and Lower Bounds

For simplicity, the derivations are based on one-dimensional signals, but the

results can be extended to the two-dimensional case. All matrices are assumed to be of

size n × n and have real entries. Since real matrices can have complex eigenvalues, by

the smallest (or largest) eigenvalue we mean the eigenvalue with the smallest (or largest)

complex modulus. The smallest and largest eigenvalues of a matrix H are denoted as

λmin(H) and λmax(H), respectively. Also, |Λ| denotes the element-wise complex modulus

of Λ, and Λ∗ denotes the element-wise complex conjugate of Λ.

Definition 3. [32] A matrix H is circulant if each row is a circular shift of its preceding

row. If H is a column vector, we use CircMtx(H, k) to denote the circulant matrix

generated by H, with H being put in the k-th column.

For example, if h = [1, 2, 3, 2, 1, 0, . . . , 0]T , then a 10 × 10 circulant matrix
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CircMtx(h, 3) is

CircMtx(h, 3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 2 1 0 0 0 0 0 1 2

2 3 2 1 0 0 0 0 0 1

1 2 3 2 1 0 0 0 0 0

0 1 2 3 2 1 0 0 0 0

0 0 1 2 3 2 1 0 0 0

0 0 0 1 2 3 2 1 0 0

0 0 0 0 1 2 3 2 1 0

0 0 0 0 0 1 2 3 2 1

1 0 0 0 0 0 1 2 3 2

2 1 0 0 0 0 0 1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Our approach in analyzing a spatially-variant convolution matrix H is to consider

all circulant matrices generated by the columns of H. Thus, we define the circulant

components of H as follows.

Definition 4. Partitioning H into n column vectors as H = (H1|H2| · · · |Hn), where

Hk denotes the k-th column of H, we define the k-th circulant component of H as

CircMtx(Hk, k), denoted by Hk.

For example, if

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 3 1 1 0 0 0 0 1 0

1 5 2 2 0 0 0 0 0 1

1 3 3 3 4 0 0 0 0 0

0 1 2 3 2 1 0 0 0 0

0 0 1 3 1 0 1 0 0 0

0 0 0 2 2 3 2 1 0 0

0 0 0 1 4 0 2 2 1 0

0 0 0 0 0 1 2 1 1 1

1 0 0 0 0 0 1 2 2 0

1 1 0 0 0 0 0 1 1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H5 = CircMtx([0, 0, 4, 2, 1, 2, 4, 0, 0, 0]T , 5).
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The following main result states that the smallest eigenvalue of HHH is lower-

bounded by the smallest eigenvalue among all of the circulant components of H.

Theorem 2. Let H be a spatially-variant convolution matrix, and let H1, H2, . . . ,Hn

be the circulant components of H. If all eigenvalues of Hk are nonnegative, the smallest

eigenvalue of HHH is bounded from below by

|λmin(H
HH)| ≥ min

k

{|λmin(Hk)|2
}
,

where |λmin(Hk)| is the smallest eigenvalue of Hk.

Proof. See Appendix C.

By flipping the inequality signs, we have a similar result for the maximum eigen-

value of HHH.

Theorem 3. Let H be a spatially-variant convolution matrix, and let H1, H2, . . . ,Hn

be the circulant components of H. If all eigenvalues of Hk are nonnegative, the largest

eigenvalue of HHH is upper-bounded by

|λmax(H
HH)| ≤ max

k

{|λmax(Hk)|2
}
,

where |λmax(Hk)| is the largest eigenvalue of Hk.

Using Theorems 2 and 3, we derive a corollary for the condition number of HHH.

Corollary 1. Suppose H is a spatially-variant matrix, and let H1, . . . , Hn be the

circulant components of H. The condition number of HHH is bounded from above by

cond
(
HHH

) ≤ maxk
{|λmax(Hk)|2

}
mink {|λmin(Hk)|2} , (7.4)

where λmin(Hk) and λmax(Hk) are the minimum and maximum eigenvalues of Hk, re-

spectively.

Corollary 1 implies that a spatially-variant blur (e.g., spherical aberration) can

be interpreted as a set of spatially-invariant blurs. The condition number of HHH is

never larger than the upper bound given in (7.4). Moreover, in the spherical aberration

case where the blur consists of a collection of Gaussian PSFs, the bound in (7.4) can be
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Figure 7.5: Example: Eigenvalues of H. The red and black dotted lines indicate the
(estimated) lower and upper bounds respectively.

computed using the PSFs with the largest and smallest variance. The following corollary

is useful in analyzing the solution to the regularized least-squares problem expressed in

(7.3).

Fig. 7.2.2 shows the distribution of the eigenvalues of a one-dimensional convo-

lution matrix

H =
N∑
k=1

EkHk,

where Hk = Gaussian(9 × 9, σ = 1 + k
2N ), N = 512. As seen, the bounds are close to

the true maximum and minimum eigenvalues.

Corollary 2. The smallest eigenvalue of HHH+ αDHD is bounded by

∣∣λmin

(
HHH+ αDHD

)∣∣ ≥ min
k

{
min
j

{
|λHk

j |2 + α|λDj |2
}}

,
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where λHk
j is the j-th eigenvalue of HK and λDj is the j-th eigenvalue of D.

Proof. See Appendix C.

7.3 Summary

Two issues are discussed in this chapter. The first issue is the question of how to

construct a convolution matrix. We proposed an efficient algorithm to construct a sparse

convolution matrix for spatially variant blur. Experimental results show that if the blur

consists of a large number of invariant PSFs, the proposed method is the only method

that works. Consequently, when the proposed method is embedded in other standard

image restoration algorithms, speed gain is significant.

The second issue is the eigenvalue property of spatially-variant convolution ma-

trices. If the eigenvalues of the circulant components of a convolution matrix are nonneg-

ative, we show that the smallest eigenvalue of the convolution matrix is lower bounded

by the minimum eigenvalue among all circulant components. Consequently, bounds on

condition numbers can be derived. We also derive the bounds on the eigenvalues of the

normal equation matrix arises from least-squares image restoration formulation.
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Chapter 8

Spatially Variant Out-of-Focus

Blur Removal

This chapter addresses the problem of two-layer out-of-focus blur removal from a

single image, in which either the foreground or the background is in focus while the other

is out of focus. To recover details from the blurry parts, the existing blind deconvolution

algorithms are insufficient as the problem is spatially variant. The proposed method ex-

ploits the invariant structure of the problem by first predicting the occluded background.

Then a blind deconvolution algorithm is applied to estimate the blur kernel and a coarse

estimate of the image is found as a side product. Finally, the blurred region is recovered

using total variation minimization, and fused with the sharp region to produce the final

deblurred image.

8.1 Introduction

For an image consisting of multiple layers of depth – objects at different depth

levels – only one of them can be in focus using a standard camera. Those not being

focused are blurred, and this type of blur is referred to as the out-of-focus blur. In

terms of wave optics, out-of-focus blur is the result of additional (or insufficient) phase

propagation from the desired image plane to the actual image plane [51, Ch. 6.4].

Recovering an out-of-focus blurred image using post-processing computational

techniques is an ill-posed non-linear problem in general, and seeking a universal solution

106



107

is almost impossible. However, in a simplified scenario where there is only one foreground

object and a background scene, recovering the image becomes tractable. The goal of this

chapter is to present a method that restores both the foreground and background, using

a single image at a low computational cost.

Although the two-layered problem is a special case of the general out-of-focus blur

problem, some challenges remain. The first challenge is the spatially variant property

due to different blurs occuring in the foreground and background. Spatially variant

problems are computationally intensive to solve, because the Fourier-based methods

cannot be used. The second challenge is the need for blind deconvolution as the blur

kernel is unknown. Blind deconvolution is difficult because simultaneous recovery of

image and kernel is an ill-posed nonlinear problem.

In this chapter, we present a single image spatially variant blind deconvolution

method. The method takes a single image as the input and separates the foreground

and background using alpha matting methods. To handle the spatially variant issue,

we propose a photometric model that allows us to transform the variant problem into

an invariant problem. We show that by inpainting (filling in) the occluded region in

the background image, not only does the variant problem becomes invariant, but also

ringing artifacts resulting from the classical approach are suppressed. Additionally, we

present an efficient blur kernel estimation algorithm that combines the concepts of blur

from image gradient, strong edge selection, joint deblurring and kernel estimation.

8.1.1 Related Works

In a single image deblurring problem, if the blur is spatially invariant, the ob-

served image is related to the input image as

g = h ∗ f + η,

where g is the observed blur image, f is the unknown sharp image, h is the blur kernel,

η is the noise and ∗ denotes convolution.
If h is known, recovering f from g can be done using classical methods such

as Wiener deconvolution [49], Lucy-Richardson deconvolution [73], or regularized least-

squares deconvolution [76]. Better approaches such as total variation minimization [95]

and its variations [19] can also be used. If high quality recovery results are required, one
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can consider computationally intensive algorithms such as [97].

If h is unknown, blind deconvolution methods are needed to repeatedly estimate

the blur kernel and predict the underlying image in an alternating minimization proce-

dure. In [26], Cho and Lee proposed a fast and reliable blind deconvolution algorithm

using image gradients. Later, Xu and Jia [116] improved this method by selecting strong

gradients.

When h is spatially variant, Nagy and O’Leary [77] suggested the following

model:

g =

p∑
i=1

αi · (hi ∗ f), (8.1)

where p is the number of blur kernels, hi is the i-th blur kernel, αi is a binary mask in-

dicating the contribution of the i-th kernel, and “·” denotes element-wise multiplication.

The problem of (8.1) is that it is inadequate to model a two-layered blur. In [60],

Jia reported that ringing artifact is generated by a moderately advanced deconvolution

algorithm even if the true blur kernel is known. Similar observations are found in [30],

suggesting that some fundamental issues are present.

8.1.2 Contributions

The goal of this chapter is to achieve the following objectives.

• Two-layered out-of-focus blur is a specific subset of the general spatially variant

deconvolution problem. Dai and Wu [31] proposed a global minimization and used

iterative reweighted least squares (IRLS) algorithm to solve the problem. While

their approach gives satisfactory results, the computation time is long. Our first

objective is to reduce the computation time by exploiting the invariant structures of

the problem. Specifically, we show that by inpainting the background, the variant

problem can be transformed to an invariant problem.

• Two-layered out-of-focus blur is also a blind deconvolution problem. Existing de-

convolution methods [26, 40, 60, 116] are insufficient to estimate the blur kernel

in this problem. Our second objective is to propose a new blur kernel estimation

method that uses information from both the image content and alpha-matte edges.
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8.1.3 Organization

To present our solutions to the two objectives, we organize the chapter as follows.

In Section II, we discuss the imaging model for two-layered blur problems. We point out

the limitations of (8.1). Then in Section III, we discuss a method to transform the variant

blur to invariant blur. In Section IV, we discuss an improved blur kernel estimation

method. Experimental results are shown in Section V. Limitations and conclusions are

discussed in Section VI.

To clarify the notations used in this chapter, a list of symbols is given in Table

8.1.

Table 8.1: List of Symbols used in this chapter
g observed blurred image α unknown alpha-matte

gI , fI cropped interior region of g, f α0 initial estimate of α
gF , fF foreground component of g, f f unknown image
gB, fB background component of g, f ∇f , ∇g image gradient of f , g

g̃ invariant image for deconvolution fS , gS , α0S shock filter of f , g, α0

h unknown blur kernel fIS , gIS interior region of fS , gS

λ, γ, μ regularization parameters ∇sf , ∇sg strong gradients of f , g

f̂B estimated background Δf̂B estimation error fB − f̂B
ηg , ηα noise σ2

g , σ
2
α noise variance

8.2 Imaging Model

The imaging model of a two-layered blur is the foundation of all subsequent

analysis discussed in this chapter. Therefore, in this section, we provide justifications

to our model and point out insufficiency of the classical model. Our model has been

previously used in [4, 31,75]. A rigorous treatment of the subject is given in [4].

8.2.1 Limitation of Classical Model

To understand the limitation of (8.1), we consider the formation of a two-layered

image consisting of a sharp foreground and blurred background. The image formed

according to (8.1) is

g = α · (hF ∗ f) + (1− α) · (hB ∗ f), (8.2)

where hF is the δ-function, hB is the blur for the background, and α is the alpha-matte

that indicates the location of foreground pixels [110]. (8.2) suggests that the image f is

first blurred using hF and hB individually, and linearly combined using α.
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If the classical model were valid for the formation of a sharp foreground and

blurred background, then one should be able to recover the image (reasonably well) by

using methods such as [19], [60] or [30]. However, even with a good estimate of the blur

kernel and a fine-tuned algorithm, ringing artifacts still appear at the foreground object

boundary as shown in the left image of Fig. 8.1.

To further illustrate the problem of the classical model, we synthesize a blurred

image using (8.2). The right image of Fig. 8.1 is a simulation of (8.2) in an extreme

situation where hF is the δ-function and hB is a “disk” function with large radius.

Unwanted color bleeding is observed around the object boundary, which is wrong because

the foreground color should not contribute to the background blur.

Figure 8.1: Limitation of (8.1). Left: Result of spatially variant TV minimization [19].
Right: Simulation of (8.2) with hF being a delta function and hB being a “disk” function
with large radius.

8.2.2 Our Model

Suggested by McGuire et al. [75], the image f can be expressed as f = αfF +(1−
α)fB , where fF denotes the foreground and fB denotes the background. Consequently,

the observed image is

g = hF ∗ (α · fF ) + (1− α ∗ hF ) · (hB ∗ fB). (8.3)

Note that the order of convolution “∗” and the element-wise multiplication “·” cannot

be switched. Also, it is assumed that hF has a small support1.

Observing (8.3), we find that there is no cross convolution terms such as hF ∗ fB
or hB ∗ fF , which would appear in (8.2) if we substitute f = α · fF + (1 − α) · fB. For

1See [4] for the assumptions made about the solid angle.
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example, for the case where hF is the δ-function, our model (8.3) implies

g = (α · fF ) + (1− α) · (hB ∗ fB), (8.4)

whereas Nagy and O’leary’s model (8.2) implies

g = α · f + (1− α) · (hB ∗ f)
= α · (α · fF + (1− α) · fB)
+ (1− α) · (hB ∗ (α · fF + (1− α) · fB))

= α · fF + (1− α) · (hB ∗ (α · fF + (1− α) · fB)), (8.5)

where we used the facts α · α = α and α · (1 − α) = 0. It can be seen that (8.4) and

(8.5) coincide if the underlined term fF in (8.5) is replaced by fB , which suggests that

the cross convolution term hB ∗ αfF causes the color bleeding shown in Fig. 8.1.

8.3 Exploiting Invariant Structures

By definition of a two-layered out-of-focus blur problem, the observed image

consists of two regions in which each region is homogeneously blurred by a blur kernel.

Assuming that the blur kernels are known (estimation of kernels are discussed in Section

IV), recovering for each region is a classical invariant deconvolution problem. However,

the question is how to partition a variant problem into two invariant sub-problems.

8.3.1 Background Blur / Foreground Sharp Case

A background blur is characterized by setting hF = δ-function in (8.3) so that

the observed image is given in (8.4). With the assumption that the ground truth alpha-

matte α is available, the foreground component α·fF equals to α·g, and hence g−α·fF =

(1− α) · g. Since it is also true that g − α · fF = (1− α) · (hB ∗ fB), we have

(1− α) · g = (1− α) · (hB ∗ fB). (8.6)

Solving (8.6) would be a standard deconvolution problem if the term (1 − α) were in-

vertible, which is not possible due to the binary nature of α. However, the singularity
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of (1− α) implies the existence of many g̃ such that g̃ �= g but (1− α) · g̃ = (1− α) · g.
In fact, any g̃ in the following form would satisfy (8.6):

g̃(i, j) =

⎧⎪⎨⎪⎩(hB ∗ fB)(i, j), if (i, j) ∈ ΩB,

any function ψ(i, j), if (i, j) ∈ ΩF ,

where g̃(i, j) denotes the (i, j)-th pixel of g̃, ΩB = {(i, j) |α(i, j) = 0} is the set of

background pixel coordinates, and ΩF = {(i, j) |α(i, j) = 1} is the set of foreground

pixel coordinates. The arbitrary function ψ(i, j) is chosen such that the deconvolution

problem g̃ = hB ∗ fB yields good results. Choosing a meaningful ψ(i, j) is equivalent to

inpainting the pixels for ΩF .

A naive choice of ψ(i, j) is that ψ(i, j) = 0 for any (i, j) ∈ ΩF , which means no

inpainting is performed. As one can expect, ringing artifacts will appear. Shown in Fig.

8.2 is an example where we use hB = Gaussian blur kernel (σ = 2). The deconvolution

is performed using a regularized Wiener filter.

Figure 8.2: [Left] The background component with occluded region unfilled (i.e.,
ψ(i, j) = 0). [Right] Deblurring result of the left image.

Clearly, to reduce oscillation, we must fill ΩF carefully so that the transient be-

tween ΩF and ΩB is smooth. Thinking in the one-dimension case, filling ΩF is equivalent

to extrapolating a discrete-time signal g[n] for n ≥ 0, with known values of g[n] for n < 0.

The smoothness criteria can be translated to requiring g′[n] = g′[n− 1], where g′ is the

derivative. The condition g′[n] = g′[n − 1] means that the slope at g[n] should be the

same as the slope at g[n − 1].

The condition g′[n] = g′[n− 1] has a problem that it leads to unbounded predic-

tion, because if g′[n−1] > 0, then g[n]→∞ as n→∞. To ensure boundedness, instead

of using g′[n] = g′[n − 1], we require g′[n] = 1
ng

′[n − 1] for n > 0, and g′[n] = g′[n − 1]
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for n = 0. Consequently, the recursion is defined as

g[n] =

(
1 +

1

n

)
g[n − 1]− 1

n
g[n − 2] for n > 0, (8.7)

with the initial condition g[0] = 2g[−1]−g[−2]. Intuitively, this recursion forces the slope

at every extrapolation location to be reduce by a factor depending on the physical dis-

tance from the object boundary. The derivation of (8.7) and a proof of the boundedness

are given in Appendix D.

Extending the idea to the two-dimensional setting, we want the gradient of g̃ at

pixel (i, j) to be similar to the gradients in its neighborhood. Since the two-dimensional

gradient is directional, there are multiple equations for predicting g̃(i, j):

g̃(i, j) − g̃(i+ p, j + q) = g̃(i+ p, j + q)− g̃(i+ 2p, j + 2q), (8.8)

where p = q = {−1, 0, 1}. Therefore, to maintain the smoothness condition we must

find a g̃(i, j) such that it is the best fit to all of its neighboring gradients. Denote by A
the set of non-zero pixels of neighborhood of g̃(i, j):

A = {(p, q) | g̃(i+ p, i+ q) �= 0, |p| ≤ 1, |q| ≤ 1},

we solve the following minimization problem

minimize
g̃(i,j)

∑
(p,q)∈A

(g̃(i, j) − 2g̃(i+ p, i+ q) + g̃(i+ 2p, i+ 2q))2,

of which the solution can be found by considering the first order optimality, yielding

g̃(i, j) =
1

|A|
∑

(p,q)∈A
2g̃(i+ p, i+ q)− g̃(i+ 2p, i+ 2q).

Incorporating the idea of diminishing gradient so that g̃(i, j) is bounded, we have

g̃(i, j) =
1

|A|
∑

(p,q)∈A

(
1 +

1

k

)
g̃(i+ p, i+ q)− 1

k
g̃(i+ 2p, i+ 2q),

where k is the shortest distance from the unknown pixel (i, j) to the known set ΩB. The

proposed algorithm for filling ΩF is shown in Algorithm 10(Inward Version). The overall
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steps for removing background blur is given in Algorithm 11.

Algorithm 10 Proposed Inpainting Algorithm

Given g̃, ΩF and ΩB.
// Outward Version
Partition ΩF into K rings from the outermost to the innermost, with each ring one
pixel in width.
// Inward Version
Partition ΩB into K rings from the innermost to the outermost, with each ring one
pixel in width.
for k = 1 : K do

for each (i, j) on the k-th ring do
Determine A = {(p, q) | g̃(i+ p, i+ q) �= 0, |p| ≤ 1, |q| ≤ 1}.
Find

g̃(i, j) =
1

|A|
∑

(p,q)∈A

(
1 +

1

k

)
g̃(i+ p, i+ q)− 1

k
g̃(i+ 2p, i+ 2q),

end for
end for

Algorithm 11 Recovering from background blur

Given g. Estimate hB and α (see Section IV).
Estimate g̃ using Algorithm 10.
Solve the deconvolution g̃ = hB ∗ fB.
Form the solution f = α · g+ (1− α) · fB.

Algorithm 10 can be modified to take into account of more neighboring pixels,

e.g, 5 × 5 or 7 × 7. In this case, the footstep for the forward difference operation is

increased, and (8.8) will consist of more equations.

It is also interesting to note that asymptotically Algorithm 10 becomes a moving

average when k → ∞, because g̃(i, j) → 1
|A|
∑

(p,q)∈A g̃(i + p, i + q). In fact, except

for small k, experimentally we find the difference between Algorithm 10 and the simple

moving average is almost undetectable visually. Fig. 8.3 shows the result of applying

Algorithm 10 to fill ΩF . Here, the neighborhood size is 5 × 5, and we used moving

average to approximate Algorithm 10.

As shown in Fig. 8.3, the central region of g̃ does not seem visually pleasing.

However, we argue that the goal is to fill ΩF so that there are less ringing artifacts for

the deconvolution step. As a comparison, we applied a state-of-the-art exemplar-based

inpainting algorithm by Criminisi et at. [29]. Shown in Fig. 8.4 are the inpainting
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Figure 8.3: Filling ΩF for Image No.5 . From Left to Right: The intermediate result of
inpainting at iteration 0, 20, 40 and final respectively. Left: ΩF . When inpainting starts,
the algorithm fills the occluded region from outside to inside. Right: the inpainted g̃.

(a) Proposed inpainting method (b) Inpainting method by Criminisi et al. [29]

Figure 8.4: Comparisons between the proposed inpainting method and the exemplar-
based inpainting method by Criminisi et al. [29]. Top: inpainting results and zoom-in.
Bottom: deblurring results and zoom-in.

results of Algorithm 10 and the method by Criminisi et al.. In terms of visual quality,

it is clear that the method by Criminisi et al. is significantly better than Algorithm

10. However, since [29] does not impose smoothness criteria at the boundary, ringing

artifacts are present. In contrast, the smoothness condition at the boundary of ΩF is

explicitly enforced by Algorithm 10. There are artifacts occurring in the center part of

ΩF , but these can be covered by gF as they are far from the boundary. Note also that

the computational complexity of Algorithm 10 is significantly lower than the method by

Criminisi et al..
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8.3.2 Foreground Blur / Background Sharp Case

In the case of foreground blur, we set hB = δ-function in (8.3). Thus, the

observed image is

g = hF ∗ (α · fF ) + (1− α ∗ hF ) · fB . (8.9)

Rearranging the terms we have

gF = g − (1− α ∗ hF ) · fB
= hF ∗ (α · fF ). (8.10)

Therefore, assuming that α, hF are correctly estimated, solving for α · fF from gF in

(8.10) is a standard deconvolution once fB is known. However, fB is never known exactly

because part of fB is occluded by the blurring edge of fF
2. Thus, given an estimate f̂B ,

for example using Algorithm 10, there is an error term ΔfB so that

f̂B = fB +Δf̂B. (8.11)

Substituting (8.11) into (8.10) yields

gF = g − (1− α ∗ hF ) · (f̂B −Δf̂B)

= g − (1− α ∗ hF ) · f̂B + (1− α ∗ hF ) ·Δf̂B . (8.12)

In (8.12), only g and (1− α ∗ hF ) · f̂B can be calculated.

(a) (b) (c)

Figure 8.5: (a) Input blurred image g. (b) Inpainted result g̃ using inpainting method
1. (c) Inpainted result g̃ using inpainting method 2

2The central interior region of fF is not important because it is the same as the central interior region
of g.
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(a) (b) (c) (d)

Figure 8.6: Illustration of (8.16) using inpainting method 2. (a) The observed image
extracted by alpha-matte (α ∗ hF ) · g. (b) Subtract the result of (a) with the esti-

mated background (α ∗ hF ) ·
[
g − (1− α ∗ hF ) · f̂B

]
. (c) Add the result of (b) with the

newly inpainted background (α ∗ hF ) ·
[
g − (1 − α ∗ hF ) · f̂B + (1 − α ∗ hF ) · Δf̂B

]
.

(d) Add the result of (c) with an approximation from the object boundary (α ∗ hF ) ·[
g − (1− α ∗ hF ) · f̂B + (1− α ∗ hF ) ·Δf̂B

]
+ (1− α ∗ hF ) · gB.

Multiplying α ∗ hF to both sides of (8.12) yields

(α ∗ hF ) · [hF ∗ (α · fF )] = (α ∗ hF ) ·
[
g − (1− α ∗ hF ) · f̂B + (1− α ∗ hF ) ·Δf̂B

]
.

(8.13)

It is not difficult to show that (See Appendix D)

‖(α ∗ hF ) · (1− α ∗ hF ) ·Δf̂B‖ ≤ ‖(1− α ∗ hF ) ·Δf̂B‖,

implying that the effect of Δf̂B is reduced by multiplying (α∗hF ). In fact, approximating

(α ∗hF ) · (1−α ∗hF ) ·Δf̂B is significantly easier than approximating (1−α ∗hF ) ·Δf̂B ,

because the non-zero entries of (α ∗ hF ) · (1 − α ∗ hF ) · Δf̂B are confined to the ring

(α ∗ hF ) · (1 − α ∗ hF ) around the object boundary, whereas the non-zero entries of

(1− α ∗ hF ) ·Δf̂B compose the entire foreground object.

Now, two issues remain: (i) We need an approximation for (α∗hF ) · (1−α∗hF ) ·
Δf̂B because Δf̂B is not known; (ii) Given the approximation and hence the right hand

side of (8.13), we need to solve for α · fF .
Let us consider the second question first. Given gF , we want to solve α · fF from

the equation

(α ∗ hF ) · gF = (α ∗ hF ) · [hF ∗ (α · fF )]. (8.14)

Solving (8.14) is similar to solving (8.6), which both requires inpainting and deconvo-
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lution. However, (8.14) is more difficult than solving (8.6) because α ∗ hF is not a

binary mask. Here we propose two inpainting strategies. The first strategy inpaints the

background using the background color, which can be accomplished using Algorithm 10

(inpainting inwards). The second strategy inpaints the background using the foreground

color, which can also be accomplished using Algorithm 10 (inpainting outwards). In

both methods, since there is no sharp cut off between foreground and background, the

algorithm starts from some definite background (or foreground) pixels. In our method,

we start from K pixels from the expected object boundary (estimated from α), where

K is the one-sided width of the blur kernel.

Denoting gB the inpainted background, ΩM = {(i, j) | 0 < (α ∗ hF )(i, j) < 1},
ΩF = {(i, j) | (α ∗ hF )(i, j) = 1}, and ΩB = {(i, j) | (α ∗ hF )(i, j) = 0}, we construct an

approximately invariant blur image

g̃(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gF (i, j), (i, j) ∈ ΩF ,[
(α ∗ hF ) · gF + (1− α ∗ hF ) · gB

]
(i, j), (i, j) ∈ ΩM ,

gB(i, j), (i, j) ∈ ΩB .

(8.15)

Based on (8.15), we propose an approximation for (α∗hF )·(1−α∗hF )·Δf̂B . Substituting

(8.12) to the ΩM case of (8.15), (8.15) becomes

g̃ = (α ∗ hF ) · g︸ ︷︷ ︸
foreground with edge residue

− (α ∗ hF ) · (1− α ∗ hF ) · f̂B︸ ︷︷ ︸
≈edge residue

+ (1− α ∗ hF ) · gB︸ ︷︷ ︸
inpainted background

+ (α ∗ hF ) · (1 − α ∗ hF ) ·Δf̂B . (8.16)

The four terms in (8.16) have individual meaning: (α ∗hF ) · g is the foreground compo-

nent; (α ∗ hF ) · (1−α ∗ hF ) · f̂B is the foreground edge residue remaining in (α ∗ hF ) · g;
(1− α ∗ hF ) · gB is the background component to be added. The sum of the first three

terms is an image with a dark ring around the object boundary, because excessive bound-

ary intensity is subtracted by (α∗hF ) · (1−α∗hF ) · f̂B. Therefore, the fourth term must

compensate for the presence of the dark ring. Hence, we choose

(α ∗ hF ) · (1− α ∗ hF ) ·Δf̂B = (α ∗ hF ) · (1− α ∗ hF ) · gB .
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The results are shown in Figs. 8.5 and 8.6.

Finally, given the right hand side of (8.16), we solve the deconvolution problem

g̃ = hF ∗ f̃ .

The solution f̃ is then combined with the estimated background f̂B to give the final

solution

f = α · f̃ + (1− α) · f̂B.

Algorithm 12 Recovering from background blur

Given g. Estimate hF and α (see Section IV).
Estimate f̂B using Algorithm 10.
Estimate g̃ by (8.15).
Solve the deconvolution g̃ = hF ∗ f̃ .
Form the solution f = α · f̃ + (1− α) · f̂B .

8.3.3 Performance Limit

The proposed spatially invariant method is a trade-off between quality and speed.

The limiting factor is the amount of blur and complexity of the occluded region, which

is also a fundamental limit of the blurring equation (8.3) by McGuire et al. [75]. For the

background blur case, the inpainting error is small because the object boundary is sharp.

For the foreground blur case, the approximation error in (α ∗ hF ) · (1 − α ∗ hF ) · Δf̂B

increases when the image is complicated or when the blur is severe.

8.4 Blur Kernel Estimation

In this section we discuss the proposed kernel estimation. Our method is an

improved version of Xu and Jia [116], Fergus et al. [40] and Cho and Lee [26]. Therefore,

the focus of this section is on the unique modifications that we make.

The overall deblurring method consists of four parts, namely the initial alpha-

matte estimation, blur kernel estimation, transformation to invariant problems, and

finally deblurring. Initial alpha-matte estimation is performed using shared matting [44],

which is currently the top-ranked algorithm in [89]. A thorough survey on alpha-matting

methods can be found in [110]. The transformation of spatially variant problems to
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invariant problems is discussed in Section III. In the following subsections, we discuss

the blur kernel estimation and the deblurring steps.

8.4.1 Kernel Estimation by Strong Edges

Discussed in [40], blur kernels can be efficiently estimated using edges. The

motivation is that a blurred image is the result of convolving a sharp image and the blur

kernel. Thus, if one wants to estimate the blur kernel from a blurred image, a rough

estimate of the sharp image must be used.

To obtain such a sharp image estimate, Cho and Lee [26] use the shock filter [95].

A shock is an iterative algorithm that sharpens the strong edges (see Appendix). We

consider the shock filter as a module that takes an image f and produces an output

image fS:

fS = shock filter(f).

The estimation considered in [26] is the following minimization problem

minimize
h

‖∇fS ∗ h−∇g‖2 + λ‖h‖2, (8.17)

where ∇ is the gradient operator, λ is a regularization parameter.

Later, Xu and Jia [116] observe that not all gradients of fS are useful for blur

kernel estimation. They propose an edge selection method to decide what edges shall

be used. Essentially, the idea is to multiply a mask M to the image gradient ∇fS (see

Appendix). We consider this edge selection process as a module that takes a shock

filtered image fS to produce an output image ∇sfS:

∇sfS = edge selection(fS) = M · ∇fS .

Therefore, the estimation becomes

minimize
h

‖∇sfS ∗ h−∇sg‖2 + λ‖h‖2. (8.18)

8.4.2 Blur Information from Boundary and Interior of an Object

A limitation of (8.18) is that it depends on the availability of strong edges in an

image. In a two-layered blur image, it is possible that the foreground or background
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(a) (b) (c) (d)

Figure 8.7: (a)-(b): An example where there is no strong edge in the cropped area, but
the alpha-matte estimate is good. In this case, large γ can be used. (c)-(d): An example
where the alpha-matte is not well estimated, but there is strong edge in the cropped
area. In this case, large μ shall be used.

component does not have strong edges. For example, Fig. 8.7(b) shows an image where

the cropped area of the foreground component does not have significant color variation.

In [60], Jia shows that for a two-layered blur problem, the alpha-matte provides

useful information for blur kernel estimation because the alpha-matte is also blurred by

the same blur kernel. Therefore, by studying the transient characteristics of the alpha-

matte, blur kernel can be estimated. For example in Fig. 8.7(a), while the cropped

region in (b) does not have strong edges, the alpha-matte does. The estimation using

alpha-matte is similar to (8.18):

minimize
h

‖∇α0S ∗ h−∇α0‖2 + λ‖h‖2, (8.19)

where α0 is the initial estimate of the alpha-matte, and α0S = shock filter(α0).

The observation that alpha-matte can be used when edges in the foreground

region are weak suggests that reversely the strong edges can be used when alpha-mattes

are inaccurate. Show in Fig. 8.7(c)-(d) is an example where the alpha-matte of the

hair regions cannot be estimated correctly, but there are strong edges in the cropped

region. This idea illustrates a unique feature of the proposed method, which encapsulates

the strengths of both strong edge and alpha-matte based approaches. In the following

subsection, we discuss more precisely the mathematical formulation.

8.4.3 Estimation of h using g and α (Foreground Blur)

We first focus on the foreground blur situation. The proposed kernel estimation is

formulated in the maximum-a-posteriori (MAP) framework. Denoting by gI the cropped
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interior region of the input image and α0 the initial estimated alpha-matte, respectively,

the goal is to maximize the conditional probability P (h|gI , α0), which according to Bayes’

theorem (with the assumption that P (gI | h) and P (α0| h) are independent) is equivalent
to

argmax
h

P (h| gI , α0) = argmax
h

P (gI |h)P (α0|h)P (h). (8.20)

The likelihood P (gI |h) defines the probability of getting gI given an estimate

of h. Following the idea of Fergus et al. [40] that gI ≈ gIS ∗ h, it holds that ∇sgI =

∇sgIS ∗h+ηg. The noise term ηg is assumed to be an i.i.d. Gaussian distributed random

variable, with zero mean and variance σ2g . Thus,

P (gI |h) ∝
∏
i∈Ωg

exp

{
− 1

2σ2g
[∇sgIS ∗ h−∇sgI ]

2
i

}
, (8.21)

where [·]i denotes the i-th component of the argument and Ωg is the set of pixels in gI .

The likelihood P (α0|h) is defined similarly, where we assume that ∇α0 = ∇α0S ∗
h + ηα with ηα being an i.i.d. Gaussian distributed random variable with zero mean

and variance σ2α. This definition has been previously used by Jia [60]. Expressing the

likelihood in terms of these terms yields

P (α0|h) ∝
∏
i∈Ωα

exp

{
− 1

2σ2α
[∇α0S ∗ h−∇α0]

2
i

}
, (8.22)

where Ωα denotes the set of pixels in α0.

The prior P (h) is given by

P (h) ∝
∏
i∈Ωh

exp
{−λ[h]2i } , (8.23)

where Ωh denotes the set of pixels in the blur kernel h. P (h) is a relaxation of the

exponential prior given by Shan et al. [97], as the one-norm results from the exponential

prior is computationally intensive to solve.

Substituting (8.21), (8.22) and (8.23) into (8.20), and simplifying the terms yields

minimize
h

μ‖∇sgIS ∗ h−∇sgI‖2 + γ‖∇α0S ∗ h−∇α0‖2 + λ‖h‖2, (8.24)

where μ, γ and λ are regularization parameters (to be discussed). Analytical solution



123

for (8.24) exists, and is given by

h = F−1

{
μF(∇sgIS) · F(∇sgI) + γF(∇α0S) · F(∇α0)

μ|F(∇sgIS)|2 + γ|F(∇α0S)|2 + λ

}
, (8.25)

where F is the Fourier Transform operator, (·) denotes the complex conjugate over the

argument and “·” is the element-wise multiplication. Though not written explicitly

in (8.24), the gradients ∇sgIS (and similarly for ∇α0S) are assumed to contain both

horizontal and vertical directions, i.e., ∇sgIS = [∂sxgIS , ∂sygIS ]. Thus, F(∇sgIS) ·
F(∇sgI) = F(∂sxgIS) · F(∂sxgI)+F(∂sygIS) · F(∂sygI), and |F(∇sgIS)|2 = |F(∂sxgIS)|2 +
|F(∂sygIS)|2.

The proposed minimization (8.24) is a generaliation of [40, 60, 97, 116], where

these special cases can be obtained by adjusting μ, γ and λ. The advantage of (8.24) is

that it eliminates the risk of having weak edges in the cropped foreground area gI (which

makes [116] and [40] fail), as in this case we can increase γ to make ‖∇α0S ∗ h−∇α0‖2
dominant in (8.24). In situations where α0 is a poor estimate (so that [60] fails), μ can

be increased to make ‖∇sgIS ∗ h−∇sgI‖2 dominant.

8.4.4 Choosing Parameters

The next question to ask is how to choose the parameters μ, γ and λ. Without

loss of generality we set μ = 1, as the minimizer of (8.24) is unchanged if we scale the

objective function in (8.24) by 1
μ . Thus it remains to determine γ and λ. λ is the

parameter associated with the prior P (h). Typically, meaningful results are found using

λ within the range 10−3 ≤ λ ≤ 10−2. In our experiments, λ is fixed at λ = 10−2.

Choice of γ is a critical one as it sets relative emphasis between ‖∇gIS∗h−∇gI‖2
and ‖∇α0S ∗ h − ∇α0‖2. Our proposed method is based on the confidence of α0. The

confidence measure indicates the chance of getting an accurate alpha-matte. If it is likely

that α0 is a reliable estimate, then the weighing factor γ for ‖∇α0S ∗ h−∇α0‖2 should

be large. Otherwise, γ should be small.

γ can be evaluated from the performance across different methods. The intuition

is that if an image is easy to be alpha-matted, then the results of different alpha-matting

methods should be similar. To verify our claim, we conducted an experiment by studying

15 alpha-matting methods available in [89]. Alpha-matting results (small tri-map case,
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(a) avg SAD = 18, v̄ = 0.0074 (b) avg SAD = 10, v̄ = 0.0054 (c) avg SAD = 9, v̄ = 0.0014

Figure 8.8: Variance maps V for images “troll”, “doll”, and “elephant”. White indi-
cates variance = 0, and black indicates variance = maximized
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Figure 8.9: Relation between the average SAD score and average variance.

8 images per method), and the corresponding SAD scores are recorded. Discarding the

worst performing method, we compute, for each pixel, the variance of alpha-matte values

across the methods. That is, given an alpha-matte αk produced by the k-th method, we

compute

V(i, j) = Var{α1(i, j), α2(i, j), . . . , αk(i, j)}.

V (i, j) is a map in which each pixel is the variance of the alpha-matting methods (see

Fig. 8.8). It is a measure of agreement among the methods, for lower variance means the

methods give similar alpha-matte values. Average of the variance over the entire image

is then computed as

v̄ =
1

n

∑
i,j

V(i, j),

where n is the number of pixels in V. In Fig. 8.9, we show the relation between the

average SAD score and the average variance for the 8 images provided in [89]. It can be
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seen that the variance and the SAD score shows a linear relation. This result implies

that in the absence of ground-truth, the performance variance between methods is a

good indicator of whether the image is easy to be alpha-matted.

The above experiment suggests that for each pixel of α0, we can use a number

of alpha-matting algorithms to measure the confidence. In our algorithm, we use shared

matting, grow-cut [107] and closed-form matting [68]. More methods can be considered,

but computing time will increase.

Finally, we define γ as

γ = C exp{−av̄}, (8.26)

where the constants a = 1000 and C = 0.65 are determined empirically.

8.4.5 Estimation of h using g (Background Blur)

We now discuss the estimation of h in the case of background blur. In fact, for a

background blur/ foreground sharp image, the alpha-matte does not contain information

about the blur kernel because the alpha-matte is sharp. Therefore, the MAP framework

(8.20) is simplified by removing the term P (α0|h), which yields

argmax
h

P (h| gI) = argmax
h

P (gI |h)P (h). (8.27)

Consequently, the minimization problem that we consider is

minimize
h

μ‖∇sgIS ∗ h−∇sgI‖2 + λ‖h‖2. (8.28)

Closed-form solution exists, and is given by (8.25) with γ = 0.

8.4.6 Iterative Update of f and h

Our problem is a blind deconvolution problem. Therefore, intermediate update

of the solution fI is required for the iterative update of h. Given the current estimate h,

fI is updated by solving the following minimization problem

fI = argmin
fI

‖fI ∗ h− gI‖2 + κ‖∇fI −∇sgIS‖2. (8.29)
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(8.29) is derived from an MAP framework consisting of a Gaussian fidelity term and a

Gaussian prior. The Gaussian prior ‖∇fI−∇sgIS‖2 measures the goodness of fit between

the gradient of the unknown image fI and the gradient of the shock filtered image gIS .

The Gaussian prior ‖∇fI − ∇sgIS‖2 performs better than ‖∇fI‖2 in preserving edges

and suppressing ringing artifacts [116]. The parameter κ is fixed at κ = 10−2.

Closed-form solution of (8.29) exists and is given by

fI = F−1

⎧⎨⎩F(h)F(gI) + κ
[
F(∂x)F(∇s

xgIS) + F(∂y)F(∇s
ygIS)

]
|F(h)|2 + κ(|F(∂x)|2 + |F(∂y)|2)

⎫⎬⎭ , (8.30)

where ∂x = [1, −1] and ∂y = [1, −1]T are two-tap filters.

The updated solution fI is then feedback to (8.24) by applying shock filter fIS =

Shock Filter(f) and replaces gIS using fIS in (8.24). Therefore, the iterative update of

fI and h is equivalent to solving

fI = argmin
fI

‖fI ∗ h− gI‖2 + κ‖∇fI −∇sfIS‖2, fIS = Shock Filter(fI),

h = argmin
h

μ‖∇sfIS ∗ h−∇sgI‖2 + γ‖∇α0S ∗ h−∇α0‖2 + λ‖h‖2.

The iteration repeats, until the relative change ‖f (k+1)
I − f

(k)
I ‖2/‖f (k)I ‖2 ≤ 10−3, where

f
(k)
I is the solution in (8.30) at the k-th iteration.

8.4.7 Updating α

In case of foreground blur, α0 is a blurred alpha-matte which needs to be de-

blurred. To deblur α0, we consider the posterior probability P (α|α0), where the unknown

(potentially sharp) α is conditional on the blurry observation α0. Maximizing P (α|α0)

is equivalent to

argmax
α

P (α|α0) = argmax
α

P (α0|α)P (α). (8.31)

The likelihood P (α0|α) and the prior P (α) are defined as follows.

We assume that the residue h ∗ α − α0 is Gaussian distributed with zero mean

and variance σ2α. Thus, the likelihood P (α0|α) is

P (α0|α) ∝
∏
i∈Ωα

exp

{
1

2σ2α
[h ∗ α− α0]

2
i

}
, (8.32)
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Algorithm 13 Blur Kernel Estimation (Foreground Blur)

Given g and α0. Crop an interior region gI from the foreground of g.
Initially set fI = gI . Compute α0S = shock filters(α0).
while Not converge do

Compute fIS = shock filter(fI).
Compute ∇sfIS = edge selection(fIS).
Estimate

h = F−1

{
μF(∇sfIS) · F(∇sfI) + γF(∇α0S) · F(∇α0)

μ|F(∇sfIS)|2 + γ|F(∇α0S)|2 + λ

}
.

Estimate

fI = F−1

⎧⎨⎩F(h)F(gI) + κ
[
F(∂x)F(∇s

xgIS) + F(∂y)F(∇s
ygIS)

]
|F(h)|2 + κ(|F(∂x)|2 + |F(∂y)|2)

⎫⎬⎭ .
end while
(Remark: For background blur, set γ = 0.)

where Ωα is the set of pixels in α.

We also assume that the isotropic gradient at any pixel location is exponentially

distributed. Thus,

P (α) ∝
∏
i∈Ωα

exp

{
−1

τ

√
[∇xα]2i + [∇yα]2i

}
, (8.33)

where τ is a constant.

Substituting (8.32) and (8.33) into (8.31) yields the following minimization

minimize
α

‖αI − h ∗ α‖2 + λ‖α‖TV , (8.34)

where ‖α‖TV =
∑

i

√
[∇xα]2i + [∇yα]2i is the isotropic total variation norm, and λ is a

regularization parameter derived from τ and σ2α. (8.34) does not have analytic solution,

but can be solved efficiently using [19].

8.4.8 Overall Algorithm for Estimating h

The blur kernel estimation step is outlined in Algorithm 13. Note that Algorithm

13 is used for foreground blur cases. In case of background blur, we set γ = 0.
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8.5 Results

A data set of 27 training images from http://www.alphamatting.com are down-

loaded for the comparisons. These images are all composed of a sharp foreground object

and an out-of-focus blurred background scene. For images no.1-23, the object is placed

in front of a high-definition (HD) monitor showing some background scenes, whereas for

images no.24-27, the object is placed in front of real 3D scenes. Ground-truth alpha-

mattes are available in this data set, but we will also test the proposed algorithm with

estimated alpha-mattes later.

(a) Fergus-image (b) Xu-image (c) Proposed

Image No.7 (d) Fergus-α (e) Xu-α (g) ground-truth

Figure 8.10: Kernel estimation for Image no. 7. (a) Fergus et al. [40] on cropped
region. (b) Xu and Jia [116] on cropped region. (c) Proposed method. (d) Fergus et
al. [40] on alpha-matte. (e) Xu and Jia [116] on alpha-matte. (f) Ground-truth kernel.

8.5.1 Blur Kernel Estimation

First, we compare the proposed kernel estimation method with the method by

Fergus et al. [40] and the method by Xu and Jia [116]. Note that Xu and Jia supersedes

Cho and Lee [26], and Fergus et al. [40] is used in [31].

We synthesize two foreground blur images using a Gaussian blur kernel of size

19× 19 and variance σ = 3 (See Fig. 8.10 and Fig. 8.11). Shared matting [44] is applied

to the blurred images so that alpha-mattes are estimated. Interior regions were cropped

manually.

In Fig. 8.10, the cropped interior region does not have strong edges. Thus,

applying [40] and [116] to the interior region does not produce good estimates (Fig.



129

(a) Fergus-image (b) Xu-image (c) Proposed

Image No.8 (d) Fergus-α (e) Xu-α (g) ground-truth

Figure 8.11: Kernel estimation for Image no. 8. (a) Fergus et al. [40] on cropped
region. (b) Xu and Jia [116] on cropped region. (c) Proposed method. (d) Fergus et
al. [40] on alpha-matte. (e) Xu and Jia [116] on alpha-matte. (f) Ground-truth kernel.

8.10(a)-(b)). On the other hand, when the alpha-matte is poorly estimated (Fig. 8.11),

applying [40] and [116] to the alpha-matte does not give good estimates (Fig. 8.11(d)-

(e)). The proposed method automatically weights the emphasis on the alpha-matte and

the cropped region. Therefore, the kernel estimation result is better than the other two

methods.

8.5.2 Real Background Blur

Next we compare the overall performance of the proposed method with three

existing spatially variant deconvolution algorithms.

The first method to be compared is the spatially variant Lucy-Richardson (LR)

algorithm used in [60] and [30]. In this method, the spatially variant blur h is expressed

as a linear combination of invariant blurs. The deblurring step is performed via an

iterative approach as

f (k+1) = f (k) ·
[
h′ ∗
( g

h ∗ f (k)
)]
,

where f (k) is the solution of the k-th iteration, h′ is the flipped version of h, i.e.,

h′(m,n) = h(−m,−n). The multiplication “·” and the division in the parenthesis are

element-wise operations. The algorithm terminates when ‖f (k+1)−f (k)‖2/‖f (k)‖2 ≤ 10−3.

The second method is a modified version of the total variation (TV) minimization

using augmented Lagrangian method [19]. We express the spatially variant operator h
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(a) Input Image no. 22 (b) TV-minimization [19], 85.35sec

(c) Lucy-Richardson [30,60], 7.15sec (d) IRLS [31], 369.14sec

(e) Proposed (Ground-Truth α), 9.45sec (f) Proposed (Estimated α), 9.62sec

Figure 8.12: Real image background deblurring for Image No. 22. In methods shown
here, TV-minimization, Lucy-Richardson, IRLS and Proposed (Ground-Truth α) use the
ground-truth alpha-matte for blur kernel estimation and deblurring. However, Proposed
(Estimated α) uses the shared matting method for the same tasks.

as a non circulant matrix H. Then the f -subproblem (Equation (14) of [19])

(μHTH+ ρDTD)f = μHTg + ρDTu−Dy

is solved using conjugate gradient iterations.

The third method is the one by Dai and Wu [31], which is the most relevant

method to our approach. [31] solves the minimization problem

minimize
fF , fB

‖g − αfF − (1− α)(hB ∗ fB)‖2 + λ1‖fF ‖TV + λ2‖fB‖TV , (8.35)

using an iterative reweighted least-squares (IRLS) method. Here, we use the standard

isotropic TV norm ‖ · ‖TV instead of the lp-norm (p = 0.8) in [31], because the goal

of this chapter is not to compare different TV norms. In solving (8.35), fF and fB are

determined simultaneously. Since the linear operators in (8.35) are not block-circulant,
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(a) Input Image no. 27 (b) TV-minimization [19], 103.42sec

(c) Lucy-Richardson [30,60], 9.2sec (d) IRLS [31], 459.63sec

(e) Proposed (Ground-Truth α), 7.26sec (f) Proposed (Estimated α), 7.14sec

Figure 8.13: Real image background deblurring for Image No. 27. In methods shown
here, TV-minimization, Lucy-Richardson, IRLS and Proposed (Ground-Truth α) use the
ground-truth alpha-matte for blur kernel estimation and deblurring. However, Proposed
(Estimated α) uses the shared matting method for the same tasks.

Fourier Transform cannot be used. Therefore, the speed of solving (8.35) is expected to

be slow.

Fig. 8.12 and Fig. 8.13 are two of the 27 images being tested. Referring to the

images, the foreground is sharp and the background is blurred. Since the blur kernels are

unknown, we applied the proposed algorithm to estimate the blur kernel. The estimated

blur kernel is then applied to the three existing methods listed in Fig. 8.12 and Fig.

8.13.

Two versions of the proposed method are also tested. Proposed (Ground-Truth

α) uses the ground-truth alpha-matte for kernel estimation, background inpainting and

deblurring, whereas Proposed (Estimated α) uses the shared matting results for kernel

estimation, background inpainting and deblurring.

The run-time of these methods are recorded based on a desktop computer with

Intel Quadcore Q9550 2.8GHz, 4GB DDR3, MATLAB/ Windows 7. It can be seen
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(a) Blurred Image no. 7 (b) Dai and Wu [31], 31.3dB, SSIM 0.86, 831sec

(e) Proposed-1, 29.5dB, SSIM 0.84, 7.5sec (f) Proposed-2, 30.9dB, SSIM 0.85, 7.5sec

(c) g̃ using Proposed-1 (d) g̃ using Proposed-2

Figure 8.14: Synthetic image foreground deblurring for Image No. 1. PSNR, SSIM,
and Run-time can be referred to Table II.

that the proposed method shows significantly faster speed than [31], and better recovery

results than [30] and [19].

8.5.3 Synthetic Foreground Blur

We now show the PSNR and SSIM comparisons between existing methods. To

do so, the foreground of the 27 testing images are synthetically blurred. The blur kernel

in this experiment is a Gaussian blur kernel with size 19 × 19 and variance σ = 3.

Since [19], [30] and [60] are evidently not able to handle the two-layer blur, comparing

to [31] is sufficient.

For [31], we first apply the proposed kernel estimation algorithm to estimate

the blur kernel. Once the kernel is estimated, it is fixed in the iteration of the IRLS

algorithm. For fairness alpha-matting is performed using shared matting [44], same as

the proposed method.

Two sets of the results are shown in Fig. 8.14 and Fig. 8.15. It can be observed

that the proposed method generally produces similar image quality. However, the run
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(a) Blurred Image no. 23 (b) Dai and Wu [31], 30.5dB, SSIM 0.85, 293sec

(e) Proposed-1, 30.3dB, SSIM 0.84, 9.4sec (f) Proposed-2, 31.6dB, SSIM 0.85, 9.4sec

(c) g̃ using Proposed-1 (d) g̃ using Proposed-2

Figure 8.15: Synthetic image foreground deblurring for Image No. 23. PSNR, SSIM,
and Run-time can be referred to Table II.

time is significantly shorter. PSNR, SSIM and the run-times are listed in Table 8.2.

8.5.4 Real Foreground Blur

Finally, we applied the proposed algorithm to deblur real images with blurred

foreground. The images were captured using a Canon ESO REBEL T2i camera. The

focal length is 24mm, and ISO is 400. The images consist of a toy placed in front of

posters with different background contents. The distance between the object and the

background is approximately 30cm.

To recover the foreground image, we applied the shared matting algorithm to

first extract the foreground object (with blurred edges). Then, the proposed blur kernel

estimation method is run to determine the blur kernel, and consequently the deblurring

step could be performed.

Fig. 8.16 shows one of the results. Similar to the case of synthetic blur, the pro-

posed method is able to recover the image giving comparable quality with Dai and Wu’s



134

Table 8.2: PSNR, SSIM and run-time comparisons among [31], Proposed method 1 and
Proposed method 2 on synthetic foreground blurred images

Image No.
Size PSNR (dB) SSIM Run-time (sec)

rows cols [31] Proposed-1 Proposed-2 [31] Proposed-1 Proposed-2 [31] Proposed-1 Proposed-2
1 249 400 31.3 29.5 30.9 0.86 0.84 0.85 831.44 7.53 7.53
2 262 400 27.5 26.8 26.9 0.83 0.82 0.82 783.42 7.25 7.28
3 400 320 31.2 33.7 33.9 0.86 0.88 0.88 955.35 8.15 8.21
4 282 400 25.2 28.6 28.9 0.76 0.81 0.82 109.18 7.59 7.52
5 276 400 29.4 30.0 32.7 0.91 0.92 0.93 816.58 7.62 7.61
6 339 400 31.6 31.5 33.7 0.92 0.92 0.93 1230.53 9.58 9.57
7 309 400 31.9 29.3 32.6 0.92 0.90 0.92 92.34 8.54 8.55
8 400 324 26.8 28.9 29.9 0.80 0.84 0.84 217.53 8.61 8.61
9 400 322 29.9 30.7 32.1 0.83 0.86 0.86 293.05 8.75 8.76
10 286 400 31.7 31.2 32.2 0.85 0.85 0.86 805.46 7.54 7.54
11 311 400 27.4 27.3 27.5 0.76 0.75 0.76 148.23 8.24 8.25
12 264 400 30.6 31.0 32.3 0.86 0.87 0.87 102.81 6.84 6.84
13 298 400 27.4 27.9 28.5 0.74 0.76 0.76 1561.58 7.81 7.81
14 265 400 31.8 30.3 32.3 0.93 0.93 0.94 109.45 7.26 7.28
15 245 400 31.3 32.2 34.9 0.93 0.94 0.94 78.68 6.89 6.87
16 268 400 30.5 28.8 31.1 0.88 0.87 0.88 113.42 7.19 7.20
17 283 400 32.1 31.8 33.4 0.89 0.90 0.90 296.12 8.05 8.08
18 323 400 30.5 29.9 31.4 0.90 0.90 0.91 1173.86 8.42 8.42
19 290 400 27.5 27.3 27.4 0.82 0.81 0.81 831.24 7.72 7.71
20 288 400 32.3 33.1 35.8 0.90 0.90 0.92 175.64 7.81 7.80
21 332 400 29.6 29.5 30.3 0.83 0.84 0.85 2188.35 8.39 8.40
22 360 400 29.7 30.2 30.2 0.78 0.78 0.78 1308.15 9.14 9.15
23 358 400 30.5 30.3 31.6 0.85 0.84 0.85 293.24 9.41 9.41
24 272 400 28.9 28.5 29.3 0.85 0.86 0.86 85.31 7.45 7.45
25 266 400 23.8 23.2 23.3 0.83 0.82 0.82 250.61 7.16 7.18
26 302 400 21.4 21.1 21.6 0.75 0.76 0.76 2598.53 7.98 7.92
27 304 400 22.7 22.1 22.7 0.74 0.74 0.74 201.42 8.12 8.15

method [31]. However, the computation time of the proposed method is significantly

shorter.

More results are available at http://videoprocessing.ucsd.edu/∼stanleychan.

8.6 Conclusion

This chapter has two main contributions. First, we proposed a new blur kernel

estimation algorithm for the two-layer out-of-focus blur problem. The new algorithm

encapsulates the strength of two existing classes of methods by utilizing both the alpha-

matte transient and image gradient. Experimental results showed that the new algorithm

is more robust than existing blur kernel estimation methods. Second, we proposed a new

method to transform the spatially variant blur problem to two spatially invariant blur

problems so that fast deconvolution algorithms can be used. The new method predicts

the occluded background for the background blur case, and creates virtual background

for the foreground blur case. Experimental results showed that the proposed method

produces better recovery results than existing methods while at a significantly faster

speed.

The proposed method is limited by a number of factors: accuracy of the initial

alpha-matte estimation, signal-to-noise ratio of the image, degree of blurriness of the
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(a) Input Image (b) Virtual background and blur kernel

(c) Dai and Wu [31] (d) Proposed

Figure 8.16: Real image foreground deblurring (1). (a) The input image is captured
using Canon ESO T2i camera. The background is about 30cm from the foreground. (b)
The virtual background created by the proposed algorithm and the blur kernel estimated
using the proposed algorithm. (c) Deblurring results by Dai and Wu [31]. (d) Deblurring
results by the proposed method. In this image, alpha-matte is estimated using shared-
matting.

image, and presence of object motion. Future research shall be focused on overcoming

these issues.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

This dissertation investigates solutions for the problem of image and video restora-

tion. In particular, we develop algorithms to estimate h and f from the observation

g = h ∗ f + η. The tools that we used is a set of numerical optimization techniques.

The dissertation begins with the discussion of how to determine f , with the

assumption that h is known. This problem is known as the non-blind deconvolution,

which can be formulated as a least-squares minimization problem. The difficulty of

deconvolution is caused by the fact that the convolution matrix associated with h is often

rank deficient. Therefore, regularization must be added so that meaningful solutions

can be determined. In Chapter 3, common regularization functions such as Tikhonov

regularization, isotropic and anisotropic total variation (TV) regularization, and bilateral

total variation regularization are studied. Among these regularization functions, the TV

regularization gives the most promising results. However, total variation minimization

is computationally intensive.

To develop a fast algorithm for solving total variation minimization problems, we

studied the augmented Lagrangian method. Traditionally, the augmented Lagrangian

method is developed for twice differentiable functions, which does not fit our TV prob-

lems as the TV norm is non-differentiable. However, we showed that while TV norm

is non-differentiable, the augmented Lagrangian method is still valid because TV norm

is convex. This observation is also verified previously in the work of operator split-
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ting methods. Our proposed method transforms the unconstrained TV minimization

to an equivalent constrained minimization problem. Then using the properties of the

augmented Lagrangian function, we split the original problem into three relatively easy

sub-problems. Each subproblem is then solved by either closed-form solution, or a sys-

tem of linear equations. By iteratively searching the subproblem solutions, the solution

of the original problem can be approximated. In order to improve the convergence, an

automatic parameter update scheme is also proposed. Thorough comparisons show that

the proposed algorithm is more superior than existing arts.

Migrating from image restoration is the problem of video restoration. In Chap-

ter 5 we extend the idea of the augmented Lagrangian method to handle the three-

dimensional space-time data. We show that the proposed three-dimensional augmented

Lagrangian method not only inherits the merits of the two-dimensional method, but it

also introduces additional benefits that previously cannot be found in image restoration.

First, by introducing the space-time total variation norm, both spatial and temporal

consistency of the video are improved. This outperforms most existing video restoration

algorithms which only solve for a sequence of images independently. Second, by embed-

ding motion blurred images into a space-time volume, we transform the spatially variant

motion blur problem into an invariant blur problem. With the aid of motion estimation

and compensation algorithms, motion blurred objects in a scene can be recovered.

Next, the dissertation discusses the issue of blind deconvolution, where h is no

longer assumed known a priori. In Chapter 6 we give an overview of state-of-art blind

deconvolution algorithms, with our interpretation and implementation. Our method

first seeks sharp edges of the image by means of shock filter. The sharp edges are then

used for estimating h. Once an accurate h is found, the image restoration proposed in

Chapter 4 is used to recover the image.

The assumption that the blur is spatially invariant is a restrictive one, and must

be handled in practice. Among all the works the most important step is to construct a

spatially variant convolution matrix. Otherwise, it is not possible to analyze the spatially

variant blur. In Chapter 7 we propose a systematic algorithm in allocating non-zero

entries of the convolution matrix. The convolution matrix allows one to solve spatially

variant blur removal efficiently, as compared to not using the convolution matrix. The

convolution matrix also allows one to analyze the spectral properties. In particular,

the upper and lower bounds on the eigenvalues of the convolution matrix is estimated.
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Consequently, the condition number of the convolution can be found. This, we believe,

would allow us to determine the performance limit of spatially variant image restoration.

Finally, with all the techniques developed, we discuss the issue of spatially variant

blind deconvolution problem caused by out-of-focus blur. The general out-of-focus blur

is intractable, but simplified cases such as a two layer blur are solvable. In Chapter 8, we

develop an algorithm for removing a two layer blur. The algorithm is a combination of

image restoration developed in Chapter 4, the blind deconvolution algorithm discussed in

Chapter 6 and alpha-matting techniques. Compared to existing methods, the proposed

method is computationally inexpensive, yet produces high quality results.

9.2 Future Work

Envisioning the future research directions, we have the following suggestions.

• Operator splitting method is proved to be valid for splitting two functions only.

There is no evident that splitting into three or more functions are still valid (as in

the case of TV/L1), although in TV/L1 the algorithm seems performing well.

• Total variation may not be the best prior. In fact, recent researches find that the

statistics of natural images are better explained by an lp-norm with p < 1. There-

fore, approximating lp norm problems into a sequences of inexpensive procedures

becomes a new challenge.

• Among all video restoration applications, we find that the proposed TV/L1 algo-

rithm is a good method for disparity refinement. However, in order to perform

disparity refinement in real-time, one must consider the problems of occlusion and

fast motion. Additionally, angular consistency across the disparity maps should

also be taken care of. Moreover, since h is a delta function in disparity estimation,

there must be room for speed improvement.

• The blind deconvolution proposed in this dissertation has a big room for improve-

ment. The algorithm currently fails when the blur is complicated.

• Performance limit of image restoration must be studied. Given the convolution

matrix and the noise statistics, there must be a lower bound on the least-squares

residue that one can achieve.
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• One important finding of this dissertation is that for many spatially variant prob-

lems it is possible to find equivalent invariant problems. For example, the motion

blur can be transformed to an invariant problem by embedding the image into a

space-time volume using motion estimation and compensation. The out-of-focus

blur problem can be transformed to an invariant problem by generating the artifi-

cial backgrounds for the foreground and background objects. We believe there are

more similar situations.



Appendix A

Proofs of Chapter 3

Proposition 1. The dual of the problem

minimize
f

1

2
‖Hf − g‖22 + λ ‖Df‖1 (A.1)

is given by

maximize
μ,ν

−1
2‖μ‖22 − μTg

subject to |νi| ≤ λ, ∀i,
HTμ+DT ν = 0.

(A.2)

Proof. Define G : R
MN×1 → R and F : R

MN×1 → R by G(u) := 1
2‖u − v‖22 and

F (u) := λ‖u‖1. Then we have G(Hf) := 1
2‖Hf − g‖22 and F (Df) := λ‖Df‖1. Thus

problem (A.1) can be rephrased as minimize
f

G(Hf) + F (Df), which is equivalent to

minimize
f

G(y) + F (z)

subject to y = Hf

z = Df

The Lagrange function of this constrained problem is

L(f ,y, z, μ, ν) = G(y) + F (z) + (y −Hf)Tμ+ (z−Df)T ν.
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Therefore, the Lagrange dual function can be found as

g(μ, ν) := inf
f ,y,z

L(f ,y, z, μ, ν)

= inf
f ,y,z

{
G(y) + F (z) + (y −Hf)Tμ+ (z−Df)T ν

}
= inf

f ,y,z

{
G(y) + yTμ+ F (z) + zT ν − fT (HTμ+DT ν)

}
= inf

y

{
G(y) + yTμ

}
+ inf

z

{
F (z) + zT ν

}− inf
f

{
fT (HTμ+DT ν)

}
= − sup

y

{−G(y) − yTμ
}− sup

z

{−F (z)− zT ν
}− inf

f

{
fT (HTμ+DT ν)

}
= −G∗(−μ)− F ∗(−ν)− inf

f

{
fT (HTμ+DT ν)

}
=

⎧⎪⎨⎪⎩−G
∗(−μ)− F ∗(−ν) if HTμ+DT ν = 0,

∞ otherwise.

Therefore, the dual is given by

maximize
μ,ν

−G∗(−μ)− F ∗(−ν)
subject to HTμ+DT ν = 0.

Finally, using the following observations from [52],

F ∗(ν) =

⎧⎪⎨⎪⎩0 if |νi| ≤ λ, ∀i,
∞ otherwise,

G∗(μ) =
1

2
‖μ‖2 + μTg,

the dual of (A.1) is

maximize
μ,ν

−1
2‖μ‖22 − μTg

subject to |νi| ≤ λ, ∀i,
HTμ+DT ν = 0,

which completes the proof.



Appendix B

Proofs of Chapter 4

B.1 Case 1: ρk →∞
Exact Method (Algorithm 1)

Lemma 1. The subdifferential of the function f(x) = ‖x‖1 is a bounded set.

Proof. A vector d ∈ R
n is a subgradient of f at a point x ∈ R

n if

f(z) ≥ f(x) + (z− x)Td.

Let x be a component of x. Since |z| ≥ z for any z ∈ R, so if x > 0, then we have

|z| ≥ x + (z − x) · 1 and if x < 0, then |z| ≥ |x| + (z − x) · (−1). If x = 0, then

for any d ∈ [−1, 1], we have |z| ≥ |x| + (z − x)d. Therefore, if d is a subgradient of

f(x) = ‖x‖1, then any component of d is given by d = +1 if x > 0, d = −1 if x < 0, and

d ∈ [−1, +1] if x = 0. So, any subgradient d of ∂ ‖x‖1 is bounded by ‖d‖∞ ≤ 1 and so

the subdifferential ∂ ‖x‖1 is a bounded set.

Lemma 2. If yk is generated by Algorithm 1, then the sequence {yk} is bounded, and

‖yk+1‖∞ ≤ 1.

Proof. By optimality of uk+1, we have that 0 ∈ ∂uLρk(fk+1,uk+1,yk). So 0 ∈ ∂ ‖uk+1‖1−
yk+ρk(uk+1−Dfk+1). Since yk+1 = yk−ρk(uk+1−Dfk+1), we have yk+1 ∈ ∂ ‖uk+1‖1 .
So ‖yk+1‖∞ ≤ 1, by Lemma 1.
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Lemma 3. If yk+1 = yk − ρk(uk+1 −Dfk+1), then

−yT
k (uk+1 −Dfk+1) +

ρk
2
‖uk+1 −Dfk+1‖2 = 1

2ρk

(
‖yk+1‖2 − ‖yk‖2

)
.

Proof. By substitution.

Theorem 4. Suppose that ρk → ∞ as k → ∞. The sequence (fk,uk) generated by

Algorithms 1 converges to (f∗,u∗), where (f∗,u∗) is the optimal solution to the problem

minimize
f ,u

μ
2 ‖Hf − g‖2 + ‖u‖1

subject to Df = u,

Proof. First of all, note that

L(fk+1,uk+1,yk, ρk) = min
f ,u

L(f ,u,yk, ρk) ≤ min
Df=u

L(f ,u,yk, ρk)

= min
Df=u

(μ
2
‖Hf − g‖2 + ‖u‖1

)
� φ∗.

Therefore, using Lemma 3 we have

μ

2
‖Hfk+1 − g‖2 + ‖uk+1‖1 = L(fk+1,uk+1,yk, ρk)− 1

2ρk

(
‖yk+1‖2 − ‖yk‖2

)
≤ φ∗ − 1

2ρk

(
‖yk+1‖2 − ‖yk‖2

)
≤ φ∗ + o(ρ−1

k ), (B.1)

as {yk} is bounded.
To prove the other direction, using triangle inequality we have

μ

2
‖Hfk+1 − g‖2 + ‖uk+1‖1 =

μ

2
‖Hfk+1 − g‖2 + ‖uk+1 −Dfk+1 +Dfk+1‖1

≥ μ

2
‖Hfk+1 − g‖2 + ∥∥Df∗k+1

∥∥
1
− ‖uk+1 −Dfk+1‖1

≥ φ∗ − ‖uk+1 −Dfk+1‖1
= φ∗ − ρ−1

k ‖yk+1 − yk‖1
= φ∗ − o(ρ−1

k ). (B.2)

Therefore, as k →∞, ρk →∞ and hence μ
2 ‖Hfk+1 − g‖2 + ‖uk+1‖1 → φ∗. This
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shows that the limit f∗ of {fk} and the limit u∗ of {uk} attains the minimum value for

(4.12).

It remains to check the feasibility of (f∗,u∗). As uk+1−Dfk+1 =
1
ρk

(yk+1 − yk)

and {yk} is bounded, by letting k →∞ we have Df∗ = u∗. So, (f∗,u∗) is feasible.

Inexact Method (Algorithm 2)

Lemma 4. If yk is generated by Algorithm 2, then {yk} is bounded.

Proof. The proof is similar to that of Lemma 2

Lemma 5. Suppose that
∑∞

k=1
ρk+1

ρ2k
< ∞. Let (f∗k ,u

∗
k,y

∗
k) be the iterates generated by

Algorithm 1, and let (fk,uk,yk) be the iterates generated by Algorithm 2. The sequences

{f∗k}, {u∗
k}, {fk} and {uk} are bounded.

Proof. First, since (f∗k+1,u
∗
k+1) is the minimizer of L(f∗k+1,u

∗
k+1,y

∗
k, ρk), we have

L(f∗k+1,u
∗
k+1,y

∗
k, ρk) ≤ L(f∗k ,u∗

k,y
∗
k, ρk)

=
μ

2
‖Hf∗k − g‖2 + ‖u∗

k‖1 − y∗T
k (u∗

k −Df∗k ) +
ρk
2
‖u∗

k −Df∗k‖2 .

Substitute y∗
k = y∗

k−1 − ρk−1(u
∗
k −Df∗k ) yields

L(f∗k+1,u
∗
k+1,y

∗
k, ρk) ≤

μ

2
‖Hf∗k − g‖2 + ‖u∗

k‖1 − y∗T
k (u∗

k −Df∗k ) +
ρk
2
‖u∗

k −Df∗k‖2

=
μ

2
‖Hf∗k − g‖2 + ‖u∗

k‖1 − y∗T
k−1(u

∗
k −Df∗k )

+
ρk−1

2
‖u∗

k −Df∗k‖2 +
ρk + ρk−1

2ρ2k−1

∥∥y∗
k − y∗

k−1

∥∥2
= L(f∗k ,u

∗
k,y

∗
k−1, ρk−1) +

ρk + ρk−1

2ρ2k−1

∥∥y∗
k − y∗

k−1

∥∥2 .
Since {y∗

k} is bounded and
∑∞

k=1
ρk+ρk−1

ρ2k−1
≤ 2
∑∞

k=1
ρ2k

ρk−1
as ρk is increasing, so the

hypothesis implies that the sequence L(f∗k+1,u
∗
k+1,y

∗
k, ρk) is bounded.

Now, note also that

μ

2
‖Hf∗k − g‖2 + ‖u∗

k‖1 = L(f∗k ,u
∗
k,y

∗
k−1, ρk−1)− ρk + ρk−1

2ρ2k−1

∥∥y∗
k − y∗

k−1

∥∥2 .
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Since the terms on the right hand side are bounded, μ
2 ‖Hf∗k − g‖2 + ‖u∗

k‖1 is also

bounded. Thus, {u∗
k} and {f∗k} must be bounded.

The proof of {fk} and {uk} being bounded is similar: replace f∗k by fk and u∗
k by

uk, we arrive the same conclusion.

Lemma 6. Let ŷk = yk−1 − ρk−1(uk−1 −Dfk), then the sequence {ŷk} is bounded.

Proof. Let ŷk+1 = yk − ρk(uk −Dfk+1). Consider the optimality of fk+1, we have that

0 ∈ ∂fL(fk+1,uk,yk, ρk). So 0 ∈ μHT (Hfk+1 − g) + DTyk − ρkDT (uk −Dfk+1), and

hence DT ŷk = −μHT (Hfk+1 − g). Since {fk} is bounded, the right hand side is also

bounded. Therefore, DT ŷk has to be bounded. As D is a finite difference operator, ŷk

is bounded too.

Theorem 5. If
∑∞

k=1
1
ρk
< ∞,

∑∞
k=1

ρk+1

ρ2k
< ∞ and limk→∞ ρk(uk+1 − uk) = 0, then

(fk,uk) converges to (f∗,u∗).

Proof. Since uk+1 −Dfk+1 = ρ−1
k (yk+1 − yk), and {yk} is bounded, we have

lim
k→∞

uk −Dfk = 0,

and so (fk,uk) converges to a feasible solution.

Next, observe that ŷk+1 = yk−ρk(uk−Dfk+1) and yk+1 = yk−ρk(uk+1−Dfk+1).

So ŷk+1 − yk+1 = ρk(uk+1 − uk), and hence ‖uk+1 − uk‖ = ρ−1
k ‖ŷk+1 − yk+1‖. By

boundedness of ŷk+1 and yk+1, we have

∞∑
k=1

‖uk+1 − uk‖ ≤M
( ∞∑

k=1

ρ−1
k

)
<∞,

for some constant M . By the hypothesis that
∑∞

k=1
1
ρk

< ∞, so ‖uk+1 − uk‖ → 0 as

k →∞. So {uk} is Cauchy, and has a limit u∗. Then by limk→∞ uk −Dfk = 0, we have

{fk} is also Cauchy and has a limit f∗. In addition, since u∗ = Df∗, (f∗,u∗) is feasible.

Last, we need to check if (f∗,u∗) attains a minimum for (4.12). As the function

f(x) = ‖x‖ is convex, and for any convex function we have f(z) ≥ f(x) + (z− x)Td for

any d ∈ ∂f(x), so

∥∥u∗
k+1

∥∥
1
≥ ‖uk+1‖1 + (u∗

k+1 − uk+1)
Tyk+1,
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because yk+1 ∈ ∂ ‖uk+1‖1. Also,

μ

2

∥∥Hf∗k+1 − g
∥∥2 ≥ μ

2
‖Hfk+1 − g‖2 + (f∗k+1 − fk+1)

T
(
μHT (Hfk+1 − g)

)
=
μ

2
‖Hfk+1 − g‖2 + (f∗k+1 − fk+1)

T (−DT ŷk+1)

=
μ

2
‖Hfk+1 − g‖2 − [D(f∗k+1 − fk+1)]

T ŷk+1.

Therefore, by substituting ŷ∗
k+1 = yk−ρk(uk−Dfk+1) and y∗

k+1 = y∗
k−ρk(u∗

k+1−Df∗k+1),

we have

μ

2
‖Hfk+1 − g‖2 + ‖uk+1‖1

≤ μ

2

∥∥Hf∗k+1 − g
∥∥2 + ∥∥u∗

k+1

∥∥
1
+ [D(f∗k+1 − fk+1)]

T ŷk+1 − (u∗
k+1 − uk+1)

Tyk+1

=
μ

2

∥∥Hf∗k+1 − g
∥∥2 + ∥∥u∗

k+1

∥∥
1
+ [D(f∗k+1 − fk+1)]

T [yk − ρk(uk −Dfk+1)]

−
(
y∗
k − y∗

k+1

ρk
+Df∗k+1 − uk+1

)T

yk+1

=
μ

2

∥∥Hf∗k+1 − g
∥∥2 + ∥∥u∗

k+1

∥∥
1
+ ρk[D(f∗k+1 − fk+1)]

T (uk+1 − uk)

+ ρ−1
k (y∗

k+1 − y∗
k)

Tyk+1 − ρ−1
k (yk+1 − yk)

Tyk+1.

By Theorem 4, μ
2

∥∥Hf∗k+1 − g
∥∥2+∥∥u∗

k+1

∥∥
1
→ φ∗. The next term approaches zero

because {f∗k+1} and {fk+1} are bounded, and by assumption that ρk(uk+1 − uk) → 0.

The next two terms also vanish because of the boundedness of {yk} and {y∗
k}. Therefore,

we have

μ

2
‖Hf∗ − g‖2 + ‖u∗‖1 ≤ φ∗,

and so the result is proven.

B.2 Case 2: ρk → ρ∗, ρ∗ <∞
Theorem 6. Suppose that ρk → ρ∗ as k → ∞, where ρ∗ < ∞. The sequence (fk,uk)

generated by Algorithms 1 and Algorithm 2 converges to (f∗,u∗), where (f∗,u∗) is the
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optimal solution to the problem

minimize
f ,u

μ
2 ‖Hf − g‖2 + ‖u‖1

subject to Df = u,

Proof. The update scheme states that: if ‖uk+1 −Dfk+1‖ ≥ α ‖uk −Dfk‖, where 0 <

α < 1, then ρk+1 = ρkγ for some γ > 1. So {ρk} is an increasing sequence. By

hypothesis, ρk → ρ∗ < ∞, so {ρk} must be bounded. Therefore, there exists K such

that ρk = ρ∗ whenever k > K.

Now, for any k > K, it remains to show that (fk,uk) generated by Algorithm 1

and Algorithm 2 converges to (f∗,u∗), for fixed ρ∗. In this case, since ρ∗ is fixed, the

proof follows from [33].
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Proofs of Chapter 7

C.1 Proof of Theorem 2

Proof. Let Ek = diag{0, . . . , 1, . . . , 0} be a diagonal matrix with the (k, k)-th entry

being 1. Using Ek, we can express H as a sum of its circulant components as H =

H1E1 + . . . +HnEn. Taking the conjugate transpose and multiplying with H yields

HHH =
∑
i,j

EH
i HH

i HjEj. (C.1)

Let u be the eigenvector associated with λmin(H
HH). By multiplying uH and u on both

sides of (C.1), the (i, j)-th term in the sum is

uH(EH
i HH

i HjEj)u = uHEH
i FHΛ∗

iFF
HΛjFEju

≥ uHEH
i FH (|λmin(Λ

∗
i )||λmin(Λj)|I)FEju

= uHEH
i FH (|λmin(Hi)||λmin(Hj)|I)FEju

= |λmin(Hi)||λmin(Hj)|uHEH
i FHFEju

=

⎧⎪⎨⎪⎩|λmin(Hi)|2|ui|2, if i = j,

0, if i �= j,

because FHF = FFH = I, and EH
i Ej = 0 if i �= j. Here, ui is the i-th element of u.

Note that the first inequality holds because the eigenvalues of a Gaussian point spread

function are real and nonnegative.
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Therefore, the smallest eigenvalue of HHH is

|λmin(H
HH)| ≥

n∑
i=1

|λmin(Hi)|2|ui|2

≥
(
min
i
{|λmin(Hi)|2}

) n∑
i=1

|ui|2

= min
i
{|λmin(Hi)|2},

because the eigenvector u has unit norm so that
∑n

i=1 |ui|2 = 1. Thus, we have

|λmin(H
HH)| ≥ mini

{|λmin(Hi)|2
}
.

C.2 Proof of Corollary 2

Proof. Let u be the eigenvector associated with the minimum eigenvalue of HHH +

αDHD. It can be shown that

∣∣λmin

(
HHH+ αDHD

)∣∣ =
∣∣∣∣∣∣uH

⎛⎝ n∑
i,j=1

EH
i HH

i HjEj + αDHD

⎞⎠u

∣∣∣∣∣∣
≥

n∑
k=1

λmin

(|ΛHk |2 + α|ΛD|2)uHEH
i FHFEju

≥ min
k

{
min
j

{
|λHk

j |2 + α|λDj |2
}}

.



Appendix D

Proofs of Chapter 8

Proposition 2. Suppose that g[−1] and g[−2] are bounded, and hence g[0] = 2g[−1] −
g[−2] is also bounded. g[n] satisfying the condition g′[n] = 1

ng
′[n− 1] has the recursion

g[n] =

(
1 +

1

n

)
g[n − 1]− 1

n
g[n− 2], for n > 0, (D.1)

and g[n] is bounded for all n.

Proof. Since g′[n] = g[n]− g[n− 1], g′[n] = 1
ng

′[n− 1] implies g[n]− g[n− 1] = 1
n(g[n −

1]− g[n− 2]). By rearranging the terms we have (D.1). The boundedness can be proved

by induction: g[1] and g[2] are bounded, because g[0], g[−1] are bounded. Assume that

g[k] and g[k + 1] are bounded, then by triangle inequality |g[k + 2]| ≤
(
1 + 1

k+2

)
|g[k +

1]|+ 1
k+2 |g[k]| is also bounded.

Proposition 3.

‖(α ∗ hF ) · (1− α ∗ hF ) ·Δf̂B‖ ≤ ‖(1− α ∗ hF ) ·Δf̂B‖,

where the norm ‖ · ‖ is Frobenius-norm.

Proof. Note that for each pixel Δf̂B(i, j), |(α ∗ hF )(i, j) · (1− α ∗ hF )(i, j) ·Δf̂B(i, j)| ≤
(1 − α ∗ hF )(i, j) · Δf̂B(i, j)| because 0 ≤ (α ∗ hF )(i, j) ≤ 1. Summing the squares of

individual elements completes the proof.
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