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Context-Sensitive, Distributed, Variable-Representation
Category Formation®

Mirsad Hadzikadic and Paul Elia"™

Department of Computer Science
University of North Carolira
Charlotie, NC 28223

Abstract

This paper describes INC2, an incremental category for-
mation system which implements the concepis of family
resemblance,  contrast-model-based  similarity, and
context-sensitive, distributed probabilistic representation.
The system is evaluated in terms of both the structure of
categories/hicrarchies it generates and its categorization
(prediction) accuracy in both noise-free and noisy
domains. Performance is shown to be comparable to both
humans and existing learning-from-example systems,
even though the system is not provided with any category
membership information during the category formation
stage.

Introduction

The issues of category formation and categorization
represent an important research topic due to the fact that
categorics lie at the core of our thought, perception,
speech, and action. Researchers from several diverse dis-
ciplines (psychology, philosophy, linguistics, anthropol-
ogy, and computer science) actively work in this area.
Computer science, in particular, offers wealth of results
under the common term of concept formation.

Fisher & Langley (in press) describe concept forma-
tion as the incremental unsupervised acquisition of
categories. A system which can accomplish this task can
bc used both as an aid in organizing and summarizing
complex data and as a retrieval system which can predict
properties of previously unseen objects. Such a system
will be useful in domains where knowledge is incomplete
or classifications and/or human experts do not exist.

This paper describes INC2, an incremental concept
formation system which combines the effectiveness of
similarity-based learning methods (computer science)
with the plausibility of the modified contrast-model
(psychology) and family-resemblance (philosophy)
theories. The system uses a context-sensitive, distributed
probabilistic represcntation to store the knowledge about

" This work was supported by a grant from the UNCC, College
of Engineering.
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categories, their descriptions, and members. The system
has been evaluated in the domains of soybean discase,
breast cancer, and primary tumor cases. When compared
to humans and existing learning-from-examples systems,
INC2 shows comparable performance in terms of predic-
tion accuracy.

INC2

INC2 shares the object/category representation formalism
with its predecessor, the INC system (Hadzikadic & Yun
1989). Also, they both incrementally build a hierarchy
(tree) of disjoint categories (although an object may
match descriptions of more than onc category) in an
unsuper‘sed fashion. That, however, is where the simi-
larities end. We will now concentrate on the description
of the INC2 system.

Representation

As already mentioned, INC2 builds a hierarchy of non-
disjoint category descriptions. The leaves of the hierar-
chy arc objects (singleton categories). The root of this
hierarchy has associated with it a description which is a
summary of all descriptions of the objects seen by the
system to date. As one traverses the hierarchy, downward
pointers lead to nodes with more specific descriptions,
while upward pointers lead to nodes with more general
descriptions.

A description of each category C is defined as a set of
features f (attribute-value pairs). Each feature has a con-
ditional probability p(f |C) associated with it. Thus,
representing the color feature of red apples would take
the forma (color red 0.25). The 0.25 means that
members of this category are red 25% of the time. Con-
sequently, singleton categorics will have probabilities
cqual to 1.0. In addition to nominal attributes, INC2
supports the structural ones as well. Representing a
structural fact such as the fact that object a is inside
object b would take the form (contains (b a) 1.0).
Finally, INC2 supports structured domains, i.e.,
(shape triangle 1.0) will match (shape square 1.0), pro-
vided th¢ knowledge that both triangles and squares arc
specializations of polygons.



The notion of probabilistic concept representations
was introduced by Smith & Medin (1981). However,
since members of a given category may reside in distinct
portions of the hicrarchy, the adopted representation for-
malism is referred to as distributed probabilistic concept
hierarchies (Fisher & Langley in press).

Family Resemblance

In addition to its features and hierarchical pointers, each
catcgory description contains an estimate of its cohesive-
ness given in the form of family resemblance. Family
resemblance, first advanced by Wittgenstein (1953), is
defined here as the average similarity between all possi-
ble pairs of objects in a given category. More formally,
we define the family resemblance FR of a given
category, C, to be

2 [s(ab)+s(b.a))

FR(C)= 22 - [3]

where a # b, a and b arc members of C, s(a,b) is any
similarity function defined for two objects described with
feature sets, n is the number of childrjn of the node

associated with the category C, and | 4 | is the number

of distinct two-element sets of objects in C.

We interpret family resemblance as a measure of the
cohesiveness of a category. To save processing time,
INC2 compares pairs from the children of C rather than
from all the objects stored in the subtree headed by C to
approximate the family resemblance for a given category,
C. A special case arises for categories which do not
have any pairs, namely singleton categories. The value
we used for the family resemblance of a singleton
category is the family resemblance of its least compact
sibling. If there are no siblings, the family resemblance
of the parent is used instead. In essence, this means that
two objects will form a new category if their similarity is
greater than either the average similarity associated with
the least compact sibling or the average similarity
between all pairs of objects within the given context
(assuming that no other category represents a better host
for the object).

Similarity Function

The similarity function s used by INC2 represents a vari-
ation of the contrast model (Tversky 1977) which defines
the similarity between an object and a category as a
linear combination of both common and distinctive
features. Our modification of the contrast model includes:
(a) eliminaton of a referent since comparisons take place
between nodes at the same level of the hierarchy, (b)
consequent introduction of the symmetricity property,
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thus reducing the number of comparisons needed by
50%, and (c) normalization of the function so that the
values fall into the (-1.0, 1.0) range, with 1.0 denoting
identical objects/categories and -1.0 indicating com-
pletely dissimilar ones. The new function is now for-
mally defined as

A-a~p

siA.B)= A+oa+p

my X Z p(fw IA) + mgxz p(fu lB)

f_,\,g fu

my+mg

a=my X3 p(falA)
Ia

B=mg x 3 p(fs!B)
fa

where A and B are (possibly singlclon) categories, A
represents the contribution of the common features, while
o and B introduce the influence of the features of A not
shared by B and vice versa, respectively, my, is a
number of objects stored under the node associated with
the category A, mg is similarly interpreted for the
category B. fap is the set of features shared by A and
B, f4 is the set of features present in the description of
A but not B, and fp is the set of features present in the
description of B but not A.

Operators

INC2 uscs four operators to guide the category formation
process: creale, extend, merge, and delete. Create forms
a new category for an object found to be dissimilar to all
examined categories, while extend adds a new object to
the most similar category found.

Merge unites two or morc catcgorics at the same level
in the hierarchy that are found to be similar 10 a new
object to form a new category. The object is then recur-
sively classified with respect to the category which max-
imizes ihe increase in its cohesiveness upon incorporat-
ing the opject.

When the family resemblance of a given category is
less than the family resemblance of its parent, that
category does not represent a proper specialization of its
parent. Such a sitwation is likely to occur in noisy
domains upon application of the merge operator. The
delete operator rectifies this problem by removing the
category and promoting its specializations.



Algorithm

Figure 1 presents the classification procedure of INC2. It
implements a hill-climbing strategy which encourages
advancement toward the maximal improvement of the
hicrarchy as measurcd by the increase in the family
resemblance of every candidate host category.

The algorithm can be paraphrased as follows. To
begin, pass to the procedure both an object, a, and the
root of the hierarchy, C. The first action is to update the
description of the category C based on the description of
the object a. Next, find the change in the family resem-
blance measures (AFR) that would result from tem-
porarily placing a in each of C’s specializations (sub-
categories).

If only one subcategory experiences improvement (an
incrcase in its family resemblance measure), then either
extend this subcatcgory (if singleton) or call the
classification procedure recursively on a and that sub-
category, the besthost. If two or more subcategories
experience improvement, then find the subcategories
which are at least as similar to a as the family resem-
blance of C, ie., those subcategories which are more
similar to a than the degree of compactness in the given
context. These categories are merged together to form a
new category, with a continuing the classification pro-
cess recursively with respect to the new best host (max-
imizing the increase in its family resemblance). If no
subcategory experiences improvement, then a is unique
and a ncw singleton category is created.

Once a home for a is found and all category descrip-
tions affected have been updated, the system updates the
family resemblance mcasures of the catcgories on the
path from a to the root.

Classify(a,C)
Update the description of the category C using a.
Compute AFR for cach of C’s subcategories.
IF a single subcategory (besthost) has a positive AFR
THEN

IF the best host is singleton

THEN call Extend(a, best host)

ELSE call Classify(a, best host)

ELSE
IF many subcatcgories have a positive AFR
THEN
(a) find the subcategories which are at least as
similar to a as the FR of the parent category
(b) call Merge(a, similar subcategories)
(c) compute the description of the new category
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(d) determine the subcategory (best host) that
maximizes AFR

(¢) call Classify(a, best host)

ELSE

(no subcategory has a positive AFR)
call Create(a) (create a ncw
category for a)

Update the FRs of the categories on the path from a to

the root.

IF a merge was done

THEN
search that subtree for any class with a FR less
than the FR of its parent, deleting if found, pro-
moting its children one level higher, and recomput-
ing the FR of the parent of the deleted category.

singleton

Figure 1: The classification algorithm.

Figure 2 presents the retrieval procedure of INC2. We
begin by passing the procedure an object a and the root
of the hicrarchy. The next step is to compute the similar-
ity between a and each of C’s subcategories. Then, the
procedure is called recursively with the subcategory that
maximizes the similarity function. The process stops
after reaching a singleton category. Note that the
retrieval procedure utilizes the similarity function rather
than the concept of family resemblance since the latter is
needed mainly for plausible clustering of objects.

Retrieve(a,C)

IF C is a singleton category
THEN rcturn C

ELSE

(a)

compute the similarity between a and all the sub-
categorics of C

(b) find the subcategory (best candidale) that maxim-
izec the similarity
(c¢) call Retrieve(a, best candidate)

Figure 2: The retrieval algorithm.

Drop Threshold

Although it is not specified in the algorithms, both the
classification and retricval procedures rcly on the drop
threshold. This threshold allows for category descrip-
tions to be cither probabilistic or logical. It can be set
between 0.0 and 1.0 and means that any feature which
falls below this threshold in conditional probability
should be dropped from the description of the given
category. A valuc of 1.0 for this threshold would yield a
logical category description.

However, the nature of the classification process calls
for a dynamically adjustable threshold rather than a fixed



one. For example, at the top level of the hierarchy all
featurcs are important no matter how low their probabili-
tics might be, duc to the potential noise in object
descriptions as well as the diversity of objects in the
domain. Therefore, the drop threshold should be set
close to 0.0. At the lower levels of the hierarchy, how-
ever, certain patterns have been detected, resulting in
high conditional probabilities for 'participating features’
and, consequently, lower probabilities for the ones not
significantly present in those patterns. However, since
all categories at the lower levels have few members, all
the features found in their descriptions will have rela-
tively high conditional probabilities (1 out of 2 still gains
the probability of 0.5). To avoid the interference of
unimportant features with the retrieval process, the drop
threshold should be set close to 1.0. The intermediate
categories will, then, require the drop threshold some-
where between 0.0 and 1.0, depending on the level of the
hicrarchy (the lower the level, the higher the drop thres-
hold).

In order to alleviate this problem, we rely on family
resemblance to provide an estimate of the drop threshold.
As we stated earlicr, family resemblance can be inter-
preted as an estimate of the category compactness. It is
naturally close to 0.0 at the root (summarizing the whole
universe) and to 1.0 at the leaves. Therefore, during both
classification and retrieval INC2 sets the drop threshold
to the value of the family resemblance of the parent
category. It increases with the object traversing the
hierarchy downward.

This dynamically adjustable drop threshold and the
fact that the expand, merge, and delete operators depend
on the family resemblance of the parent category (as
well as the candidate subcategory’s siblings in the case
of merge) represent two important features introduced by
INC2. As a result, INC2 performs a context-sensitive
classification/retrieval due to its adaptive behavior that
changes from level to level of the hierarchy. In that pro-
cess, consequently, INC2 uses different representations to
describe objects/catcgories at different levels of the
hierarchy, possibly moving from the probabilistic
representation (drop threshold = 0.0) at the top level to
the logical one (drop threshold = 1.0) at the leaves.

Performance Evaluation

The performance of INC2 was evaluated in the domains
of soybean disease, breast cancer, and primary tumor
cases. Although a true expert in these domains would
have access to much richer data, we show that the
knowledge representation and algorithm used by INC2
yield a useful hierarchy of categorics. The soybean
disease domain was selected as a representative of
noise-free domains, while the breast cancer and primary
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tumor cases included a lot of data with incorrect or miss-
ing values (a noisy domain). In each experiment, the
information concerning the ideal category for a given
object was not given to the system and training sets were
randomly both selected and ordered.

The soybean discase domain consisted of forty-seven
cases with four idcal categories represented. A high
number of features used to describe the cases were com-
mon to all forty-seven cases, making the domain very
compact. Training sets of sizes five o twenty-five in
increments of five were selected randomly from the
domain. For assessing prediction accuracy (determining
category-membership for previously unseen objects),
twenty cases were randomly sclected from the set of
remaining cases. Table 1 shows the range, mean, and
sample standard deviation prediction accuracies for five
experiments per training set size.

Training Size | Range | Mean | Sample Sid.
#) (%) (%) Deviation
5 75-95 82 104
10 95-100 98 2.7
15 95-100 99 22
20 95-100 99 22
25 95-100 99 22

Table 1: INC2’s prediction accuracies for five experi-
ments per training set size in the soybean disease
domain.

With four ideal categories in the soybean disease
domain, there is a 25% chance of simply guessing the
correct diagnosis. INC2’s prediction accuracy was con-
sistently above chance, even at low levels of experience.
From the results summarized in the table 1 it is obvious
that INC2’s performance improves with experience and
that it needs a small portion of objects from a domain to
make a plausible decision with respect to category
membership of previously unseen objects.

The breast cancer domain' (prediction of cancer
recurrence five years later) consisted of 286 cases with
two ideal categories represented, yes and no. The
domain itself can be characterized as very noisy. A total
of nine featurcs were randomly missing from the 286
cases, with no more than two features missing from any
one case. There were cases from two different
categorics bearing the same exact description. Five spe-
cialists> were presented this data and then tested for
diagnostic accuracy. They were correct 64% of the time.

!Data from this domain were provided by the Institute of Oncol-
ogy of the University Medical Center in Ljubljana, Yugoslavia.
he specialists were [rom the Institute of Oncology, Ljubljana.



The other oncology-related example, the primary
tumor domain' (prediction of tumor locations), consisted
of 339 cases with 20 ideal categories represented. A total
of 224 features were randomly missing from the 286
cases. Once again, there were cases from two different
categories having the same exact description. Four inter-
nists and four specialists’ were tested for diagnostic
accuracy. Internists were correct 32% of the time, spe-
cialists 42%.

Since the results obtained in the soybean disease
domain suggest that 25% of the total number of objects
in the domain is sufficient for estimating a maximum
achievable performance by the system, we have decided
to use 25% cases for training and the remaining 75%
cases for prediction. This is in sharp contrast with other
learning systems which used 70% of the objects for
training and the remaining 30% for prediction.

Table 2 presents the prediction accuracies for two
learning-from-examples systems (AQ15 [Michalski et al
1986] and Assistant-86 [Cestnik et al 1987]), human
experts, and INC2. Note that in a system which learns
from examples, training cases are associated with the
correct response, and the goal of the system at that point
is o find a set of rules which will cover that data and be
useful for classifying previously unseen objects.

System Breast Cancer | Primary Tumor
(%) (%)
AQlS5 66 39
Assistant-86 78 44
INC2 69.2 30
Human Experts 64 42

Table 2: Mean prediction accuracies for the oncology
domains. The INC2’s accuracy is obtained by averaging
values achieved in five runs on randomly chosen sets of
objects.

There is a 50% chance of simply guessing the correct
diagnosis for the brecast cancer domain and 5% for the
primary tumor domain. INC2’s prediction accuracy was
shown to be significantly above chance. Furthermore,
INC2 compares to both human experts and learning-
from-examples systems given the same task (significantly
better in the breast cancer domain than in the primary
tumor domain). This is despite the fact that INC2 is
never given any help from a teacher.

In order to evaluate the effectiveness of the fixed-value
drop threshold compared to its variable, context-sensitive
alternative, we have carried out a sequence of experi-
ments in both soybcan and breast cancer domains, In the
soybean-disease experiments we fixed the size of the
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training sct to ten (25% of the complete sct), while vary-
ing the drop threshold from 0.0 to 1.0 with the increment
of 0.25. The results are summarized in the table 3.

Drop Range Mean
Threshold (%) (%)
0.00 90-100 98
0.25 100-100 100
0.50 95-100 98
0.75 90-100 98
1.00 95-100 99

Table 3: Prediction accuracies for the fixed-value drop
threshold in the soybean disease domain.

The results are obviously equal or slightly better than
that of the variable drop threshold. That is especially true
for the value of 0.25 with its perfect score. However,
when we applied INC2 with the drop threshold = 0.25 to
the breast cancer domain its prediction accuracy dropped
from 69.2% (for the variable drop threshold) down to
63.3%. To make sure that this was no accident we
checked the basic case (drop threshold = 0.0), where all
the features are taken into consideration at all times, and
recorded a similarly reduced performance, 63.6%. It
seems that the variable, context-sensitive drop threshold
provides a more robust alternative for noisy domains
while retaining a good performance in the noise-free
ones.

Finally, in order to estimate the effect of ordering of
objects on the resulting classification, we evaluated pred-
iction accuracies for five different random orderings of
the same set of objects. Table 4 presents the obtained
results.

Ordering | Accuracy

(%)
71.0
64.5
61.7
64.5
68.2

L=~
M-h-bJMl-&

Table 4: Prediction accuracies for five random orderings
of the set of input breast cancer cases.

If we compare the sample standard deviation for the
data presented in the table 4 (3.63) and for the data used
to derive the value reported for the breast cancer domain
for INC2 (4.53; Table 2), a decrease of 20%, then we
can conclude that INC2 represents a relatively robust
incremental category formation system with respect Lo



the ordering of input objects, which has been a major
drawback of all incremental systems. Furthermore, we
suggest that the performance of different hierarchies
rather than their form should be measured when evaluat-
ing the effect of object orderings on the system’s perfor-
mance.

Previous Work

Most existing category formation systems use hill-
climbing methods to find suboptimal clusterings of
objects to be characterized and create nondisjoint
category descriptions. Five existing systems which share
these features are COBWEB (Fisher 1987), CLASSIT
(Gennari, Langley, & Fisher 1989), UNIMEM (Lebowitz
1987), CYRUS (Kolodner 1984), and WITT (Hanson &
Bauer 1989).

QOut of the aforcmentioned incremental concept forma-
tion systems, INC2 is most similar to COBWEB. They
utilize similar distributed probabilistic concept represen-
tation formalism and operators. However, INC2 possesses
several features that significanly distnguish it not only
from COBWEB but from all other systems as well:

1. Family resemblance provides an estimate of category
compactness, which is used by INC2 to: (a) introduce an
objective, domain-adaptive, context-sensitive bias for
classification; (b) implement a variable, context-sensitive
representation of concepts, thus focusing only on impor-
tant features in the current context; (¢) measure an
improvement over a single category in addition to the
improvement over the whole level of the hierarchy, thus
utilizing finer-grained information to guide classification;
and (d) achieve a relative robustness with respect to
object orderings.

II. INC2 secks tree-structurcs that optimize not only the
top level of the hicrarchy, but the hierarchy as a whole.
II. It introduces no constraints on input objects (they
may be hicrarchies of objects on their own).

Conclusion

INC2 incrementally builds a hierarchy of category
descriptions based on a set of objects described with
nominal and/or structural attributes. The system is based
on our own interpretation of both family resemblance
and contrast model theories. It uses a context-sensitive
threshold to eliminate all irrelevant features from concept
descriptions, thus effectively introducing an adaptive,
context-dependent representation of concepts. Perfor-
mance has been shown to be comparable to both human
experts and leaming-from-example systems.

Future research will involve three directions: (a) reduc-
ing the number of steps required to compute family
resemblance for categories with many children, (b)
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enhancing the representation with continuous (linear)
attributes, and (c¢) performing further experiments in
order to objectively evaluate the INC2's results in the
light of both fan and typicality effects as well as the
structure of categories.
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