
UC Riverside
UC Riverside Previously Published Works

Title
Recursive error correction for general Reed-Muller codes

Permalink
https://escholarship.org/uc/item/7vg206xr

Journal
Discrete Applied Mathematics, 154(2)

ISSN
0166-218X

Authors
Dumer, I
Shabunov, K

Publication Date
2006-02-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vg206xr
https://escholarship.org
http://www.cdlib.org/

Recursive error correction for general

Reed-Muller codes ?

Ilya Dumer, Kirill Shabunov

College of Engineering, University of California, Riverside, CA 92521, USA

Abstract

Reed-Muller (RM) codes of growing length n and distance d are considered over
a binary symmetric channel. A recursive decoding algorithm is designed that has
complexity of order n log n and corrects most error patterns of weight (d ln d)/2. The
presented algorithm outperforms other algorithms with nonexponential decoding
complexity, which are known for RM codes. We evaluate code performance using a
new probabilistic technique that disintegrates decoding into a sequence of recursive
steps. This allows us to define the most error-prone information symbols and find
the highest transition error probability p, which yields a vanishing output error
probability on long codes.

Key words: Recursive decoding, decoding threshold, Plotkin construction,
Reed-Muller codes.

1 Introduction

In this paper, we design and analyze new recursive decoding algorithms for
RM codes. These codes are fully defined by two integers 0 ≤ r ≤ m, and are
called below

{
m
r

}
-codes. Code design of

{
m
r

}
-codes employs the set {fm

r } of
all m-variate Boolean polynomials fm

r of degree r or less. Here all 2m code
positions x form the complete m-dimensional space Em

2 . A codeword cf is
obtained as the sequence of binary values that a polynomial f(x) takes on

positions x ∈ Em
2 . It is easy to prove [5] that

{
m
r

}
-codes have length n = 2m,

dimension k =
∑r

i=0

(
m
i

)
and distance d = 2m−r.

? This research was supported by NSF grant CCR-0097125.
Email addresses: dumer@ee.ucr.edu (Ilya Dumer), shabunov@ee.ucr.edu

(Kirill Shabunov).

Preprint submitted to Elsevier Science 25 April 2005

RM codes have a simple code structure, which in turn enables fast decoding
procedures. Majority algorithm was first developed in [1]. The algorithm exe-
cutes bounded distance decoding with complexity order of nk or less. Subse-
quently, it was also proven in [6] that majority decoding substantially extends
the bounded-distance threshold of d/2. Here, given an infinite sequence of
codes Ai(ni, di), we say that a decoding algorithm Ψ has a threshold sequence
δi and a residual sequence εi → 0 if for ni → ∞ :

• Ψ corrects all but a vanishing fraction of error patterns of weight δi(1− εi)
or less;

• Ψ fails to correct a nonvanishing fraction of error patterns of weight δi or
less.

It is proven in [6] that for RM codes of fixed order r,majority decoding achieves
the maximum possible threshold δ = n/2 (here and below we omit index i)
with a residual

εmaj
r = (cm2r−m)1/2r+1

, m→ ∞, (1)

where c is a constant that does not depend on m and r. Note that δ exceeds
2r times the bounded distance threshold of d/2. For long RM codes of fixed
rate R, it is also proven in [6] that majority algorithm achieves a threshold

δ = (d ln d)/4. (2)

Majority decoding can also be extended [11] for soft decision channels. In
particular [11], for RM codes of fixed rate R, soft decision majority decoding
gives a threshold of Euclidean weight

% = (n/m)1/2r+1

n1/2.

One more efficient algorithm [7] makes use of the symmetry group of RM

codes. For long RM codes
{

m
2

}
of the second order, the algorithm [7] reduces

the residual term εmaj
2 from (1) to the lower order of (cm2r−m)1/4, where one

can take any c > ln 4. However, the former complexity O(nm2) of majority
decoding is also increased in algorithm [7] to a nearly square order of O(n2m).
The corresponding thresholds for higher orders r ≥ 3 are yet unknown.

Another result of [7] is related to maximum-likelihood (ML) decoding. It is
shown that ML decoding of RM codes of fixed order r has a substantially
lower residual term

εml
r = mr/2n−1/2(c(2r − 1)/r!)1/2, m→ ∞,

where c > ln 4.

The third technique is based on various recursive algorithms introduced in
[2], [3], [4], and [10]. All these algorithms use different metrics but rely on

2

the Plotkin construction (u,u + v). The construction allows to decompose

RM codes
{

m
r

}
onto shorter codes, by taking subblocks u and v from codes{

m−1
r

}
and

{
m−1
r−1

}
. It is shown that this recursive structure allows to execute

both encoding [2] and bounded distance decoding [4], [10] with the lowest
complexity order of nmin(r,m− r) known for RM codes of an arbitrary order
r.

Recently, recursive algorithms have been analyzed in [12] and [13] in more
detail. Some of the results are summarized in the following statement.

Theorem 1 Long RM codes
{

m
r

}
of fixed order r can be decoded with linear

complexity O(n) and decoding threshold

δ = n/2, εr = ((2r lnm)/d)1/2r+1

, m→ ∞, (3)

or with quasi-linear complexity O(n logn) and decoding threshold

δ = n/2, εr = (cm/d)1/2r

, c > ln 4, m→ ∞. (4)

Note that Theorem 1 increases decoding threshold of the recursive techniques
introduced in [2] and [4] from the order of d/2 to n/2 while keeping linear
decoding complexity. It also improves both the complexity and the residual
of majority decoding. When compared with the algorithm of [7], this theo-
rem reduces the quadratic complexity O(n2 log n) to a quasi-linear complexity
O(n logn) and is also extended to RM codes of any fixed order r ≥ 2.

However, as mentioned in [13], the probabilistic tools utilized there do not
allow one to extend the above results for an arbitrary growing order r or more
specifically, for any nonvanishing code rate R. Therefore below we develop the
new tools that allow us to accomplish this task. The main result of this paper
is given in the following theorem.

Theorem 2 Long RM codes
{

m
r

}
can be decoded with complexity order of

(3n log2 n)/2 or less, and achieve the following thresholds and residuals

δ =
n

2
, ε =

(
4m

d

)1/2r

, if
r

lnm
→ 0,

δ =
d ln d

2
, ε′ =

ln(4m)

ln d
, if

min(r,m− r)

lnm
→ ∞.

(5)

Thus, Theorem 2 increases ln d times the threshold d/2 of bounded distance
decoding and also doubles that of majority decoding. Both improvements are

3

also achieved at a lower complexity. Our proof of Theorem 2 will be done in
Sections 4, 5, and 6.

Below in Section 2 we consider recursive structure of RM codes in more detail.
Here we mostly follow the description of [13]. Such a description also allows one
to derive some properties of RM codes in a relatively simple way. In particular,
we show that recursive structure yields generator matrices completely formed
by the codewords of minimum weight d.

In Section 3, we proceed with decoding techniques and describe two different
recursive algorithms Ψm

r and Φm
r introduced in [13]. The basic recursive pro-

cedure will split RM code
{

m
r

}
of length n into two RM codes of length n/2.

Decoding is then relegated further to the shorter codes until we reach basic
codes of order r ≤ 1 or r = m. In all intermediate steps, we shall only recal-
culate the newly defined symbols. Here we first prove that these algorithms
guarantee bounded distance decoding.

In Sections 4, 5, and 6, we proceed with more advanced analysis. For each in-
formation symbol, we relate its bit error probability to some random variable
(rv). Our main goal here is to establish some partial ordering on the informa-
tion bits relative to their decoding failure. This ordering will allow us to find
the information bits least protected from the channel noise. In so doing, we
will find the power and central moments of the corresponding rv. Here we will
extend this analysis beyond the first two central moments, as opposed to [13],
in which the simpler tools turned out to suffice.

2 Recursive structure of RM codes

Consider any m-variate Boolean polynomial f = fm
r and the corresponding

codeword c(f), with symbols f(x) on positions x = (x1, ..., xm) ∈ Em
2 . Let x1

be the most senior digit, and xm be the junior digit in the lexicographic order
of positions x ∈ Em

2 . We decompose any polynomial f as

fm
r (x1, ..., xm) = fm−1

r (x2, ..., xm) + x1f
m−1
r−1 (x2, ..., xm), (6)

using the new polynomials fm−1
r and fm−1

r−1 . Then we obtain the codewords

u = c(fm−1
r) and v = c(fm−1

r−1) from the codes
{

m−1
r

}
and

{
m−1
r−1

}
, respectively.

Now any codeword c(f) ∈
{

m
r

}
is represented in the form (u,u + v). This is

the well known Plotkin construction.

By continuing this process, we obtain RM codes taken over m − 2 variables
x3, ..., xm and so on. Finally, we arrive at the repetition codes

{
g
0

}
for any

g = 1, ..., m − r and full spaces
{

h
h

}
for any h = 1, ..., r. Similarly to [13],

4

this is schematically shown in Fig. 1.1 for RM codes of length 8. In Fig. 1.2,
we consider an incomplete decomposition for codes of length 32 terminated at
the biorthogonal codes and single-parity check codes.

Below am
r = {aj|j = 1, k} denotes a block of k information bits aj that encode

a vector (u,u + v). The above splitting also decomposes am
r into two infor-

mation subblocks that encode vectors u and v, respectively. When arriving
at some code {g

h} in our splitting procedure, we use notation a
g
h for its infor-

mation block. In the following steps, information subblocks are split further.
Thus, any specific codeword can be encoded from the information strings as-
signed to the end nodes

{
g
0

}
or
{

h
h

}
. Only one information bit is assigned to

the left-end (repetition) code
{

g
0

}
, while the right-end code

{
h
h

}
includes 2h

bits. We can use the unit (2h × 2h)-generator matrix to encode these 2h bits.

0,0 2,1

↗ ↖ ↗ ↖

1,0 1,1 3,1 3,2

↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖

2,0 2,1 2,2 4,1 4,2 4,3

↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖

3,0 3,1 3,2 3,3 5,1 5,2 5,3 5,4

Fig. 1.1: Full decomposition Fig. 1.2: Partial decomposition

Given any algorithm ψ, we use notation |ψ| for its complexity. Let ψm
r denote

the above encoding for code
{

m
r

}
. Following [2] and [4], we arrive at the

following lemma.

Lemma 3 RM codes
{

m
r

}
can be recursively encoded with complexity

|ψm
r | ≤ nmin(r,m− r). (7)

Now consider an information bit aj associated with a left node
{

g
0

}
, where

g ∈ [1, m− r]. We will map aj onto a specific “binary path”

ξ
def
= (ξ1, ..., ξm)

5

of length m leading from the origin
{

m
r

}
to the end node

{
g
0

}
. To do so, we

first define the senior bit

ξ1 =





0, if aj ∈ am−1
r−1 ,

1, if aj ∈ am−1
r .

Next, we take ξ2 = 0 if aj belongs to the left descendant subcode. Otherwise,
ξ2 = 1. For example, given ξ1 = 0, we take

ξ2 =





0, if aj ∈ am−2
r−2 ,

1, if aj ∈ am−2
r−1 .

Similar procedures are then repeated at the following steps and give subpath
ξm−g of length m − g that arrives at

{
g
0

}
. We then take g right-hand steps

and add g ones. Thus, we obtain a full path ξ of length m that arrives at the
node

{
0
0

}
. Considering all g, we obtain a subset of

(
m−1

r

)
paths, all of which

have m− r ones including the last symbol ξm = 1.

Now consider any information bit aj associated with a right-end node
{

h
h

}
,

where h ∈ [1, r]. The same mapping procedure gives a subpath

ξ
def
= (ξ1, ..., ξm−h)

of length m− h that also includes m− r ones and ends with ξm−h = 1. Note
that there are 2h information bits aj associated with this node. Also, for the
full length m, we can take h = 0 for any left end path ξ. Thus, for any (left
or right) end node, we can define ξ as the shortest path of weight m− r.

Next, we proceed with the full set of the above paths. By taking all the paths of
length m−h with multiplicity 2h, we obtain the overall number of information
symbols

r∑

h=0

(
m− h− 1

m− r − 1

)
2h =

r∑

h=0

(
m

h

)
= k. (8)

From now on, Γ is the complete set of paths ξ ordered lexicographically.
Given two paths of different lengths, here we compare their prefixes of the
maximum common length. Also, we use notation aξ for any information symbol
associated with a given path ξ. Finally, following [5], note that the code
distance d of the original code and distances dv and du of its two descendants
satisfy an obvious recursion

d = min(2du, dv).

Here we also take into account that code
{

m−1
r−1

}
belongs to

{
m−1

r

}
. Given the

6

original code distances 2g and 1 of the trivial end codes
{

g
0

}
and

{
h
h

}
, we see

that
{

m
r

}
-code has distance d = 2m−r.

Next, we prove the following useful lemma.

Lemma 4 There exists a generator matrix G of the
{

m
r

}
-code that consists

of the codewords of minimum weight 2m−r.

Proof. Consider the generator matrix G of an RM code defined by the
(u,u+v)-construction. Let cξ be a codeword in G associated with some infor-
mation symbol aξ and its path ξ of some length m−h. Recall that a codeword
cξ is obtained from some polynomial gξ. First, consider this polynomial gξ as-
sociated with a path ξ. In particular, equality ξ1 = 1 holds for all information
symbols aξ that form a codeword u ∈

{
m−1

r

}
.

Second, (6) shows that vectors (u,u) correspond to the polynomials fm−1
r that

exclude the variable x1. Proceeding in the same way, we see that a path ξ has
symbol ξl = 1 if a polynomial gξ excludes a variable xl for any l ≤ m− h. As
a result, any path ξ of length m− h is associated with the polynomial

gξ =
m−h∏

l=1

x1−ξl

l .

Now assume that the unit matrix is used on the end code
{

h
h

}
. Equivalently,

this requires the set of 2h polynomials {fh} each of which gives a codeword cξ
of weight 1. Thus, every codeword cξ is generated by some polynomial gξfh.
We complete the proof noting that polynomial gξfh gives a codeword cξ of
weight wt(cξ) = 2wt(ξ). �

Remark. It is also easy to see that any polynomial fh is defined by h Boolean
variables il ∈ {0, 1} and has the form

fh =
m∏

l=m−h+1

(il + xl).

Thus, in this minimum-weight representation, any information symbol aξ can
be associated with the polynomial

m−h∏

l=1

x1−ξl

l

m∏

l=m−h+1

(il + xl).

7

3 Two recursive algorithms

Below we use the mapping a ⇐⇒ (−1)a for any binary symbol a. Obviously,
the binary sum a+ b of two symbols a, b is being mapped onto the product of
their images α, β:

a + b⇐⇒ αβ.

Thus, we assume that all code vectors belong to {1,−1}n and have the form
(u,uv). Let a codeword c = (u,uv) be transmitted over a binary symmetric
channel with crossover probability p < 1/2. The received block y ∈{1,−1}n

consists of two halves y′ and y′′ corrupted by noise. More generally, we will
use any vector y ∈R

n. We start with a basic algorithm Ψrec(y) that will be
later used in recursive decoding. Our description here repeats that of [13].

Step 1. We first try to find the codeword v from
{

m−1
r−1

}
. Here we first find

its “channel estimate”

yv = y′y′′ (9)

(which gives the binary sum of vectors y′ and y′′ in the former notation). Next,
we employ some decoding Ψ(yv), which will be specified later. The output is

some vector v̂ ∈
{

m−1
r−1

}
and its information block âv.

Step 2. We try to find the block u ∈
{

m−1
r

}
given v̂ from Step 1. Here we

take two corrupted versions of vector u, namely y′ in the left half and y′′v̂ in
the right half. These two vectors are combined as

yu = (y′ + y′′v̂)/2. (10)

(Note that the above addition is performed over real numbers and corresponds
to the “soft-decision” majority voting.) Then we use a decoding Ψ(yu) speci-

fied later. The output is some vector û ∈
{

m−1
r

}
and its information block âu.

So, decoding Ψrec(y) performs as follows.

8

Algorithm Ψrec(y).

1. Calculate vector yv = y′y′′.

Find v̂ =Ψ(yv) and âv.

2. Calculate vector yu = (y′ + y′′v̂)/2.

Find û =Ψ(yu) and âu.

3. Output decoded components:

â := (âv | âu); ĉ := (û | ûv̂).

In a more general scheme Ψm
r , we repeat this recursion by decomposing sub-

blocks yv and yu further. On each intermediate step, we only recalculate the
newly defined vectors yv and yu using (9) when decoder moves left and (10)
when it goes right. Finally, we decode the recalculated vectors yv and yu,
once we reach the end nodes

{
g
0

}
and

{
h
h

}
. Given any end code C of length

l and any estimate z ∈ R
l, we employ the (soft decision) minimum-distance

(MD) decoding Ψ(z) = ĉ that outputs a codeword ĉ that maximizes the inner
product (c, z). The algorithm is described below.

Algorithm Ψm
r (y).

1. If 0 < r < m, perform Ψrec(y)

using Ψ(yv) = Ψm−1
r−1 and Ψ(yu) = Ψm−1

r .

2. If r = 0, perform MD decoding

Ψ(yv) for code
{

r
0

}
.

3. If r = m, perform MD decoding

Ψ(yu) for code
{

r
r

}
.

In the following algorithm Φm
r , we terminate decoding Ψrec at the biorthogonal

codes
{

g
1

}
.

9

Algorithm Φm
r (y).

1. If 1 < r < m, find Ψrec(y)

using Ψ(yv) = Φm−1
r−1 and Ψ(yu) = Φm−1

r .

2. If r = 1, perform MD decoding

Φ(yv) for code
{

r
1

}
.

3. If r = m, perform MD decoding

Φ(yu) for code
{

r
r

}
.

Thus, procedures Ψm
r and Φm

r have a recursive structure that calls itself un-
til MD decoding is applied on the end nodes. Now the complexity estimate
follows, similarly to the estimates in [4], [13].

Lemma 5 Algorithms Ψm
r and Φm

r decode RM codes
{

m
r

}
with complexity

|Ψm
r | ≤ 3nmin(r,m− r) + n (11)

|Φm
r | ≤ 2nmin(r,m− r) + n(m− r + 1). (12)

Remark. Note that every new recalculation (10) almost doubles the size of our
original alphabet {±1}. For example, starting with l consecutive estimates
(10), we obtain the alphabet {±t/2l}, where t runs from 0 to 2l. Then the
first “left-hand” recalculation (9) will “square” this alphabet to {±t/22s},

where t runs from 0 to 22s. In general, the alphabet size at any node
{

g
h

}

depends on a specific path connecting this node with the origin {m
r } .

Note that both algorithms have complexity upper-bounded by the order of
(3n log2 n)/2. The following simple lemma from [13] shows that recursive de-
coding follows lexicographic order of our paths ξ ∈ Γ.

Lemma 6 For two paths ξ ′ and ξ′′, the bit a(ξ′′) is decoded after a(ξ ′) if
ξ′′ > ξ′.

Proof. Given two paths ξ ′′ and ξ′, let l be the first (senior) position where
they disagree. If ξ′′ > ξ′, then ξ′′l > ξ′l. The latter implies that ξ ′ represents
the left-hand step, while ξ′ does the right one. Correspondingly, ξ ′ proceeds
first. �

10

Let

ξ = (ξ1, ..., ξl), ξ = (ξ1, ..., ξl−1), l ∈ [1, m− h]

denote any subpath of some length l and its prefix ξ, so that ξ = (ξ, ξl). Below
we show that the above algorithms admit bounded distance decoding. Our
proof is similar to that used in [4] for a different recursive algorithm.

Lemma 7 Both algorithms Ψm
r and Φm

r perform bounded distance decoding of

RM codes
{

m
r

}
.

Proof. Without loss of generality, let the (former all-zero) codeword c = 1

be transmitted. For any received vector y, let d(ξ) and y(ξ) denote the code
distance and the vector obtained on any (possibly, incomplete) subpath ξ.
Let z(ξ) = 1 − y(ξ) be the corresponding “discrepancy” vector 1 . Given ξ, let
I = I(ξ) be any subset of positions on y(ξ) such that |I| ≥ d(ξ). Obviously,
decodings Ψ(·) and Φ(·) are correct on some end path ξ if for any I,

∑

i∈I(ξ)

yi(ξ) > 0, (13)

or, equivalently, ∑

i∈I(ξ)

zi(ξ) < |I|.

Below, we replace the latter by a stronger inequality

∑

i∈I(ξ)

zi(ξ) < d(ξ). (14)

In bounded-distance decoding, the original block y has fewer than d/2 errors
and satisfies (14). Next, we prove that (14) always holds on a subpath ξ =
(ξ, ξl) if it holds on the preceding block y(ξ). First, we take ξl = 0 and consider
the corresponding subblock yv(ξ). Here d(ξ) = d(ξ). According to (9), yv(ξ)
has discrepancies

zv
i = z′i + z′′i − z′iz

′′
i ,

where z′i and z′′i are the discrepancies on positions i′ and i′′ of both halves.
Consider a subset I(ξ) of size |I| ≥ d(ξ) on yv and let I ′ and I ′′ be the
corresponding subsets on vectors y′(ξ) and y′′(ξ). Then inequality (14) holds
on yv, since ∑

i∈I

zv
i ≤

∑

i∈I′
z′i +

∑

i∈I′′
z′′i =

∑

i∈I′∪I′′
zi < d(ξ).

Similarly, for ξl = 1, we have distance d(ξ) = d(ξ)/2. According to (10), yu

gives discrepancies

zu
i = (z′i + z′′i)/2.

1 Any correct symbol yi is replaced by −yi if an error occurs in position i. Therefore
z is not an error vector.

11

Then for any subset I(ξ) on yu, such that |I(ξ)| ≥ d(ξ)/2, we have(14), since

∑

i∈I

zu
i =

∑

i∈I′
z′i/2 +

∑

i∈I′′
z′′i /2 =

∑

i∈I′∪I′′
zi/2 < d(ξ)/2.

�

4 Preliminary probabilistic analysis of recursive algorithms

4.1 Recalculation of the outputs

In the following two sections, we consider the algorithm Ψm
r . In Section 6,

similar analysis will be applied to the algorithm Φm
r . For both algorithms,

it will turn out that the output bit error rate (BER) significantly varies on
different paths, including those that lead to the same node. Therefore our
main goal is to define the most error-prone paths ξ and estimate the output
BER for the corresponding information symbols a(ξ).

Without loss of generality, below we always assume that the codeword c = 1

is transmitted. On any node ξ, the algorithm Ψm
r (y) gives some vector y(ξ)

of length 2m−l. Here the previous estimate y(ξ) is first split into the halves
y′(ξ) and y′′(ξ). These halves are multiplied according to (9), if ξl = 0. By
contrast, we use recalculation (10) at this node, if ξl = 1. Note that (10) also
includes the estimate v̂ = v̂(ξ′), obtained on the preceding node ξ ′ = (ξ, 0).

Below we show that decoding analysis on any path ξ can be performed given
that all preceding decodings are correct. Note that in this case we can take
v(ξ′)= 1 for all subpaths ξ′ < ξ, and rewrite equations (9) and (10) as follows

yv = y′y′′, yu = (y′ + y′′)/2, (15)

This also allows us to recurrently recalculate the intermediate outputs in the
following way:

y(ξ)
def
=





y′(ξ) · y′′(ξ), if ξl = 0,

y′(ξ)/2 + y′′(ξ)/2, if ξl = 1.

(16)

Our next step is to redefine the decoding results obtained on the end paths ξ.

Lemma 8 For any end path ξ, the algorithm decodes the output y(ξ) into the
information block

â(ξ) = sign(y(ξ)). (17)

12

Proof. Consider a right-end path ξ that ends at some code
{

h
h

}
. The corre-

sponding output y(ξ) consists of 2h symbols y(ξ). In this case, MD decoding
Ψh

h makes bit-by-bit decisions (17). Consider a left-end path ξ that is decoded

on a repetition code
{

g
0

}
. Let ξ denote its prefix that enters this code and y(ξ)

be the corresponding vector of length 2g. Note that the symbol y(ξ) obtained

at the end node
{

0
0

}
, is

y(ξ) =
2g∑

i=1

yi(ξ)/2
g. (18)

Thus, decoding Ψg
0 takes the sign of y(ξ) by the same decoding rule (17). �

According to our decoding rule (17), the error event {â(ξ) = −1} has proba-
bility

P (ξ) = Pr{y(ξ) < 0}.

Let 0t or 1t denote the subpaths that consist of t zeros and ones, respectively.
Recall that all paths ξ are ordered lexicographically, and the first path is

ξ∗ = 0r, 1m−r. (19)

To use recurrent calculations (16), we wish to consider the conditional proba-
bility given that all preceding decodings v(ξ ′) are correct for all paths ξ ′ < ξ :

p(ξ) = Pr{y(ξ) < 0 |v(ξ ′) = 1 for all ξ′ < ξ}. (20)

Thus, we first need to estimate unconditional probabilities P (ξ) using their
conditional counterparts p(ξ).

Lemma 9 For any path ξ ∈ Γ, its bit error rate P (ξ) satisfies inequality

P (ξ) ≤
∑

ξ′≤ξ

p(ξ′). (21)

Block error probability P satisfies inequalities

p(ξ∗) ≤ P ≤
∑

ξ′
p(ξ′). (22)

Sketch of the proof. This simple statement is formally proven in [13]. Infor-
mally, the upper bound (21) assumes incorrect decoding of an information
symbol a(ξ) whenever failure occurs on any previous step ξ ′ ≤ ξ. Then the
corresponding probabilities are added together in the union bound. Similarly,
the upper bound in (22) sums up probabilities of decoding failures on all k
paths ξ′. Also, the lower bound implies that the block is always incorrect given
decoding failure on the first step ξ∗. �

13

4.2 Asymptotic setting

In our setting, the received vector y(ξ) = y consists of n independent iden-
tically distributed (i.i.d.) random variables (rv) yi = y, each of which has
probability distribution

Pr{yi} =





1 − p, if yi = +1,

p, if yi = −1,
(23)

Our next goal is to estimate the error probability

p(ξ) = Pr{y(ξ) < 0} (24)

where y(ξ) is the rv, which is obtained on some path ξ after performing recur-
rent recalculations (16). Note that these transformations (16) can be mixed
in an arbitrary (irregular) order depending on a particular path ξ. In [13],
our approach was to find the first two moments of variables y(ξ). However,
as mentioned above, this approach is sufficient only for codes of fixed order r.
Therefore below we estimate p(ξ) using high-order power and central moments
of y(ξ).

1. First, note that the blocks y′ and y′′ used in (15) always include different
channel bits yi. Consequently, their descendants y′(ξ) and y′′(ξ) used in (16)
are also obtained from different channel bits. These bits are combined in the
same operations. Therefore all symbols yi(ξ) of the vector y(ξ) are i.i.d.
rv. This simple observation also allows to simplify our notation and remove
indices i. Namely, given any subpath ξ of some length l, y(ξ) will denote one
of the random variables yi(ξ) obtained on the path ξ by recalculations (16).

2. Let a(ξ) = E y(ξ) denote the expectation of any rv y(ξ). Below we will
study the normalized random variables

z(ξ) = y(ξ)/a(ξ), (25)

with expected values 1. Namely, given some positive even integer s, we wish
to estimate the s-th power and central moments

Es(ξ)
def
= E {zs(ξ)}, Ds(ξ)

def
= E {(z(ξ) − 1)s}. (26)

3. Given these moments (26), we will prove Theorem 2 using Chebyshev in-
equality, which gives the upper bound

p(ξ) = Pr{z(ξ) < 0} (27)

≤ Pr{(z(ξ) − 1)s > 1} ≤ Ds(ξ).

14

4.3 Recalculation of the power and central moments

Given any subpath ξ, our next goal is to obtain the recurrent formulas for the
moments Es(·) on the two descendant paths (ξ, 0) and (ξ, 1). To do so, we first
define the recursions for the rv z(ξ).

Lemma 10 On any subpath ξ = (ξ, ξl) of length l, random variables z(ξ)
satisfy recursions:

z(ξ) =





z′(ξ) · z′′(ξ), if ξl = 0,

z′(ξ)/2 + z′′(ξ)/2, if ξl = 1,
(28)

Proof. Obviously, for any ξ = (ξ, ξl), the means a(ξ) satisfy the recursion

a(ξ) =





a2(ξ), if ξl = 0,

a(ξ), if ξl = 1,
(29)

which follows from (16). Here we simply replace all three rv used in (16)
by their expectations. Also, we use the fact that vectors y′(ξ) and y′′(ξ) are
independent and have the same expectation E(y(ξ)) on their symbols. Then
recursion (28) directly follows from equalities (16) for y(ξ) and (29) for a(ξ).
�

By replacing rv in (28) with their moments Es(ξ), we obtain the recursion

Es(ξ) =





E2
s (ξ), if ξl = 0,

2−s∑s
i=0 (s

i)Ei(ξ)Es−i(ξ), if ξl = 1,
(30)

Note that equalities (30) yield rather cumbersome iterations even after very
few steps. Below, we will simplify the problem in two different ways. First,
we will find the weakest paths ξ that give the biggest central moments Ds(ξ).
It will turn out that the same weakest paths can be considered for all s > 1.
Second, we will estimate Ds(ξ) for m→ ∞ using the second moments D2(ξ).

15

5 The weakest paths

In (31) below, we consider two subpaths ξ− and ξ+ of the same Hamming
weight that differ only in the last two positions:





ξ− = (ξ1, ..., ξl−2,0, 1), ↗↖

0 ↖↗ 1

ξ+ = (ξ1, ..., ξl−2,1, 0). ξ1, ..., ξl−2

(31)

In other words, these paths diverge and submerge on the two last steps if
placed on the triangle of Fig. 1.1. We say that ξ− and ξ+ are the left-loop and
right-loop paths, correspondingly. We also say that the two descending paths
ξleft = (ξ−, ξ) and ξright = (ξ+, ξ) with the same suffix ξ are the neighbors. The
following theorem is central to our analysis of the weakest paths.

Theorem 11 For any even s, any two neighbors ξleft and ξright satisfy in-
equality

Ds(ξleft) ≥ Ds(ξright). (32)

Proof. The proof consists of two parts.

1. We first prove this property for the paths ξ− and ξ+. Suppose that the
original subpath ξ1,ξl−2 in (31) outputs 4 different i.i.d. rv z1, z2, z3, and
z4. It is readily verified that ξ− and ξ+ have the outputs

z(ξ−) = z1z2/2 + z3z4/2,

z(ξ+) = (z1 + z2)(z3 + z4)/4.

Obviously, we keep the same moment Ds(ξ−), by considering the new rv

Z(ξ−) = z1z3/2 + z2z4/2.

This can be rewritten as

Z(ξ−) = z(ξ+) + z̃, (33)

where

z̃ = (z1 − z2)(z3 − z4)/4.

Note that z̃ is symmetric conditioned on any value of z(ξ+). The latter defi-
nition means that we have the equality

Pr{z̃ | z(ξ+)} = Pr{−z̃ | z(ξ+)}. (34)

Indeed, z1−z2 has symmetric distribution given the sum z1+z2 (though these
two variables are obviously dependent). The same fact holds for z3 − z4 given

16

z3 + z4. Therefore the conditional moments of the rv z̃ satisfy the following:

E2i+1(z̃ | z(ξ+)) = 0, E2i(z̃ | z(ξ+)) > 0, i = 1, 2,

We can also rewrite (33) for the two unbiased rv Z(ξ−)− 1 and z(ξ+)− 1 and
consider their power expansion:

(Z(ξ−) − 1)s = (z(ξ+) − 1 + z̃)s. (35)

Then we can take expectations of both sides in (35) and obtain the following:

Ds(ξ−) = Ds(ξ+) + E
s−1∑

i=0

(s
i) (z(ξ+) − 1)iEs−i(z̃ | z(ξ+)) > Ds(ξ+).

The last inequality follows from the two facts. First, for odd i, we can remove
all the summands from the latter sum since Es−i(z̃ | z(ξ+)) = 0. Second, the
remaining summands include only even moments Di(ξ+) and Es−i(z̃ | z(ξ+)),
which are both positive.

2. Next, we prove general property (32) for arbitrary neighbors ξ ′ and ξ′′. Note
that Part 1 of the proof only used the fact that z̃ is a symmetric rv which
satisfied condition (34) in representation (33). Obviously, it suffices to prove
that this property holds for the two immediate suffixes ξ = 0 and ξ = 1. This
directly follows from (28) and (33). Indeed, for ξ = 1 we have the following
equalities:

z(ξleft) = z′(ξ−) + z′′(ξ−) = z′(ξ+) + z′′(ξ+) + z̃′ + z̃′′

= z(ξright) + z̃′ + z̃′′.

Note that z̃′ + z̃′′ is a symmetric rv. Similarly, for ξ = 0, we have equalities

z(ξleft) = z′(ξ−) · z′′(ξ−)

= z(ξright) + z̃′ · z′′(ξ+) + z̃′′ · z′(ξ+) + z̃′ · z̃′′.

It is easy to verify that the last three summands again represent a symmetric
rv for any given value of the product z(ξright) = z′(ξ+)z′′(ξ+). Thus, both
descendant subpaths also satisfy conditions (33) and (34). �

Remark. For all s > 1, a more general inequality reads |Ds(ξ−)| ≥ |Ds(ξ+)|.
This can be obtained using the fact that all random variables z(ξ) have neg-
ative odd moments.

Now we see that any path ξ becomes weaker if a permutation (1, 0) ⇒ (0, 1)
is performed on two adjacent symbols 0 and 1. Given a subset of paths I ⊆ Γ,
we now say that ξ∗(I) is the weakest path in I if

Ds(ξ∗(I)) = max
ξ∈I

Ds(ξ).

17

In particular, let the subset Γg
0 include all left-end paths ξ, which pass through

the node
{

g
0

}
and let Γh

h be the subset of the right-end paths that pass through

the node
{

h
h

}
. Then we have the following corollary.

Corollary 12

1. The first (leftmost) path ξ∗ = 0r, 1m−r from (19) is the weakest path on the
entire set Γ.

2. For any g ∈ [1, m− r− 1], the weakest path on the subset Γg
0 is its leftmost

path

ξg
0 = 0r−1, 1m−r−g, 0, 1g. (36)

3. For any h ∈ [1, r], the weakest path on the subset Γh
h is its leftmost path

ξh
h = 0r−h, 1m−r.

Proof. All left-end paths have the same length m. Correspondingly, we only
need to prove that both ξ∗ and ξg

0 are the leftmost paths on Γ and Γg. Recall
that Γ includes all paths of weight m − r or more. Then (19) is the leftmost
path on Γ since all r zeros form its prefix. Next, recall that each path ξ ∈ Γg

0

ends with zero and g ones. Also, each left-end path ξ has r zeros. Thus, ξg
0 has

the leftmost prefix in Γg
0, with r − 1 zeros preceding m− r − g ones.

Similarly, all right-end paths ξ ending at the node
{

h
h

}
have the same length

m− h. Here ξh
h is the leftmost path. �

6 Decoding Thresholds

6.1 Algorithm Ψm
r

Our next goal is to estimate the parameter Ds(ξ∗) for the weakest path ξ∗.
More generally, below we also consider the moments Ds(ξ

g
0), where g ≤ m− r.

Then ξ∗ is a special case of ξg
0 with g = m−r. As we noted before, subsequent

recalculations performed for Ds(ξ
g
0) are rather cumbersome. Therefore we use

a different approach. Namely, let m→ ∞ and

(m− r)/ lnm→ ∞. (37)

18

Consider any path ξ = (ξ, 1g), which ends with g (or more) ones. In this case,
any rv z(ξ) is the sum of 2g i.i.d. rv z(ξ

i
) :

z(ξ) =
2g∑

i=1

z(ξ
i
).

Therefore z(ξ) has pdf that tends to the Gaussian distribution N (1, D2(ξ)).
Now suppose that the second momentD2(ξ) is given. We then use the following
approximation

Ds(ξ) ∼ (s− 1)!! · (D2(ξ))
s/2, m→ ∞, (38)

valid for the Gaussian rv. Here we use the fact [9] that approximation (38) is
tight for the sum of 2g i.i.d. rv if s ≤ 2g/6. In turn, the latter restriction holds
true given our restriction (37).

Summarizing, for any path ξ, we invoke Theorem 11 and upper-bound Ds(ξ)
by Ds(ξ∗). Thus, we need to find D2(ξ∗) and then use approximation (38).
Below, we extensively use the parameter

ε = 1 − 2p.

Lemma 13 The weakest paths ξ∗, ξ
g
0 , and ξh

h yield the second moments

D2(ξ∗) = 2−(m−r)(ε−2r+1

− 1), (39)

D2(ξ
g
0) = 2−g{[(ε−2r

− 1)2−(m−r−g) + 1]2 − 1}, (40)

D2(ξ
h
h) = 2−(m−r)(ε−2r−h+1

− 1). (41)

Proof. Recall that the original channel outputs yi have the means Eyi = ε, in
which case rv zi = yi/ε give the moments

D2 = ε−2 − 1.

Second, note that for any path ξ = (ξ , ξl), recursion (28) shows that the
moments D2(ξ) satisfy the recursions

D2(ξ) + 1 = (D2(ξ) + 1)2, if ξl = 0, (42)

D2(ξ) = D2(ξ)/2, if ξl = 1. (43)

Given the prefix ξ = 0r, equality (43) gives

D2(ξ) = ε−2r+1

− 1.

19

Then we proceed with the suffix 1m−r on the path ξ∗ = ξ, 1m−r. Here equality
(42) gives (39). Equality (41) is almost identical.

Finally, another prefix ξ = 0r−11m−r−g0 gives

D2(ξ) = (ε−2r

− 1)2−(m−r−g).

Then (42) gives the expression in braces in (40). The final step in (40) is
obtained by adding the suffix 1g. �

Theorem 14 For long RM codes
{

m
r

}
that satisfy restriction (37), algorithm

Ψm
r has complexity order bounded by 3nmin(r,m− r) + n, and

• corrects all but a vanishing fraction of errors of weight bounded by

n(1 − θ)/2, (44)

• fails on a nonvanishing fraction of errors of weight

n(1 − θ′)/2

or less, where

θ = (2m/d)1/2r+1

, θ′ = (1/d)1/2r+1

. (45)

Proof. The proof consists of 3 parts.

1. Consider a binary channel with crossover probability p = (1−θ)/2. Our first
goal is to prove that algorithm Ψm

r gives a vanishing block error probability
on this channel as m → ∞. Indeed, we substitute ε = θ in (39) and obtain
equality

D2(ξ∗) = (2m)−1 − 2r−m. (46)

For m→ ∞, equalities (38) and (46) give the moment

D2m(ξ∗) ∼ (2m− 1)!!(2m)−m . e−m.

Here we use the fact that (2m−1)!! is upper-bounded by the order of (2m/e)m.
Now we see that any path ξ satisfies inequality

p(ξ) < D2m(ξ∗) . e−m. (47)

The output block error probability P of the algorithm Ψm
r has the order P ≤

kmax p(ξ). Here the number of information symbols (paths) k has the order
at most 2m. This gives a vanishing probability

P . (e/2)−m. (48)

20

2. Next, note that the error patterns of weight pn or less occur with a nonva-
nishing probability on the channel with crossover probability p. Indeed,

pn∑

i=0

(n
i) p

i(1 − p)n−i → 1/2.

Due to inequality (48), only a vanishing fraction of error patterns of weight
pn or less is left uncorrected for any p ≤ (1− θ)/2. Therefore, the threshold δ
is lower bounded by n(1 − θ)/2.

3. Now let p′ = n(1−θ′)/2. Then (39) shows thatD2(ξ∗) = 1−2r−m. Recall that
rv z(ξ∗) has pdf that tends to the Gaussian distribution N (1, D2(ξ∗)).Then
we use equalities in (27) to obtain the following estimate:

p(ξ∗) = Pr{z(ξ∗) < 0} → F (−1), m→ ∞,

where F (·) is the cumulative probability function for Gaussian distribution.
Thus, Ψm

r fails to correct nonvanishing fraction F (−1) of errors of weight
n(1 − θ′)/2 or less. �

Corollary 15 For long RM codes
{

m
r

}
, algorithm Ψm

r has complexity order

bounded by 3nmin(r,m − r) + n and achieves the following thresholds and
residuals

δ =
n

2
, ε =

(
2m

d

)1/2r+1

, if
r

lnm
→ 0,

δ =
d ln d

4
, ε′ =

ln(2m)

ln d
, if

min(r,m− r)

lnm
→ ∞.

(49)

Proof. It is readily verified from (45) that both θ′ and θ vanish if r/ lnm→ 0.
Therefore this case gives the threshold δ = n/2 in (49). By contrast, θ′ →
d(ln d)/4 and θ → d(ln d − ln(2m))/4 if r/ lnm → ∞. This gives the second
line in (49). �

Remarks.

1. For majority decoding, the results of [6] are similar to the estimates (49) of
recursive decoding. This is due to the fact that both algorithms process the
weakest path ξ∗ in a similar way. Indeed, both algorithms first estimate the
product of 2r channel symbols. In the second step, the majority estimate (18)
is taken over all 2m−r different estimates.

2. A substantial difference between the two algorithms is that any other path
ξ is processed in recursive decoding Ψm

r using the previous estimates. Because

21

of this, the algorithm outperforms majority decoding in both the complexity
and BER p(ξ) for any ξ 6= ξ∗. In the next section, we will see that recursive
decoding is further enhanced by using the algorithm Φm

r .

6.2 Algorithm Φm
r

To proceed with a proof of Theorem 2, we summarize the similarities and
differences between the algorithms Φm

r and Ψm
r that will be used below.

1. Let % = %, 1g be any left-end subpath that has prefix % and arrives at some

biorthogonal code
{

g+1
1

}
of length n = 2g+1. Let cgt be the tth codeword of{

g+1
1

}
. Here t = 1, ..., l, and l = 2g+2. Below Ig

t denotes the support of the

codeword cgt , which includes all positions with symbols −1. Also, we order
the codewords in such a way that

cg1 = 1n, cgl = −cg1.

By contrast, any right-end subpath % ends at some code
{

h
h

}
as before. Ob-

viously, the received rv yi and their recalculations y(%) are performed in (16)
similarly in both algorithms Φm

r and Ψm
r . The same holds for rv z(%) recal-

culated in (28).

2. Let the all-one codeword c = 1n be transmitted and let y(%) be the corre-
sponding vector obtained on prefix %. Then y(%) is correctly decoded into the

vector cg1 of the code
{

g+1
1

}
if and only if the event

Ω(%) = {y :
∑

i∈Ig
t

yi(%) > 0, t = 2, ..., l} (50)

takes place. Here yi(%) are i.i.d. rv, |It| = 2g for all t = 2, ..., l − 1, and
|Il| = 2g+1.

3. We proceed with the paths % using the arguments of Lemma 9. Namely, the
probability of decoding failure on the path % is

P (%) = Pr{Ω(%)}.

Then we consider the two events

A(%) =
⋂

%′≤%

Ω(%′), B(%) =
⋂

%′<%

Ω(%′)

22

Error probability p(%) is again replaced by its conditional counterpart

p(%) = Pr{A(%) |B(%)}.

Lemma 9 then carries over to the newly defined probabilities p(%). Now we
can proceed with the main theorem of this section.

Theorem 16 Long RM codes
{

m
r

}
that satisfy restriction (37) can be decoded

with complexity order of (3n log2 n)/2 or less, and

• correct all but a vanishing fraction of errors of weight up to

n(1 − θ)/2,

• fail on a nonvanishing fraction of errors of weight

n(1 − θ′)/2

or less, where
θ = (4m/d)1/2r

, θ′ = (1/d)1/2r

. (51)

Proof . We take any path % = (%, 1g). Also, all rv yi(%) in (50) are considered
given correct results cg1 on all previous paths. Then we can use all intermediate
recalculations (30) without any changes. For any vector y(%), consider any
subset I of 2g positions and the sum

yI(%) =
∑

i∈I

yi(%).

Here yi(%) form 2g i.i.d. rv. Thus, the sum yI(%) has the same pdf for any
I. In turn, this allows us to remove index I, and use the common notation
yI(%) ≡ y(%). This gives the union bound in the following form:

p(%) ≤
l∑

t=2

Pr{
∑

i∈Ig
t

yi(%) ≤ 0} ≤ lPr{y(%) ≤ 0} (52)

Also, the probability Pr{y(%) ≤ 0} of incorrect decoding into any codeword
cgt , t 6= l, gives the lower bound:

p(%) > Pr{y(%) ≤ 0}.

Next, we replace rv y(%) by normalized rv z(%) similarly to (25) and apply
estimates (27) using parameter Ds(%) :

p(%) ≤ lDs(%).

23

Now we can invoke Theorem 11 and Lemma 13. In particular, the leftmost
paths

%∗ = (0r−1, 1m−r),

%g
1 = (0r−2, 1m−r−g, 0, 1g). (53)

are the weakest paths on the entire set and on the node
{

g+1
1

}
, respectively.

Similarly to (39) and (40), we then find

D2(%∗) = 2−(m−r)(ε−2r

− 1), (54)

D2(%
g
1) = 2−g{((ε−2r−1

− 1)2−(m−r−g) + 1)2 − 1}. (55)

Consider a channel with crossover probability p = (1−θ)/2, where θ is defined
in (51). Direct substitution ε = θ in (54) gives

D2(%∗) = (4m)−1 − 2r−m. (56)

Then we use equalities (38) and (46) to obtain the moment

D2m(%∗) ∼ (2m− 1)!! · (4m)−m . (2e)−m. (57)

By using (52) for any l = 2g+2 ≤ 2m+1, we obtain inequality

p(%) < lD2m(%∗) . 2e−m.

Thus, the output block error probability P of the algorithm Φm
r satisfies in-

equalities
P ≤ kmax p(%) . 2(e/2)−m. (58)

Now we see that (58) is similar to the former estimate (48) from Theorem 14
and also gives vanishing block error probability. In this case, we can entirely
repeat the proof of Theorem 14. �

Now the proof of Theorem 2 follows from Theorem 16 in the same way that
is used to prove Corollary 15.

Remark. Note that the above restriction (37) on the maximum order of RM
codes is essential. In particular, consider very high orders r ≥ m − log2m,
which give inequality d ≤ m. Then Theorem 16 becomes invalid, giving the
residual ε′ > 1 in (5).

7 Concluding remarks

In this paper, we found the decoding thresholds achieved by recursive algo-
rithms for general RM codes. Our calculations include three important steps.

24

First, decoding is being separated into different paths ξ. Each path is asso-
ciated with a specific information bit and yields one rv. We also establish a
partial order on all paths ξ related to their (high-order) moments Ds. The
step is being completed by founding the weakest paths ξg

0 .

In the second step, we calculate the moments Ds. This is done using the
second-order moments D2 and applying the Gaussian approximation for the
higher orders. Finally, only the weakest path ξ∗ is being used in the third step
to find the correct thresholds.

An important question that arises in this regard is how decoding procedures
can be improved further. To do this, we can simply eliminate a few weakest
paths, starting from ξ∗ for the algorithm Ψm

r , or %∗ for the algorithm Φm
r . Thus,

we replace the original RM code with its subcode, in which a few information
bits are eliminated.

For subcodes, we can proceed in a similar fashion, by finding the weakest re-
maining paths and calculating their thresholds according to Theorems 2 and
14. It is for this reason that calculations of moments Ds are also important on
other paths. To date, however, the above ordering is rather incomplete. There-
fore it is an open question as to which information bits should be removed from
the original code.

Another decoding enhancement can be obtained by using soft-decision de-
coding instead of its hard-decision counterpart described above. The main
difference arises from the fact that in the soft-decision case the parameters p
and ε become random variables, whose values depend on the received symbols.

Thirdly, decoding performance can be greatly enhanced by using the lists of
a few most probable codewords used in all intermediate decoding steps. To
date, theoretical analysis of recursive list decoding is also an open area.

Finally, the above analysis presents only the first cut to the decoding problem.
Namely, this analysis allows us to obtain only the thresholds, below which the
decoding error probability becomes arbitrarily small for long codes. However,
it is yet unclear how this error probability can be calculated or even how fast
it declines. A solution to this problem is important from both the theoretical
and practical perspective.

Acknowledgment. The authors wish to thank M. Burnashev for many helpful
discussions.

25

References

[1] I.S. Reed, “A class of multiple error correcting codes and the decoding scheme,”
IEEE Trans. Info. Theory, vol. IT-4, pp. 38-49, 1954.

[2] S.N. Litsyn, “On decoding complexity of low-rate Reed-Muller codes,” Proc.

9th All-Union Conf. on Coding Theory and Info. Transmission, Part 1, Odessa,
USSR, pp. 202-204, 1988 (in Russian).

[3] F. Hemmati, “Closest coset decoding of u|u + v| codes,” IEEE Selected Areas

Commun., vol. 7, pp. 982-988, 1989.

[4] G.A. Kabatyanskii, “On decoding of Reed-Muller codes in semicontinuous
channels,” Proc. 2nd Int. Workshop “Algebr. and Comb. Coding Theory”,
Leningrad, USSR, 1990, pp. 87-91.

[5] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1981.

[6] R.E. Krichevskiy, “On the Number of Reed-Muller Code Correctable Errors,”
Dokl. Soviet Acad. Sciences, vol. 191, pp. 541-547, 1970.

[7] V. Sidel’nikov and A. Pershakov, “Decoding of Reed-Muller codes with a large
number of errors,” Probl. Info. Transmission, vol. 28, no. 3, pp. 80-94, 1992 .

[8] G.D. Forney, “Coset codes-part II: Binary lattices and related codes,” IEEE

Trans. Info. Theory, vol. 34, pp. 1152-1187, 1987.

[9] W. Feller, An Introduction to Probability Theory and its Applications. New
York: Wiley, vol. 2, 1971.

[10] G. Schnabl and M. Bossert, “Soft-decision decoding of Reed-Muller Codes as
generalized multiple concatenated codes,” IEEE Trans. Info. Theory, vol. 41, pp.
304-308, 1995.

[11] I. Dumer and R. Krichevskiy, “Soft Decision Majority Decoding of Reed-Muller
Codes,” IEEE Trans. Info. Theory, vol. 46, pp. 258-264, Jan. 2000.

[12] I. Dumer, “Recursive decoding of Reed-Muller codes,” Proc. 37 th Allerton Conf.

on Commun., Cont., and Comp., Monticello, IL, Sept. 22-24, 1999, pp. 61-69.

[13] I. Dumer, “Recursive decoding and its performance for low-rate Reed-Muller
codes,” IEEE Trans. Info. Theory, vol. 50, pp. 811-823, May 2004.

26

