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FOREWORD

This report was prepared by the Institute of Engineering
Research, University of California, Berkeley, for Aerocjet-General
Corporation, Solid Rocket Plant, Sacramento, California . under
Purchase Order S$-605838-0OP. The work forms part of a general
study of mechanical properties of solid rocket propellants under
Contract AF33(600)-40314 S.A. No. 1, under the direction of
Dr. J. H. Wiegand, Head, Mechanical and Ballistic Properties
Laboratory.

The authors are indebted to Dr. J. L. Sackman, Assistant
Professor of Civil Engineering, for assistance in the conduct

of portions of the research leading to this report.
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Part I:

Part II:

ABSTRACT

Elastic and Viscoelastic Analysis of Orthotropic
Cylinders

The equations for linear orthotropic elasti-
city are presented with applications to the thermo-
elastic behavior of thick-walled cylinders. Ex~
amples are given to illustrate (1) the quantitative

effect of orthotropy and (2) a step by step tech-

~nique for solving bilinear elastic cylinders.

A solution method is given for orthotropic visco-
elastic cyliinders. This method does not depend on
the anisotropic correspondence principle. Tech-
nigques for asymptotic solutions are discussed. A
solution for the deformation of a nonlinear elastic
orthotropic cylinder subjected to internal and ex-

ternal pressure is also presented.

Bilinear Elasticity with Applications to Thick-
Walled Cylinders

A general bilinear elastic theory is developed.
Representation of solid propellant mechanical prop-
erties by a bilinear model is considered. The
ability of the theory to approximate the behavior
of a typical propellant is investigated insofar

as possible with limited experimental evidence.

Analytical solutions to several problems are presented

and numerical results are given.

iii



Part III:

Solution Method for Noalinear Elasticity Problems
with Applications to Thick-Wallied Cylinders

A solution scheme is presented for second order
elastic and thermoelastic problems. To illustrate

the solution method three problems occurring in

solid rocket motor design are extensively treated,

i.e., pressurization, temperature effects and verti-
cal slump of a thick-walled cylinder. To enable

one to obtain material properties in a simple man-
ner the uniaxial test is analyzed. The =zolutions
are in terms of a perturbation series; for a second
order theory, only the first two terms are needed.
The homogeneous portion of the system of equations
governing the behavior of each term in the series

is identical to the classical elastic equations and
the nonhomogenecus portion is a nonlinear function
of the previous term. The method is extended to
include those problems for which only an approximate

solution to the classical problem is available.

Three classes of material behavior are con-
sidered; compressible, incompressible and near-
incompressible. The latter class of material be-
havior is considered in order to refine the assump-
tion of incompressibility and to be able to examine

the validity of the incompressibility assumption.

In order to be able to consider thermal effects
for a mechanically incompressible material a deriva-
tion of the constitutive eguations for such a

material including thermal effects is presented.




Part IV: Thermal Deformation of Viscoelastic Materials

The effect of temperature on linear visco-
elastic stress analysis is investigated for mater-
ials which have a single time-temperature equiva=
lence function. Such materials have been classi-
fied as thermorheologically simple by Schwarzl

and Staverman.

. Starting from the constitutive equations in
integral form and modified for the effects of
temperature, the displacement equations of equili-
brium are derived in orthogonal curvilinear co=-
ordinates. The equations are then specialized for

o ’ axisymmetric temperatures which are constant in the
axial direction. Due to nonhomogeneity in the radial
direction, solutions to this class of problems may
not be readily obtained, consequently, subsequent
analysis concerns the solution of problems with
uniform temperatures varying only in time. The
time dependence is shown to be obtained by solving
a Volterra integral equation. The numerical tech-
nigue of solution proposed by Lee and Rogers 1is
introduced and numerical examples are presented for
a hollow cylinder rigidly encased at the outer
boundary and stress~—free at the inner boundary.
Finally, the solution of an infinite cylinder bonded
to a thin elastic case is formulated in terms of a
Volterra integral equation, again restricted to

space independent temperatures.
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INTRODUCTION

The continuing increase in the size of solid propellant
motors has placed a concomitant demand upon the analyst to
develop suitable techniques for predicting grain structural
integrity, In the absence, at present, of a general continuhm
theory bf‘mechanical behavior which is both realistic and |
tractable, it has been necessary to attempt to classify grain
structural integrity problems into categories and treat each
class of problems with less general, yet reasonably satisfac-
tory methods (in the engineering sense). To give examples we
cite the following.

In recent years, an extensive propellant-centered litera-
ture in linear tempefature—independent viscoelastic theory has
arisen. Recently, work on linear thermoviscoelasticity has
begun to appear. At the same time the importance of nonlinear
behavior has been recognized, and Rivlin-type elastic theory
has been applied to grain analysis. More recently recognition
has been given to the necessity for taking into account the
initiation of strain-induced anisotropy resulting from the de-
wetting phenomenon. Finally, the importance of introducing
appropriate failure criteria, as a companion to stress and
deformation analysis, has been noted.

This report, consisting of four parts, is but another con-
tribution to the "categorized" treatment of solid propellant
mechanics. It is hoped, however, that the ideas presented
will stimulate the development of a suitable nonlinear, non-
homogeneous, anisotropic viscoelastic theory for propellant

structural analysis.



PART T

ELASTIC AND VISCOELASTIC ANALYSIS
OF ORTHOTROPIC CYLINDERS

by

S. B. DONG



INTRODUCTION

Stress analysis of cylindrical grains within the frame-
work of linear isotropic elasticity and viscoelasticity has
received considerable attention to date. An extensive body of
information of this type has been reported by Williams, Blatz,
and Schapery [ 1 JJ. It is well-known, however, that filled
propellants evince substantially different mechanical behavior
in the presence of tensile stress fields than is found in com-
pressive stress fields. This effect is a result of the pre-
sence of voids and the pullaway of the binder from the filler
particles. Accordingly, a type of stress-induced anisotropy
is developed in the propellant, necessitating consideration
of anisotropic constitutive equations. The general problem
involves the solution of boundary value problems for each sub-
domain of the body, defined by a particular state of stress,
and the subsequent piecing-together of the solutions at common
interfaces. In each instance the solution required will be
that appropriate to an anisotropic body. The degree of stress-
induced anisotropy encountered is at most orthotropy, thus the
general discussion throughout this report will be restricted to
this form of anisotropy. The analysis of bodies with a greater
degree of anisotropy has been presented in C 2 Z1. Much of
the present work has been drawn from Lekhnitskii [C 3 -] who,
in addition to his own contributions, has summarized previous
work in the field.

In view of the viscoelastic behavior of solid propellants
under many circumstances, attention is drawn to the corres-
pondence principle, first proposed by Alfrey for incompressible
isotropic media [ 4 7] and generalized by Lee U 5 1. This
principle was later extended for anisotropic bodies by Biot
C 6 J. The forms of solution for many associated anisotropic
elastic problems, however, are not readily invertible to re-

cover the time-dependent viscoelastic response, although the



inversion of the solution for an orthotropic thick-walled cylin-
der has been demonstrated by Spillers [ 7 JJ. An alternative
method of solution is to begin with the viscoelastic field
equations and formulate a governing equation in both space
and time. This governing partial differential equation may
then be solved by a suitable technique. The investigation of
an orthotropic cylinder following this approach is discussed.
Due to a characteristically low rigidity in solid pro-
pellants, large deformations may be sustained under loading
and environmental conditions. Stress analysis of solids based
on a non-linear theory must be adopted to account for these
large deformations. A solution for the pressurization of an
elastic orthotropic thick-walled cylinder is presented to

illustrate the particular features of such an analysis.



LINEAR.ELASTI‘C ANALYSIS OF ORTHOTROPIC SOLIDS

1. Recapitulation of the Linear Thermoelastic Field Equations

for Orthotropic Solids with Temperature-Independent

Material Propefties

Since many solid propellant configurations involve
cylindrical geometries, the fundamental thermoelastic field

equations will be summarized in cylindrical coordinates.

Stress Equations of Egquilibrium

Bcr 1 BTre aTrz 0.~ 9g
o Tr e TSz tT ¢ *tR=O

31 do, ot 2T
ot ST do

T
Bz z rz

or Tr e to,t T t2=0

R
N
|~

where R, ©, and Z are body force components per unit of volume.

Strain-Displacement Relations

€=5u =5V+l5w
r dr 7Gz Sz r of
_13v _ u - 9w _ du
€9 T 36 + T vJ;z =3¢ T3z (1.2)
e = 9w - 1du _ ov ¥
z Oz Yo T ¢ 36 or r

where u, v, w are the components of the displacement vector



in the r, 6, z directions.

Strain Compatibility Equations'
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The constitutitive equation for a solid with cylindrical

orthotropy written in matrix form* is

* The individual matrices in Eg. (1.4) have been partitioned.
The null submatrices in the off diagonal positions of the
Sij matrix indicate that extensional effects occur indepen-

dently of shearing effects, i.e. they are uncoupled. For

more general forms of anisotropy such coupling does occur,

see, for example, [ 12 1.
6



The symmetric Sij

the material.

| - _ _ -
310 0 o ||% aT
|
|
3: O 0 O 09 oT
]
|
34 0 0 © OZ aT
LTI it IR e
:S44 0O 0O TQZ 0
|
:O 855 0 Trz 0
I
:O 0 866 Tre 0

matrix defines the elastic compliances of

(1.4)

Thermal effects are accounted for by aT, where

o is the coefficient of thermal expansion and T is the tempera-

ture change in the solid.

The temperature function T must satisfy the heat conduction

Thermal isotropy has been assumed.

equation for a given problem.

It is sometimes convenient to deal with the inverse form

of Eq.

The C. .
1]

material and are related to the Sij

(1.4) given by

11 19 clg;o 0 0 _—er - ot
12 C22 C23EO 0 O €g - aT
13 23 c33:0 0 0 |le, - aT

0 0 :c44 0 0 You

]

0 0 :o Cee O Yy

0 0 |0 0Cell Vg
(1.5) are called the elastic moduli of the

in Eqgq.

by a matrix inverse.

(1.5)



: -1
[Cij} = [Sijj ' (1.6)

Boundary conditions will be discussed in connection with

specific problems.

2. Axisymmetrically Loaded Cylinders

Consider a finite hollow circular cylinder whose inner
and outer radii are a and b, respectively. In the instance
this cylinder is loaded by a system of forces and subjected
to a temperature change, both of which are independent of the
generatrix, the three dimensional problem reduces to one of
plane strain. If, further, the cylinder is loaded axisym-
metrically, the dependent variables become independent of 8
and the governing equations become ordinary differential equa-
tions in the variable r. 1In the case of plane strain €, may

be taken as a constant:

€, = K (a constant) (2.1)

Therefore from the strain-stress relations (1.4) theré results

g = [K - SlBGr - 52309 - aT} (2.2)

The remaining normal components of strain become

S S.
13 13
€. =PBy,0,. +B,,0, + (1L - Z==)aT + ==~ K
r 1il7r 1276 833 833
(2.3)
SA- S
23 .23
€, =P, ,0 + B0, + (1 - ===)aT + === K
] 127r 2276 833 S35
S. .84
where B,. =g, --—=x333 (1,5 = 1,2) (2.4)
17 17 833



The relevant equilibrium and compatibility equations for

torsionless axisymmetry take the following form

0y = é%(rcr) (2.5)
¢ = é%(ree) (2.6)

From Egs. (2.5) and (2.6) with the help of Eq. (2.3), a dif-

ferential equation in terms of 0. can be formulated.

5 dzcr dcr
Byy ¥ 22 3By v gr * (Byy - Bpploy
(2.7)
S " S - S TS - S
_ le3 _ l}ar %g . L 13S 23}@T N L 13 _ 23} X
33 r 33 33
The boundary conditions for Eqg. (2.7) are
or(a) = hl
(2.8)
Or(b) = h2

where hl and h2 are prescribed constants.

By using Eg. (2.1l) in the stress-strain relations (1.5)
and the strain-displacement relations which, in the case of

torsionless axisymmetry, are

= du
€r T ar
(2.9)
S
€o T T

a governing equation in terms of the displacement u may be ob-

tained:



du 1 du _ u oo dar
. C +C c = - alCyy +Cyp ¥ C3)ay

(2.10)

‘ 1
B O‘l,cll T C13 7 Cop " C23]r T+ LC23 B C13}K

The boundary conditions are given by the displacement u
and the derivative of the displacement u. The exact expression
depends on whether a displacement or a stress boundary condition
is specified.

When a cylinder is pressurized internally and externally
and subjected to an extensional force at the ends, the govern-
ing equation (2.7) must be solved with the following boundary

conditions: on the lateral surfaces

Gr(a) = - p Gr(b) = - g (2.11)
where p and g are the prescribed values of the applied pres-
sures and on the ends
b
ZT/;r(r)rdr = P (a prescribed value) (2.12)

a

The solution to Eg. (2.7) is

S - S
Ur(r) = Clr 1-k + C2r 1+k + f(r) + 5 %é _2; ] K (2.13)
33'722 11
where
Bll
k = §~— (2.14)
22

and f(r) is the particular solution for the non-homogeneous
part of the differential equation for the terms involving T.

Cl and C2 are constants of integration. For brevity, let

10



- 5

S
13 23 K (2.15)

F(r) = f(r) +
S33(Byy = Byq)

Evaluating C, and C, from the boundary conditions (2.11) there

results

Eq + F(b)} bat - (p + F(aﬂabk

1T &)k - @)k
a b
(2.16)
[ p + F(a) labmk m>[q + F(b)] ba "k
C =
2 k k
E - @
a b
The remaining components of stress are
- -1-k -1+k da
Oe(r) = Clkr + C2kr + dr(rF(r)) (2.17)
1 N -1-k _ ‘ -1+k
Gz(r) = E;;{(ksz3 SlB)Clr (Sl3 + k823)C2r
(2.18)
- 5. L (rF) - 5..F + K - ar
23 dr 13

The value K may be found by substituting Eq. (2.18) into
the end boundary condition (2.12). If an explicit expression
for o, is known, the integral may be evaluated, giving an
algebraic relationship between K and P. As the temperature
field is not given explicitly, no attempt will be made here
to obtain a general relationship, since this step of the solu-
tion is straight-forward for a given problem.

The displacement u is found from the stress-strain-dis-

placement relations (2.3) and (2.9).

11



Wlr) = Cp By, = KByp)xr K 4 <oy, + KBy 4 523 -
+ S (rF) + B. (rF) + (L - E3—-2--31) oT (2.19)
Pop T gr(TF) + By (x S35 r -

The appearance of the independent variable r raised to
non-integral powers containing the elastic coefficients is
noteworthy, particularly with reference to the dependence of
the displacement and stress distributions on the elastic co-
efficients. This, of course, has additional implications with
respect to the solution of anisotropic viscoelasticity problems.

In the instance an orthotropic cylinder is subjected to
torsion the problem of determining the stress and displacement
distributions is exactly the same as that for the isotropic
case. The reciprocal of the compliance 844 takes the place
of the usual isotropic shear modulus. Since the solution of
the torsion of cylinders may be found in any standard strength
of materials text, no further consideration will be given here
as the transition from isotropy to orthotropy is straight-

forward.

3. Examples

a. Internal Pressurization af a Cylinder of Hexagonal
Material

Stress analysis of a thick-walled cylinder with hexagonal
material properties was conducted to assess the effect of this
particular kind of anisotropy which is characteristic of stress-
induced anisotropy for a pressurized propellant cylinder in
plane strain. The term hexagonal refers to a special form of
orthotropy in which two of the three elastic compliances, Sllﬂ
822, and 833y
directions, are identical. With this form of elastic symmetry,

corresponding teo radial, tangential, and axial

}_l
N



it is possible to reduce the number of independent elastic
compliances from nine (for orthotropy) to five, viz.: Sll’
822, 812, Sl3’ 8440 The parameters Slzy Sl3 are associated
with cross-effects while 844 is a shear compliance.

The values of the parameters adopted for the study are:

_ - L _ 1 . o=1 .
S11 7 %33 520 7 S22 T 300 7 13 © T080 ¢ S12 = Sos
(3
s S _s
k| = gii = 0.556 ; k, = Sliv: 0.278 ; K, = giﬁ
22 S92 22

The parameter E3 will be varied to obtain a family of curves.
This parameter is essentifially a measure of the cross-effect
between the r and ¢ or the z and 9 directions. No value was
assigned to 844 since it does not appear in the expressions
for the stresses given by Egs. (2.13), (2.17), and (2.18). A
plot of Oe(a) versus b/a for internal pressure only is shown
in Fig. (3.1). The close proximity of the family of curves
with E3 as a parameter discloses that the cross-effect hag a
negligible influence on the maximum stress for a particular
value of Elo Thus, 1t is seen that the major factor in the
difference between the maximum stress in the isotropic and

hexagonal cases is the parameter k the ratio of the radial

and tangential compliances. For Sélld propellants, which ex-
hibit stress-induced orthotropy, El 18 less than unity. Con=-
sequently, the maximum stress lies below that for an iso-
tropic cylinder for all values of b/a. The upper curve in
the figure, corresponding to El = 1.80 and ﬁZ == E3 = 0.90, is
included to show the effect of interchanging the values of

radial and tangential compliances.

b. Pressurization of a Cylinder with Stress-Induced
Hexagonal Material Properties

1)

When a cylinder 1is subjected to beth internal and external

13



pressure, the tangential stress 0y crosses over from tension to
compression at some radius between the values of b and a. If
the criterion for the change of values of the compliances is
taken at the instance when one principal stress goes from ten-
sion to compression, then it is possible to solve this problem
as two concentric cylinders, one of which is isotropic and one
with hexagonal material properties. The theory of bilinear
solids is presented in Part II of this report by Herrmann,
who discussed a number of classes of bilinear materials with
different cross-over criteria. The problem presented herein
is a special case in one of the classes discussed, where the
cross~-over point is taken to be zero stress.

The following steps are taken for the solution of this bi-

linear elastic problem:

(1) solve the following two boundary value problems:

isotropy
d20 . do .
ri 3 ri _
> Tt ar -0
dr
(3.2)
with
Ori(b) = -g OQL(X) = 0
and hexagonality
2
d~o do
2 rh rh _ _
Boor 1c2 t 3Byt gy f By m Pyg) 0 =0
(3.3)
with
Urh(a) = -p GGh(X) = ()
where X is the radius at which 0y Crosses over. In Egs. (3.2)

and (3.3), K and the thermal effects have been neglected.

The sclution for this step is

14



(3.4a)
b2 x, 2
gy (r) = ——2—9~—--§[<r) - 1] (3.4b)
x7 + Db
_ pa 1 xk %)~k
O () = - ESEE ST rL(r) &) ]
a
- - pa L X
= COSh[k - g]r cosh k 1n (r) (3.5a)
_ pak 1 ,x.k _ x/-k
Geh(r) (x)k + % k rL(r) (r) ]
a a
- —pak L sinh x 1n X (3.5b)
cosh[k 1n %] F
(2)

Determine the value of x by equating the radial stresses
of both sub-domains at the interface r

= X

Gri(X) =

Grh(x) (3.6)
Substituting Egs. (3.4a) and (3.5a) intoc Egq. (3.6) gives:
2
B - pa (3.7a)
x + Db < (§)k N (Ej_k
a a
or

pa(x2 + bZ)

quzx.cosh[% 1n Cfﬂ

The solution of the transcendental equatioh (3.7b) gives the
value of x. '

15
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In many problems of interest it is not the external pres-
sure ¢ which is prescribed, but rather a displacement boundary
condition. Hence it is necessary to relate the external pres-
sure to the displacement at the outer boundary. The displace-
ments for the individual sub-domains may be found from Egs.
(2.3) and (2.9).

2
_ gb r 2

* x + b
-k
k h
Pa [ Xy h X
u, (r) = Boy =B V() 7= (B, + kB, ) (D) ]
h 5 cgsh[% 1n (X ﬂL ¥y 22, 7127 'x 12, "h722, " 'r
(3.9)
where the subscripts h and 1 in the elastic coefficients dis-
tinguish them between hexagonal and isotropic properties. As
an example consider the outer case to be rigid, i.e. ui(b) = 0;
then from Eq. (3.8) there results
N B22i * S12i
— — (3"10)
b ﬁ22. BlZV
i i

Eg. (3.10) shows that for a rigid outer case, the value of

x/b is a constant, indicating that the value of x is independ-
ent of the ratio b/a and of the internal pressure (i.e., once
the cylinder is pressurized, a cross-over point is immediately
established and remains at that position as long as a pressure
is maintained). To determine g in terms of p, substitute Eq.
(3.10) into Eg. (3.7b).

+ Blzi

P2y P2
4= R Ty ’[B B }5 B
22 . - -
b cosh[kh 1n 2 5 6121] 22, Tleyytezy Tz
22, ~ Pz,

(3.11)

16



As a check, the displacements of both sub-domains must be the
same at the interface, ui(x) = uh(x)m Equating Egs. (3.8)

and (3.9) for r = x gives

Paa. Paa. * P12 P1a
q = Pra ‘ 1 ] 1 1[ h}
: b Poa. * Pip LBap = Bip J | Boy — Byy LBo
b costh In = = l} 1 1 * * +
h a/p - B '
22. 12.
1. 1
(3.12)

Comparing Egs. (3.11) and (3.12) shows that they are equal only
if

(3.13)

B =P
12, 12,

Eg. (3.13) shows that there are only three relevant elastic
constants instead of four in this type of stress-induced
orthotropy. This relationship is a natural consequence of the
cross-over criterion employed and may be seen more clearly

in the direct formulation of the constitutive equations for

a bilinear material as shown in Part II. Reflecting upon

Eg. (3.10) it is reasonable to expect that x should depend on

the elastic properties of both sub-domains.
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LINEAR VISCOELASTIC ANALYSIS OF ORTHOTROPIC SOLIDS

4. Correspondence Principle for Anisotropic Viscoelasticity

In linear isotropic viscoelasticity a useful analogy
exists for the solution of boundary value problems. The
correspondence principle has been repeatedly used for many
isotropic problems. Following this principle an associated
elastic problem with the proper boundary conditions in Laplace
or Fourier transform space is inverted to obtain the visco-
elastic response. This principle can be formally extended for

anisotropic solids by replacing the elastic constitutive equa-

tions, (1.4) and (1.5), by viscoelastic constitutive equations
k1l A ’
Oij = Qij €11 (summation on re- (4.1)

peated indices)

where Q?% is an operational tensor. Special forms of this
tensor appear in [ 6 JJ and C 8 1.

The Laplace transform of Egq. (4.1l) along with similar
transforms of the equilibrium and compatibility equations,
strain-displacement relations and boundary conditions are
necessary to complete the formal analogy.

Using the correspondence principle and by inverting term
by term the Mittag-Leffler expansion of the solution for the
associated elastic orthotropic cylinder, Spillers has recovered
the viscoelastic response U 7 7. 1In general the solution of
viscoelastic problems may not be obtained in this straight-
forward manner. Recall from the solution of the cylinder prob-
lem in Section 2 that the independent variable r appears raised
to a fractional power containing elastic coefficients. Al-
though the viscoelastic response was obtained directly from

the correspondence principle, the form of this solution seems
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to indicate that other orthotropic problems may not be readily
invertible. An alternative method of solution is applied to
the same orthotropic cylinder in the next section. The ap-~
proach, however, is valid for other orthotropic viscoelastic

problems.

5. Viscoelagtic Solution for the Pressurization of a Cvlinder

The problem of the pressurization of a cylinder is in-
tended to illustrate a method of solution which does not in-

volve the correspondence principle. The governing equation

in stress o.. Eq. (2.7), is
, 3%, do,
Paat 77 * 3Pt Tor f (Pop m Pl .
| | (5.1)
Si, = S > S, - S S, - 8
- [.;_%__M;;}ar o, [_;,%mwz;]w . [_ML;?_&}K
33 33 33 -
513543
where fB.. = 8 - 2212 are now viscoelastic operators. The

1] ij S35
material properties are also assumed temperature independent.
The theory of viscoelastic materials with temperature-dependent
properties has been discussed by Muki and Sternberg [C 9 1 and
the thermal deformation of viscoelastic cylinders with such
materials properties is given in Part IV. The boundary and

initial conditions for Eg. (5.1) are

Ur(a,t) = - pH(t)

Gr(b,t) = - gH(t)

20



o (r,0) =0

r
(5.3)
Bcr
EE_(r”O) = 0
where H(t) is the Heaviside step function.
The solution of Eg. (5.1) is composed of two parts:
Gr(r,t) = Url(r,t) + Orz(r,t) (5.4)

where S0 is any arbitrary function chosen specifically to
satisfy boundary conditions, but, in general, not satisfying
the differential equation. Techniques of selecting this func-
tion for specific purposes will be discussed in the sequel.
Eq. (5.1) is thus recast in the following form with homo-

geneous boundary conditions:

326 dag
B r2 rl + B r rl + (B - B )or., = f(r,t) (5 5)
22 32 22" Or 22 117771 ’ .
where
S,3 = S S;4 = S S,, - S
f(r,t) = [“;é”g*—éé} ar %$-+ [—LQE_W_QQ}QT " [ l3S 23] K
v33 = r 33 33
(5.6)
2
2 o do
r” 9 r2 r2
with
O’rl(a,t) = 0
(5.7)
Orl(brt) = 0
00 _.(r,0)
O (£:0) = g =0 (5.8)

21




A separation of variables technique on the homogeneous

equation (5.5) is possible. Let
Urlh(r,t) = R(r)¥(t) (5.9)

Substitution of Eq. (5.9) into Egq. (5.5) leads to the follow-

ing two ordinary differential equations.

2
3 d°Rr 2 dr
r —5 + 3r” =— - ArR =0 (5.10)
dr2 dr
with
R(a) = R(b) = 0 (5.11)
and
LBll - (1 + X)ﬁzz]W(t) =0 (5.12)
with v(0) = L = o (5.13)

where A is a separation constant.

Eg. (5.10) with homogeneous boundary condtions (5.11)
is a Sturm-Liouville differential equation. From that system
of equations a complete set of characteristic functions and
the corresponding characteristic values may be generated. Any
arbitrary function in the variable r may now be expanded in
terms of this set of characteristic functions. The solution
to Eg. (5.10) 1is

R(r) = A (5.14)

Evaluating the constants Ay and A2 from the boundary conditions
leads to the following characteristic equation, the roots of

which are the characteristic values.
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N 1+x

a =
() 1 (5.15)
The characteristic values are
Tr2 2
A= - (1 + —5 (5.16)
n 2
Y
where
Y = 1ln % and n is an integer. (5.17)
The corresponding characteristic functions are
R =2 sin@® 15 L) (5.18)
n r Y a

The solution of Eq. (5.12) with homogeneous initial
conditions (5.13) is identically zero.

However, with the complete set of characteristic functions
at our disposal, the non-homogeneous term of Eg. (5.5) can be

expanded in an infinite series.

e ¢]

£(r,t) =ch(t)Rn(r) (5.19)
n=1
where b
c (t) = ;Tl‘-j&!f(r,t)Rn(r)rdr (5.20)
b
N2 =fRn2 rdr (5.21)
a

A particular solution may now be obtained using a mode

superposition method. Let

oG

91 % }: wn (t)Rn(r) (5.22)
P a=1 P
where wn (t) are undetermined coefficients. Substitution of

p

23




Egs. (5.22) and (5.19) into Eg. (5.5) gives .

o0 [es}

Pas ‘
anwnpRn + (1 - -B—-l—z)zp pR = ZCan (5.23)
n=1

Therefore the solutions to the typical equation in time gives
the coefficients of the series solution.
A Y (£) + (L - f_z‘_g)w () = C_(t) (5.24)
n “n n °

p 5ll P

6. Asymptotic Solutions

The selection of 0., can be made judiciously to minimize
the error in using only a finite number of terms of the series

for 0. For the purpose of discussion consider a Maxwell-

1 °
p
type response. If a solution for early times is desired, o

r2
should be taken as the elastic response multiplied by the
Heaviside unit function. Since the major contribution at early
times is attributed to the elastic response, the series solu-

tion for O, will represent only the deviation from this effect

due to visciglastic properties of the body. These viscoelastic
effects will be small in comparison to 0o hence early termina-
tion of the infinite series will incur no major error in the
total solution.

On the other hand, if a long time solution is needed,
9.9 should be taken as the steady creep solution in the case
of a Maxwell-type response. To obtain such an expression, it
is necessary to substitute the viscosity coefficients in place
of the elastic coefficients in the differential equation and

seek a solution. This steady creep solution represents the

24



bulk of the total response at very long times, and consequently

the series Orl in this case is the deviation from this effect
p

due to elasticity of the body. Again terminating the infinite
series early will incur no major error in the total response.

The roles of 9.5 and o1 for early and long times are thus

interchanged. P

The foregoing discussion on the selection of the function
to satisfy boundary conditions need not be restricted to
Maxwell-type responses. The qualitative approach used pre-
viously can be achieved systematically by examining the asymp-
totic forms of the constitutive equations. When a form of the
constitutive equations is given, it is possible to predict the
behavior of a solid at early or long times by reducing these
equations to their asymptotic forms. A procedure of accomp-
lishing this is to examine the Laplace transform of the con-
stitutive equations. If t is the time variable and s is the
transform variable, then as s — ®, t — 0 and as s - 0, t - o,
Performing the limiting process gives the asymptotic forms of
these equations for early and long times. It is then possible
to use this simplified form of the equations to obtain an
asymptotic solution which will be used for O 5 Precaution
should be taken in arriving at sensible relationships, i.e.,

for a limiting elastic response, a stress-strain relation should

be obtained and for a limiting creep condition a stress-—strain

rate relation should be obtained.
A similar asymptotic process may be applied to the solution

for 0.1 ° A method for solving Eg. (5.24) is by Laplace trans-

p
form. The ultimate form of a typical equation for the particu-

lar value of the parameter Kn prior to the Laplace inversion is

Ytice
a sm + a s +. +a
1 m m-1 S 7o st
271 ‘ ©
~Y_iOG st b Sm + b S S L & o
m m=1 o

ds (6.1)
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It is possible to obtain an inversion for this expression by
the method of partial fractions. However, for a high degree

polynomial, the work involved is quite cumbersome. Since S1

P
represents only a small portion of the total response for a

selected time interval, it is justifiable to use an approximate
solution. Recall that s -5 0 and s = ® is equivalent to t -» o
and t — 0, respectively; the limiting process may again be

applied. Consider the fraction

m | m=1
a,s +a  qs Foooot ag
' {6.2)
, m m=1
s b s + b .= + . +h
L m -1 o
As s - 0, the lower order terms a s alyugyboa bl”uo govern

the value of the fraction. Hence the higher order terms in s
may be neglected. The number of terms neglected depends on
the accuracy of the desired solution. As an example, neglect

all terms except a_ s a;, bo’ bl; then the asymptotic form is

1 o) (6.3)

Such an expression is easily invertible. ghould more accuracy

be needed, include a. and b2u The expression in this case is

2

17 0 (6.4)

which is still a relatively easy inversion. Such an argument

may be continued until the desired accuracy is attained.
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A similar argument may be used when s -»> ©@. The higher
order coefficients predominate and it is justifiable to neg-
lect the lower order terms. An example of this ésymptotic form

is

n-1 - n n-1 (6.5)

This expression is equivalent to Eq. (6.3) which was noted to
be readily invertible. For more accuracy additional terms must
be included. By the foregoing techniques, a fairly accurate
solution may be obtained with a minimum of computational effort.
Before eluding from this section attention is called to
some other approximate methods of Laplace transform inversion.
Schapery [C 10 J has developed techniques which are applicable
to stress analysis problems in guasi-static linear viscoelas-
ticity. To use these methods it is only necessary to have
knowledge of the associated elastic solution, either numerically
or analytically. The principles underlying these techniques
come from Irreversible Thermodynamics and a mathematical property

of the Laplace Transform.
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NON LINEAR ELASTIC ANALYSIS OF CYLINDERS
WITH CYLINDRICAL ORTHOTROPY

7. Fundamental Equations for Solids in Plane Strain Subijected
to Axisymmetric Loads

Tensor notation will be used in this section; the reader
is referred to C1l J for more details. Adopting suitable
convected coordinates

i :
x~ = (¢, 6, z) , i=1, 2, 3 (7.1)

the line elements in the undeformed and the deformed states

are, respectively

2 _ i..3
(dso) = gijdx dx

(7.2)

(ds)? = G, .dxtdxJ
i

where the metric tensors gij and Gij,are

F ‘ du, 2
1 0 0 (l+ag) 0 0
_ 2 _ 2 u, 2
gij = 0 r 0 Gij = 0 r (l+;) 0 (7.3)
0 0 1 0 0 1

The mixed form of the strain tensor is defined by

et = % (G k3 (7.4)

3 ik T 99

The strain-displacement relations are
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du , 1 du,2
dr + Z(dr) 0 0
i - u L2
0 0 0

According to Green and Adkins [ 11 7, the strain energy
density for curvilinear anisotropy must be expressed in terms
of the physical components of strain. In anisotropy it is
necessary to account for both the changes in geometry and in
the preferred directions of curvilinear anisotropy. For a
solid with cylindrical orthotropy, the strain energy density
may be expressed as |

3 1 1 3 2 3 %

B 1 2 2
W = W(el, e, €3, €, e. ey e}, e3 e,, e el) (7.6)

For a second order theory, the explicit form of W is

W = kl(ei)2 + k2 eieg + k3eieg + k4(e§)2 + k5e§e§
+ k6(e§)2 + k7eéei + k8e§ei + kgegeg + klo(ei)3
+ kg (e]) %e) + kpy(e) e + kp5(e) ey + kygle3)’ (7.7)
+kp5(e3) el kpg(e3) %e] + k4 () %e] + kpg(e3)’
* k19eie§eg + kzoeie;ef +kyeyele; + kjpe10503
+ kpgezezel + ky4e5e5e; + kyse5e3e) + kyee3e50]
* k27e§e§e; * kzsegeéei + k29eée§ei



The stresses referred to the deformed space are given by

i
G..
1 QHT (no sum on i)

g,, = ——
11 VI, det
i

where

(07709550033)=(0,.04,0,)

8. Solution for a Thick-Walled Cylinder Subijected to
Internal and External Pressure

(7.8)

(7.9)

(7.10)

(7.11)

The problem of the pressurization of an orthotropic

cylinder is governed by the following non-linear differential

eqguation

dor‘+ o - Og ,u dor du (Or - GQ) - 0
dr r r dr dr he -

with the following boundary conditions

Gr(a) = - p, Gr(b) = - Py

A method of solution is by a perturbation scheme.

details of this method, the reader is referred to Part

(8.1)

. (8.2)

For
IIT

where a number of problems in nondinear isotropic elasticity

are treated by this perturbation scheme. Only the results for

the orthotropic cylinder will be stated here.
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The radial displacement is given by

m,+ m m,+ m,—1 m, - m
u(r) = apa[xl(_g) 1 2+ ch 1 2 (_g_) 1 2

ml— m2— 1 ml+ m2 ml— m2

- apb[xlc

' ax 2( _ le- m,= 1)2 Xg p Mt M, Xg (£Oml— mzn El(£)2ml+2m2—l
Y1 ‘Pa” Py a X,'a

3

+ m. -1 X m,+ m, X m m

m. - m,-1 My my 7,717 M2 f10,, M- ™2

+t2aX X, (pm Py 1 2 ) (pye —pb)[ ) ()
12 12
D 2m, -1 m,+ m,~1 2rx m,+ m
2, M 2 17 T 8 ,r, 1 M2
- 5. (3) } + ax5(p,c Py) [X () (8.3)
4 12
Xll .M oom, D3 r 2ml— 2m2— 1
+x () -3 &
12 5
The stresses are given by
,
Or k2 + Zkl (ml + m2)
r ml+ m2-,- 1
Og | = a’p, [Xl 2k4 + k2(ml + m2) (50
o, k3 + ks(ml + mz)
’ (8.4)
k2 + Zkl(ml - m2)
m.+m_.—1 ‘ m,—= m,~ 1/
172 - ry 1 2
+ X c Zky tky(my = my)) () ]
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/
ky + 2ky(my - my)
m, = m.-— 1
, - xy 1 2
X, [ 2k, +ky(mp - my) ) }
K,y +7k5(ml“* m2)
[ \
k2 +.2kl(ml + m2)
X » m,+ m,— 1
m,- m.~-1 2|76 r, 1 2
1 2 [——— 2k + k,(m, + m,) | (=)
+ a Xl(pa Ppc ) X12 4 271 2 a
k3 + k5(ml + m2)
/ \ \
k2+ 2kl(mlehm2)A~ ‘ k2+ 2kl(2ml+ 2m2— 4
X m,~ m,—1 D 2m. +2m,, =2~
9 r, 1 2 1 . r 1772
79 _ x _ 1 " oy K ,
X, | e ¥ kp(mpm my) () x|t ky(2my+ 2my=, G }
k3+ k5 k3+ k5(2ml+ 2m2~ 1)
\ / J
\
k2+ Zkl(ml+ m2)
m, ~m.,~1 m,+ m,~1 X m, +m,-1
2, . _ 1 1 A 7 r, 1 72
+ 2a XI_Z(pa pbc )(péc pb)[izg 2k4+ k2(m1+ m2) (a)
k3+ k5(ml+ m2)
s 3\
k2+ Zkl(ml— m2) k2+ 2kl(2ml—l)
m, - m,~1 D 2m, -2
™7 M7 D2 ez ™
2k4+ k2(m1~ m2) (a) - X4 2k4+ k2(2ml 1) (a) }
k3+ k5(ml- m2) k3+ k5(2ml~l)
3 / (8.4)
Cont.
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’

k2 + Zkl(ml + m2)
+ m,~-1 X m, +m, - 1
2 M+ m 2 8 Pt L)
+ a X2 (pac —pb) [zzg 2k4 + kz(ml + mz) (a)
k3 + k5(ml + m2)
) I \
| k2+ 2kl(ml— m2) k2+ 2k1(2ml— 2m2—l)
-m,~1
11 r,M1™MT O3 r, ‘M1
+ P 2k4+ kz(ml— m2) (a) - X, 2k4+ k2(2ml* 2m2 l)(a)
k3+ kS(ml- m2) kot k5(2ml— 2m2—l)
\ / /
/
3k10+3kl
kA oI m,+ m,—-1 m,+ m
4 2 1t M _ I ]
tak;t 3 ,Pa{xl(mf my) () tXymy=myle Y
&
1712 2
|-
m,=- m,—1 m,+ m.~-1 m. -m
- pb{xl m+mye T 2 AT 2 e x m-my) (E) L
e - %2
13 2
: m,+ m m,+ m.—1 m, - m
r 1T M 17 MpTE M7 My ,
+a” |3k, + 3k, [pa {xl,(a) + X, (%) } (5.
k _ -]-{é Ccon
15 2 J
m,— m,-1 m. + m m., -m 2
1 2 r 1 2, r, 1 72
} pb{xlc =y txE) }]
/
2kll 2kl+ k2 |
-1 m,+m -1
4 [ ™t My _ 17
+a% 2k - 2k, + k, Lpa{xl(ml+ m,) (£) K, (my-my) e (
Kig = k3 ~ kg
33
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m, +m~~1 _ m,-m m, -m.-1 m, +m m, ~m
o My Bl " R AN 17727 p M r 1 2
+ X ) 3 pb{xlc &) %, (%) } }
(8.4)
where
= 2
c =3 (8.5)
k, - 2k
2 1 . S
m, = —F—= m, =~ _ \ 2 (8.6)
"1 kg ) (k, = 2k)° + 4kl "
3k, - 4k - 2 «/4’(% Sk y? 4 4k k.
_ 2 1 2 1 172
X, = T (8.7)
v 2 »ml—mz—l ml+m2—
(5k,"- 8k,k, - 16k k,) (¢ - c )
- — Z
o - 3k, - 4k, + 2«/4(k2 2k)) 7 + 4k k,
— - +m .-
’ (5k.,°% - 8k.k., - 16k.k \(‘cml T e
b’ 172 174’ ' :

2 | L
- 3{m,+ m2) + l] + (Cl+ C7)[2ml+ 2m2—vl}+(c6~ Cl)

X3 = 2C2[2§ml+ m2) 1

2
2ml —»3ml+ l} + (Cl + C7)(2ml— 1) + (C6 - Cl)

-Z(ml_umz)z— 3(ml— m2)+ 1}+(cl+ C7)[2mlT 2m2— l} +(C6— Cl)
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- ‘ 2m, - 2m, -2 m, -m_ —1
1 2 L 1 2
Ky {Cl f (ml,—.m2)c23 c _{Cl+ (ml— m2)C2%c

r ‘ 2m, - 2

- -1
1 M= my
(ml— m2)C23 ¢ ]

—{Cl+ (ml— mZ)ngc

[\
S0

'-I
+

- om. - 2m.- 2
1 2
K3 i?l * (m, - m2>cz} c

- -1
'{Cl+ (ml— m2)C2§c 1T J

m,+ m -~

‘ 17 M2 1
Ky le~(ml+m2)cz}[c \ -t

1 2m.+ 2m2— 2]

r I m.+ m,- 1 2m, - 2
. 1 2 1
= K, _Cl+ (ml+ m2)C2~_c< - C ]
r U7 m,+ m.— 1 2m, - 2m.— 2
1.1 2 1 2
3 _Cl + (ml+ m3C2 mc - c }
- -~ 1 m,+ m.-— l)
2 ™ My 17 M
(5k2 - 8klk2 16k k4)( -~
2 ’ Dlr ' -
C3(ml+ m2) + C4+ C5(m1+ m2) - i-{ + (2m + 2m - 1)C 2%
c(mzv—m2)+c+Cm——D2c + (2m,~- 1)C (8.8)
371 T T2 0 T M EsTT ¢ 1t Tt 2 ’
2 D3
C3(ml— m,) " + Cy * Cglmy=m,) - ig{cl + (2ml~ 2m,- 1)C }
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_ 2
= (ml+ mz) {'c2+ Cg+ Co+ Cgt 2C, (my+ m, 1)}

+ (ml+ m2) {Cl— C2+ 2C4- C5+ C6+ clO+ C5(ml+ m,= l)}

+ (c9— cl— 2c4)

_ 2 2
= (ml + m, )(C2+ C5) + a(cl c2+ 204 2C5+ c6+ clo)

2 2
+ (m:L - m, ){C5+ C7+ C8+ 2C3(ml— l)} (8.9)

_ _ 2
= (ml m2) { c2+ C.+ C

gt Cot+ Cg¥ 2c2(ml—m2-l§

+(ml— mz){ Cl- C2+ 2C4— C5 +C6+ C10+ C5(ml~ m,- l)}

+ (cg— 2c4— Cl)

=k, Ce = Ky - 2K,

= 2k, c, = 2k, - k, (8.10)
3K,

= 3k, + 3K, Cg = 3k o + Ky - Ky + 2

= k., - 2 T R

713 2 9 7 T13° 2 4 14

= 2k, 2k + K, Clo= 2Kpp- 2k - 2k o+ 2k,
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The stresses and displacement when substituted back into
the differential equation (8.1) will satisfy it within the de-
gree of accuracy of the second order terms. Computation of
numerical values of stress and displacement is contingent upon
the knowledge of the strain energy function which can only be

determined from experiments.
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PART II

BILINEAR ELASTICITY WITH APPLICATIONS
TO THICK-WALLED CYLINDERS

by

L. R. HERRMANN
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INTRODUCTION

This investigation was initiated to attempt to approximate

the behavior of propellants that exhibit different mechanical

behavior in tension and compression. For example, one might

experimentally obtain a uniaxial stress-strain curve of the
form shown below:

We shall refer to the point of discontinuous rate of action
the "crossover point".

as
In our study we have allowed this cross-
over point to occur at states other than the zero stress state;
thus, we are able to accommodate a uniaxial stress-strain curve

as shown below:
g

crossover point

€
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This generalization was made with the phenomenon of dewetting
in mind, as it appears that dewetting usually occurs at some
finite strain state. The following analysis may be easily
extended to include trilinear materials without any conceptual
difficulties, i.e., one might obtain a uniaxial stress-strain

curve of the form:
o}

It should be noted that the crossover point in reality
need not be a sharply defined point as we have pictured it
above but the phenomenon must be capable of being approximately
represented by a series of linear steps. Thus we may have a
bilinear fit of experimental data as is illustrated in Figure
2. In reality what we are déing is approximating a nonlinear
material response by a series of zones of linear action; thus,
more appropriately this analysis might be called "elastic zone
analysis". The nonlinear aspects of the problem will in general
be manifested in a nonlinear algebraic equation whose solution
locates the zone boundaries, see for example Eg.(2.18) There-
fore, although the resulting theories are for infinitesimal
strains, superposition is in general no longer valid as the
resulting equations are bilinear, notlinear.

There are many ways to hypothesize a bilinear material

depending on the criterion selected to define the crossover
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point; i.e., it i's somewhat analogous to the yield condition
in plasticity. We shallvconsider three simple classes of bi-
linear elastic materials corresponding to the following cross-

over criteria:

I ) Principal strain criterion:
II ) Principal stress criterion

III) Mean stress criterion.

For the class I material we shall consider that the material
passes from one linear phase of response to another as one of
the principal strains passes through a critical value. We
shall refer to this critical value as the "threshold" value.
The first two criteria lead to the prediction of strain-or
stress-induced anisotropy. This anisotropy is clearly apparent
when one views the resulting constitutive equations, Egs. (1.1)
and (1.2). It will be noted that the preferred directions
coincide with the principal stress directions and thus for
that class of problems for which we do not know a priori the
directions of the principal stresses, the governing equations
for the class I and II materials become nearly intractable.
The particular criterion that should be used to characterize
a given material, of course, needs to be determined by experi-
mental means; for example, one might analyze several different
stress states as givén by simple tests (see Sections 2 and 3).
It is to be noted that although we might have expected to
be able to independently specify two or three elastic constants
in each zone we have in totality only three independent elastic
constants, as may be seen in Egs. (1.1), (1.2) and (1.3). This
restriction is not present in the proposed generalized theory
of Section 7. The relationships relating the remaining cons-
tants, as found in a uniaxial test, are given by Egs. (2.1),
(2.2) and (2.3). They are different for each of the three
classes of materials that we have considered and may be used
as a guide in selecting the particular model to represent a

given material, see Section 3...
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NOTATION

(Additional notation will be explained as introduced.)

S%=T%;o 5.
J 3 J

Principal strain

Strain

Deviatoric strain

Radial strain in cylindrical coordinates
Tangential strain in cylindrical coordinates
Longitudinal sﬁrain in cylindrical coordinates
Mean strain

First strain invariant

Radial displacement in cylindrical coordinates
Principal stress

Stress

Deviatoric stress

Radial stress in cylindrical coordinates
Tangential stress in cylindrical coordinates

Longitudinal stress in cylindrical coordinates
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i

First stress invariant

Mean stress

Elastic modulus

Elastic compliance

Bulk modulus

Shear modulus

Class IIT elastic constant

Young's modulus

Poisson's ratio

Shear modulus of the motor case

Poisson's ratio of the motor case

Thermal coefficient of linear expansion
temperature independent)

Principal strain threshold value

Principal stress threshold value

Mean stress threshold wvalue

Absolute temperature

Reference temperature
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T%

=

T~T

Relative temperature

Inner

Outer

Inner

Outer

Radii

wall temperature

wall temperature

radius of thick-walled cylinder

radius of thick-walled cylinder

ratio

Thickness of motor case

Pressure on inner wall of thick-walled cylinder

Interface pressure between thick-walled cylinder

and motor case

Radial location of zone boundary

Exponent in anisotropic solution

Exponent in anisotropic solution

Kronecker delta
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BILINEAR ELASTIC THEORY

1. Bilinear Constitutive Equations

The equilibrium and strain displacement equations remain

unchanged from classical elasticity and therefore need not be

considered here.

The constitutive equations* for class I

material become (see Section 5):

Zone 1

Zone 2

Zone 3

(1.1)

(continued)

*For simplicity of presentation the temperature terms have been
omitted, but in subsequent sections we shall include them.
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Zone 4 el > e , 62 > e , 63 > e..

O) = €381 * Cpfy tcyEy tele) - cy)
0, = czel + c3€2 + c2€3 + e(cl - c3) (1.1)
O3 = Cfp F S8y * ey +eleg - cy)
The constitutive equations for class II material are (see
Section 5):
Zone 1 9 < s, 9, < s, Oy < s
El = klcl + k202 + k203
€2 = kzcl + klc2 + k203
63 = kzcl + kzcz + k103
Zone 2 g, 2 s ,'02 <s, 05<s
€l = kBGl + k202 + k203 + s(kl - k3)
€, = k0, + k0, + k,0, (1.2)
§3 = kzcl + kzcz + klc3
Zone 3 9y > s ., 9, > s 04 <s
El = k3cl + kzgz + k203 + s(kl - k3)
(continued)
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€, = kzcl +fk302 + k203 + s(kl - k3)
€3 T K0y * R0y tkgo3 (1.2)
Zone 4 oy > s , 9, > s, Oy > s
€1 T K30 * K0y *ky05 + sk - ky)
€, = k2cl + k302 + k203 + s(kl - k3)
63 = kzol + kzoz + k303 + s(kl - k3)

For any given zone above we may write

13 o 13 Tkm + Dlj’

m
then for an arbitrary set of orthogonal axes in that particular
zone

i) - 13 ?km

*xm

1) and b'? from kij and D by means of
km km

fourth and second rank tensor transformations respectively; we

+ p*J
where we may obtain k

set

1% =0 for i#¥ jJ or k#¥m and ptd = 0 for i # j.

The constitutive equations for class III materials are (see

Section 5):

Zone 1 g ,g h



i _ 1,1 _ 1 i 1 i
or €, = (3B 2LL)@6j + ZMTj

Zone 2 o> nh

wF = (B - Z)est + auel + m(L - n)ot @3
nE T HIPhy T Aley nIoy

i_ 1,1 _ 1.4 .1 i h(l-n).i
or €5 =300 WO T 3B 0§

2. Elementary Solutions

We shall assume for simplicity that s > 0, e > 0 and h > O.
We first consider the analysis of some simple tests that
may be used to determine the proper threshold criterion and
the appropriate elastic constants for a given material; for

example, see Section 3.

Uniaxial Test

o) ~~‘ E2,v2
421'_E1,Vl
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Class I

. - fl - V) B
1 (1 - 2vl)(l + vl)
_ Vi By
C —

2 (1 - 2vl)(l + vl)

Ez(l - v2)
3 (1 - 2v2)(l + v2)

0
|

In addition for a Class I representation from continuity re-
guirements the following relationship must be valid (see Section
5)

E2¥2 _ Eiv1 (2.1)
(1 - 2v2)(l + v2) (1 - 2vl)(l + vl)‘
Class II
1
k, = =
1 El
1
k, = =
3 E2
S |
2 El
s =g
(@]
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In addition for a Class II representation as a result of
continuity requirements the following relationship must be
valid (see Section 5):

Y12
T E. (2.2)
1 2 » ‘
Class III
P N
1 2(1 + vl)
B, = El
1 3(1L -~ 2vl)
n = "2
3B, (1 = 2v,)
%
h=73
Additionally for a Class III representation from continuity
the following relationship must be valid:
E E
L 2 (2.3)

2(T + v =21 + v,)

Biaxial Test
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Class I

Zone I € < e
2c
= - 2
€3 7 eH €1
2c§
0y = (eg ¥ ey - —5e;
1
Zone 3 €l > e
2c
= - 2
€3 7 | €1
2c§
Ul = (c3 + cy - -—Ef;)el + e(cl- c
Class II
Zone 1 9 < s
€, = (kl + kz)cl
e3 = 2k20l
Zone 3 oy > s
€ = (k3 + kz)ol + s(kl - k3)
e3 = 2k20'l
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Class III

Zone 1 -0 < %?
€1 =3t j&)gl
€3 = 305 "'ﬁr)cl
Zone 2 9, Z-%h

e =2l _ 1, _h(-n)
3nB 20771 3nB

Pure Shear Strain Test (see Section 6)

b4
i
/ € =€ = 0,6 = v
% XX vy Xy
Class II
Zone 1 : ol'g s or v < (kl - k2)s
T, .= T = 0
XX vy

%
<
]
7‘_1
i
~
2
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Zone 2 o1 > s or vy _>__(kl - k2)s
(2.4)

o 2(ky=k;) ((ky- ky)is = )
XX vy 4k.k, - k,(k, + k, + 2k2)

173 2 71 3
s(k3-kl)(2kl+ k2)+ 27(kl+ k3+ kz)
T =
Xy 4klk3~ kz(kl+»k3+ 2k2)
Thus the threshold value of vy is
Yo = (k= ky)s.
Class IITI Only one zone possible, 9 < s (as O, = 0)
T = T = 0
XX vy
(2.5)
Txy = 2y

Inspecting Egs. (2.4) and (2.5) we see that the results of a pure
shear strain test-would clearly show whether or not stress-

induced anisotropy is present in a given material.

Axially Symmetric Plane Strain Thick-walled Cvlinder Problems

A case-bonded thermoelastic cylinder in plane strain is
shown below with identifying notation. As shall be shown
later, Class I material appears to be a very poor model for

“actual propellants, therefore in the sequel we shall consider
only Classes II and III. Depending upon the relative magni-
tudes of the various material parameters we may have an ar-
bitrary distribution of zones; thus, one cannot anticipate all
situations that may arise in a given physical problem. There-
fore, we shall only be able to consider a few sample problems
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to illustrate the solution procedure that needs to be applied in

a given problem.

AN
t_a
=3
5
=

;
T
??Jf‘ N
e
Y/
e
3

A
o'

Class II Material

Pressurization of a thick-walled cylinder, U = o= 0,
with constant temperature, 'I‘a = Tb = T(r) = Too For small
internal pressure P,, i.e., P. < P_ , 0., 0, and 0_ are all

i i="c r g z

less than the threshold value s; hence, the body Lehaves
isotropically and the solution is well known [ 1 1. At

Pl = Pc ' Ge(a) = g and a zone boundary arises at r = a and
propagates through the cylinder as Pi increases above PCJ i.e.,

we have
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e =
Ig s
l
l
pre 1
|
Zaone 2 | vone 1
| g < s | 0., < s
Z
! o < s | Gr < s
!
GG > s | Ge < 8
|
|
[
j
@ |

This state exists (assuming that Eq g,Ez, see Section 6)if

"1”[12 =M

2
c +‘% el c -1

- <P < s —55 .
1 c2+ 1

1

o=

s (

The resulting stress distributions will be as follows:

Zone 2: a r X

m m
St &2
g_ = - (P. + s) T s
r 1 a, my a,my
S+ &
do
Oe= Gr + r a;_
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k) K,
u = r(k2 - —]—Z—)Or + r(k3 - ==}
1 1
mp=-1=-8
m, = - 1+ p
where
[}
k.2 - x.?
e 1 2
p = 5
Kiky =k,
Zone 1l: x << r<<b
2
1 [ b
g_ = s 1 - (=) }
r (2)2 + 1 r
do
O = 9 t T g
k22 k22
u=rk, - 5o+ r(kl - ~—=)08
1 1
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Uniform temperature drop of a thick-walled cylinder bonded
= T(r) = T. Let T* = T - ”‘I’OO

to a rigid case, g = o, Ta = Tb

For T* > Tl we have

ARG AR TR

The material behaves isotropically and the solution is well

known. When T* = Tl' Ue(a) = s hence, a zone boundary arises

(see Section 6) when

s ’kl
* o= = s ———— canvacm—" .
™ =T 2a ch *olky t Zkz)]
For T2 < T* Tl’ we have

I
< i
ot
/] » X ‘
7 =
- !
g I
/| Zone l:Zone 2
] i

g, g_s:Or < s

~ < i
/‘09._ Sy 9g > s
/] !
/] I
;GZ g,sgcz < s
- | ;
-
1 !

i
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In Zone 1

D
r
- D_ :
or = A + 5 _ (2.7)
r
o = - == (ar* + 2k.A) (2.8)
z kl 2 .
k22 D k2
u = (k2+ kl— 2 ‘—]‘{'I)Ar + (k2— kl); + aT*r (1l - i‘]:') (2.9)
2
D= x“"(A - s) (2.10)
- 2
k,.s(=) + ar*
A= 1D
X, 2
kl(b) - (kl + 2k2) (2.11)
In Zone 2
- F B -1
Ur = rB ) + Hr + s (2.12)
o, =-—L _ + g P "1 4g (2.13)
6 B+ 1
k22 o . k22 ,
u = [kZ - Bk3+ (B - 1) _—]E;:l _B— + []{24' Bk3—(5+l)""]‘{_ ]H:‘:B
- T 1
k22 K,
+ sk, +k, -2 ——| r + aT*(1l - —)r (2.14)
2 1 kl kl
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ax 2P (2.15)

F:
H = - —2as (2.16)
a6 + xzﬁa_B
2 2"
k -k
p = |- = (2.17)
Kiky - Xk,
[ 2k2
T, = g|— > - (2k. + k )}
2 c(an + CB) 2 1

k.s(X) 2 4+ ar* (3’5)6—l s
1X g + Bb ; 2; 5= s (2.18)
kl(g) - (kl + 2k2) c + (B) c

Class IIT Material

Pressurization of a case-bonded cylinder. When 9 < h,
(see Section 6) we have the usual classical solution, 1 7.
Whayom > h, i.e., P, 2_Pc, we have a second zone of action
(for this particular problem the whole cylinder passes from

one zone to the other at the same time), where

n(c® - 1n [, (1 - n) h(l - n)
' 2 1 7 T 3nm -T2 —
c ‘ c” o+ 3anl 3(L - v)bu,anl
+
— (c2 - 1) [
P= 1
( + 1)
1 ?anl
2 2
c c” + 3nBx -
u(c2—~l)[ - L, a- v)b]
3anlu(c - 1) Lt
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_r |1,.1 _ 1 1,2 . 1, _h( -n)
vz Xq [6u 3nB ZM)Gr * 6u(3nB +‘2u)09 olLNnB }
Pi - czP‘
A=
02 -1
2
D= —2 (B’ - p,)
¢ - 1
P
i 1 1 h(l - n)
2 3nBx T 3nBx
p' = (c 1) 1 1
2 -
C j 3anl .\ (L )b
3anl(c - 1) ot

Uniform temperature drop of a thick-walled cylinder bonded

to a rigid case, 4 = =, Again for T¥* Z;TC we have the usual

classical solution. As T*»éTc the whole cylinder passes from

one linear mode of action to another and we find
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3. Model Fitting Considerations for a Particular Material

- . D_
Og = & >
r
3 1 D : h(l-n), O9nBr
Ar - 52— 2 & (ar* - )
2w + 3nB) 2L 3nB 2(W + 3nB)
D= - a’a
‘A _ h(l - n) = 3aT*nB
1+ 12 (1 + %%E)
3c
i, 1
. - _nb T
c @ 3B
i + -
p{l + (1 ?ﬁ)J
3c

(2.

(2.

(2.

The plotted points in Figures 1 and 2 represent experi-

20)

21)

22)

Ny
i

mental data for a typical propellant that apparently experiences

the dewet

approxima

o
il

w
i

E =

63

ting phenomenon. The solid lines represent bilinear
tion of the uniaxial response. We find
74,600 psi k. = 1.243 x 1077 in/1b
= 8,920 psi which yields k, = - .62L x 107" in®/lb
805 psi ky = 1.276 x 1077 inz/lb,
714 psi



As the curves yielding Bl‘, B2 and El are very easy to place
accurately, we select these values as fundamental and calculate
E, from the continuity relationships* (2.1), (2.2) and (2.3)

respectively. We thus obtain for

Class I E2 = 6090 psi
Class II E2 = 784 psi
Class III E, = 797 psi.

2

Comparing these values of E2 with the experimental value of
E, in Fig. 1, we see that the Class II and III models fit the
experimental results much better than the Class I model. It
is also apparent that the results from one simple test are

not sufficient to select a crossover criterion for a given
material. For example the results of the uniaxial test re-
ported above would indicate that the above material may be
represented by either a Class II or Class III model, but as

we shall see in the next section, the two models give very
different results when utilized in the solution of another
problem. Thus it must be emphasized that one needs to examine
the results of more than one stress state. If one were to
perform a biaxial test (Gl =0, =0 and 0y = 0) on the above
material and if it were to behave as a Class II material we
would obtain Figures 3 and 4 whereas if it were to behave as

a Class III material we would obtain Figures 5 and 6. The
volume changes for the two postulated behaviors are compared
in Figure 7. Although we do not have any biaxial test data

taken from the same material as the uniaxial data presented

* We have called these equations continuity relationships since
they arise from the fact that we have required a continuous
action across the zone boundaries.
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in Figures 1 and 2 we do have some biaxial test data taken from
a somewhat similar propellant, as given in Figure. 8. It will
be noted that if we represent this data by a bilinear response,
the crossover point would be much lower than predicted by the
Class II representation (see Figure 4) for the first type of
propellant. The crossover point would be slightly higher than
that given by the Class III representation (see Figure 6),

for the first propellant. If we make the crossover occur at
the value as given by the Class III biaxial test (see Figure 6)
the fit is still rather good (see Figure 9). From these very
crude data, tentatively, it appears that the bilinear phenomenon
may be represented by the Class III criterion. However, it
must be emphasized that the above conclusion is a mere con-
jecture as it is based upon only two types of tests performed
upon slightly different propellant formulations, tests which
were not equilibrium tests and therefore are not a true indica-
tion of the elastic equilibrium action (also the accuracy of
the tests is somewhat in question). It should be noted that
the biaxial volume changes are about ten times greater than
expected, see Figures 6 and 8; this may be due to one of the
following causes: (1) different propellant formulations, (2) rate
effects and/or (3) experimental inaccuracies. In light of
these considerations it must be pointed out that the above
analysis is merely indicative of the type of analysis and ex-
periments that must be made to characterize the bilinear action

of a given propellant.

4. Numerical Example

Making use of the elastic constants, obtained by fitting
first a Class II then a Class III model to the uniaxial test
data of Figures 1 and 2, we have evaluated some of the dependent
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variables that arise in the problem of the uniform temperature
drop of a thick-walled cylinder bonded to a rigid case using

the results from Section 2. The results are plotted in Figures
10 - 19. For the Class II representation the material behaves
isotropically down to a temperature of 39.6° F at which time
Oe(a) = s, hence a zone boundary arises at r = a. As the mater-
ial is further cooled this zone boundary moves across the cylin-
der and reaches the outer boundary at T = 0° F (see Figure 10),
at this point Oz(b) = s; thus a new zone boundary arises and
proceeds toward r = a. Although the action within a given =zone
is linear, the fact that the zone boundary is moving results

in a nonlinear response (see Figure 15).

One will note that the effects of the stress-induced
anisotropy, for this problem, are very small and the results
are nearly coincidental with the results obtained by assuming
isotropic behavior throughout (see the dotted lines in Figures
11 - 15).

For the Class III representation of the same material the
zone boundary arises throughout the cylinder at T = 53° F and
thus the response is in two linear segments, see Figure 16.

In this case the resulting response is considerably different
from that obtained by ignoring bilinear effects (see the dotted
lines). Comparing Figures 11 - 15 to Figures 16 - 19, res-
pectively, one will see the considerable difference in-results
obtained by considering that the material behaves as a Class

IT or Class III model. As a uniaxial test tended to indicate
that either model would suitably represent the material, the
above results once again emphasize the need to consider several
stress states in selecting an appropriate model for a given
material. The data used in the previous calculations were as

follows:
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el ¥l a

Q

o]

= N =

2,5,10 (as indicated on the Figures)
00

0

6.0 x 107> in/in°F

74,600 psi

.1195

268 psi

30 psi

1.243 x 107 in®/1b

~.621 x 1072 in%/1b
1.276 x 107> in®/1b
90 psi
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APPENDIX

5. Derivation of Bilinear Constitutive Equations

As the derivation of the constitutive equations for a
Class I material is exactly paralleled by the derivation of
the constitutive equations for a Class II material we shall
only present the latter.

In the derivation of the governing field equations for
a Class II bilinear material we shall assume that the material
is at all time phenomenologically continuous and that within
each zone of action it is linearly elastic and homogeneous.
Thus the equilibrium eguations and strain displacement rela-
tions are identical to those for classical elasticity.

Let the criterion for passage from one mode of action to
another be the passage of the value of one of the principal

stresses through the threshold value s. Thus we identify four

zones, i.e.,

4. o

Zones 1 and 4 will be isotropic; zones 2 and 3 will be aniso-

tropic. Thus we may write

Zone 1 Ol < s , 02 < s , 03 < s
€. = k.o, +k.,0. + k.o
1 171 272 273 (5.1)
62;= kzol + klaz + k263
€3 = kZUl + k202 + k103



Zone 2 Ol > 8 , o, < s , 03 < s

el = k3ol + k402 + k403 + Dl

€, = k4cl + kSOZ + k603 + D2

€3 = k401 + k662 + k503 + D3
Zone 3 9 > s, a, > s, 94 < s

€, = k701 + k802 + k903 + D3

€, = kgo; + koo, + k903‘+ D, (5.1)

€y = kgcl + k902 + klOG3 + D4
Zone 4 oy > s, 9, > s O > s

€1 T k1193 * Kpp0, k03 + Dy

€, = klzgl + kllgz + k1203 + D5

€3 = Kpp9) * K50, + Ky 05 + D,
To insure a continuous* passage from one mode of action to
another we must obtain relationships for the "interzone" (i.e.
when Gi = s) which are independent of the path traveled in
reaching the interzone, i.e., the relations of Zone 1 as

- , . +
gy — s must be identical to those of Zone 2 as 9y — s, etc.

Equating the constitutive equations of Zone 1 and Zone 2

* A proposed generalization of the bilinear theory in which this
condition is relaxed is outlined in Section 7.
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as Ul —~ 8 we obtain

k4 = k2 (5.2)
D, = s(kl - k3) (5.3)
k5 = kl (5.4)
k6 = k2 (5.5)
D, = 0. (5.6)

Equating the constitutive equations of Zone 2 and Zone 3 as

02 — s and using Equations (5.2) to (5.6), we obtain

k7 = k3 (5.7)
k9 = k2 (5.8)
k8 = k2 (5.9)
Dy = s(kl - k3) (5.10)
D4 =0 (5.11)
klO = kl. (5.12)

Equating the constitutive equations of Zone 3 and Zone 4 as

03 — 8 we obtain

ki1 = X3
Ky, =k, (5.13)
D5 = s(kl - k3)-



Using the above relationships we may write Equation (5.1) as

Zone 1 9 < s 9, <
el = klcl + k202
€, = kzdl + klcz
€3 T k01 + k0,

Zone 2 o, 2 s . 9, <
el = k3Gl + k20
€, = kzcl + kloz
63 = kzsl + k202

Zone 3 9y > s, 02~2
el = k3ol + k202
€2 = Kp0p * K30,
€3 = kzcl + k202

Zone 4 9 > s , 9, >
el = k301 + k202
€2 = k30 * k30,
€3 = kp0p * k0,

)]
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s
s
+ s(kl - k3)
(5.14)
s
s(kl - k3)
s(k, - k3)
s
s(kl—kB)
sk, - k3)
S(k - k3).




We shall now consider the stress-strain relations for
arbitrary directions. Let yl be principal axes (along which
Tt acts) and x* be arbitrary axes (along which ?QB acts) ;

both systems are assumed orthogonal.

OB _ 1] BX? BXB

Now

dyt 3y’
but etd =0 for i # j.

; .. B
thus cof _ i Bxl Bxi

from (5.14) we may write
etd o g ti33  pid

3]

also

dx axk
g 3 3] 3.0 3B
thus. P o (il A 9vs Oyt pidy O9x Ox
73 dx' dx dyt ayt
—of _ L ii oyd ayd 3x® 3xP v . i1 2x% 3xF
€ = k.j ¥ 3 7 77 + D N T (5.15)
JJ 3%’ 3x™ oyt dy oy~ Oy

.. j 3j Q 5] - Q B
therefore : igi ki: ézﬁ BVK ax. Bx_’ Eﬂﬁ =ptt éﬁr Bx.
I3 3x7 3x™ oyt Ayt dyt 3yt
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or if we define k%k = 0 for i # k or j ¥ m or both, then kij
jm m

is a fourth rank tensor; similarly Dij is a rank two tensor.

In the derivation of the constitutive equations for a
Class IITI material we shall assume that the criterion for pas-—
sage from one mode of action to another is governed by the
passage of the mean stress S through the threshold value h.

For the criterion of o, = h we have two possible zones of
action, i.e., Zone 1 (om < h) and Zone 2 (Om > h). We shall
let the quantities of Zone 1 be denoted by a subscript, e.g.,

Bl etc.
Thus for Zone 1 O <h
cm = 3Blem
i i
ST = 2U.e’
J H1 J
Zone 2 % > h
g = 3B.,€ + D
m 2™m m
i i i
ST = 2lW.e, + D.
J 2 J

Considering the interzone as in the previous derivation we have

for
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i i i
ST = 2u.e, + D
J H2 J ]

Thus we must have the following relations

Hy = My
pt =0
j
B
- _ 2
D= h(l Bl)°

Using the above equations we may write the constitutive eqgua-
B

tions as (let n = —2 and B = B,)
Bl 1
Zone '1 % <h
T§ = (B - %u)@ﬁl + Zue%
i_ 1.1 _1,.4i .1 i
or €3 =335 - )88 + 3 7]
Zone 2 % > h
T; = (nB - %u)eég + 2ue% + h(l - n)ﬁ%

1 'J;)®5§ s Loi_h(-p) i

or €y =3(GF - 20" 3B 5
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6. Derivation of Elementary Solutions

A. Analysis of a pure shear strain test (Tzz = 0) for a

Class II material when oy > s, € = ¢ = 0, and € = v. For
= XX VA Xy

pure shear strain the principal axes will be at 45° to the x and

y axis. Using Equation (5.15)

m
i
o
il

(k,+ 2k,+k

XX 3 2 l)Txx+ 2(kB“kl)TxyHk

+ kl)Tyy+ 2s(kl—k3)

(6.1)

3

1
()
|

(k3ﬂ kl)TXX+ 2(k3—kl)rxy+(k3+ 2k2+kl)Tyy+ 2s(kl— k3)

(6.2)

From Equation (6.1)

2(k3— kl)[(kl~ kz)s—y]

Txx T Tyy T Ak k- K, (kK + K+ 2k

5)

and from Equation (6.2)

i _ s(k3— kl)(2kl+k2) + 2~y(kl + k3+ kz)
Xy 4klk3— kz(k1+ k3+ 2k2)
Thus,
. - (k3— kl)(4kl— k2)s + 2(2kl+ kz)y
1 4klk3— kz(k1+ k3+ 2k2) N
As we assumed that 9, > s , we find that when o, = s .
Yo = (kl- kz)s°
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B. Pressurization-of a hollow cylinder* under plane strain for

a Class IT material.

The appropriate field equations are:

(1) equilibrium equation

do g - 09
+ = 0 (6.3)

(2) strain-displacement equations

du
€r = dr

ur
€ = 0

Z

The constitutive equations are given by Equations (5.14). We
shall consider loading conditions such that the following

zones are present:

Y

X
; -
b ! g
Zone 2 : Zone 1
’ o, < s : o, <s
o, <s | 0. <8
25 %<
|

¢

*The anisotropic thick-walled cylinder solutions are given in

Part I and may be used to construct the bilinear solutions for

a thick-walled cylinder where s = 0. However, we are here
considering the situation where s ¥ 0 and thus we shall construct
the necessary anisotropic solutions as needed.

76



Thus in Zone 2, a < r < x

€g = kzor + k309 + k2cz + s(kl - k3)
Er = klcr + kzoe + kzoz
(6.5)
eZ = kzcr + k209 + klcz
Combining Equations (6.3), (6.4) and (6.5) and solving the
resulting differential equation. we obtain
m m
0. = Ar 1 + Dr 2 + s (6.6)
k
= _ 2
o, = X (Or + qe)
L 2
Ky Ky
u = r(k2 - _T{_.]t-)OL + r(k3 - —EI)G@ + s(kl- k3)r
™ ™
Og = A(l + ml)r + D(1 + m2)r + s (6.7)
where m, = - 1 - B
(6.8)
m, =-1+28
I
klz— k22 )
and B = 5. ‘ (6.9)
klk3— k2
The boundary conditions for this zone may be written as:
r = a .= -P
r i
(6.10)
r = X Og = s
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Applying the boundary conditions to Equations (6.6) and (6.7)

we obtain

m

-(P.+ 8)(1 + m.)x 2
A = i 2
m m m m
atl+m)x 2 -a 21+ m)x T
My
(P, + 8)(1 + m,)x
D = i 1 .
m m m m
a l(l + m.)x 2 _ a 2(1 + m,)x 1
2 71
Thus Equation (6.6) becomes
r ml r m2
{ \ (;{f) (;) »
Or = "\Pi + s) a.my a m, + 8, {(6.11)
(;:') + (;)
In Zone 1
du
er = dr klGr + kZGG + kZOZ
Yy
EZ = 0 = kZG -+ kZOG + klgz
Thus k2
CFZ'—'—'—']:I (0. +09)

Combining Equations (6.3), (6.4) and (6.12) and solving the

resulting differential equation we obtain
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o =A+P-2— (6.13)
r

- - _D_
Og = Or + r A r2¢ (6.14)

Applying the above boundary conditions to Equations (6.13)
and (6.14) we find

sb2x2
b = 2 2
b™ + x
sx2
A =
b2 + x2
Then Equation (6.13) becomes
2 2
SX b
g = —=——=(1 - =%). (6.15)
r b2 + X2 r2
To find x we set Gr(xﬁ) = Or(x+). Using Equation (6.11) and
(6.15) we obtain
2 2
M=—(P.+S) 2 +S
2 2 i m m
x  + Db Cé) 1 + (g) 2
X X
or 2 P.
&) 241
N - = - = - (6.16)
p.S b 2,1 a, 2
G+ D A+ A



We shall now investigate the pressure range for which the
assumed zone configuration will exist. One limit will be when

x = b; from Equation(6.16) we find

P
()2 L+ 1
a = S
Db, 2 b, 2 a, ™ a, M2
05) + (gﬁ (g) + (50
m m
or P, = s E(%) 2 4 l?:.(%) 1. 1} ]

The other limit will be when x = a. To find this critical

pressure we set x = a in Equation (6.16)

(a2 - bz) = - p
a2 + b2 2
2
or ) (g) -1
P2 = g
b, 2
2 +1

The assumption that . < s is obviously true. We also have
assumed that o, < s; thus we must now impose this condition

(it may be easily shown to be true in Zone 1) now (for a < x<b,
X > r > a)

Therefore we haye
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k
Using Equations (6.8) and (6.16) we have (note - Eg = Vl’ see
Section 2) 1
v, (D)2 E) :
(1 - 2v,) > (B-1) &) P-(p+1) (5 5]
1 X, 2 b 2L r x|
)+
but o | (1 -2v)) >0
Vi > 0
b, 2,x
(=) 7 ()
a r S 0
X, 2 b, 2
(g‘) + (g)

Also if E, < E,, see Section 3, then B < 1 from Equation (6.:9)
and h 5

5B _ (g4 1) (5P
[(6 -u@F -+ d }<.o

thus, g_ < s.

C. Uniform temperature drop of a thick-walled cvlinder bonded

to a rigid case, Class TT material. ILet T* = T - TO. For
OZT*ZT]_: we have ‘
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L L L L

The material remains isotropic

t

and the solution is well known,

see Part III. A zone boundary will arise at r = a when Og = si
from Part III we find
6aTlB
Ge(a) = g = -
1+ 12(1 +§§')
3¢ ’
—s[l + —=(1 +i§)}
1L
or T, = 3¢ g (6.17)
1 6aB i
For T2 < T* g_Tl, we have
|
Zone 1 | Zone 2
|
Gr < s | Or < s |
| !
Ue < s | 09 > s
|
OZ < s | OZ < s
|
| ¢




The equilibrium equation is given by Equation (6.3), the strain-
displacement equation by Equation (6.4) and the constitutive
equation* by Equation (5.14) where we add to each equation the
term a T*. Combining the resulting equations and solving we

obtain for Zone 1

= D_
o'e_..A-— 5 (6.,18)
r
= D_
.= A+ = (6.19)
r
= -1 (or¥+ > 6
o, = - kl(qT + kZA) (6.20)
k,” D k2
u = (k2 + kl - 2 —E~0Ar +(k2— kl); + aT*r(l—‘i—L
1 1
(6.21)
The boundary conditions may be written as
r=>D u = 0
r = x Og = s
hence D = x2(A - 8) (6.22)
2
k.,s §7 + aT*
a=—+-0b : (6.23)
X _
kl b2 (kl+ 2k2)

*At present we are not in possession of any experimental data
which would indicate whether the linear coefficent of thermal
expansion changes value as we pass from one zone of action to
another or remains a constant; for simplicity we have assumed

“that it remains a constant.
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For Zone 2

_ _F p-1
Gr = ;EII & Hr + s

- _ __BF B-1
Ge = Bt 1 + BHr +.8
r £ *
o = o 2, +(B + L)HrP L +(1-p) —E
Z k k . B+l
1 % :
k22 F k22 | 5
u = [kZ- Bk3+(ﬁ3—l)":]'€.—}'—é-+ [k2+ Bk3— (B+l)—"":l Hr
1<r 1
k22 K,
+ s[k + k.- 2 —-—} r + aT*(1 - —)«r
2 1 k k
L 1 1
}
klz— k22
where B = 5
kiks -k,

r=x, 0g = s
r =a, Gr = 0
which yields
F = szB
T aP +a>S<2f3a"B
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(6.27)
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(6.30)



The zone boundary x may be found from

o (x7) = o_(x")

Using Equations (6.18), (6.22), (6.23), (6.24), (6.29) and
(6.30) we obtain

2
kls 55 + aT* X p-1 S
() =
5 b + P c = s, (6.31)
X _ -p xX,28 B
ky .2 (kl+ 2k,) «© + () e

T, may be found by setting x = b in Equation (6.31):

kls + aTz . % _ .
kl- (kl+ 2k2) C—B + CB
or
s * 2k2
T2 =3 LC(C—B . cﬁ) - (2k2 + kl)]

It is now necessary to consider the assumption that cz‘g s
(as 0, = constant in Zone 1 we see that the maximum o, in

Zone 2 will at least have to be equal to o, in Zone 1 as,

oz(x—) = GZ(X+)7 thus we need only consider Zone 2). Now in
Zone 2
k, [ p
ar* "2 Hx x
o, = - kl kl LZS + - [(l + B)(X)

x,B
(1 -p @ H
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We seek a maximum of this function in the interval a < r < x,

thus setting

da. ~k2

— = 0 = "-"HXB 'ﬂiﬁl(ﬁ-—l)rﬁ_z—(l-—B)xB(B+l)r‘6_2
dr ky p
X
or’
r26 = —x26,
Accordingly, no maximum occurs in this interval. It will be

necessary to check the end points of the interval in each
particular problem.

Now
ar* _ K3 B-1
GZ(X) = - '—]—{I - ]—i—]-: (2s + 2H x ) ‘6&32)
* 0k B
o (a) = - - -9‘-]’{-; - k—i 2s + ﬂf—[(ua) (-j‘—{-)6 + (1-B) (f—)ﬂ (6.33)

D. Uniform temperature drop of a thick-walled cylinder bonded

to a rigid case, Class I1IT material. From the classical elastic

solution, see Part III, we see that the mean stress is a constant,
thus the mean stress will reach its threshold value h through-
out the cylinder at the same critical temperature Tl’ Let us
consider the case when T* Tl' Combining the equilibrium equa-
tion (6.3), the strain displacement equation (6.4) and the Zone

2 constitutive equation (1.3) and solving we obtain

_ D

O'r—A+—-2
r

= _ D

Og = A >
r

86



i

_ 3nBu [A _ qpx + R - n)}

m  W+3nBjp 3nB

N 1D . _ h(l-n) 9nB
U= Si+3nB) AF T oo ¢ T o(of 3B ) 2(u+3nB) L°

The boundary conditions are

r =D50, u= 0
r =a, o =0
r

which yield

_ h(l-n)-3aT*nB
1 + 12(1+ 3F35)
3¢ H

Note that the constitutive equations for Zone 1, see Equation
(1.3), may be obtained from the constitutive equations for Zone
2, by letter h = 0 and n = 1 in the latter; thus we may obtain
the solution for Zone 1 (i.e. T* > T;) by setting h = 0 and

n = 1 in the above solution. For example, in Zone 1

1 a2A aQT*B

- 3.1 L
w=30 AT F o tom 38 ©
— *
A = 3aT*B

1 + 3%2-(1 +ﬂlj-)

0m U + 3B Lu o™ |
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Now to find Tl we set o, = h and T* = TC in the above equation

i.e.
h = 3B _ 30TcB - T
L + 3B 1 3B c
u[l + —-—'5(1 + _E):l
3¢
_ {4 + 3B)h - 1
1+

u.[l +—‘];'§ (1 +'3‘B‘)]
3c H

E. Pressurization of a thick-walled cvlinder (Class III

material) bonded to an elastic case. As in the previous problem
the classical solution, see [ 1 1, shows us that the complete
cylinder passes from the first zone of action to the second at
the instant that Pi Pcm We find from Eguations (6.3), (6.4)
and (1.3) (for Zone 2)

- D_
o, = A + 5 (6.34)
r
og = a -2 (6.35)
r
k2
g = = 2 —= A (6.36)
z k
1
2 2
k k k
- -2 _D_ o2 D, _h(l-n) . 2
1 r 1 1
A L h(l - n)
36 = & 3nB (6.37)
m kl
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=1 1,

where kl = 3(3nB + u)
_Ll.1 _ 1

k2 3(3nB Zu)'

rY = a, g_ = -P
r i
r = b; g = - p'
r
which yield
D=-a’(a+p,)
i
azPl— b2P'
A,
) b2_ 2
Hence, [ 2k22 aZPi— bZP‘ kz (1en
u=r | (k,+ k, - ) - (1 - ) ]
r 2 1 ky bl- a2 kq 3nB
(k- k;)a’p?(p - P.)
* 3 3 (6.38)
r(b™- a”)
The displacement of the motor case will be
= _ (-5 p’%;
r o t (6.39)

E

and equating Equations (6.38) and (6.39), with r = b, we obtain

_ 2 2. .2,
(1-v%) b%p' _ 2k, aP;-DbP X2 h(1-n)
E e R T e R B St o=y
E 1 b™ - a 1

(k.- k,)a’b?(P'-p,)

2 1 i
+ 2 2
b(b’- a?)
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a P.
or P' = 2 = 1 +l:l
1

T2 L2 _ .2_ _2,[3nBk
b+ 3nBk;a” . (1-9)b 2u (b~ a“)
2_2 it
3anlu(b -a’)
_ _h(l-n)
61nBk ’ (6.40)

To determine the value of P, we set o, = h. Note that as in
the previous problem we obtain the Zone 1 solution by setting
n =1 and h = 0. Then

a2PC - bZP'
3hk, =
. 2 2
1 p(b™ - a”)
and using Equation (6.40)
‘ 2
3hk. = a Pc _ b2 2 .
1 u(bzu a2) u(bzw a2) b2+38k a2 -
' 1T + (1-v)b
3Bk1m(b2m@ﬁ nt
2 .
a Pc [ 1 N 1}
2u(b2— a2) 3Bkl
o} of 3hklu(b2~ a2)
P, = 2. 2 °
2 a’b (3Bkl + 1)
a - 2 2
5 o [bT+ 3BKja 3(1-7)bk B
U*(b - a )1-! 2 2 + —
1 (b%-a) e
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7. Proposed Generalization of the Bilinear Elastic Theorvy

We shall now consider a generalization* of the bilinear
elastic theory presented in Section 1. The generalization will
be realized by alloWing the constitutive equations to become
discontinuous across the zone boundaries, whereas in the
previous discussion we have only allowed the gradients of the
constitutive equations to be discontinuous. Thus we would be
able to accommodate a material which yields a uniaxial stress-
strain curve of the form shown below, where the unloading

curve 1is assumed to coincide with the loading curve.

!

Allowing the constitutive equations to be discontinuous at
zone boundaries relieves us of the continuity conditions (2.1),
(2.2) and (2.3) or their more general forms as given in Section
5 by Equations (5.2) through (5.13). Thus the general consti-
tutive equations for a Class II material (where we allow dis-
continuous constitutive’equations) are given by Equations (5.1).
Similar considerations holds for Class I and Class IIT materials.
To illustrate the solution method that one would now employ
we shall outline the method of solution for a simple problem,
the pressurization of a thick-walled cylinder. Let us consider

loading conditions compatible with the following:

*This generalization was suggested by Dr. Paul J. Blatz,
California Institute of Technplogy.
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O

As in Section 6 we
i.e., in Zone 1 we

Equation (5.1) and

Zzone 1 Zone 2

would solve a separate problem for each zone,

would use the Zone 1 constitutive equations,

the boundary conditions

The resulting solution will be in terms of an unknown parameter

Xx. For Zone 2 we would use the Zone 2 constitutive equations

and the results will be expressed in terms of three unknown

constants, two constants of integration (A:Q and AZ) and the

zone boundary x; let this solution carry superscripts (2).

The three unknown parameters Al” A2 and x which appear in the

two solutions are found from the following conditions

o]
r

(2)(a) = - Pi (Boundary condition)
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Gr(z)(x) = o

(Equilibrium condition)

(l)(

X) = u X) (Geometric condition),

Note that in Section 6 we were able to use the condition

09(2)(x)ﬂ=ﬁs, see Equation (6.10), but as we have no longer re-
quired continuity of the constitutive equations across the zone
boundaries this condition is no longer valid. Finally we must
establish limits upon the loading conditions (in this problem
upon Pi) such that the assumed zone distribution exists.

The above theory was not presented in detail, as yet no
experimental evidence has been produced to indicate the neces-

sity of such a theory.
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PART III

SOLUTION METHCD FOR NONLINEAR ELASTIC PROBLEMS
WITH APPLICATIONS TO THICK-WALLED CYLINDERS

by

L. R. HERRMANN
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INTRODUCTION

The state of stress and deformation existing in an elastic
body is governed by the finite elastic field equations [C 1 ]
i.e., equilibrium equations, strain-displacement equations, and
strkss~strain laws ?constitutive eqguations) . These equations
will in general be a set of non=linear partial differential
equations. Classical elasticity (or first order elasticity)
treats those boundary value problems for which this set of
non-linear equations may be approximated by a linear set ob-
tained from the finite elastic equations by (1) neglecting
~all powers of the displacement gradients in the equilibrium
equations as compared to unity and neglecting second powers
of the displacement gradients as compared to the first power
in the strain-displacement relationships and (2) showing by
experiment that for the range of strain of interest the consti-~
tutive equations are approximately linear. (This may be con-
sidered as one of the postulates for classical elasticity).

The first assumption is justified if the strain is small.

We shall consider a class of problems for which the above two
assumptions are no longer justified but in which the strains

are still relatively small; we shall base our theory on the
following two conditions: (1) the displacement gradients are

of ‘such a magnitude that we may neglect their second powers

as compared to unity and their first powers in the equilibrium
equations and (2) the constitutive equations may be approximated
by a truncated series of the second order (the extension to
third and higher order theories will be obvious and offers

no conceptual difficulties). We shall consider a theory in
‘which the strains are still relatively small, since most problems
susceptible to elastic analysis that occur in rocket motor
analysis fall into this category.

The best way to treat the constitutive equations is the

derivation of their general form experimentally T 6 71, as it
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is then apparent how to cbtain approximations for the range of
strain of interest. Until such expressions have been found for
solid propellants, we shall postulate that it is possible to
approximate the constitutive equations by a truncated seriks

of a given order. This method of approximating the constitu-
tive equations by a truncated series for a second order theory
has previously been used numerous times (see for example Riwvlin
C 3.7, alsc Green [C 2 7).

In problems involwving strains which are still relatively
small and the solution as given by classical theory still
approximately valid, it is natural to seek a series solution
uging the classical solution as a first approximation (note
that this method is not directly applicable to the problem of
elastic stability). Several such series solutions have been
developed; for example, Rivlin's second order thecory [ 3 ] and
Green's successive approximation method [C 2 1. The principal
advantages of such series solutions are (1) the effects of the
non=-linearities (i.e., deviations from the classical solution)
are clearly illustrated and (2) the higher order solutions may
be found immediately if a general solution of the classical
problem is known (where bddy forces are included). The solu-
tion for each term of the series merely involves the solution
of the classical problem with a n@nhomogeneousbpart depending
upon the previous terms. (Note: we shall extend the solution
method to include those problems for which the classical solu-
tion is not known). We shall illustrate yet a third series
solution method, i.e., sclution by perturbation. We have chosen
this method for two reasons (1) the method of application is
entirely straightforward and (2) we believe that it reduces the
algebraic complexities in many prcblems. The reduction in
algebraic complexity is chiefly achieved in two ways, first by
deriving the governing equations for each individual problem
and second by judiciously selecting the appropriate level of
approximation at which tc apply certain of the boundary condi-

tions. To be able to apply perturbation theory two conditions
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must exist T 5 7I; first there must exist a state, near to the
one sought, that has an exact solution. Second, the passage
from this state to the one in question must take place in a
smooth manner (thus excluding stability problems). These
conditions are met for the class of problems considered as

the actual solution may be reached after a smooth transition
from the solution of the classical elastic equations. Although
the foundation upon which our perturbation theory is based de-
pends upon the existence of the classical solution its applica-
tion does not require knowledge of this solution, as was pointed
out above.

We shall consider three general types of material response:
compressible, incompressible, and near-incompressible., A near-
incompressible material is defined as one for which in the
classical region Pecisson's ratio is very nearly egqual to ocne~half.
We shall discriminate materals that are nearly incompressible
for three reasons: (1) to effect a reduction in algebra, (2) to
isolate the effects of compressibility, and (3) to illustrate
gsome of the difficulties that arise as v — 0.5,

We shall exhibit a general scolution scheme but we shall
not derive general equations as it appears to be simpler to
derive the governing equations separately for each individual
class of problems. Thus our procedure will be to illustrate
the method for several simple examples occurring in rocket
motor design, including a consideration of the thick-walled
cylinder subjecteq to various loads and thermal effects.

The following treatment consists of two parts: (1) a
preliminary consideration of the general finite elastic theory
(including some extension necessary for the following work)

and (2) illustration of the general solution scheme.

S 109



FINITE ELASTIC THEORY

1. Summary of Notations and Formulas (We shall employ curvi-

linear tensor notation; see U 1 D and T 4 1)

Notations

ij
h. .
ij

G. .
1]

o. .
1]

ij

Material coordinates (i.e., coordinates fixed
in the body)

Spatial coordinates (i.e., coordinates fixed in
space) :

Covariant components of the metric tensor for the
material coordinates in the undeformed space

Covariant components of the metric tensor for the
spatial coordinates

- Covariant components of the metric tensor for the

material coordinate system (Green's deformation
tensor) in the deformed space

Indicates covariant differentiation with respect
to the deformed material coordinate system (exam-

ple leH:i.)-

Christoffel three index symbols of the second kind
taken with respect to the deformed material co-
ordinate system.

Contravariant tensor components of stress in the
deformed body, referred to the deformed base vectors

Physical components of stress in the deformed body
per unit of deformed area, referred to the deformed
base vectors

Contravariant tensor components of stress in the
deformed body per unit of undeformed area, referred
to the deformed base vectors

Contravariant tensor compopents of the displacements
in the direction of the undeformed material base

vectors (n(l) are the physical components)

Contravariant tensor components of the displacement
in the direction of the deformed material base vec-

tors (8(1) are the physical components)
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el

Contravariant tensor components of strain

Strain invariants
Alternate form of strain invariants

Helmholtz free energy per unit of initial volume
Internal energy per unit of initial volume
Entropy per unit of initial volume

Thermal coefficient of conduction (assumed as
temperature and strain independent)

Specific heat at constant deformation
Absolute temperature

Relative temperature ratio

Reference temperature

Linear coefficient of thermal expansion
Indicates C is of the order of magnitude of a
Bulk modulus

Poisson's ratio

Shear modulus

Density per unit of deformed wvolume

Density per unit of undeformed wvolume

Deformed volume

Undeformed volume

Contravariant components of the body force per unit
of mass, referred to the deformed base vectors.

Governing eguations:

Equilibrium equations

Ti%li-+{ ij = 0 (1.1)

Strain-displacement relations.

i 1, .1 i
EL = 2{(G*, ~ Bl 1.2
§ =56y - o)) (1.2)
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where

also

J ik
6, = 17 6;E3 = o(e})
9, = %T’Si%EEE?
05 = 37 OpanESEIEL
1, =26, +3
12 = 492 + 491 + 3
86, + 46, + 20, +

Form of the Helmholtz free energy

A=FE - T_S,
a

For an isotropic body

where

A = A(Ql,ezf

©,.,T)

Stress-strain laws for compgessible material

T

ij

1 dA

g™J

b=

NﬁfBBEij
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3

(1.3)
(1.4)
(1.5)
(156)

(1.7)

(1.8)

—~
|
°
O

A

(1.10)

(1.11)

(1.12)

(1.13)



Noting the above representation for A, see (L.11), we may
alternatively write Eguation (1.13) for an isotropic compres-

siblé material as

ij _ 1 ij oA 117 ij,0A 1, ij ij ij cA
T = =g + (B 7= g -) + =(g “= B 7+ I.G - )sHF"
r-—IB 561 2 592, 4 3 093
(1.14)
where
BlJ = Ilglj - glrgjsc;rs. (1.15)
Heat conduction equation
14 . T, Bsiu .
(keI )”i; = plegT, - =2 ~5+t B L) (1.16)
“j"j Po a
,, 5°
where O = e —edieom
E 5 a -
T
a
Physical components
G. . 14
R ~;@-T ] (no sum) {1.17)
ij it
(i)ﬁlJ~m-'nl (no sum) (1.18)
N 9ii
ﬁ(l):fVGii et (no sum) ‘ (1.19)
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2. Derivation of Constitutive Eguations for Incompressible
Thermoelasticity.

Incompressible thermoelasticity describes materials that
are mechanically incompressible (i.e., due to stresses) but
thermally compressible. We shall consider an incompressible
body subjected to certain temperatures and forces such that
at somé'internal point the state of the body is characterized
by an absolute temperature Ta (oxr Felative temperature ratio
T, see [ 4.1 ) and displacements»nl . We shall now subject the
" body to wvirtual displacements Sni (the restrictions placed on
Eni will be considered below) at constant temperature (i.e.,
BT = 0). If we now consider the wvirtual work performed on
some arbitrary volume V during the virtual displacements, we
find that

V.W. = [[/t 18R, .dv (see C 1 J,p.71) . (2.1)
ij
v

This virtual work in an elastic body must equal the change in
value of theHelmholtz free energy function (see L 4 1),

* * *
A = A (Eij”T) where A 1is the Helmholtz free energy per unit

of deformed volume. Thus,
, : LI
var, = [[foatay (2.2
b

*
In the formulation of BA +the wvariations of BEij are not ar-

bitrary but must satisfy the additional constraint

av_, 2
I,- (55)
av

3 = 0, see Eg.(1.9),

(gz“) is a function of T only. Defining a Lagrange

.
where .
o
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multiplier h' we form

_ oA E b 2
L—=A+2~{IB~=( )]
2

= (0. where we may now treat the

ay_
av

av
3~ ()
as independent. We oBtain

*
Thus BA L. and I

BE. .
1]

_ifé ay_, 2
OE,
iJ

av_’-

i

oL DA~ bE.. +

ij

h' _
5 aEij” where I3~(

From Egs. (2.1), (2.2), and (2.3), we obtain

*

o1

| i3 eAa  _ h! 3 _
]f”j 5B, 2 é"ﬁ]wijd‘f -
. 173 ij
\Y

Treating the ﬁﬁij as arbitrary and in view of the arbitrariness

of the volume integral we obtain

*
i3 n 913 da"

P

2

Expressing the above egquation

OFE,

-t SE,
i3 i

3

in terms of the Helmholtz free

energy per unit of undeformed volume A,
av
*
A = aggAﬁ-"Lm A, see (1.9),
Vis

thus

A3 _nt oI, Ll da

2 aEij '\/?ET; aEij
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also 3T

seo— = 26771, (see C 13, p. 75), (2.4)
iJ
and ,
ij _ . .i3 , 1 oA av_, 2
T = hG + === 55—, where I =(35), (2.5)
VE:) Eij 3 dvo
dy - dv
Letting VI3 -1 = ———— = f(T) ; (2.6)
dvo :
we may write
i3 _ ij 1 oA o 2
T hG + 1€ (T) éEijl where 13 L+2E£(T) +£7 (T) (2.7)
For an isotropic material A = A(@ly 92, 93, T), see Equation
(1L.11), or noting the relationship between 91 and Iy Equation
(1L.9), we may write ‘
= ] g2
A = A(92ﬂ93013 1 2£{T)-£7(T),T)
If we let
- 2
I, = I3 - 1 = 28(T) - £7(T) (2.8)
then A = A(92,93F13,T) (2.9)
The condition of incompressibility is now expressed by‘f3 = 0.
Let Al o= 3(92,93@) {2.9a)
IB:
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. oa_ _23a %% _sa 9% _aa %3
BEij 96, BEij EEN BEij 553 BEij

a”’f3 613 i
but SE = 3E = 213G J, see (2.4),

iJ ij

_ OA
.,.5_9_;

1,=0

Q/
e

= gcalar = h"

%
ol

thus BEA )

= 060 - 36, .
_ 9A 2 oA 3 R
=56, 3%,. t356, 5%, t2hIsE (2.10)
= 2 i] 3 1]
I,=0

i3

_ oA wr i3
= W + 2h 13@ ’ (2.11)

= ij
13 0

dA
or 5“"”“"’E ‘

1]

hence

and I.= O, (2.12)
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Alternatively

i3 ij 1 oA . = ‘ 2
T = HG + 172 (T) aEij and I L+2£(T) +£7 (T) , (2.13)
where H="h + 2 IVIB h" ,

or from Equation (1.14)

Glj)%‘%’” L (2.14)
3

iy _ oweido, 1 [,1niF i3\9A L 1, ij . ii.
T = HG + ) I:(B g )8"5—’+4(g BT +1L

1+£(T 2 95 3

iy iy ir js
where ptl = Ilg J - g gJ Grs'

.3, Governing Equations for Thick-walled Cvylinders,

Consider the behavior of an infinitely long thick-walled
cylinder subjected to axially symmetrical forces and tempera-
ture distribution. In order to illustrate two fundamental
approaches to the formulation of the finite elastic equations
we shall consider two distinctly different types of displace-
ment fields; first we shall consider the effects of pressure
and temperature which will cause motion only in the radial
direction, and secondly we shall consider the effects of a
vertical gravity loading which shall give rise to both a longi-
tudinal and radial motion. In the first problem we shall select
our material coordinate system such that in the initial state
it coincides with the cylindrical coordinate system (r,0,z)
and in the second problem we shall select our material coordi-
nate system such that in the final state it coincides with the

cylindrical coordinate system (r,0,z). Thus i1f we compute the
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stress at the point r = L 0 = 90 and z = z . we have for the
first problem found the state of stress of the material that
initially occupied the point (ro, 90, zo) while in the second
problem we have found the state of stress for the material

that occupies (roﬂ 90, Zo) in its deformed position.

Pressure and Temperature Loading of a Thick-walled Cvlinder

We shall describe the initial state in cylindrical coordi-
nates (r,9,z). The material coordinates shall be selected
such that in the initial state they coincide with these cylin-

drical coordinates, i.e.,

(x',%x%.x%) = (r.6,2) (3.1)

then (ds )2 = g dxidxj

o ij

r 1
1

B 1,2

where gij = (x7) (3.2)
1

The spatial coordinate system will be chosen as a cylindrical

cooxrdinate system also, thus

(as)? = haadyqdyg

_ 142
where haﬁ = (y™)
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The displacement field will be

’ﬂl = ﬂ(l) = u(xl) = u(r)
ﬂz =0
n3 = 0

In the deformed state the material coordinates will be related

to the spatial coordinate system as follows

yl = Xl “+ Ul(Xl) = r + L'L(r)
3 3 _
W =% = Z .

- 2

The Green's deformation tensor is given by
f Y

~ O
- L A é}ﬁ
1

G, . -
1] b 3k dxd
14 du,y 2
(1+ dr)
. ~ 5
or : Gij (r+u) (3.3)
1
%3 .
also G~ = glkG.
5 jk
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du, 2
(1+ 94
o *i_ u, 2
or i G ;= (1+ r) (3.4)

The Christoffel symbols. of the second kind may be found from

?if - Gin LéGin + aekn _ aGﬁk}
R - PN PP - P
au
“Fl - dr2 .
1 du
(L + P

1 _ =l _ w2 w3 _ o=l oL
Iig= Typ= Tyg= Iyg= Tyg= F33= 0

Lo (xr+tu

22
- du
1+ 52

The equations of equilibrium in material coordinates, Equation

(1.1), are

i
T

’ F. =0
JHi L J
The non-trivial equation for this problem is, for j = 1,
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drl i
T Lrl + T2+ r?g} - 7] Th- 12 T2 -3 Ta= 0

w W
-

. 1 _ - 2 _
Noting that fl = 0y1 = 0.0 Ty = 0,5, = 09 .
do g = 0 do g_ - 0
r r 6 ,u_xr  du_r 0 -
ar T T T T 5 t s = = 0, (3.5)

The strain components, Equation (1.2), are

i 1, i i
E. = =(G T -~ B
] 2! 3 J)
du | Lcdu)z
dr 2dr
i u 12
or Ej = ” + Z(r) (3.6)
0
leéding to the invariantg
1 2
6, = E] + E, (3.7)
.1 2
O, = By By
. 1 2 1.2
_L3 = 1 - 2El + 2E2 + 4E1E2



The heat conduction equation, Equation (1.16), is

oty P, 1 N

<= E,.).
i E a Po oTa 1]

For our problem we note K and TQ are constants and considex

only steady state conditions. Thus,

GLJTII:H = 0
17

or o —Sts - [Gllfil+ Y+ 62 T = 0
d(x) ax - '
a’r LLiar {lu . du 3’ ( au 5 du)l dT}
or 5 t T ot 3T +37) —5 - (r /5 - To)T ST
dr2 ¥ dr x dx drz er dr’r dr,
wdu d’r [ 4% ,du.2]1 4T
* {;a“fz’z - [u“z’ T J?E}”}”‘“’ 0 (3.8)
r ar y

Governing Eguations for Vertical Slump of a Thick-~walled Cvyvlinder

Selecting material coordinates (xl) such that in the de~
formed body they coincide with the cylindrical coordinates

(r.8,2z), the material metric tenscr is

[
N
[ 8%



G4 (3.9)

1
- 1,2
hij : (y™)
1
The displacement field will be
e = ey = u(n)
€3 = 6(3) (x7) = w(x),
Thus , yl = xl - ul = r - u(r)
2 2
y = X
3 3 3
y = x7 - u = z - w(r)
%k n
Now g.. = h, ,Cil_; *ELZ“
R okt ok



duy 2, dw,2 aw
(l dr) +(dr) O - d,r
or
2
gij 0 (r = u) 0
dw
T drx 0 1
(3.10)
ij i ij . s
Also g may be found from g ik Sk
adw |
“ﬂ“““émﬂi 0 dr
(1 -2 du, 2
dr (1~ ar
glj 0 —""“L“_i 0
(r - u)
dw | dw
dr dr
(1 - 3% ’ BT
dr dr
(3.11)
la; ;| .
and Clgll - Y2 - dy? o)
P21 r dr

The equilibrium equations are the usual equations for cylind-

rical coordinates,
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r 8 _
ar T r =0
dt
and —rz , 1 -
ar T r rz tpg =0
From Equations (1.9) and (3.12),
e 2 = (1 - %)(l -
po VI3
dTrz 1 u
X N - =Y T -
thus dr * rTrz * po(l r)(l

The deformation tensor is

L
du
(1 - dr)
"
gt = 0
J
dw
dr
du
Q-

2

leading to strain displacement equations
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51.,9‘)
dr
ili) =
dr El
dw
dxr
du, 2
(L - dr)
0
dw, 2
(37
1 +>z1-i-§£;§
dr

(3.13)

(3.14)



dw
dr
du, 2

1 -5
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SECOND ORDER ELASTIC THEORY

4, General Theory,

In the remainder of this section, we shall assume that
the magnitude of strains is such that we need retain only first
and second order terms in our final equations. It must be
emphasized that when the resulting solutions are applied to
a specific problem, the numerical results must justify the
above assumption.

For example the strain-displacement reiations, Equation

(3.15), for a second order theory, would be written as follows:

du . 3,du,2 1 dw . du dw
ar T 3G 0 2 ar T ar ar

2

i u ) 0

3 r

o
g f

%

dw . du dw (Swy 2
dr dr dr dr

The form of the Helmholtz free energy function, which deter=-
mines the form of the constitutive equations will now be deter-
mined for a second order elastic theory. The energy datum is
taken at the reference temperature TOO For a compressible 1
material, assuming that T is of the order of magnitude of E%,
we expand A in a power series in Qi and T and retain terms of
third order or less. The range of wvalidity of the second order
theory needs to be considered in light of the relative size

of the coefficients of the neglected terms as compared to the
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terms retained in the expansion, a comparison which can best
be made by finding the total expression for A by experimental

means., Accordingly,

2 3
A= ky(8, + kzel + ky0,9, F k0,7 + k8, + k TO, + koTO

2
+k8T92

m2n . 2 3 ,
+k9T vl + klOT + kllT ). (4.1)

In classical elasticity only the first and second order terms

are retained, i.e.,

1 ) 2 2
A = kl(92 + kzel + k6T91 + klOT )

which when compared to the usual notation [C 4 1] is written

: (1 +v)aT
1l - ¥ 2 , 2
- i o ; . "
A 2 Lez 31 - 2w C1 T T o AT Ryt ]

Comparing terms we find (note klO and kll need not be evaluated)

kl = -2,
k x__“l,_:___}.’i_,

2 2(1 = 2v) (4.2)
k. = 2t Y on

6 1 = 2v o
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oy o= - E%
1+ 2k,
VST 4k (4-3)
2
g

2TO(1;+ 3k2)

In incompressible elasticity we need the function‘z(Gz,SB,T)”
Equation-(2.9a), which, in light of the above reasoning, shall

be taken as

A e 7 2, o3
A = cl(Qz + c293 + c3¢62 + C4T + cgf ) {(4.4)
av - dvo
It is also necessary to have an expression for gy as a
W
o

function of T. For a second order incompressible theory,

Equation (2.6) is written

av - dvo 2
m~a§g~mm’£ SlT + BZT = £(T) (4.5)
av - dvo
For classical thermoelasticity we have g = BQTOT; thus
Bl = BOLTO° Hence, the incompressibility condition 13 = 0,
from Equation {2.8), yields
2
I, - [l + f(T)} = 0 (4.6)

Substituting for I30
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or
. —_ Cin 2052
el + 2@2 + 483 = gslT + (52 + 281 )T
1n 2y _ *
Now let (62 + 261 ) - 62
0. + 20. + 40 = * g2
then 1 5 3 = SlT + 62 T,

In order to relate the coefficlients appearing in Equations
(4.1) and (4.4) it is necessary to express A in terms of

0 93,5 and T. Noting that

2° 3

- 7 _ _ * D
IB = 291 + 492 + 893 2BIT 262 T

we may write Equation (4.1) as

A = kl §92}+ k593 + £m451k2 + k361 - 2k6 + kB]T92+ T I3

X X 3Bk, k
5z, 473 14, 71772
+ Lkzﬁl + 2} I,T +— I537 + £ Tt 4] I,7T
3k, B, 2 x k
+ kB —2 A gk, + =2 |T.r? 4 -2k + —= [T.6.+ h(T)
2P2 2 %7 T ST 2t T2 150t BT
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Thus

A f3=‘0 = A = kl {92+ k593+ [,_ 4Blk2+ kBBlm 2k6+ k,8}1‘92+ h(T)}

which, when compared with Equation (4.4), yields

Cy = k5‘ (4.10)

cq z[m 4Bk, + kB - 2k, + kS},

To cbtain the constitutive equations we need merely apply
either Equation (1.14) or (2.14). For example, for the pres-
sure and temperature locading of a compressible cylinder we will
make use of Equation (1.14) where, (see Equations (3.2), (3.3)
and (3.7)),

G
11 )
B = 200 43 -6,
1
G, = 2E] + 1
11 L
G = T
1+ 2E]
1 2
6, = E] + E;
12
92 = ElEZ
6, =0
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1
1

N N2

1 2,2
3E1E + 3k4(E + EZ) + kT

, 2
= {21{2(El + EZ) + k 6

1
1

2 2
9”:[‘ +k3 EZ

1
1

2 2 2 2
- 2k7T(E + E2) + k (B> + Ez) + k8E2T e ‘1‘2},,

Utilizing Equations (1.2), (1.17), and (2.4), we can write

~ 11 1 11
o, = GllT = (2E11+ IR .
or
g = k [(l+2k VE2+2k Ex+k T+ETEZ (2k.+6k  +1) +(ET) 2 (3k . +2k.)
= K Q) Ex¥2k By +k THETE, (2k3+6k 1 4t2k,

2.2 1, ; 2 - 2
+(E2) (k3+3k4-l—2k2)+ElT(2k7+k6)+E2T(2k7+k8 k6)+k9T }
L.ikewise
. 2 1 imly 2,2, 2 _ 1 2y, ~
Urmoewkl {(E2 El)+~BEl) gEz) ](4k2+l k3)+(El Ez)r(2k6 k8)}

Making use of Equation (3.6),

- ] u du A u, 2
o =k, [(142k2)r+2k2 QU § kT (gt Thym 5 - ky) (D)
du, 2 u du

du u . du
+(ky 3k, +2k,) (G7) TH(2ky ek +1) - go + (2koHk )T I
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and

u _ du U
l(r dr) [l +‘(kii 2 4k2)

=

(E

_ du -
0_-0y = k S+ T H(kg 2k6)T1 (4.12)
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A SOLUTION METHOD FOR FINITE ELASTICITY

5. Outline of Method,

In order to cast the governing equations for pressure and
temperature problems into a form susceptible to a perturbation
solution (i.e., into a form where the relative magnitude of
the various terms is apparent) we shall make the following change
of variables; (A somewhat similar method of introducing a per-
turbation parameter for thick cylindrical shell theory is

given in [ 9 1 ).

u
V Same (5.1)
U
P=g (5.2)

where a is the inner radius of the cylinder.

Thus
v
- < 1
) <1
and
, vu,
u max
r pa
Let
Mmax
;ug;a = 85 (For a second order theory l6l<ﬂp)
(5.3)
Therefore, =057
r p
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Also let

r 1 p
Og = k1659
*
T = BT

T~
o1}

(5.5)

Making the above change of variables the governing equations

{3.5), (3.8), (4.11) and (4.12) may be written
ds s =S r._ds s -8
e 4 L 0 . _ SLX“«Q” av Tp "6
dp P dp dp p
2k * 2 * 2 *
d“r_ ., 14t _ _ B[V(y_ , av,d°r (o &¥ dvy1 «—de}@Z{l dv a°T
gp2 P dp Lo dp g2 ap? dp’p dp P
H 2 «
_l;vdv_. (g__\_f_)2J_1_dT}
ap? dp p dp
. v dv * DLy ¥y 2
Sp = (1,+2k2)p + 2k2 ap + k6T + 6[(k3+3k4 5 kz)(p) + 3(k
dv, 2 ‘ v v * dv
+ k2)(dp) +,(2k3+ 6k4+ 1,)p ap + (2k7+’k6)T ap + (2k7
* y %9
+ k8 - k6)T 5 + k9T J
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{5.6)

2

dp

*
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: . ¥ _ v 1 vy2o Gy 20 g L ¥ (¥ . 2yl
s,” Sg =5 T gt 6{(](3“ = ~4k2)£(p) (dp) } +(kg= 2k )T <p dp)J~

As B — 0 the above equations approach the classical elastic
equations; thus, we have established the conditions that are
prerequisite to a solution by perturbation, i.e., (l) a near
state for which an exact solution is known (as & — 0 we

have the state as defined by the classical field equatiaens)
and (2) the transition from this near state to the desired
state should proceed in a smooth manner (as previously indicated
we shall not consider stability problems). It should be noted
that the perturbation parameter 8 is merely a device used in
obtaining a solution and as such will not appear in the final
solution. To effect a solution by perturbation we expand the

dependent variables in a perturbation series, i.e.,

T* = T*(O) + GT*(l) + . . .
Vo= (0) + Sv(l) + o o
(5.7)
s = s(o) 4 65(1) + o o e
P P P

(0)
(1)

tion), v is the first corrective term, etc. Substitution

where v is the solution of the near state (first approxima-

of the above expressions into the governing equations and eguat-

ing coefficients of & we obtain the following systems of equations;
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First system

@’ 1 a0
2 dp
dp P
4s(®) (O _(0)
o L P © = 0
dp
(5.8)
(0) {0) ,
{0} v a dv _ *{0) _
Sp - (1 + 2k2)=-— 2k2 _EE@_ k6T ' = 0
L0 _ o <9 e
P © P dp '
Second system
L2 % (1) Lo * (1) ., (0) 2, (0) 42_%(0) 2_(0)
kwémim +i' dgﬁ - (J + u(\; )u T > + (p d 5
dp P [ P P dp dp
o, dv(m) 1 gr* ()
dp P dp
(1) (1y _ (1)
ds . S, S _ 1 o 0) dv(o))Z (5.9)
dp P Y P dp “
. (1) (1)
(1) ‘ v _ aw _ *{(1) _ L
sp - {1 + 2k2) 2k2 ap k6T (k3 + 3k4 5
{0)
v 2

Continued
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{5.9 Continued)

(0) (0) (0) ' ., (0)
+ 30k, k) (%«5——)2+(2k3+ 6k + 1)¥ d;‘l’p +<2k7+1<6)T*(0) -@iéngW)
(0)
+ (2ky + kg - k6)T*(O) YE—-— + k9<T*(O))2
; (1) (1) (0) (0) |
(1) (1) N dv n 1 v 2 ,4x 2
(0) (0)
*(0) ,v av
+ (kg 2k)T ( T ),

The first set of egquations is that of classical elasticity.
The left hand side of the two systems of equations are identical.
Whereas the first system is homogeneous (in the absence of body
forces and temperature sources) the second system has non-
homogeneous parts composed of non-linear terms derived from
the solution of the first system of equations; hence, the non-
homogenous parts of the second system are known functions
once we have solved the first system of equations.

It is to be pointed out that, although the perturbation
solution method leads to an infinite series, for a second
order theory we need only consider the first two terms of this
series. If we used perturbation to solve a problem described
by a third order theory we would need three terms, etc., since
neglecting the third and higher terms of the series introduces
errors of the same magnitude as those introduced by neglecting
third and higher powers of strain in the formulation of a

second order theory.
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6. Compressible Response.

Uniaxial Test

The uniaxial test is analyzed since it is the most common
test performed upon material samples. Although it is preferable
to obtain elastic properties using an experimental approach
as outlined in [C 6 1, it is possible to obtain results from a
uniaxial test. For a description of a uniaxial test where
thexrmal effects are included, see [ 7 1. The solution of the
uniaxial problem may be considered from a perturbation standpoint.

We shall select material coordinates x* to coincide with
rectangular cartesian coordinates in the initial state. Choos-
ing the spatial coordinates yi as rectangular cartesian coordi=-

nates we thus find
L .. . .
1] 1] ij-

The displacement field will be given by

i i

nTo=ex (no sum),
and as

yl = <t 4 nl
or

yoo= (1 + ei)xl (no sum)
Hence,

- -
(1 +el)2
= o’ _ 1 + 2
Gij =G . = ( e,)
(1 + e3)2
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and 1
et 3°1

L 1
By = ; eyt 28,

1
e3t 5,

Utilizing Egs. (L.15), (L.7), (1.9), (4.1) and (1.5) we find

= 1
11 . . 2
Bl =1 -G =1 - (L4 e)
ST 1 '
(1 + el)
Il =~29l + 3,
T, =1+ 20, +46, + 86, ,
OB _ % (2k.6. + k.6, + 3k 0.2 + kT + 2k.TO. + k.T2)
o6, ~ ¥1{#%9% 39, 4%1 6 779 9

A  _
y‘; = kl(l + k391 + kBT)

oY b

0A  _
365 " kKikg o
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) 12,1 2_,1_2
b1 = ey teygtegtie” +5 e + 35 e,
6, = eje, * eje; + eje,,
From Eg. {(1.13)
st =k [2ke, + (2kot 1) (et e.)+(k o+ 3k, )e. 24 (ko £ + 3k
1|28 2 ot e3)+ik, 4’ €1 2t 3 4
+ k )(e2 + e2) + (2k,+ 6k ,}) (e,e,+ e,e,)+(3k.,.+ k
k3l ie, 3 3 4) (€18, e85 3t Ky

+ kT + 2k

+ 6k4)eze3 6

2]
7elT + (2k7+ k8)T(e2+ e3)+-k9P ]

likewise

22

1
S

2
+ 3k4)e2 + (kz + + 3k

+ l)(el+ e3)+(k 5 4

it

2

i kl[?k2e2+ (2k ,

2

+ k3)(el

2
+ e3)+(2k3+ 6k4)(ele2+ e2e3)+(3k3+k5+ 6k4)ele3

+

. 2
k6T + 2k7e2T + (2k7+ k8)T(el+ e3) + k9T l

For a uniaxial test of an isotropic material

e, = e3 and
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11 2 |
s = k‘l [2k2e1+ 2(2k2+ l)e2+(k2+ 3]<4)el + (2k2+ 1 + 12k4+ 5k3
2 2

¥ kgled + 2(2kg+ 6k leje t KT + 2koe T + 2(2k+ k) Te, + koT ]
s2% = k. |4k + 1)e + (2k.+ 1)e.+(2k.+ % + 12k + 3k.)e?
“ 1| V4R, 2 2 1 2t 3 4 3)€y

1 2
+ (k2+ 5 + 3k4+ k3)el + (5k3+f12k4+ k5)ele2+ k6T
| 2
{ . ¥

4 g4k7+ kS)Te2+ (2k7+ kg)re1+ k9"I‘ ]

From Egs. (1.13), (L.17) and the above
+
S B B
1T, ez)z

oxr

cmes “ 2 a T =)
o, = kl[2k2el+ 2(2k,+ ey 3(k,+ ke “+(12k,+ 5k,- 6k,

2

-3 + kg)es + 2(2kg+ 6kt Leje,+ kT +(2ko+ kg)e T

) _ 2

+ 2(2ky* kg~ kg)Te + kT ], (6.1)

Let %15 be the nominal stress (i.e., per unit of initial area)

then © = (1 + e sll

in l)
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or O =k

in 1 €

2 ,
[Zkz l+ 2(2k2+l)e2+ 3(k2+ k4)el + (2k2+ 1+ 12k4+ k5

2
+ 5k3)e2 + 2(2k2+ 1 + 2k + 6k4)ele2+ k. T +(2k7+ k6)elT

3 6

2
o F k9T } (6.2)

also 022 = 522 = 0 , hence
- 1 2
0 =k, B4k2+ Le,+(2k + 1)e;+(2k,+ 5 + 12k, + 3k,)e)
+(k+-l—+3k +k)e2+(5k+1,2k+k)ee+kT
2 2 4 3771 3 4 577172 6
2
+ (4k7+ kS)Te2+ (2k7+ k8)Tel+ k9 J, (6.3)

Thermal Stresgssing of a Thick~walled Cvlinder

The first of Egs. (5.8) may be written
*(0)
_g_,Lp _@_11_____}_,, .

whose solution is

(0)

T = C(O)lnp + D(O)

(6.4)
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Noting the above results and using the third and fourth of
Egs. (5.8) we may write the second of Egq. (5.8) as

v(o) = 20 p + B(O) %’“ ZE% C(Q)p(lnp - %)° (6.5)
Thus,
p*(0) L (0, 5 (0)
p 4k2 ’
N T O P O S N I (O B —“]iéc(o)lnp
P 2 6 2 p2 4k2 ‘

From the above solution to the first system of equations we
are able to calculate the nonhomogenous part of the second

system of equations. Thus, we are able to integrate the second

*
system. The resulting expression for T (1) is

*(1) (1)

= cMpp + pMy g(0)c(0) 1

2
P
while the expressions for the remaining dependent variables

may be similarly obtained. The constants A(O), B(O)g C(O),

D(O),‘A(l), B(l) etc,, are evaluated from the boundary condi-

tions.
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In order to avoid the rather involwved aléebra we shall
consider the problem of a uniform temperature drop T of a thick=
walled cylinder bonded to a rigid case. The 1inner and outer
cyvlinder radii are a and b respectively. The boundary condi-

Tions are

T*<O)ﬁ=’ "I‘* - %}l
T*(l) = 0
at. r = a, p = (6.7)
S(O) = 0
\\ p
v (1)
LY P O
\S,
T*(O) '3 T*
T*(l) = 0
and at r = b,
. b _
p=z=c <0 = o

Applying the above boundary conditions to Eg. (6.6) we obtain
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Let

then

The second of Eg. (6.7) yields C(l) = D(

N P
c” - (1 + 4k2)
L0 _ 2, (0)
k
X =73 .
c” - (1L + 4k2)
2(0) _ o*
2
(0 - T*xl(p - %—)

(O) *}/ T . 2 3\
- - S
sp = T ixll(l+4k2) pz} + k6}

1)

first order solution and Egs. (5.9) yields

The solution is

= 0,

* 2
(T x.) 4
(LN _ 1 - - e
[pv B" K, (k- 1 = 2k3)7 g,
Y
2
(T*X. ) ; 4
1 . e L A (D)
%, (4k,- 1 21<;3)p3 + A" p + B

The third of Eq. (5.9) becomes
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] 1+ 2k, + 4k 4
ALY (1) (1) 1_ _ *.2 3 2, ¢
Sp = (1 + 4k2)A + B 5 (XlT ) ( o% )~a—~4
P 2 P
2 1
- {1 + 8k2 - 2k3);§ - (3k3+ 12k4+ 5 + 2k2)}
2 e £ 2 o
+ Xl(T ) [(4]{7-% k8)+(2k6-= ks)—él + k9(T ) °, (6.11)

Applying the second boundary condition in Eg. (6.7) to the above

equations we find that

*
alt) = x (2?2 (6.12)
gl = Xy (T y 2
C2X4 == X5
where X2 = (6.13)
c” - (1 + 4k2)
2 -
c“Ix. - X, (1 + 4k.)
X, = g . 2) (6.14)
c” - (1 + 4k2)
2
X, “(4k,- 1= 2 k)
Xy = - , &%, (6.15)
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1 + 2k. + 4k
L2 3 2 4 ~ 2 1
Xo = Xy { 5%, c (1 + 8k,- 2kg)c” =(3ky + 12k, + 5
(6.16)
Av . pe— 2 e
+ 2k2)1 X, [(4k7+ Kg) +(2kg- Kg)c®| kg
ke
X = 3 ,
Yot -1+ k) (6.17)
b
c = =
a e

Making use of Egs. (6.10), (6.11), (6.12), (5.1), (5.2), (5.3),

{5.4), and (5.7), we may express our results as follows

2 2
o= kT y _b e m2 ‘ a
o= kl.L {X’l [(1 + 4k2) r2 + k6} + le (L + 4k2)X,2+ X3 r2
1 + 2k_+ 4k 4 2
2 3 2.0 ~ b 1
- Xl % 8k2 )*Z (1 + 8k2 2k3) 5 (3k3+ 12k4+ 5
r r
b2
+ 2k2) + Xl (4k7+ k8)+~(2k6~ k8) ‘;—2'“ + k9 (6.18)
2 2 4
= _ b 2 a~ _ b .
u o= Txl(r " ) + T {er + X3*;f X4 ;?} {(6.19)

The very important fact that the results do not depend

upon b (as ©® is only a numerical indicator of the relative
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sizes of the various terms appearing in the governing eqguations)

is clearly illustrated in the above results.

Pressure Loading of a Thick-walled Cylinder

*
Setting T (0) 0 in Eg. (6.6) we find that

(0) - 5(0) ) 4 5(0) %

{6.20)

s(0) = (1 + 4k )A(O) + 30 L
p 2 p2;

Using the first and fourth of Eg. (5.9) we may write the third
Eg. (5.9) as

a i afj (UL _ L - - (0)y2 1_
dp{p dp[pv ]}_, k2(4k2 2ky= 1) (BY) 5.

The solution is

(0),2
v 2@y g (1) %4— -é-]];—;(4k2~ 2k~ DB (6.21)
P
hence from Eg. (5.9)
(1) _ (1) (L) 1 . 1 (0),2
Sp = (1 + 4k2)A + B p2 +(3k3+ 12k4 + 2k2+ 2)(A )
{(6.22)
4k 4+ 2k, + 1 (0),2
_ 2 3 (B ) , _ _ (0),(0) 1_
% ) + (2k3 8k2 1)Aa B 5
2 P P

150



Let us now consider the specific problem of a thick-walled
cylinder subjected to an internal pressure Pi” the boundary

conditidns will be:

At r = a (p‘= 1) o =—Pi
or s = S(O) = - Pi
P P klé
_ P
Let P =
klﬁ
(0) =
th = = P
en Sp
and sél) = 0 (6.23)
and at
= = 2 . (0) _ o (1)
r = b(p = e c); sp = (Q = sp e (6.24)

Applying the above boundary conditions to Eg. (6.20) we find

(0) _ P
A =
(c®-1) (1 + 4k,)

(6.25)

2......
g(0) o _c®

02~l

Noting the above results and applying the remaining boundary

151



conditions to Eg. (6.22) we find

A(l) - (E)ZXI 6. 26)
51 = (7) ’x,
1
- 1 (3ky+ 12k, + 2k + 3)
where X, = = > 5 5
(e®-1)7(1 + 4k,) (1 + 4k,)
(6.27)

2 .
. c (4k2+ 2k3+ 1) (1 + 4k2)}

8k2

- 3+ D)1+ 4k,)

2 (c®+ 1) (4k + 2K
X =3

2 2 8k

+(2k,~ 8k “1ﬂ«
(ch)2(1+4k2) [ Ko 3 2 7]

(6.28)

Using the above notation we may write our solution from Egs. (6.20),
(6.21), and (6.22) as

2 :
~ Pi b2 (Pi) (4k2+ 2k3+ l)[ 5 5 b2 b4
e i 7z ¢ Tl T o g

' c -1 r 8k.k,(c™= 1) r r
172
Py [ b2 Pi2 a2
u = > Lr -(1 + 4k2)zf}+ "—E*LXlr + X, Py
kl(l + 4k2)(c - 1) - kg

2 3
+ 2 3.
) r™ -

(dk - 2k,- 1) b4]

2
8k2(c - 1
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We shall now consider an externally case bonded thick-
walled cylinder subjected to internal pressure. Let the
elastic properties of the thin case be v and E and denote its

thickness by t. The motion of the case is given by

_ =2, 2!
g=AL=-v) bP (6.30)
E t f

where P' is the interface pressure. We shall consider the
situation when the case is very rigid in comparison to the
thick-walled cylinder, i.e., we must consider the material

of the thick-walled cylinder as rather compressible. (See
Section 8 for a discussion of compressibility effects.) The
displacement at the interface will be of second order as com-
pared to the displacement at the inner radius (in the applica-
tion to a specific problem one must verify this assumption) .
We may thus illustrate one of the methods for reducing the
algebraic complexities of a given problem, i.e., introducing
various boundary conditions at different levels of approxi-

mation. We employ the following boundary conditions:

At = 1; S(O) = - P where P = Pi (6.31)
p !/ ,, p k16 )
s(l) 0
P
and at
p = c ; v(o) = 0
v(l) = w where w o= —EE' (6.32)
abd
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The interface pressure P' is found from the continuity condition

Gr(b) = - P! (6.33)
) (0) (0) = .
i.e. klﬁ[sp + 6sp erb = - P,

The above boundary conditions when applied to Egs. (6.20),
(6.21), and (6.22) give

A(O) - P -
1 + 4k2m c
5 (0) cp
v 1 + 4k~ c?
2
(1) _ =2
A = P X6
(1) - 32 x_
where - 2 (6.34)
. cukl
X7 X" 35,2
X = i
6 1 + 4k2— cl
lez .
c(l + 4k2) > + X2 - C Xl
‘ aPi
Xy = 2



1

Xl(r) -

(1 + 4k2m c”)

- (2k3~ 8k2— 1)

We now evaluate P

where

(4k .+ 2k.+ 1) .4
1, (8t 2yt 1) 4
5 {(3k3+ 12k, + 2k,y* 3) a7, -
r
2.
25 (6.35)
r.—
Xl = Xl(r = a)
o c(4k,- 2k - 1)
*2 77 8k (1 + 4k.- c2)?
2 2
—_ (-394 p’
u —- T -
E
from Egs. (6.30), (6.32), and (6.33):
—4klk2cPi + X4(Pi)2
p' = (6.36)
X
5
X3c = 5
X = — + 4k ,cX. - (1 + 4k,) (c“-1)X
a =T - 2 2C%q 2 2
4 2 -2 = 2
X c[k (1+4k.) (c2-1) (1-72) b-Et (1+4k .-c ﬂ
I R s 2 2
,5M P

Et
(6.37)
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2k3+ 1

- o e 3
X3 k3+ 12k4+ lOk2+ 1 8k2 . (6.37)
Using the above notation we find
P, r2 1 p,° p. %, 2 7
g = m———m——— e~ (1 44K) + = (1 44k L)X, + = e e Y1)
Tk ,c sz 2 K, o 2'%eT Tk, 27 Tk M1
2 2.,
B P, 12 P.“Xe Py X, L2
u = N 2t T
kl(l + 4k2w c”) . kl kl
(4k.- 2k,- 1)P.2 4
2 3 i b -
+ 5 5 25, (6.328)
8k2kl (1 + 4k2w c”) r

Vertical Gravity Loading of a Thick-walled Cylinder

Consider now the deformation of a vertical case bonded
thick-walled cylinder subjected to gravity loédingo We shall
assume that the case 1s sufficiently rigid so that longitudinal
case motion may be neglected. The classical solution [C 8 7] of
this problem yie%gf the results that th? fadial displacement u

1

is zero, hence u is zero and u = 0 u . Prom this result

we see that the radial motion will be an order smaller than

the vertical motion, i.e., u = 0 u(l) (O)+ &5 w

(1)

compared to w = w
Therefore, we need to include only the first order terms of the
radial displacement. The solution of the classical problem

serves as a valuable guide to the relative magnitude of various

terms occurring in the second order solution. The set of govern-
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ing equations, Egs. (3.13), (3.14), (3.15%), and (4.1) is:

du 0 14w
dr 2 dr
i u
Ej == 0 - }) (6.39)
1 dw 1,dw,2
2 dr 0 2 (&)
dor Or - Og
3 4 " = () (6‘@40)
dTrz 1
dr_., + ..; Trz + pog = 0 (6941_)
A=k (6, + k.82 + k.0.6. + k. 65 + k.0.) (6.42)
172 271 37172 471 5T 3% ?
The deformed boundaries are located at r = a + u| and

inner radius

r = b + u! The displacements enter into the bound-

outer radius.
ary conditions since material coordinates were selected to co-
incide with the cylindrical coordinates in the final state.
Inasmuch as we are only retaining first order terms of u {(cor~
responding to the classical solution) we consider the boundaries
as located at r = a and r = b respectively. From Eg. (6.42)

we find
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oA _ .| | 2
Sg. = le2k,291 + k392 + 3k491 }

Kinematic variables needed to complete the formulation of the

- solution are recorded below:

2 4du v 1. dw?2
. " ar T T3&
- . L1,dw, 2
92"‘ 4(dr)
6, =0
11 du
g -=(l+2dr)
il = 2(1 +8 4 QU
r dxr
Il o,
i &) du
==l 1 ar.
I3
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Placing the above results into Eq. (1.14) we find

N du ! k”3 dw, 2
Or = kl {Zkz ar + (2k2+ l)E‘+ (]<2=--= Z-)(a?) (6.43)
k k
_ du u __3 1 _ 5,,4w,2
Oy = kl {(21:24- 1')dr + 2k2 - + (k.2 7 + 5 7 )(dr) }(6044)
k
- _ 1 dw
TrZ = S ar- (6.45)

The above equations, because of their simplicity, may be
integrated directly without resorting to a perturbation solu=-
tion. Identical results may be obtained by perturbation.

Integrétion of Eq. (6.41) gives

t =eogLad
rz Po9 2 r
and applying the boundary condition Trz(a) = 0 we find
PoY a2 -
Ty = 5 (E—’m r), (6.46)

Substitution of the above expression into Eg. (6.45) and inte-

grating we obtain

Pog 2

Wom - 2 (azlnr - i) + B
k 2

1
Applying the boundary condition w(b) = 0, we obtain
2 2
= £9 {a2ln b_b-=z (6.47)
kl r 2 .
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Substitution of the above results into Egs. (6.43), (6.44), and
(6.40) we obtain

2 2 -

1 p.“g k 4 2 k 4
-@a[-]a i(rw] i {(% - (B - 2 3 v nye2(k,- ) (B - r)J
r . e

which upon integration is

2 2
k 2 2 2
1 Po 9 1 5,1a lnxr a xr x \
u = Ar + BZ - {k - )[2 5 (2lnr - 1)~ 5

2 4 r i
2k2kl
k 4 iny r3
Thus, Eg. (6.43) becomes
2 2

g g k 2 2

- Bl _ e | _ 5 2 2 _x-

o, = kl[}4k2+ 1)A + rz} o [(2 4)(2r2 + 2a°lnr - 3-)

(6.49)

The constants A and B may be evaluated from appropriate bound-

ary conditions, which, for a rigid case are

r(_a) = 0
(6.50)

u(b) = 0
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7. Incompressible Responge.

No real material is truly incompressible. Therefore, when-
ever we represent a material as incompressible, we are only
approximating its true behavior. It is very desirable to
utilize such an approximation, when justified, because of the
resulting substantial reduction in algebraic difficulties.

The assumption of incompressibility is very often made in finite
elasticity as most of the materials capable of finite elastic
deformations are very nearly incompressible. The question of
whether the actual stress and strain state is well épproximated
by the incompressible state (for a given nearly incompressible
material) will depend upon the typé of boundary conditions (as
shail be illustrated later). We must avoid those problems

that approach the physically contradictory problem of enforcing
~displacement boundary conditions which prescribes a net change
in volume of an incompressible material. For this type of
problem a singularity arises and thus for problems of this type
the solution will be very sensitive to the actual amount of
compressibility present. A further consideration of this prob-
lem will be presented in Section 8, including some numerical

indications of the range of validity of such a theory.

Uniaxial Test

Equations (2.12), (2.14), and (4.4) become, upon speciali-

zation for uniaxial stress field in an incompressible material,

_ 2
011 = H + kl[Zez + (k5m 3)e2 +.2ele2 + 2c3Te2} (7.1)
Onn= 0= H +k. e+ e,+ L e2 - l'ez +(k.~ lle,e,+ c ,Te.+ c Te
22 1172 1 2 72 2 71 ) 172 872 T8 71

(7.2)
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and from Eq. (4.9)

B.T + PiT? = e + 2e.+ + e 2 4 4e (7.3)
1T+ By 5 2 182 |

Uniform Temperature Drop of a Thick=walled Cvlinder

Noting Eg. (4.5) we may write Eg. (2.13) as

1 A
1+ 61T + 62T2 aEi"

= metd 4+
j

In a manner similar to the derivation given in Section 4, we find

u 2

- u, 1l u du - u
op = H +ky [r 50 P2 o g T (e 51)TE}

(7.4)

u du
o) T o(eym BT ~'5;]0

Hr dr r

The incompressibility condition as given by Eg. (4.9) becomes

du
dr +

du *
(G - By T (7.5)

(@

it
e
+
R |c
§
R
3

+
o f
K g
+

N
Rlc
N =

Applying the perturbation scheme, as outlined in Section 5 we
. find the following two systems of equations (where H = klﬁ(h(o)

+en) &L Ly
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First system

"0 1 art®
2 pdp
dp
ds(o) S(O) S(O)
0 . P o .o
dp P

i se = p - dp
,L0) (0)
dgp - P BlT*(O) =0
Second system
dZT*(l) _1: dT*(l) _ ’V(O) dv(O) d2T*(.O)
> te T a T T tTE) 2
a | | dp
. dv(o));,dT*(o)
dp “p dp
(1) (1) (1)
"% + °p &l = l%v(o) dv(o))z
dp P PP dp
| (l) (O) (O] ;
(l) - (l) v ;L 7 2 ‘ ‘V\dvﬂdﬁ
R R S
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DN C AR ALO a1 @22 1av? (O))2+(c 5 yr* (@ @2
P 6 p dp 2 p 2 dp I p
_ dv(o))
dp
dp p 1 2 o e dp - ;2 dp
The solution of the first system of equations, recalling that
we are considering a uniform temperature drop, is given by
(0) _ 400 1, PL #
v = A 5 + -2—* T p.
(0) p.T
f 3
L0y _ g(0) . A R ' (7.8)
P 2 2
P
(0 _ (o) _ ,al%
8 - 8 = 2
P & 2
P
R(0) o 5€0)
The boundary conditions for zero pressure at the inner radius
and a rigid case at the outer radius are
at
(0) (1)
I S = 0 = g 7.9
P 0 0 ( )
and at
p = cC v(o) = 0 = v(l)
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Comparing the above results with Egs. (6.18) and (6.19) we see
the substantial reduction in algebra effected by the assumption
of incompressibility. The validity of this assumption will be

discussed in Section 8.

Pressurization of a Thick-walled Cvlinder

From Eg. (7.8) we see that the solution to the first system

is

s - (7.13)
2
P p
L(0) _ (0
Noting these results the solution of Eqg. (7075 is
L AW @02
P 2p3
(7.14)
(1) _ (1) A (1) 3 !A(O))Z
s B + -
P pZ 2 p4 .

Considering the internally pressurized unbonded cylinder we have

for boundary conditions

at
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Thus our final results are
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S . = 0

P

(7.15)
L0 _ (1) _
P
yield

o) _ B

AT =
c - 1
p(0) o
c”- 1
(1) 3452
B = - > 5
2{c™~ 1)

(1) _ 3c2(c?+ 1)582

A = > 2
2(c™= 1) ®
p b2 b2p? [ 2 b2
“"‘}" + 3 5 3(c™+ 1)~ "fé“
k. (¢ 1) k 2(c™ 1) "x r
1 1
(7.16)
L b2 302p2 b%+ a?  b%a?
SR 2.z YTzt T

r 2kl(c - 1)7 r r



Once again comparing the above solution with Eg. (6.29) we
see the substantial reduction of labor made possible by the

incompressibility assumption.

8. Near-Incompressible Response.

The following considerations were motivated by two character-
istics of the incompressible assumption, as indicated in the
introductory remarks to the prévious section: simplification
in the mathematical description of the problem and introduction
of large errors for certain types of boundary conditions. We
hope to achieve two goals in the following investigation: to
be able to extend this simplification of description to a
larger class of problems (i.e., to those materials which ex-
hibit compressibility) by introducing a corrective term that
will account for the actual compressibility and to obtain a
numerical indication of the error introduced in a given problem
by the incompressibility assumption. We shall first obtain a
series representation (by means of perturbation) of the classi-
cal field equations, where the first approximation is the set
of classical incompressible field equations and subsequent terms
account for the actual compressibility of the material. Sub-
sequently we shall solve a uniform temperature drop problem,
first with boundary conditions that exemplify the merits of
the solution method, and second for boundary conditions that
will cause the solution method to break down for certain values
of v and ¢ (as the actual state will not be near the incom-
pressible state). Lastly we shall derive the governing equa-
tions for a near-incompressible second order elastic theory.

Writing the classical stress (T%) and strain (e%) tensors
in terms of their deviatoric (gg and e%) and isotropic (@ and 0)

components one obtains
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i —i g i
T, = g, + = DL 8.1
] 33 73 (8-1)
oo ei . 8 5t
J b3 73
where @ = Ti
' (8.2)
6 = &7,
i
The classical constitutive equations may be written as
—i i
s, = 2lel 8.3
3 e (8.3)
® = 3B(O =~ 3aTOTL
We shall now define a parameter € as follows
¢ =2 (8.4)

Where B is of the order of magnitude of 4; thus € is small since

B >> U for a nearly incompressible material. For classical

elasticity it is most convenient to let B = | then € = %’2 %%%ﬁ%%i
Thus we may write
e = QE(G - 30T T) (8.5)
€ o °
Combining Egs. (8.4), (8.1), and (8.5) we obtain
i 1, i 0 .1 € i i
€, = (1, - = 0)) + — 806, + aT T,
;572w 73 J) 5 J o J” (8.6)

9B
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Solving for T% we find

b= opet + 251 - ¢ 22 gst - ouar Tst (8.7)

J 3o 373 9B J o3

and inverting Eg. (8.5) we obtain
Gﬁe-%:¥3m%m (8.8)

3B

We have now established the condition for a perturbation solution

for a class of problems determined by the size of v and the type

of boundary conditions. Expanding our dependent variables in

series in €, substituting into the above eguations, and equating

coefficients, we obtain the following systems of constitutive

equations
io) _ ,.it0) , % & (0.1 9)
Tj = 2uej +'"§_”'6j - ZMQTO& 6j (8.9)
60 = 3q7 (0
O
and for n % 1
. : (n) o . a ,
) oot BT gh g (et L2k g(n-D)gd
] 3 - .© ] o J
(8.10)
(n-1)
o(n) - 3aTOT(n) + & )
3B

The egquilibrium equations may likewise be written in series form,
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1.€.,

T§a£0) + ngo) =0 (8.11)

ip(n) (n) _
Tyl tPEy = 2

i
(@]
)
N/
=

Substitution of the constitutive equations (8.9) and (8.10)
into the above equations, we obtain the following displacement

equations of equilibrium

Vzu(o) +4&(%@ (0) + pFéO)) + aTOT,go) = 0
(8.12)
where uiaio)ﬂ BQTOT(O)

and for
2 (n), 1, (n) 1 (n) | W (n-1), (n)_
n>1l viugs LL(ij + 3 @éj + = 8| )+ oT T : 0
‘ (8.13)
where at) (o @ii;il (n)

q

+ 3aTOT
i 3B

The solution of each system of the above equations is equivalent
' tb the solution of a nonhomogeneous incompressible problem.

We shall now consider the uniform temperature drop of a
thick-walled cylinder in light of the above equations intro-
(0) _ AT . Solving the

To

ducing a dimensionless temperature T
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first system of equations we obtain (where B = 1)

(0)
¥ 2
{0) (0)
g:éO) = 2L Arz +‘Q3 + LaAT (8014)
o(0) _ (0)

Noting the above results, the solution to the second system
of eguations becomes
(1) Aty o(0)

u = +
r 6}l

r

(8.15)

(1) (1) (0)
(1) _ . A c C
O T F oo A 2 tESTT O T

Let us first consider the specific problem where we have no
external case; thus, the boundary conditions become (note

that no restrictions are placed on volume change)

(1)

at r = a g = g = 0
: r r

and at r=Db U(O) = U(l) = 0
r r

Using the above boundary conditions we find
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(0) 30AT

u = > r

SO océﬂ’lfr = (- %)H(O) (8.16)
(1) _

0,.(0) _ o7 =0,

Noting Eg. (8.16) and the general equations (8.13) for the nth

term we see thét u(n) mw%°u(nml)

that

, and noting that € = %- we £ind

(8.17)

For illustration let us consider the exact solution, which may

be written as

u = 3;LAT ( 1 L) | ‘ (8.18)
1 + 35 -
. ; K
or ‘for small 35
_OB0AT g B 2 :
u = r Ll 35 + (3B) e e e Q] (8.19)
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Let us now consider the range of validity of the above approxi-
mation. To use only the first term (i.e., assume incompressi-—
bility) let us make %Evg 0.05(which is equivalent to v > 0.428).
To use only the first two terms let us make (%ﬁﬁz < 0.05 which
is equ;valent to v » 0.226). Thus with only one corrective
term to the incompressible solution we may consider very com-
pressible materials. We shall now consider the specific

problem where the thick-walled cylinder is bonded to a rigid

case. Thus the boundary condilions are

L0 _ (1) _

at r = a v r

(8.20)
and at r =D, u(o) = u(L) = 0
Note that we now have a boundary condition u(b) = 0 that tends

to specify a volume change that is physically impossible for
as a — 0 the condition that u(b) = 0 means that the volume
must remain a constant whereas a change in temperature demands
a volume change, thus we shall find the solution to be very
sensitive to the actual amount of compressibility as a — O.

Noting the above boundary condition we find that

2
(0) _ 30AT, b
u = ~§-(r ;,)
(0) b2 2
. = 3ua&T(—§~~ c™)
T : (8,21}
(1) _ aAT(l + 3c2) b2
; r
(1) 2 2 bZ
o = AT (1 + 2¢7) (¢™- —E)‘
r

As above we find that
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r B'3 B3
(8.22)
2 2 S 2
g = 3&uAT(;§-“ c™) {l - B(E +c¢”) + . . . }
gl 2 : . :
For |2(% + c¢®)|<l the above series may be summed to yield
B3
2
30AT (r - 2)
r
u:
_ w1 5
2{1 + B(3 + c ).
(8.23)
2
3QI,LAT(D—2‘“ 02)
r
o_ =
l Ll

w1l 2
L +5GF +ch)

For [%C% + cz)lzl we see that the above series does not con-
verge. Letting Ve be the critical value of v that determines

the boundary of the region of convergence, we find that for
c = 2 v = ,393

c =10 v, = .495
c

We shall now consider the range of validity of the above
approximation, Eg. (8.21). To use only the first term (i.e.,
assume incompressibility) let us make

(3 +c) < .05 then c = 2 v > .494

¢ = 10 v > .49975
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To usé only the first two terms let us make

2

L%(%,+ Cz)} < .05 then c=2 v> .4746

c =10 v > .4989

It is to be noted that, for certain problems, although
the series may not converge for v Ve it is possible that if
the series may be summeq for v >VC the resulting expression
may be valid for v gyc (as was the case above), this of course
would need to be investigated for each individual problem.

Let us now establish a near-incompressible second order
elastic theory. We shall base it upon the assumption that the
compressibility effects are of the same order of magnitude as
the second order non-linear effects. For illustrative purposes
we shall consider the governing equations for the pressurization
of a thick-walled cylinder.

Proceeding as before we can separate the problem into .two

systems, i.e.,

s, = séo) + 6sél{ (8.24)
We shall now express the governing equations for séo)(the
classical equations) as was done for near-incompressible clas-
sical elasticity, see Egs. (8.9) and (8.10)
Thus,

(0) (1) (8.25)

+ €8

(0) _ _(0)(0)
<] Sp

where
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Let us ‘now choose E-such that € = 8, whence

(0) (0)

_ _(0) (1)
Sp sp | + ésp

(8.26)

Noting these expressions for the first system variables and
referring to Eg. (5.9) we may write the equation for the

second system as

, (1) _ (1)
dspil) N "o _ ;(v(o)(o) _ dv(o)(o))z cte
dp p o P dp
(8.27)
Now let uscwrite s(l) = sél)(o) + Bsél)(l) where s(l)(o) is
the effect if the material were incompressible and sél)(l) is

the compressible effect. Thus,

s, = sp(o)(o) + asp(l)(o) + azsp(l)(l) (8.28)
(1) (1)

For a second order theory we may neglect s . To obtain

(1) (0)

the governing equations for s we use the equations
derived in incompressible finite elasticity except that in

the constitutive equations 13 is no longer equal to 1. Hence,

(1) (0) (0) (0) (0) (0) _(0)(0)
(1) (0)_ . (1)(0)_ ¥ 1l 2, dv v
®p = b T 2T ) T T P
(1) (0) (1) (0) (0) (0) (0) (0)
(1) (0) (1) (0)_ v dv 1 v 72, 1.4y 2
°p " %o ST o dp -3 U T )

(8.29)
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4o (1) (0)

‘ . (1) (0) _ ;,dV(O)(O))ZW L(V{O}(O))2~ , gy L0V (0 (0) (0)
dp ‘ P 2 dp 2 P dp o
< (1) (0) (1) (0) (1) (0)
ds, e p ~ Sg :_;(V(O)(O) ) d,V(O)(O))2
ap | P P P dp :
(8.29)
The system of equations governing s (0) (1)

is obtained from
the second term equations for near-incompressible classical
elasticity, Eg. (8.10),

- + @(O)(l) +}f~];.\@(o) (O)
P ap 3 9B
L@ (o @I 5,0 1)
P 0 P dp
(8.30)
V(O)(l) . ay (0) (1) ) Eé,@(O)(O)
P e 3B
as (0 (1) ¢ (0)(1)_ SG(Q)(l)
+ —£ = 0
dp o

As both sp(l)(o)

and sp(o)(l)
shall combine them,

are second order terms, we
letting
S(L)_ o (W), _ (0)(1) (8.31)
P P Y o
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Adding the system of equations (8.29) and (8.30) and rearrang-

equations for the second order solution:
6(0) (0)
(Let

ing terms slightly we obtain the following governing system of

5 (1) _ dgxl) I %(5(0))2 . %i =(0)
" P P 3B
—{1) (1) (8.32)

= (1) _ =(1) = = dv

Sp, = S5 p dp

S @) =0 k.

dé + X = (¥ ‘)2 + L h\g)

P % o 5
(1 (@) < (1) r

ds . sp N s9 g ) é(vt(o))2
ap P PP
where s (0) (0) =3 (0)

o

The governing eguations for the first
term are identical to those of incompressible elasticity and
are given by Eq. (7.6),

Uniaxial Test

Because of the dependence of the near-incompressible theory,
as developed above, upon the notion of perturbation it will be
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expedient to consider the uniaxial test in the same manner. The
uniaxial test for a compressible or incompressible solid may

be similarly treated.

, _ (1)
Let e = e + e (8.33)

A .
where el(l’ is the deviation from classical incompressibility, etc.

o = (63(0§ + ol(l) . (8.33)

Using Egs. (8.9), (8.10), (7.1) and (7.2) we proceed as above

and obtain

3k
;0 2 (o
1 2 L
) =g [of) - o) 4 20ey- £ (00
X (8.34)
0= e, 4o M S, O 3 (02

Pressure Loading of a Thick-walled Cylinder

The solution of the system of Egs. (7.6) and (8.32) with
the boundary condition Or(a) = - P, Ur(b) = 0 yields

180




2 V22 ]
e e Y T
kl(c - 1) 2(c™~ 1) 2kl”(c - 1) Cor
(8.35)
_p b2 3c%p2 b’+ a®  b2a’
9% =73 L == - >3 |t 5~ v Ty
c’=- 1 r 2kl(c -1) r T

It will be noted that the above solution retains the algebraic

simplicity of the incompressible solution, BEg. (7.16). The

second term in the expression for u is the corrective term for

compressibility.

9. An Approximate Solution Scheme,

As pointed out previously in the Introduction, the per-
turbation solution method depends upon the existence of the
classical solution, not upon the knowledge of this solution.
Thus the two sets of equations developed by the perturbation
method govern the problem whether or not we are able to solve
the classical problem. We might use some approximate solution
scheme to solve the two systems of equations but practically
this is rather poor, because the nonhomogeneous parts of the
second system depend upon the solution of the first system;
thus any errors in the solution of the first system of eguations
tend to be magnified. 1In order to avoid this magnification of
error it is necessary to slightly modify the system of eguations
before we apply an approximate solution scheme to each.

The modified system of equations that we shall develop
will not only allow us to solve approximately each system of

equations without reflecting the errors of the solution to the

181



first system of eqguations into the second system of eguations
but will actually contain in the second solution a correction
to improve the approximate solution of the first system.

We may use any approximate solution method applicable in
classical elasticity to solve each of the systems of eguations,
e.g., minimum potential energy, collocation, numerical schemes,
etc., because we may view each system merely as a mathematical
problem identical to some classical elastic problem. It is
apparent that we may use any approximate method that 1is wvalid
for classical elasticity.

We shall only consider the form of the equilibrium equation
for a thick-walled cylinder and the form of the o, boundary
condition. We will nct derive any of the other thick-walled
cylinder equations, as this one example will serxrve to illustrate
the method. Although at this point we will solve no examples,
we will point to two previously obtained solutions which may
be viewed in this light.

Let us now consider the derivation of the equilibrium

equation for a thick-walled cylinder. From Eg. (5.6)

ds s - 8, ds .8 - g -
p 4 e 6 e 6 ..Y ,._._mp_ o —d_j—‘:’ M} ( 9 o :ix, ;
dp p p dp dp P

Referring twEq. (5.7)

s = 8 + Os
P Y
{ .
Sg= séo) + 65)1) {(9.2)
Vo= v(o) + bv(l)



and substituting the above expressions into Eg. (9.1) we obtain

(0) (0) _ _(0) (L) (1) (0)
dsp . S, Sg +6[Hsp(l) . s Sg . v(O) dsp
dp P | 9p P P dp
(0) (0)
(0) s - 3
dv 0 i -
+ dp p } +owo - O (9«:3)

+ —£ : = 0 ‘ (9.4)

If, for example, we only approximately solve the problem, we

might, instead of satisfying the above equation, have

(0) (0) _ (0)
dsg Lo s _ - (9.5)
dp o g(p)
Assuming that the error function §(p) is small (compared to
sp(o) and séo)) we may write Efp) = €g(p) where g(p)is of
N (0)

the order of magnitude of sp and se(o) and € << 1. If ¢ is
of the order of magnitude of & we shall take € = &, thus
E(p) = Bg(p) (note if € = 0(62) then, as we shall see, the

second system of equations remains unchanged) or

(0) (0) (0)

dS
' - - 6 p 9q6

Noting the above results Eg. (9.3) becomes
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[as (1) s (1) 89(1) (0) ds (0) av(0) s (0) _ séo)
Bg(p) + B —=£ + £ + £ + & 3
| dr P p dp dp P
+52&‘,°0J+00 .. =0
The second system equilibrium equation is now
ge (D ) (@) (0) as (O 0) s (O)_ ¢ (O
o + B 0 - ¥ P " dv o) 8 + g(p)
a d gip
dp P P P P P
(9.7)

A similar consideration may be applied to the remaining field
equations. An example of such a solution (i.e., when the field
equations are only approximately solved) is the finite near-
incompressible theory of the previous section, for there we
approximately solve the first system by an incompressibility
approximation, introduce an error function into the second
approximation by means of the compressibility terms and lastly
approximately solve the second system. '

Similarly we might have a boundary condition of the form

sPlP:C B
from Eg. (9.2)

+ 55 (1) +....=7P (9.8)
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Let us assume that we only approximately satisfy this boundary

condition, l1.e., we set

(0) — - = i
s . =P where P - P = BP 9.10
P (9.10)
and P is of the order of magnitude of sp(o) . Thus Eg. (9.8)
becomes
6s(l)jm+ﬁoo:§~§:69
P p=c
and the second boundary condition becomes
(1) :
s = P 9.11
P IP:C ( )

Equation (6.38) is a solution of this type, i.e., we solved the
first system using the approximation that the case was rigid,

then we corrected the error in the second approximation.

10. Numerical Examples,

As an example of the numerical results that may be expected
when one evaluates the analytical solutions presented in the
previous sections we shall consider the pressurization problem for
a thick-walled cylinder bonded to an elastic case (see Section
6 and Fig. 1). The resulting solution merely involves algebraic
operations, thus the results may be obtained extremely rapidly

) *
by means of an electronic computer.

* Sincere appreciation is expressed to R.E. Nickell who programmed
the solution,
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The nonlinearities in a finite elastic problem are due to
two causes; (1) nonlinear geometric effects and (2) nonlinear
constitutive equations. The nonlinear effects introduced by
the constitutive equations depend both upon the magnitude of
the strains and also upon the relative magnitudes of the elas-
tic constants that appear in the constitutive equation, whereas
the nonlinear effects introduced by geometry depend only upon
the magnitude of the strains. Thus one must determine the
range of validity of a given approximation for each particular
material used. For our material, as we shall see later, the
magnitude of the second order constants (klk3,klk4 and klkS)
is substantially larger than the magnitude of the first order
constants (kl and klkz); thus we would expect the range of
validity of the first order solution to be rather restricted.
The proper way to judge the range of validity for a given
approximation is to inspect the size of the subsequent term
in the series, thus as we have obtained the second order solu-
tion we are able to investigate the range of validity of the
first order solution. Likewise to be able to consider the
accuracy of our second order solution we would need to inspect
the third order solution; as this has not been done it may be
possible that some of the results presented herein for large
pressures may fall beyond the domain of the second order solution.

In deriving the solution in Section & the following as-
sumptions were made in order to consider the case as rigid in
the first approximation. (If these assumptions were not true we
could not set v(o)(d) = 0);(l) the case is very rigid in com-
parison to the thick-walled cylinder and (2) the thick-walled
cylinder is relatively compressible. In order to satisfy the
above assumptions we have restricted our calculations to large
E; small % , small - kl, and small - k2 (k., is a measure of
the compressibility, see Eqg. (4.2).

2
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As the finite elastic response of propellants has not
been suitably characterized it was necessary for us to obtain
the elastic constants for a typical propellant by fitting the
second order equations governing a uniaxial test from Section
6 to an experimental curve. The resulting elastic properties

should be viewed as very tentative ag the method of curve

fitting was not entirely satisfactory and as there were some
questions as to the accuracy of the experimental data. De-
pending upon how we choose to fit the uniaxial expressions

of Section 6 to the experimental data we could obtain a sub-
stantial range in values of the elastic constants, these ranges
are indicated in Figures 7, 10, 11 and 14 by the vertical dashed
lines. The seemingly best fit yielded the following values

kl = ~ 558 psi
k2 = - 8,01

k3 = - 25.8

k4 = 72.8

k5 = 4.11

The pressurization solution as presented in Section 6

b
tl cl kll kzl
k3 and k4s We selected the following values for our "standard"”

solution.

depends upon the following parameters E, v,

30 % 106 psi

E =

Vo= 0.3

b _

ol 100

c = 2

kl = - 558 psi k3 = - 25.8
k2 = - 8,01 k4 = 72.8
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The results as presented in Figures 2 - 14 are for the above
parametric values unless the values of the parameter are speci-
fically indicated; i.e., in Figure. .5, for example, we are study-
ing the effect upon the "standard" solution when E varies from
the value given above.

The case was so stiff compared to the thick-walled cylinder
that we nearly obtained hydrostatic compression of the thick-
walled cylinder as may be seen in Figure 2, 4, 9, 10 and 13
where we see that the stresses are nearly equal to the applied
pressure. For small pressures the solution differs only slightly
from the first order sclution (shown by the dotted lines in
Figure 2) but as the pressure is increased the nonlinearities
become more and more important, thus in Figures 12 and 14 we
see that for small pressure the solution is nearly independent
of the second order constants. Also in Pigure 9, whereas for
low pressures Oe(a) is a linear function of the first order
constant kly we see that for higher pressures it becomes a
nonlinear function of klo As the strains are much larger at
the inner surface of the thick-walled cylinder than at the outer
(we found E%§l<< .001) we should expect the nonlinearities to
be far more pronounced at the inner surface than at the outer.
This prediction is readily verified by comparing Figures 3 and
4 and by noting from Figure 13 that Or(b) is essentially in-
dependent of the second order constants even for large values

of the applied pressure.
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ELASTIC CASE ~E,V

FIC | PRESSURIZATION OF A THICK-WALLED CYLINDER
BONDED TO AN ELASTIC CASE

{ SEE SECTIONS 6 AND 10)
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PART IV

THERMAL DEFORMATIONS OF VISCOELASTIC MATERIALS
by

R. L. TAYLOR
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INTRODUCTION

It is well known that the response of stressed viscoelastic
materials is influenced greatly by temperature changes in the
transition range between the glassy and rubbery states. Any
meaningful thermoviscoelastic analysis should reflect this
behavior. One means of accounting for this type of response
for a selected class of materials is the use of the time-
temperature equivalence postulate: a change in temperature is
equivalent to a shift in time. If the changes in response
can be specified by a single time-temperature shift function,
the material has been classified as "thermorheologically
simple"” by Schwarzl and Staverman U 1 JJ. In this part a
solution method for a class of problems involving thermo-

rheologically simple materials will be discussed.
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GENERAL THEORY

1. Field Equations for Thermorheologically Simple Viscoelastic

Materials.

With reference to an orthogonal curvilinear coordinate
system, the linearized equilibrium equations in the absence

of body forces and inertia terms are

Tji.(x.,t),. =0 (1.1)

g e

where x denotes the curvilinear coordinate triad, (xl,xz,x3),

while t denotes time, T; are the mixed tensor components of
stress, a repeated index appearing in a contravariant and co-
variant position implies summation, and a covariant index
preceded by a comma implies covariant differentiation [C 5 .

The linearized strain-~displacement relations are
_ 1
€..(x,t) = E(u. Lot ouL L) (1.2)

where eij and u; are the covariant components of the linear
strain tensor and the displacement vector respectively. In
the subsequent analysis the mixed strain tensor will be needed.
This is accomplished in the usual manner by raising an index
to obtain the associated mixed strain tensor.

Thus,

€. = g €. . :-—(u'j + g u. L) (1.3)
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where gki are the contravariant components of the metric tensor
and uk those of the displacement vector, respectively.

As is customary in isotropic viscoelastic analysis the
stress and strain tensors are decomposed into their deviatoric

and spherical components for convenience. Accordingly,

T, = s, + BT ©
J J
(1.4)
where g = LT%
3°41
and
el = eJ.' + 63”6
J J
(1.5)
- L1
€ = 3€i
In the above 5 is the Kronecker delta, defined as
1, i=3
63.’ = (1.6)
c ., 1#3

Considering first the constitutive equations in the absence
of thermal effects, it is known that the linear constitutive
laws admit the differential-operator representation

Pl(D)Sé(X{t) = Ql(D>e§(x,t)
and (1.7)

P,(D)o(x,t) = Q,(MD)e(x,t)
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where D = g% H Pi(D) z=§; pi(n)Dn
n=0
M,
i1
_ N (m) .m
Qi(D) ~’}: q; D
=0
and
(N,)
P Yo, qi(Ml);é 0 (i=1, 2)

Thus P. and Q, are polynomial differential time operators of

degree N, and Mi respectively. The material properties are
(n) (m)
i i

of differential-operator representation is practically limited

introduced through the p and g coefficients. The use
to media possessing finite and discrete relaxation spectra
and retardation times. For this reason, it is convenient
to consider the constitutive laws in integral form.
First, consider a mechanical test conducted at constant
temperature. If an experiment is performed ip which a constant

strain (e.g., a constant deviator strain e(o)ﬁ) is introduced

at time zero and the material is assumed undisturbed for t < 0 ,
then the time history of stress can be determined by measure-

ment. Considering the stress-time history for the E(O)% de-

viator strain, the deviator-stress history 83 may be expressed

through the relation

s;.'(t) = ¢, (t) e(o)ji. (1.8)
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where Gl(t) is defined as the deviato;ic {shear) relaxation

function and e(o); is the constant strain introduced at t = 0.

Subsequently, if the strain is a prescribed function of time,
then the stress history may be determined by using the

Boltzmann superposition principle. Thus, for example,
_ _ i i
sye) =) G (th)~ ) [e(k+l)j—- e J (1.9)

where e(k); is the magnitude of the strain at the time t(k)°
If we now pass to the limit by letting t(k+l)_ t(k) tend to

zero, the the sum becomes an integral and the relaxation in-

tegral laws in the absence of thermal effects are given by

t
i, 0y o oy O iy A
sj(x,t) mk/ﬁGl(t~t ) SET-ej(x,t Ydt
o

and ‘ ‘ ‘ (1.10)
t

o(x,t) =kéﬁG2(t—t“)§%T e(x,t")yat’

Similarly, the creep integral laws are given by
t

i _ o i Gy g
ej(x,t) —kZWJl(t—t )§ET Sj(X,t ydt
and t (1.11)
€ (x,t) =£J2(t—tﬂ)§£—,— o(x,t')dt"

where Gi and J, (i = 1,2), are relaxation moduli and creep

compliances respectively (in shear and dilatation).
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Equations (1.10) and (1.11) vary slightly from the integral
laws presented in Gross [ 3 ] in that instantaneous elastic
and steady creep do not occur explicitly. However, in the
above form, if the limits are taken from 0 to t+ then the
discontinuities in the integrals between 0  and O+ and t
and t+ will give rise tov the two additional terms included
in C 3 J. In evaluating any of the integrals which follows
(unless otherwise indicated) these discontinuities must first
be removed by evaluating the integrals from 0 to O+ and t~
to t+e

The above constitutive laws were presented on the basis

that the body remained isothermal for all time. Thus the
(n) (n)

material properties Gi’ Ji’ P and =y

as having been determined for the temperature at which the

must be regarded

material is being stressed. Mechanical properties of visco-
elastic materials in the transition range between the glassy
and the rubbery state show marked dependence upon the tempera-
ture. One method of accounting for temperature dependence is
through the use of the time-temperature equivalence hypothesis
in which a "reduced time" is introduced to account for both
time and temperature variations. To exemplify the use of the
"reduced time," consider the variation of the relaxation moduli
Gi with the temperature. Following the notation of Muki and
Sternberg [ 6 1 let Gi(t) be the relaxation modulus at the
constant base temperature Too We desire to account for varia-
tions of temperature from To’ say for any uniform temperature
T. Let Gi(t,T) be the relaxation modulus at the temperature
T, thus

Ei(tyTo) = G, (£)= L, (log t) (1.12)
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The postulate of a single time-temperature equivalence function
(i.e., the thermorheologically simple material) now assumes the

form
Ei(t,T) = LiLlog t + log qwm} = Gi[:t¢>(f_[‘)] (1.13)

where ¢(T) is defined as the shift function. For uniform
temperature, the product t¢(T) is defined as the "reduced
time" €.

Once thé shift function ¢(T) is known, @i(t,T) may be
determined for other temperatures.

We next suppose the material to be subjected to non-uniform
temperature T(x,t). In extending the above concept, the reduced
time must be generalized consistent with the postulated time-
temperature equivalence and also the thermal expansion must
be included in the constitutive law describing the dilatational
behavior of the material. Moreland and Lee [C 4 ] stated these
modifications and obtained general constitutive laws for a

thermorheologically simple material as follows:

‘ t
i - WO i \ \
Sj (x”t)-:gGl(é' - @ )S‘ET ej(xvt )dt

" (1.14)
prerd 1 a t ‘ 1 1
cr(x,t)“o Gz(é - & )gET[e(x,t Y - aoe(x,t )]dt
where the reduced time is now determined from
€ = £(x,t) ﬁL/W¢LT(xpt')}dt', £' = £(x,t") (L.15)

O

while the "pseudo-temperature" 6 (x,t) is defined by
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k/\on T'Ydr', o, = a{T ) (1.16)
T

a(T) is the temperature-dependent coefficient of thermal ex-—

pansion., If a is temperature independent, then
6(x,t) = T(x,t) - TO

where T(x,t) is the solution of the Fourier heat conduction
equation. The creep integral laws modified for the effects

of temperature are given by

t
i O 1, ., .
ej(x,t) =[Jl(€ - & ya sj(x,t )dt
t
e(x,t) =kZNJ2(€ - 6')5%7 o(x,t")dt’® + aoe(xyt)

(1.17)

In order to make use of the Laplace transform it is
convenient to remove from the field equations the explicit
dependence upon the physical time. From Eq. (1.15), f£(x,t)

can be inverted formally with respect to time to yield

t = g(x,8) (1.18)
The explicit dependence upon time t in any function of space
~and time F(x,t) is now removed by substituting Eq. (1.18)

foxr t, thus,

F(x,t) = F[X,g(xyﬁ)} (1.19)
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In order to avoid any ambiguity, we will define, following
C o6 1,

F(x,€) = F(x,t) (1.20)

It must be emphasized that %(x,é) is not the same function
as F(x,t) but has first been subjected to the transformation
given by Eg. (1.18).

Substituting the results of Eg. (1.20) and making the
appropriate changes in variables in the constitutive equatiocns

leads to the relaxation integral laws:

O

d

i - T , .
8T0e) = [ 606 - £05Er B eeenat

| (1.21)

£ . .

G(Xlg) :[Gz(g - E.»')gg_n' [6 (Xlgl)‘ - aoe(xigl)—ldal
and to the creep integral laws
| é -
AL - AL ! '
Sleet) = [ a6 - g eaenag
¢ (1.22)
Bot) = [ oy - ensr Bk e+ Bl b)

The differential operator form of the constitutive equations
modified for the effects of temperature and consistent with
the time-temperature equivalence hypothesis may be determined
most easily by taking the Laplace transform with respect to
the reduced time in Egs. (1.21) and (1.22). Substituting

the relation between transforms of relaxation and creep functions,
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and the transforms of the corresponding differential operators,
and finally inverting the resulting transforms results in the
differential operator constitutive laws. These results are
presented in C 4 Jand L 6 71 and are not repeated here since

all subsequentfdiscussion is based on integral laws.

2. Displacement Eguations of Eguilibrium,

The field equations for a thermorheologically simple
material were presented in the previous section. In order to
determine the stresses and displacements in the interior of
a body when displacements ox stresses are prescribed on its
surface, it is desirable, when possible, to reduce the number
of dependent variables. To this end, the strain-displacement
relations are first substituted into the constitutive equations
yielding:

N " t ]
i, = | EPETVRCIN b A e ik . | ,
Sj(xlt) *lGl(é {f; )W{eruaj + g uj lk} 3 5ju}k}dt
£ (2.1)
~ P v ! a l k 14
o(x,t) —kL“GZ(é—& )Bt"{3 U aOG at

Combining the deviatoric and spherical components of stress
to obtain the components of the stress tensor in terms of

the displacement components, we obtain

t . :
i NN 1 ik C1.i ok .
E “[Gl‘éfg ’W{z[“pj SERM B “,k} ac

(2.2)

t -
1. i ’ 'x'_a_ k '
+§' 5le2(§“€ )Bt' Lu,k - 3&09:1 dt
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Substituting the expression for stress into the equilibrium
equation and assuming that the integration and differentiation

may be interchanged, yields after regrouping terms,

£ ¢
[ [Gl(é—«‘;') + 2G2(€~€“)]g?:—;(ufj)+ 3Gl(€m€')g%7(glkujlk) }”idt"

(2.3)
t t

-6 l{Gz(gmgl)é%(aoe) }pjdt""z"é\I;(Gl(g“eu)“G2(£“€')j|li gﬁ%ﬂ(uf-})ét.

t
. ' 1 a l | .
-2 [ [Gl(g"'g )_Gz(g'—‘% )Jﬂj B“E’T (upl)dt = 0

The covariant derivatives of the material properties will no
longer vanish due to the non-homogeneity introduced by the
variable temperature field; thus, the last two integrals in-
clude terms which do not exist in the homogeneous linear
viscoelastic analysis which has been presented to date in the

‘literature.

APPLICATIONS

3. Specialization for Axisyvmmetric Plane Strain of Infinite

Cylinders.

For axisymmetric plane strain, the only non-zero displacement
component is the radial component ulo Furthermore, the only
variations in the radial displacement will be in the radial
coordinate xla Thus two of the displacement equations of

equilibrium are satisfied identically and the third is given

by
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’-""‘,.&Gl(é‘—éw—% 2G2(€—€')}at.(u )+ 3G (E~E" )B“E"T(g’ ul,k)} Iid‘t‘

t
; (3.1)
-6 [ {oyte-tgerie e | jaet = 0

The evaluation of the covariant derivatives yields upon re-
grouping and expressing in terms of the contravariant dis-

placement component,

ta d2 )
1, |
——=1 | 2 -£') + G, (E-E") |— '
[(axl{[ G (E-€") + G (&-E )]St‘éxl(u ) g
W% 1 d ul
+ | 2G, (E-€') 4G (ﬁ-f&)}——-‘——(f——u )= 3 —=G, (& £')——(=7) (3.2)
[ (¢ 2 Beaxt «* okt LY at <t
32 [opttgd st e =
X

The solution for ul proves to be very difficult since in
general the variable coefficients are dependent upon the xl
coordinate in a very complex manner. For this reason, we
turn our attention to approximations which might give some
significant results. The analysis to follow will pertain to
instances in which the temperature is varying slowly enough
that it can be assumed to be uniform throughout the entire
cylinder. This forms one limit case to the analysis. The
other limit, that of the temperature varying with radius but

time independent has been investigated previously for cylinders
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by Moreland and Lee [ 4 1. The elastic-viscoelastic analogy
is extended for the above two limit cases in [C 8 1. The
intermediate case where temperature varies in both space and
time, while it may be the most important part of any analysis,

remains for the present intractable.

4, Slowly Varving Uniform Temperature Fields.

For slowly varying temperatures independent of the spatial
coordinates, the reduced time also becomes independent of the
spatial coordinates and, consequently, we may write Eg. (3.1)

in the simple form

. _
- ‘ ‘ s . )
[{i’zel(&—é") + Gz(ﬁ—{i')} 5% ufil(x,t')] dt' = 0 (4.1)

For which a solution exists when

u ., =0 (4.2)

The evaluation of the covariant derivatives leads to

Sul + 1 Bul ul
leﬁxl xl'éxl xlxl

= 0 (4.3)

In the above instance, the contravariant radial displacement
tensor component is the same as the physical component, hence,
we may write the above equation in the more familiar notation

of uwand r (for u' and x' respectively) as
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52u 1 du u
S tySr- 3= (4-4)
r r

for which the general integral is

ulr.t) = ¢ (£) r + C2(t)% (4.5)

5. Infinite Cylinder Rigidly FEncased.

Congidering now an infinite cylinder with a stress-free
inner boundary and fixed outer boundary (i.e., enclosed by a
rigid case) where a and b are the inner and outer radii res-

pectively the constants of integration will be evaluated from

u(b,t) = 0
(5.1)
Tlma(at)::O
1 r

Satisfying the first boundary condition gives from Eg. (4.5)

- 2 '
Cz(t) = - D Cl(t) (5.2)
and hence
2 .2 2
ut(z,t) = ulzr,t)= g (t) [r— %f} = - Cl(t)Lb~§—£~1 (5.3)
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Upon noting that for r = a,
k _9%u . u_
Uk o T M
~and (5.4)
ol = gM®u, == ¢ (x) 1B
1- 9 Mk 3arT M 2

The second boundary condition yields, upon using Eq. (2.2),

t
2
o (a,t) = 0 =J{Gl(€*€')3‘%‘r [cl(t')(l +1§—5) - %Cl(t')J
(5.5)
+ iG (&—i')_g— [ZC (t')- 3a G(t')]} at'
372 ot " 1 o ’
or
t
' 2 - : . 2 . 3 ,
[ {{a [Gl(é—é )+ 2G, (E-€ )} + 3b7G, (£-€ )} grc-r(cl(t )>
(5.6)
- 3a2G2(€~€')g%7<?0 @(t'iﬂ dt' = 0
Subjecting Cl(t) and 68(t) to the transformation Eq. (1.18)
and taking the Laplace transformfyields
A 3a2G§ qoé*
C1* = 2 = * 5w (5.7)
a (Gl + 2G2)+ 3b Gl

+ An asterisk denotes the Laplace transform of the function
with respect to the reduced time.
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If the ratio of radii is defined as

(5.8)

then after representing the functional dependence of the material
properties by

G*
PR*(p) = 2

* * 2 * 7 (509)
(Gl + 2G2) + 3¢ Gl

R(€) may be determined by clearing fractions and inverting

using the convolution integral. Thus, R(£) is given by

d

\ZNR<£'>375%€TT |1+ 3ehe (6me )+ 26, (660 Jagr = g, (e)

(5.10)
Now, the formal inversion of the problem may be performed,
yielding

‘ t

cy(t) = 3&4\R<£—€')5%7 a8 (£ At (5.11)

Numerical inversions of similar functions are given in [ 2 1,

C 6 1, and [C 7 JJ. Finally we may write

t

2 2. .
alr,t) = - 3(2":;£“{Z\R(€—€")§%T<a09(t'>dt' (5.12)
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where R(£) is defined by Eqg. 5.10.

By combining Eg. (5.7) and the transform of Eg. (5.3)
and clearing fractions before inversion we may write the solu=-
tion in a different form, one which will not regquire the
evaluation of R(£):

t
l qu(é-—e')f 2@2(e—€')J + 302‘*1(5"@')} u(r,t')de
' ‘ (5.13)

t
b2 o r2 d
= - 3(—“’“‘“;“‘“) [g:gr [Gz(ﬁ-ﬁ')]aoe(tﬂdt'

The above expression is a Volterra integral equation, for
which numerical solution techniques exist, one of which will
be discussed subsequently.
The solution of the corresponding thermoelasticity problem
is '
b2_ r2 (l‘+ v)aoe(t)

ulr,t) = - =5

> (5.14)
1+ (1 - 2v)c

Thus, the solution is observed to be dependent only upon
Poisson's ratio. It is easily verified that the material
properties of the thermoviscoelastic problems also occur in
combinations such that the solution is dependent only upon
the time dependent Poisson's ratio. Since data available on
the time and temperature dependence of Poisson's ratio are
limited, it appears to be preferable to express the solution
in terms of the extension modulus E and the bulk modulus K,
gquantities for which data are more readily available. If

it is assumed that the volumetric behavior is purely elastic
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and, hence, time independent, Eg. (5.13) may be modified so

that the material properties Gy and G, are expressed in terms

of E and K, the extension modulus and bulk modulus respectively.
After performing this modification and also removing the dis-—
continuities in the integrals at times 0 and t, the time
dependence of u(r,t) is determined by solving the non-homo-

geneous Volterra equation of the second king:

02EG > |
(L + )u r,t) %—l/ﬁg—- L (g- & )J n(r,t')dt'
ot

3K :
(5.15)

2 2 E
= - (-]9--§—£—) [(1 - 5—%)@09@) +"9lif5%7 [E(ﬁ"@')}aoe(t')dt']
+
O

N

where EG is the initial or glassy modulus. A common technigue
for solving Volterra equations is through the use of the Laplace
transform; in the above example this requires a functional
knowledge of E. However, if a numerical scheme of integration
is introduced, the measured data are sufficient to determine

the behavior of the system. Lee and Rogers [ 2 _] have proposed
a finite difference solution which may be used. The time in-
terval of interest i1s divided into n increments tl, i=1,2,...,n + 1
with tl = 0 and tn+l = t (the reduced time is also divided into
n intervals éi, i=1,2,..., n+ i} As will be shown, the
increments need not be the same over each interval. The in-
tegrals with limits O+ to t are also separated into n inter-

vals

LU de 3 LI

The solution to the example problem now takes the form
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C2EG | o2 n 5 [ .
(L + =g )ule, t44) = 3% f SeT LE(&n+l—€')]u(r,t')dt'
i=1 tl (5 16)
n t +l
3 %= x° e 1 d
- EW“‘;*““) [(1 - §E)a09(tn+l) +-§—§i JF§~—-[E €n+l"€ )}axe(t ) dt J
' i=1l

If the functions u(r,t) and 6(t') occurring under the integrals

~are approximated by

6(t') = %{9(ti+l) + G(ti)}

the integrals may be evaluated, and lead to the result

c2E

n -
(1+ 3% G)u(r,tn+l) ﬁ?E%E EZ-% [u(r o)t u(r t, )}L E(E 1~ €i+l)

1
3

—ao[e(ti+l)

wiw

- E(@’n+l”€i)]

+ e(ti)}[E(éml— €.41) ~ B(E 9~ gi)]} (5.18)
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The terms in this approximation occur in a form such that the
arror propagation is quickly attenuated. Usihg this intuitive
argument, it may be anticipated that the above representation
will be stable. The above simple formulation introduces no
w1 By (0T E547 €))
varied. This may not be the case if more elaborate difference

complications when the intervals ti are
schemes are introduced. ‘

The fact that an initial value problem has now replaced
the original boundary value problem enhances the solution tech~
nigue since the value at each succeeding time interval is
dependent only on the preceding times and not on later ones
as might be the case in other boundary value problems. The
solution is now in a form for which the digital computer may
be used to perform the final numerical steps. Some examples

of the solution method are discussed [ 2 .

6. Numerical Solutions of Infinite Cyvlinder Rigidly Encased.

A numerical analysis has been performed for two uniform
temperature fields. The cylinder analyzed has a radii ratio
c = 4, The bulk modulus was selected as 74,600 psi, the coef~
ficient of thermal expansion a, = 6 x 10 /°F and the extension
relaxation function and shift function as shown in Fig. 1.

First, the problem in which the temperature is suddenly
dropped 80°F at all points of the cylinder is investigated.
Physically, this requires the cylinder to have a distributed
sink such that heat may be instantaneously dissipated. How-
ever, the solution to this hypothetical problem may be utilized
for the solution of other physically important problems. The
solution has been carried out using Eg. (5.18); the time hig-
tory of the inner boundary tangential strain §~is shown in
Fig. 2. In addition the method of solution presented by Egs.
(5;9), {(5.11), and (5.12) was carried out. After expressing
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Eg. (5.9) in terms of the extension and bulk moduli, the first
step in this solution is to perform the inversion. This

may be performed by expressing the modified Eg. (5.9) as a
convolution integral and using the finite difference technique
of numerical integration. The functional dependence of R(E)

is shown in Fig. 3. For the constant uniform temperature field

Eqg. (5.12) may be integrated to yield
2_ r
—-“~—)R(£)a06 (6.1)

where 6 represents the constant uniform temperature change.

For a temperature drop of 80°F and the properties of the
cylinder cited previously, the inner boundary tangential strain
is again as shown in Fig. 2. From Eg. (6.1l), one observes that
a constant uniform temperature drop may be used to generate
the function R(£).

The second example investigated is the slow temperature
decrease of the rigidly encased cylinder used in the first
example. The dependence of € upon t for a uniform cooling of
2°F/100 min.was determined from Eg. (1.15) and is shown in
Fig. 4. The solution of Eq. (5.18) for this temperature de-
crease is shown in Fig. 5. The initial departure of the strain
from a straight line is due to the crude time intervals selected
for desk calculator computation. Using the kernel function
R(€) in Eg. (5.12), the solution was repeated, yielding
again the results shown in Fig. 5., Once the function R(£)
is known the determination of the circumferential strain his-
tory requires the evaluation of the single integral which
appears in Eg. (5.12). Thus, using this method, it appears
to be easier to obtain solutions for wvarious uniform tempera-

ture wvariations.
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While the above calculations are for a cylindrical inner
boundary, appropriate strain concentration factors may be used
to approximate the maximum strain for different shaped inner
configurations, utilizing information in [ 8 ], since the material

is homogeneous.

7. Infinite Cvlinder Bonded to a Thin Elastic Case.

We next turn our attention to an infinite cylinder bonded
to a thin elastic case. Designating the displacement, stresses,
and the temperature in the cylinder with subscript I's and
those of the case by II's, the mechanical properties of the
its thickness

elastic case are specified by E and @

IT° V11’ 11’
by h, where it is assumed that h/b << 1; and its uniform temp-
erature GII(t)Q The temperature of the case is allowed to
differ from that of the cylinder since in many instances the
temperature surrounding the system may drop suddenly, so that
initially the case is at one temperature the cylinder at es-
sentially another. This instance may prove to be one of
particular interest in studying bond failures between the case
and cylinder.

The boundary conditions are given by a stress free inner

boundary

g .(a,t) = 0 (7.1)

rI(

and the continuity conditions at the interface

{ =
GrI‘b’t) OrII(b,t)

uI(b,t) = uII(b,t)
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The general integral for u, is given, as in the previous

I
section, by Eg. (4.5). For a thin case, the solution for the

displacement of an infinite case is

(b,t)+(l+vII)b .. (t) (7.3)

T Yrrz 911917

Satisfying the boundary conditions in an analogous manner as
presented in the previous section and expressing the solution
in terms of EI(t) and KI’ the displacement at the inner bound-

ary of the cylinder is determined from

2 E_ K> u,(t) up (£

t
11T I 2 ) . ;
DTy, & ¢ lOS(l“VIﬁKI\AXEET[jEI(g'g % a9t

b

162 2(—
b

ot £ o
2 E__ : 1 ul ()
2h, b TT > | J? 3 } T ‘
+ ( ) ' [ V " B (gu)E (&"&"‘E")dt" dat’
b kb2~a2 1410 ot'l J. ot ( I T a
E r | 2
h, “IT ,.2 b
= -8 E(I;V_—)KILBQOIGI(t)wz(l+vII)(_Ewwijallell(t)}
IT b"-a !
(7.4)
t o
F 18K, | <2 m_ (E-t') - £9K (1-v__) =3 h} a _6_(t').
I ot' 71 ; I 1T bl Tor'z
‘ . E 2
h, 1T b , , . ) \
- 2(1+VII)511+VII)(bzuaz)aIIQII(t )} dt (Contlnued)
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(7.4)

t t! , ;
d ol y C e " continued
"BIat-([atu@I(% JE (£-¢-€")at >H6KI(1+VII>
E | ' B 2 |
h, P11 , h, “1I b : :
-2 "}5(1+VII)] a9 (t )'Z(lwzz)b(u'vll) (bz_ az)o‘IIQII(t )} dt

A solution to this equation may be obtained by employing
the finite difference technique of the preceding section.
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