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Abstract

Estimation and Utilization of Reconstruction Uncertainty for Atom Probe Feature
Extraction

by
Evan Still
Doctor of Philosophy in Engineering-Nuclear Engineering
University of California, Berkeley

Professor Peter Hosemann, Chair

Atom Probe Tomography (APT) is a powerful analytical technique for 3D characterization
of materials at the atomic scale which has been widely used to study irradiation induced
features. However, the accuracy and reliability of the atom probe reconstruction and post-
processing methods such as cluster analysis is often neglected. In an effort to account for
both of these limitations we introduce a two-step method for quantifying the quality of an
atom probe reconstruction and the resulting secondary analysis.

First, we developed a pointwise measure of uncertainty for APT data based on linear er-
ror propagation. This approach provide a systematic way of estimating the uncertainty
in the atom positions and the most influential reconstruction parameters. The pointwise
uncertainty measure can be used to assess the local quality of APT data and govern alter-
nate reconstruction directions which minimize uncertainty. Furthermore, focusing the error
analysis not on resolution but on parameter and coordinate uncertainty enables error to be
propagated through complex processes such as the measurement of isotopically enriched thin
films.

Second, we developed a method which extends monte-carlo consensus clustering from K-
based clustering algorithms to density-based clustering algorithms. In doing so a measure of
relative stability is introduced to describe the ambiguity of clustering observed in an APT
sample and automate the selection of the distance parameter for DBSCAN (Density-based
spatial clustering of applications with noise). Our approach uses Monte-Carlo perturbation
statistics, and thus could be linked to use the pointwise uncertainty established in the first
part of this work, to generate alternate atom probe datasets and then apply DBSCAN to
each of these datasets. In doing so the sample size for which to calculate grows in magnitude
enabling more thorough post-clustering filtration methods with which to extract clusters
from high-noise scenarios. We use statistical methods to analyze the results and determine



the optimal DBSCAN parameters that maximize the clustering performance and minimize
the uncertainty.

The efficacy and utility of pointwise error propagation is demonstrated through a case study
on the measurement of an isotopically enriched iron thin film while our novel clustering algo-
rithm, Density-based Monte-Carlo Consensus Clustering (DMC3), is benchmarked against a
round robin study on binary Fe-Cu systems with an emphasis on irradiation induced hard-
ening. Our approaches provides a quantitative and objective way of assessing the quality of
APT data and improving the reliability of APT data analysis.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the world has been facing a serious issue of climate change, and it has
become imperative for the global community to shift towards sustainable and renewable
sources of energy. Nuclear fission energy has been used commercially to produce electricity
for the last 60 years, and the arguments for its continued use as a solution to the climate
crisis primarily focused on the socioeconomic implications and the environmental impact
compared to alternative fuel sources. On the socioeconomic front, nuclear energy provides a
reliable baseload energy and it is believed that it will aid emerging economies on their path
to energy independence without disproportionately impacting underserved communities [52,
103], |70, 53]. Thus far use of nuclear energy has prevented over 1.84 million deaths related
to air pollution and 60 gigatonnes (Gt) of CO2 greenhouse gas emissions that would have
resulted from burning fossil fuels [69, |93]. Furthermore, current predictions indicate that
nuclear energy could prevent an additional 420k-7.04 million deaths and 80-240 Gt of CO2
emissions by 2050 [69]. However, similar to other extractive industries it is often underserved
communities which are impacted most by the exploitative tactics of mining conglomerates
and the residual health impacts from mismanaged waste leading to resistance from the local
populous |90, 76, 101, 53]. Without confronting the historic impacts of nuclear energy
on underprivileged communities and working to address the concerns of the modern-day
stakeholders in the use and growth of nuclear power will be stifled on the social stage,
regardless of legislative or technical solutions to the economic, security, and safety challenges
that so far have limited the expansion of nuclear.

Nuclear fission energy has been used commercially to produce electricity for more than
60 years for commercial power generation. The United States, being world’s largest producer
of nuclear power, has accounted for more than 30% of electricity generated by nuclear power
in the world. The 93 currently operating nuclear reactors account for 20% of the USA’s
electricity production [93]. In the United States, nuclear power plants are either pressurized
water reactors (PWRs) or boiling water reactors (BWRs), with other reactor types including
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heavy water reactors, gas-cooled reactors, graphite-moderated reactors, and liquid-metal-
cooled reactors primarily serving as research reactors. Despite the low rate of mortality
compared to other fuel sources such as goal, there have been several accidents in the past
that have resulted in nuclear radiation leaks, including the Three Mile Island accident in
the United States and the Chernobyl and Fukushima disasters [100]. These incidents have
caused public concern regarding the safety of nuclear power plants and have motivated the
development of improved reactor designs that incorporate accident tolerant fuels and passive
safety mechanisms as core requirements of fourth generation reactors [118, |11} (15, 99, |118],
68, 51, [1].

Challenges for generation IV reactors

Generation IV reactors are still in the conceptual design stage, but they hold great promise
in terms of addressing some of the current limitations of nuclear energy. These reactors
aim to achieve higher fuel efficiency, reduce the volume and longevity of nuclear waste, and
enhance safety features. One of the key features of these reactors is the use of new types of
fuel, such as liquid metal, gas, or molten salt, which could potentially provide higher energy
yields and longer fuel cycles. Additionally, development the aforementioned passive are a
primary avenue of research, funding via multiple US Department of Energy (DOE) programs
[21}, 49].

The implementation of Generation IV reactors faces significant technical and regulatory
challenges. The use of new fuel types and coolants requires the development of new materials
that can withstand the extreme environments within the reactor, such as high temperatures,
corrosive salts, and fast neutron fluxes. One of the main challenges for materials in current
and next-generation reactors is the effect of radiation damage on the mechanical properties of
these materials. Radiation damage can cause changes in the microstructure of the materials,
such as the formation of voids, dislocations, and precipitates, which can lead to material
embrittlement and degradation of mechanical properties. Additionally, radiation can cause
changes in the chemical properties of materials, resulting in changes to local chemistry.

Another challenge for materials in reactors is the need for materials that can withstand
high temperatures and corrosive environments in spite of chemical changes depletion brought
on by irradiation, implantation, and transmutation. Many of the structural materials used in
reactors, such as stainless steels and nickel-based alloys, have excellent corrosion resistance
but are limited by their temperature capabilities. The development of new materials, such
as advanced ceramics and high-temperature alloys, that can withstand higher temperatures
and harsher environments could lead to more efficient and safer reactor designs [110].

In summary, nuclear energy has the potential to play a critical role in combating climate
change and providing sustainable and reliable energy sources. Current and next-generation
reactor designs offer significant improvements in terms of fuel efficiency, waste reduction,
and safety features. However, the development of new materials that can withstand the
extreme environments within reactors is critical for realizing the full potential of nuclear
energy. Addressing the challenges associated with materials science in nuclear energy will
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require sustained investment in research and development to improve our understanding of
material behavior in extreme environments and to develop new materials with enhanced
properties. It is important for policymakers, the nuclear industry, and the scientific commu-
nity to collaborate and prioritize the development of advanced materials for nuclear energy
applications. By addressing the materials science challenges, we can unlock the full potential
of nuclear energy and realize a clean, sustainable, and reliable energy future.

1.2 Irradiation effects

Radiation damage is a critical issue for the longevity of materials in a reactor environment
not only due to the intrinsic damage to the crystal structure but the synergistic effects with
other degradation phenomena. The degree of radiation damage is quantified by the average
number of times, each atom has been displaced from its lattice site, which is the definition of
displacement per atom (dpa). These displacements originate from the transfer of energy from
incoming energetic particles (neutron and ion) to lattice atoms, such that energy transfer is
sufficient to break the bonds of that atom and its neighbors, denoted as the displacement
energy. The displaced atom goes on to cause further displacements producing interstitials,
vacancies, and anti-site defects in a chain reaction referred to as a displacement cascade.
While the majority of the defects annihilate during the subsequent recombination process,
the remaining defects form defect clusters, migrate to defect sinks, or remain as anti-site
defects. The increase in point defect concentration contributes to radiation-enhanced dif-
fusion, and thus phase instability, dissolution, and segregation of elements. These indirect
phenomena then enhance other degradation phenomena such as corrosion, creep, and em-
brittlement, etc. The accumulation of radiation-induced defects (interstitial /vacancy loops,
voids, precipitates) lead to significant hardening and embrittlement of the structural mate-
rials, which significantly influences the safety consideration of the structural components in
service.

The Kinchin-Pease model is a widely used approach for describing and correlating the
behavior of point defects in crystalline materials with the measure of dpa under radiation
exposure. The fundamental assumption of the Kinchin-Pease model is that the number of
point defects generated in a material is proportional to the dpa. It also assumes that the
migration of point defects is driven by random thermal motion, and that the rate of defect
migration depends on the concentration of defects and the concentration of mobile point
defects such as vacancies [92, [71]. Despite these limiting assumptions the Kinchin-Pease
model remains widely used in part due to the experimental difficulty in measuring the true
number of displacements given recombination and its efficacy at providing a relative measure
to compare the presence of phenomena for the same class of materials.

There have been efforts to overcome these limitations, namely sophisticated models such
as the Norgett-Robinson-Torrens (NRT) model and the Modified Kinchin-Pease (MKP)
model |91, [18]. These models take into account the effects of displacement cascades, as
well as the migration and interaction of point defects, in predicting the behavior of materials
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exposed to high-energy particles [18]. While the NRT model and the MKP model are more
complex than the Kinchin-Pease model, but they provide more accurate predictions of the
behavior of materials exposed to radiation.

Thus far only displacement damage has been considered however there is a second dom-
inant mechanism for radiation damage. That being transmutation damage where a nuclear
reaction transmutes a lattice atom into another element or isotope. Under a fast spectrum
neutron flux, transmutation of alloying elements does not typically happen in high enough
quantities to have an effect on the thermodynamic stability of the alloy. However, the pro-
duction of alpha particles from (n, «) reactions have a significant effect on the mechanical
properties of the alloy. The production of alpha particles and the subsequent capture of
electrons can lead to formation of helium bubbles which in steel can lead to significant
embrittlement, reducing the material’s ability to deform and absorb energy [16, |30].

Radiation enhanced phenomena

Irradiation-assisted creep and swelling are two volumetric phenomena that affect the behavior
and properties of materials exposed to radiation. Creep is a type of plastic deformation that
occurs over an extended period of time to a material that is exposed to elevated temperature
and stress [131, 10, 86, [79]. There are three modes of creep with two modes governed
by diffusion, which enable mass transfer within the material by mobile point defects [134],
98]. The first and diffusionless mode of creep is called dislocation climb and takes place at
relatively high stresses and low temperatures. In this mode, plastic deformation of a crystal
can be achieved by shifting an extra plane of atoms one lattice spacing across the crystal
plane and is not governed by diffusion but can be enhanced via solute drag [133, 130, 77} |19,
124 12].

The second mode of creep is Coble creep, which occurs at relatively moderate tempera-
tures and stresses. In Coble creep, the deformation mechanism involves atoms diffusing along
grain boundaries where there are increased vacancy concentrations allowing conservation of
volume but eliciting shape change |134) 98|. For both dislocation and Coble creep grain
boundary sliding is generally observed and preventing the formation of cracks and voids at
the grain boundaries [31, 132, 125, [115]. In some cases, though the presence of structural
features such as coherent precipitates can inhibit the movement of adjacent grains prevent-
ing grain boundary sliding and thus enabling crack formation [125, [115]. The third mode of
creep is Nabarro-Herring creep, which occurs at high temperatures and low stresses. While
both Nabarro-Herring and Coble creep rely on atomic diffusion Nabarro-Herring describes
atoms diffusion across the grains and is not limited to the grain boundaries requiring a higher
activation energy [134], 98] |10, 86, |79]. Another important distinction for these two modes
is that Coble creep possesses a directional dependence. This dependence is based on the
alignment of the grains major-axis with the application of stress. If the grains are mainly
aligned orthogonal to the stress direction for instance the diffusing atoms will have to travel
orthogonal to the loading direction along grain boundaries until a new parallel boundary is
reached before they can travel in the same direction as the stress and vacancy gradient [119].
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Swelling is the volumetric increase of a material and the coupled reduction of density,
and it occurs as a result of the interactions between interstitials and dislocations during the
initial displacement cascade. In the initial displacement cascade, interstitials and vacancies
are created in equal numbers, and subsequent recombination reduces their concentrations
equivalently. However, interstitials are able to travel through the crystal lattice more rapidly
than vacancies and dislocations have a larger capture radius for interstitials than vacancies
(127, [89] |129]. interstitials The combination of enhanced mobility and capture radius, which
is due to the larger stress field that an interstitial imposes on the surrounding crystal, the
excess interstitials are quickly absorbed by dislocations, leaving behind an excess of vacancies.
Swelling exhibits temperature dependence, and its degree is governed by the point defect
concentrations, which were developed through point defect balance equations, evaluating the
strength of each source and sink for each type of defect at a given temperature and in the
case of 316 stainless steel maximum swelling was found to occur at 500°C when irradiated
to 30 dpa. This experiment found that the bubbles were the primary contributor to the
swelling and not voids [56].

The temperature dependence of irradiation-assisted creep and swelling cannot be un-
derstated and is critical in understanding the underlying mechanisms and predicting their
effects. Irradiation-induced point defects can contribute to the onset of dislocation climb and
Coble creep at lower temperatures than what would be observed otherwise. On the other
hand the onset of Nabarro-Herring creep typically takes place at high temperatures such that
that the equilibrium vacancy concentration exceeds that which are produced under irradia-
tion [6, 56, 89]. In this case the kinetics are predominately governed temperature rather and
not radiation. The degree of swelling is also governed by the point defect concentrations,
which are temperature-dependent. When the temperature is too low, swelling is inhibited,
as the point defects do not have sufficient mobility to coalesce into voids. If the temperature
is too high, then the high mobility of point defects allows them to be consumed by point
defect sinks at a rate exceeding that of void production. In the moderate temperature range,
void swelling is able to occur, as the point defects have sufficient mobility to cluster, but
insufficient mobility to reach absorption sites [64].

Radiation induced precipitation

Stainless steel pressure vessels are an essential component of a nuclear power plant, which
houses the nuclear reactor core and its coolant under high pressure and temperature. How-
ever, the radiation environment in a nuclear reactor can lead to changes in the microstructure
and mechanical properties of stainless steel, impacting its safety and reliability. One of the
primary concerns is radiation-induced precipitation and embrittlement, which can be exac-
erbated by the presence of impurities such as copper |96, 97}, 182, 67].

Radiation-induced precipitation occurs when solute atoms in the steel aggregate to form
precipitates due to the increase in defect concentrations resulting from as irradiation. In
reactors this process is caused by the displacement of atoms due to energetic neutrons, but
can also be emulated to some degree by the use of heavy ions in lab environments. Under the
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enhanced diffusion conditions of irradiation, the solute species may undergo rapid diffusion
that enables the solutes to aggregate near nucleation sites such as grain boundaries [65, (67,
82]. In the case of stainless steel, this radiation induced segregation can alter the corrosion
resistance due to the nucleation of chromium carbides at the grain boundary which depletes
the surface chromium concentration and/or embrittle the material altering its toughness
depending on the specific precipitate structure [62].

One of the most significant solute species for embrittlement is copper. Historically, the
copper concentration in steel was minimized such that copper precipitates could not form
under normal use cases. However, the point defect generation resulting from irradiation
enables precipitation even with sub 0.1 wt% Cu content leading to significant changes in the
mechanical properties of the steel [87], 97, 96]. Segregation and subsequent precipitation for
solutes such as Cu and Mn,at the grain boundaries results in local loss of ductility referred
to as grain boundary embrittlement. Underlying this phenomena is the decrease in the
cohesion energy of the grain boundary, which reduces the resistance to deformation, leading
to cracking or fracture || gb embrittlement irradiation induced cu precipitation.

The exact hardening mechanisms; coherency, modulus mismatch, and order strengthen-
ing, given Cu precipitates in steel alloys varies depending on the specific alloys and size of
the precipitates. The impact of fine Cu precipitates in BCC steel has been predominantly
estimated using the dispersed barrier hardening model [97, 96, [116]. In this model the in-
dividual precipitates are assumed to act as barriers to dislocation motion according to the
Orowan mechanism where the precipitates act as pinning points about which the dislocations
bow and produce dislocation loops until the stress is sufficient to shear the features |97, |96,
116, |126]. Superposition is then used to expand the model to consider the impact of many
precipitates.

In the above scenario the fine scale precipitates are generally BCC and coherent with the
surrounding matrix and thus an example of coherency strengthening. Due to the coherency
there is no strict "barrier” preventing dislocation movement through the precipitates, but
instead the relative mismatch in lattice spacing of the features produces a strain field which
interacts with the dislocation causing the hardening. On the other hand as Cu precipitates
grow in size they transition to an FCC lattice and modulus hardening is a better descriptor
of the strengthening mechanism. Modulus strengthening occurs due to the mismatch in the
elastic modulus between the precipitates and the matrix. The relative mismatch in modulus
results in lattice strains which increase the resistance to dislocation motion [104, 63]. In this
scenario the Cu precipitates possess a lower modulus than the matrix, contributing to an
increase in strength of the material without leaving behind Orowan loops [104].



CHAPTER 1. INTRODUCTION 7

1.3 Reproducible data analysis for APT

Technique summary

As a characterization technique atom probe tomography (APT) fills a unique niche by com-
bining isotopic information with a three-dimensional reconstruction to investigate the atomic
arrangement of materials. Improvements to the atom probe, such as the inclusion of UV
lasers, have enabled to study a wide range of materials, including metals, semiconductors, ce-
ramics, and polymers. APT is particularly useful for studying radiation-induced microstruc-
tures because it can provide a detailed 3D view of the material at the atomic scale.

For example, APT has been used to study the formation of voids in metals exposed
to high-energy radiation. Voids are empty spaces that form in the material as a result of
radiation damage, and they can have a significant impact on the mechanical properties of the
material. APT can identify the position and size of individual voids in the material, allowing
researchers to study their formation and evolution over time. Similarly, APT has been used
to study the formation of dislocation loops in metals exposed to radiation. Detection of
dislocation loops however remains difficult with atom probe and requires the loops to become
decorated by solute species in high concentrations [113], 47 48].

In practice, APT works as follows: a small needle-shaped sample is prepared and mounted
on a conductive tip, which is then placed inside a high-vacuum chamber. A high electric
field is applied to the tip, which ionizes atoms from the surface of the sample that are then
accelerated according to a potential gradient and towards a detector. As the ions impact
the detector, a mass-to-charge ratio is assigned based upon the time past between the pulse
application and collision. The location on the position-sensitive is then combined with
assumptions about the flight path and material properties to back project the ions resulting
in a 3d reconstruction of their initial location [5, [36} 40, 74].

One of the key advantages attributed to APT is an extremely high spatial resolution. It
can identify individual atoms with a resolution of about 0.1 nm in depth and 0.3 nm later-
ally, which is comparable to the resolution of conventional transmission electron microscopy
(TEM), although high resolution and atomic scale TEM can achieve much higher resolution
with less ambiguity [44], 43, 24]. While a 0.1 nm depth and 0.3 nm lateral resolution was
attributed to APT, in truth achieving this requires samples with well understood evapo-
ration properties such as silicon and calibration of the reconstruction by tweaking many
input parameters to resolve features with known properties apriori [85, |38, |42]. This is most
commonly done by indexing crystallographic poles in the detector hit map and measuring
the interplanar spacing, hence the sub nm resolution, or as is the case for this work by
minimizing the curvature of an isotopically enriched thin film [85, |38 42, 23, |22]. These
features are absent in many specimens and in those cases reconstructions are tuned by the
eye of subject matter experts with local measurements of the interatomic spacing providing
a vague definition of resolution.
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Uncertainty quantification of APT reconstructions and analysis

In light of these limitations on the resolution of atom probe this work aims to quantify
the uncertainty of the reconstruction on a point by point basis using linear error propaga-
tion. Doing so with linear error propagation enables closed form solutions describing each
input variable’s impact on the depth and lateral uncertainties determining the importance
of accurately selecting each variable. The aim of this approach is two fold, 1. is to confirm
community beliefs on the most important variables, and 2. to assess if observations on lateral
vs depth resolution also apply to pointwise error. Conventional wisdom dictates that the
evaporation field/field factor and image compression factor are the most important parame-
ters as varying these provide the largest visual changes for a reconstruction. The discussion
of resolution vs error is focused on the a summative step in the reconstruction algorithm
where the depth coordinate of the second, third, etc. ions depend on the prior points. It
then follows that the depth uncertainty should increase as a function of evaporation order
while the lateral uncertainty remains relatively constant. The hypothesis can be summarized
as follows:

Sole use of resolution is an insufficient measure of variability for atom probe reconstructions
because:.

e The X, Y dimensions possess heteroscedastic variance.

e The Nth ion’s position in Z is dependent on the prior N-1 ions resulting in a variance
that scales with ion order and thus sample depth.

— Thus, features identified near the specimen base are inherently less accurate than
those at the specimen apex.

To evaluate this hypothesis chapters |2 and |3| establish the principles behind the employed
error propagation methods and demonstrate the application of linear error propagation to
the reconstruction algorithm. With these observation chapter {4 reflects on how the pointwise
error estimates can be used for complex calculations given the covariance between points.
Chapter [5 then demonstrates how a thin film can be used to calibrate the image compression
factor and field factor. Additionally, this chapter provides a numerical sensitivity analysis
of the different input parameters as a function of spatial position within the atom probe
tip. Finally, chapter [6| demonstrates how these methods can be applied when estimating the
aforementioned thin film’s thickness and how the the thickness varies as a function of lateral
position.

Automation of APT Analysis

The remainder of this thesis focuses on the extraction of features from atom probe data,
specifically the use of clustering algorithms to identify solute-enriched precipitates. Such
algorithms can be loosely grouped into K-based methods, where the user supplies the number
of clusters (K) to find, and density-based methods where the user provides an effective density
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threshold with which to define clusters. For the analysis of atom probe data density-based
methods make up the majority of used algorithms, with density-based spatial clustering of
applications with noise (DBSCAN) being of special importance [122 27, (78, |46].

DBSCAN is one of the original density-based clustering algorithms and has been applied
to a wide variety of machine learning and data analysis problems over nearly every scientific
field which employs clustering algorithms. As a density-based clustering algorithm DBSCAN
establishes a density threshold through the use of two parameters: epsilon (€¢) and order (O),
otherwise referred to as minimum points (MinPts) [29]. Epsilon is a distance threshold that
defines the maximum distance between two points in a cluster. If two points are within
epsilon distance of one another, they are considered part of the same cluster. The order
parameter (O) specifies the minimum number of points required for a cluster to be formed
and expanded. Points that are not part of any cluster are considered noise and in the case
of atom probe would represent the matrix distribution of a solute species.

When analyzing APT data using DBSCAN, selecting the appropriate values for epsilon
and order is critical to obtaining accurate and meaningful results. There are several methods
for selecting appropriate values for epsilon and order. One common method is to use the
k-distance graph, which plots the distance to the k-th nearest neighbor for each point in the
dataset. The k-distance graph can be used to visually identify appropriate values for epsilon
given an order of k. The knee point of the graph is a good starting point for selecting epsilon
although this method is known to breakdown for data with a high background concentration
and still leaves the order parameter to be set.

Parameter selection for DBSCAN and other density-based methods have been relatively
stagnant over the past decade despite significant strides being made for the selection of the
cluster number in K-based methods. In particular, recent developments of the monte-carlo
consensus methods have leveraged computational power to automatically select K for K-
means, K-centroids, etc. and even provides a hypothesis test to ensure that the data is
better represented by multiple clusters as opposed to one cluster. This is a fundamental
limitation of all K-based clustering algorithms. In chapter [7|the consensus clustering process
is modified for use with density-based algorithms resulting in density-based monte-carlo
consensus clustering or DMC3. The ability for DMC3 to optimize both the order and epsilon
parameter in variable noise levels is also assessed here. Then in chapter [§| DMC3 is applied
to a set of simulated Fe-Cu systems that were a part of prior round robin study to provide
a basis of comparison with the analysis of leading subject matter experts [27, |78].
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Chapter 2

Summary of error propagation
methods

2.1 Approaches to uncertainty propagation

Prior attempts to understand the inherent inaccuracies in the atom probe reconstruction
process have focused on determining an experimental interplanar spacing to compare with
known lattice parameters to both calibrate the dataset and estimate the resolution of APT
[44} 42]. In this context, differences from the known lattice parameters are representative of
the bias in our estimate while the resolution is indicative of experimental uncertainty. Note
that the accuracy of such measurements has an inverse relationship with the distance from
the reference feature often a pole figure.

The emphasis on resolution is carried over from microscopy and provides context on the
smallest identifiable features given the system hardware, but does not provide information
such as variance, mean, and median for individual measurements. To instead quantify the
uncertainty on a pointwise basis statistical methods for error propagation are employed. This
work focuses predominantly on linear propagation of error from an experimental standpoint
however additionally details monte-carlo methods for instances where application of linear
propagation is inapplicable due to either theoretical or practical constraints.

2.2 Linear propagation of uncertainty

Consider a quantity x which is a function, f, of two measurements, u and v, for which the
variance, var(x) is unknown. Assume that (x, u, v) are representative of approximately
normal random variables denoted (X, U, V) where (U, V) posses known variances and a
covariance, cov(U, V). Additionally assume that f is continuous, differentiable, and can be
locally approximated as a linear function. Then var(X) is given according to equation
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which can alternatively be written in terms of the standard deviations, o [117, (72, [7].

var(X) = (%)2 var(U) + (%)2%«% 129898 v (2.1a)

of \? of\? of of
O'gf = <%) 0'(2]+ (W) U‘Q/—FQ%WUU’V (le)

When propagating uncertainty through a series of operations it is common to utilize a
step by step approach to determine the error of individual operations and treat those as the
deviations for a subsequent operation. One consideration when employing this approach is
that a series of independent measurements may result in non-zero covariance in subsequent
steps if multiple intermediate variables share dependencies. To demonstrate this aspect
consider the scenario where U, V are no longer representative of measurements but calculated
quantities similar to X with an unknown cov(U, V). Furthermore, in this example let U, V
be function of a series of independent measurements, M; and M,. Directly using equation
in this scenario will result in an error estimate that cannot incorporate the cov(U, V).
There are three approaches to then include the covariance term in this estimate, the first of
which employs the conventional covariance formula, equation [2.2] the second employing the
Cauchy-Schwarz inequality, equation [2.3] and the third of which involves rewriting the final
function for X in terms of M; and M.

cou(U, V) = % > = w)( — ) (2.2)

Firstly, utilization of equation [2.3| gives an exact magnitude and sign of the covariance
however requires multiple sample pairs for each measurement, m;, and thus (u;, v;). A posi-
tive covariance indicates the scenario where an overestimate of U is always accompanied by
an overestimate in V with respect to the mean values resulting in (u; — @) and (v; — U) pos-
sessing the same sign. An alternative scenario is where an overestimate in U is accompanied
by an underestimate in V which results in a negative covariance, and thus a smaller total
variance than expected without the covariance correction. The final scenario is where an
overestimate in U is accompanied by an underestimate of equal magnitude in V resulting in
a covariance of 0 but does not mean the variables are independent.

lcov(U, V)| < var(U)var(V) (2.3)

Secondly, in the absence of multiple sample pairs but known variances the Cauchy-
Schwarz inequality, equation provides an upper bound on the magnitude of the co-
variance but does not indicate the relationship between the two variables and thus the sign.
From this an upper and lower bound can be provided on the variance of X, as shown in

equations and but the distribution of var(X) will remain unknown.

0= (2 i+ () vt »
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g{; g‘i\/var U)var(V)| < var(X) < C + |2§[J; 3‘J; Vovar(U)var(V)] (2.5)

The final approach is to substitute the functions for U, V into X such that X incorporates
the input variables for U, V. If U = f(M;) and V = f(M;, Ms) then X = f(M;, Ms).
Equation can then be rewritten in terms of M; and M, which if independent removes
the need for the covariance term and alternatively have a known covariance. For a more
complex series of equations with an arbitrary number of variables equations can be
generalized as a summation over the partial derivatives and variances with respect to each
variable. In equations X is written as a function of M which represents a list of variables,
My, M, ..My to iterate over.

| M| of 2 |M]| [M]—i af of
var(X) = ; (8]\/[1) var(M;) + ; ; ZGMZ- I, cov(M;j, M;) (2.6a)
M| 2 M| [M]—i
X - aMl 8MH_] R
i=1 =1 j=1

2.3 Monte-Carlo uncertainty propagation

As an alternative to linear propagation of uncertainty monte-carlo methods can instead
be employed to overcome some of the limitations described in section in exchange for
increased computational costs. Consider the same initial scenario with random variables (X,
U, V) where x is f(u, v). Furthermore, maintain the assumption that the variables U, V have
known variances and covariance.

The var(X) and E(X) are estimated using a series of N monte-carlo trials where each trial
consists of a sampling and evaluation step. In the sampling step random samples u, v are
drawn from U, V. In this scenario it is important to note however that if U, V are dependent
variables that one of the samples must be drawn from the conditional distribution. For
instance if u is sampled from U than v must be drawn from the conditional distribution of
V given u. Next, the evaluation step consists of evaluating f(u, v) and storing the estimate,
x. After N trials E(X) and var(X) are found by taking the mean and variance of x from each
monte-carlo trial. For an algorithmic description of this process reference algorithm [1]

In the prior approach to find the variance of X two additional constraints were required;
1. that X, U, V follow a normal distribution, and 2. that f was continuous, differentiable,
and approximately linear. Constraint 1 is relaxed such that any distribution is valid for U
and V if a random sample can be generated. Constraint 2 is eliminated by treating f as
a black-box. Treatment of f as a black-box further generalizes this application to complex

processes where linear propagation is unsuitable such as tomographic reconstructions |75} |3
33].
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Algorithm 1 Monte-carlo error propagation

fori=1to N do
Create sample u; from U
Create sample v; from U|V
Compute x; = f(u;, v;)

end for
Eij\il Li
N

Zf\;(xz - @2
N -1

Compute = =

Compute var(z) =

The main detriment to this method is the computational cost required when sampling and
evaluating the function for hundreds if not thousands of times. There are situations however
where monte-carlo has the computational advantage over linear propagation. Generally, this
is restricted to scenarios where the partial derivatives of the function serve as a computational
bottleneck for the linear method. In the case of atom probe tomography this limit is intrinsic
to shank angle reconstructions as the depth increment for each ion is dependent on the prior
ions’ increment. The required derivatives are then a recursive function which is evaluated
for millions of ions.
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Chapter 3

Reconstruction error propagation

Reconstruction of atom probe tomographs continue to be a complex problem due to a mul-
titude of factors, some of which are specimen specific and others artificial. On the specimen
specific front, heterogeneity within the material can lead to distortions in the required evap-
oration field. This impact is most evident in the presence of precipitates where precipitates
with a higher required field relative the matrix resist the evaporation process and eventually
produce protrusions on the specimen surface. Once evaporation is possible these protrusions
act as a secondary tip and lead to a disproportionately large projection of the precipitate
onto the detector surface, referred to as under-focusing [40}, 74].

At the other extreme exists over-focusing which occurs when the precipitate preferentially
evaporates leaving a cavity within the specimen. This cavity then projects ions from the
cavity edge inwards shrinking the relative size of the feature and distorting the density.
Proprietary reconstructions algorithms held both by commercial companies and research
institutions serve as the artificial barrier to accurate reconstruction processes. In spite of
this the basic principles of common reconstruction processes are well known and documented
in the literature [40, [5, [74].

All reconstructions are founded upon two principles, 1. the specimen radius of curvature
and the electric field are related and 2. an evaporation event can be converted into a depth
increment and thus the final depth coordinates of the ions can be deduced from the order
of evaporation. The primary difference in reconstruction algorithms is the treatment of the
depth increment, where voltage-based algorithms rely purely on the applied voltage at any
given moment and shank-angle reconstructions require that the changing specimen radius
and depth increment maintain a constant angular relationship. In the analysis presented in
this work the emphasis is placed upon voltage-based methods as shank-angle approaches are
not conducive to linear propagation of uncertainty.
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3.1 Basis for tomographic reconstruction

The base tenant that enables the reconstruction process is that the electric field, F, experi-
enced at the sample apex is inversely proportional the surface curvature and thus the radius,
R, given that the specimen apex is modeled as a hemispherical cap as shown in figure (3.1
alongside the point-projection schematic . To account for the fact that the specimen
shank will result in a decrease in the produced field relative to a perfect sphere a correction
term is included in equation and is referred to as the field factor, k¢. It should be noted
that while trends have been observed relating the shank angle and radius to ¢ in the works
of Larson et al, , no general trend has been identified. Despite this it has been shown
that trends can be derived for a given material .

F=F(\V ks, R) = iR (3.1)

Figure 3.1: Schematic view of the ion point-projection from specimen apex. Here O and P
define the apex origin and projection origin and €’ indicates the compressed launch angle.

As the evaporation process occurs the specimen will inherently blunt given a non-zero
shank angle and result in a decrease in the experienced field. It follows then that an ever
increasing voltage must be applied to induce field evaporation. Given that the voltage,
V., is known and not the specimen curvature equation [3.1] is refactored as equation to
determine the radius of curvature during the ith evaporation event at the voltage, V;. For
both of these equations it should be noted that while V is a measured quantity a global
estimate of F is often used alongside a user defined k¢. A common method for estimating F
is to set it equal to the field of the most dominant element or can be determined according to
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field evaporation model [120, 83|. Furthermore, dynamic reconstruction processes attempt
to overcome the limitations on ky and F' by providing local estimates of both parameters
such that the lattice spacing is preserved to produce a local estimate of F 38} 41|, 57, [22].

v
Ri =R ‘/;', k 7F = : 3.2
Vioks.F) = 15 (32)
The partial derivatives for R; are then:
OR; 1 R;
= - =— 3.3
ov, Fky V, (3:3)
IR, Vi R;
- _ - _ 4
aV; F2k; F (34)
OR, Vi R;
A E——— (3.5)

Ok; — FIZ ks

Applying the general form of equation to equation [3.2] establishes the following relation-
ships for the uncertainty in R; given estimates of the variances and or standard deviations
of Vi, k¢, and F.

2 2 2
var(R;) = (g‘}}) var(V;) + (g—}ij) var(ky) + (%) var(F) (3.6a)
OR; OR; OR; OR; OR OR;
2 ; 2 B+ 2— F .
+ oV, Ok cov(Vi, k) + oV, OF cov(Vi, F) + Jk; OF cov(kg, F')  (3.6b)

R\’ R\’ R\’
o5 = (7> oy, + (k_f> a,zf + (f) o (3.6¢)

In equation [3.6¢| it is assumed that there are no covariance with respect to the initial
variables. This generally holds with respect to V; however F and k; often influence the
selection of one another. So much so that it is common to treat them as one variable. For all
further derivations covariances between the initial variables will be neglected but covariances
between dependent variables are accounted for.

Once R; is found, the spatial coordinates perpendicular to the specimen tip axis (X;, Y;),
are identified using the detector coordinates and magnification effects of the instrument.
This transformation is dependent on the exact reconstruction protocol and is detailed in
section and for small-angle and wide-angle reconstructions. Note however, that X;
and Y; can be calculated independently for each ion.

General spatial uncertainty in Z

From the original approximation of the specimen as a conical segment with a hemispherical
cap the depth coordinate of an ion can be split into two components. The first of which dz’
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indicates the relative position of the ion on the spherical cap and the second dz which will
indicate the incremental change of the apex as the specimen undergoes field evaporation.
The depth coordinate for ion, i, is then given as:

Z; = (Z dzj> + dz] (3.7)
j=1

Unlike X; and Y; where each point can be calculated independently from one another the
position of Z; requires knowledge of the prior i-1 ions. Ignoring dz, as it is independent of
dzj for all (7, j), naive propagation of error for Z; results in a summation of i error terms
corresponding to the current ion and all prior ions depth increments as shown in equation

B |
j=1

It then follows that the uncertainty of points ¢ + 1 is greater than point ¢ and so on such
that the pointwise error compounds as further points are added to the reconstruction giving
rise to the first hypothesis: the error associated with feature properties scales with respect
to the evaporation order and thus features composed of ions far from the the reconstruction
origin are inherently less accurate. Furthermore, dz;,1, dz;, dz;_1, etc. are not independent
and require the incorporation of at least (i — 1)i/2 covariance terms. If the points have a
positive covariance the resulting variances are expected to be higher than the naive estimate
and is likely the case as each depth increment will be influenced by predominantly shared
variables. The need to consider the covariance terms is avoided by propagation of error for
the final equations written in terms of the initial independent variables, S.

Contributions to dz

Calculation of the depth increment is tied to that of the analyzed volume where this volume
is the summation over the volume of the evaporated ions, ®;, as seen in equation [3.9}

Vewap = »_ (3.9a)
= Nepap$) (3.9b)

where there have been n evaporation events and an average atomic volume, ®, can serve as
a simplifying assumption. One additional consideration is that of the instrument detection
efficiency, 7, resulting in a lesser number of detected events such that ng = Nneyep.

Furthermore, the analyzed volume, V,,,, (not to be confused with the applied voltage,
V;) must still be related to the specimen geometry and the corresponding evolution as a
function of depth as in equation [3.10]

Zmaz
Vevap = / wy(2)dz (3.10)
0
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Figure 3.2: Schematic representation of the depth increment given known evaporated volume
and the surface area for both the specimen and detector.

Here, w,(z), describes the relative volume change as a function of the current depth and
serves as the main difference in existing reconstruction protocols [9 45| |61} [5]. Combining
equations[3.9/and establishes the ion-specific, equation|3.11al and general form, equation

3.115, of dz.

dz; = B (3.11a)
nwy (2;)

gz — 2 (3.11b)
nwy (2)

In the case of both voltage-based reconstructions presented in this work V,,q, is estimated
as the product of the depth and specimen surface area within the detector field-of-view,
Sa. A reverse projection of the detector surface area, Sp, onto the specimen apex tangent
plane, as in figure [3.2] relates the two areas according to equation [3.12| under a small angle
approximation.

=P

proj

Sa

(3.12)

If the ion volume is assumed to be distributed homogeneously across S, such that
wy (z) = S, then combining equations [3.11aland [3.12| while substituting for M,,,; establishes
the following relationship which can be written as a constant term, Cy, and non-constant
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component.
O L2 F?k?
Q;
= Ca: 775 V2 (3.13b)

Performing error propagation on equation requires eight partial derivatives resulting
in the following equations:

dz. L?F?k3Q; 1 dz: L2 F?k3Q); 1
Odz _ s (3.14) dz _ ) (=) (318)
OF nSD§2V F Vi nSp&*V; Vi
4 L2F2k‘2Q 1 . L2F2]{32Qi 1
Odz _, ) (— (3.15) 0dz= _ _, iy Y (3.19)
Ok nngW ky 03 nSp&?V; 3
L2F2k‘2Q ) L2F2/€29i 1

0dz _, 1 (3.16) Odz _ _ ) (=) (320
OL nSD£2V2 L dSp nSp&?V, Sp

O (LE (L (3.17) 0de __ (LFPRN (1 (3.21)
0Q;  \ nSp&V? Qz’ ' on nSp&2V;2 n .

As written above it is evident that the eight partials can be expressed as a product of dz; and
1/T where T indicates which variable the derivative is with respect to. The eight equations
can be then condensed into one equation with the inclusion of F(T') to account for the
constant term.

Odz; F(T)\ Q Q; F(T)
2, if T is in {F, kg, L}
where F(T') = LT =8 (3.22Db)

=2, if Tis in {V;, &}
—1, if T"is in {Sp, n}

Cumulative effect of dz;

So far the interdependence of evaporation events has been neglected however, as noted in
equation each ion is associated with a unique depth increment, dz;, but the total depth
of an ion is dependent on the preceding ions. It is thus important to distinguish between
measurement dependent variables, such as voltage and ionic identity, and universal variables,
such as the previously established L, F, k¢, £, n, and Sge;.

To demonstrate how error propagation can be utilized without introducing covariance
terms for the non-ion specific variables consider the error contribution of F. The partial
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derivative for Z; with respect to F can be written and simplified as follows:
0Z;
o = << E dz]> + dz; ) (3.23a)
0 ‘ 0
— dz. —d .23b
8F<El Z]>+8F 2; (3.23b)

) o
= ( 1 a_Fde> + 8—FdZZ (323C)

For now focus on the summation as dz is reconstruction specific. Substituting equation
for Odz;/OF replaces the summation of derivatives with a summation of the original
dz; for j <.

0Z; (< 1 a
o = (; 2dzjf> + 55l (3.24a)
2 [ o
2 (= o .,
= Ces (; V—]?> + gl (3.24c)

Note that this substitution is applicable for all but two of the variables, €2; and V;, as those
properties are event specific. The general form of the derivatives of Z; are thus:

8Z (Zd ) dz for T in {F, ks, L.&, Sp,n} (3.25a)
R (&9 0
= Co: <; % ) + o2 (3.25b)

Focusing on the summative component of Z; the following ratios expose the relative
importance of each variable described by equation [3.25a] Voltage and ionic volumes are
neglected in this comparison as each point may have a distinct measurement which affects
the summation in an inconsistent way compared to {F, ks, L.£, Sp,n} and will instead be
covered in the following sections.
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(R (' (R -3
() (5 - () - ()R - () -
(R (5 = () 0 (R (5 () =
CRACRY ()5 CR R (1)

The ratios are evaluated using some typical magnitudes of {F, ks, L,{, Sp,n} which are
{33,3.3,380,1.65, 715%,.80} for 304SS as the basis for a numerical comparison. Organizing
the partials according to the ratios reveals the following ranking of uncertainty sensitivity.

(8261,2]’)2 < (8Zd2j>2 < (aZde)Z < (82dzj>2 < <82d2j)2 ~ (aZde)z
9Sp oL oF Oky ™~ 0¢ on

(3.34)
Generally the differences between variables are stark and often an order of magnitude in
difference however three variables; k¢, 7, £ are of comparable magnitude and thus the ranking
is not guarantied.

In the case of 7 and £ the two parameters respectively range from 0.5 to a theoretical limit
of 1 and 1 to 2. Given that n is multiplied by a factor of 2 in equation the numerator
and denominator would both occupy [1, 2] and the actual comparison will depend on the user
specified ¢ and instrument specific 7). For the analysis of k¢ in this work a value of 3.3 is used
resulting in a smaller squared partial when compared to £ or 7. The field factor however is
often used as a calibration factor and can occupy a great range of possible values depending
on the exact calibration method and calibration feature. The impact of calibration factor
is left out of this analysis and thus we conclude that (0 dz;/ kaf)z is approximately less
than (93 dz;/9€)?. Finally, it should be noted that the ranking in equation does not
necessarily hold true for the partials of Z; as the behavior of dz; and covariance terms must
be accounted for.

Voltage contribution

The evaporation process is dependent upon the maintenance of a standing voltage in addi-
tion to a voltage pulse and it is possible that both have an intrinsic error. As a simplifying
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assumption treat these as a singular voltage such that there is only one associated measure-
ment error associated. This assumption is supported by the availability of the raw data as
the LEAP and associated software only provide two data formats that include the voltage
information, and even then do not always record the voltages separately but only provide
a total voltage. From this assumption there are two possible approaches to account for
the voltage component dependent upon the nature of the voltage pulse and the instrument
accuracy.

Approach one treats each voltage pulse as an independent measurement with an asso-
ciated error. Under this approach Z; is a function of i voltages and thus i different error
contribution terms. Equation describes the partial derivatives of Z; with respect to an
applied voltage, V;.

82, L9 )
- = —d ——dz, for j < i 3.35
v, (; v, zk) + v, z; for j i ( )
Note, that for both reconstruction methods in this work dz] is dependent solely on V; and
that the ion specific depth increments, denoted here as dzj, are independent of V; when
j # k. Therefor %dzk =0 for j # k and %dzi = 0 for j # i. The first i-1 terms then share
a common form while the ith term must also account for the depth adjustment, equation
9.0l

o7 9_dz. = —2dz.ifj <i
0 - {ag] ’ AP, ‘;] ’ JB T : (3'36)

By neglecting the covariance terms the overall voltage can then be written as the following
summation:

2
+{ ‘Q/dzz a?/dzfl oy, (3.37)

i—1 2
2

E (vdzj) O"Q/j
J

J

var(Z;|\Vo, Vi, ... V;) =

The above approach is especially useful when the system is modeled using percent error
for voltage as the percent error, p;V;, as the V' term from ddz;/0V; cancels with the the
one contained within Xy,. An alternative scenario is that of a fixed error, oy, regardless of
the applied voltage. Substituting oy in for all oy, results in the following simplification of

equation [3.37]
o 1
{ Frdt g ] ) (3.38)

i1 /g 2
var(Z;|Vo, Vi, ...Vi) = 0% ([zj: (Ede)
Thus far, the voltage pulses have been assumed to be independent and to assess the validity
of this assumption both the physics underlying field evaporation and the control systems of
the atom probe should be considered. From the perspective of evaporation physics recall that
the required voltage to induce an evaporation event is dependent on the material specific
field, F', and the specimen apex’s curvature, R. If the specimen is homogeneous then F
remains constant and only the curvature determines the required voltage.
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Assuming the conventional conical shape for the specimen shaft then it follows that the
specimen apex is blunted with each evaporation and thus both the radius and evaporation
voltage increase. It follows that the expectation of V;, E(V;), should be greater than F(V;_;)
and that if E(V;_1) 4+ ov,_, is applied prior than E(V;) > E(V;_;) + oy;_,. This relationship
shows that the expectations are positively correlated. It should be noted that the samples
are often heterogeneous and have other features that can alter the required field. One such
feature are crystallographic poles which generally require a lower field such that if event i
and i-1 are from different poles then V; is not guarantied to be greater than V;_; |25, 39} |37,
40).

Now consider the voltages from an instrumentation perspective. The LEAP does not
require the voltage curves to be monotonic and can lower the applied voltage to account for
changes in the experimental conditions and is controlled via a threshold on the detection
rate. The detection rate is often set to 0.01 ions per pulse with the main goal of reducing
simultaneous evaporation events but also reduces the correlation between subsequent events
[74]. This controls the rate at which the voltage changes such that if the rate is below the
threshold the instrument voltage is increased more rapidly but if the rate is exceeded the
voltage ramp rate is decreased and can even be negative resulting in a lower pulse voltage
than the prior. This behavior is most often seen when precipitates or other material phases
are encountered with a lower required field or when microfractures occur which effectively
sharpen the specimen [74} 40].

Furthermore, inverting the rate suggests that there are approximately 100 pulses per
evaporation and thus 100 pulses in between events. In the homogeneous case established
prior a pulse voltage would be most strongly correlated with the preceding pulse. It follows
that the correlation between two pulses decreases as the number of intermediate pulses
increase. Applying this to the evaporation event suggests that a discrepancy in event i-1,
o;_1, affect on event i is likely to be overwhelmed by errors in the intermediary 100 pulses
which are not provided in the user accessible data format.

Under the above considerations the authors believe that the covariances can neither be
robustly estimated from an experimental standpoint nor will have a significant impact on the
reconstruction. Despite this, the full variance is provided as equation [3.39] and the Cayley-
Schwarz inequality, equation [2.3] would be required to estimate the impact given that no
concrete associations between pulses can be derived. Note that dz; is further simplified as
in equation [3.13bl

i—1 1-2

— [/ Q Cov(V; Vk)
2 )
4Cdz § :(VJ2> (VQ) ‘/"Jfk
ik

J J i

var(Z|\Vo, Vi, ... V;) =

i—1 0. 2
j J

Q. 0d1%o? . Q, QO 8d\ Cou(V;, V)]
+ |20, v 4 C Cpo—t —V, )
{ Ve avzl vzt Z(V)(v av;> vV

(3.39)
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Volume Contribution

Ionic volumes remain the only variables that have yet to be accounted. For each event the
TOF generates a M-Z spectrum which is used to assign an ionic identity and thus volume for
each ion. For the following derivations neglect the uncertainties in the spectrum and those
in the subsequent identity assignment. Consider instead the errors in m ionic volumes where
w = {w1,ws, ... }, not to be confused with €2; which is the volume assigned to the ith
evaporation event and must be equivalent to a value contained within w. Note that the most
commonly used volumes are those assigned by the IVAS software which does not provide a
clear definition for its volumes.

It is reasonable to assume however that if each element has a prescribed ionic volume
than complex ions such as F'eO; would be the sum of the individual volumes. Under this
operating assumption complex ions which share a constituent are correlated. For example
consider the ionic volumes for FeOy and NiO3 which share oxygen as a common constituent.
The covariance of the two complex ions can be separated as in equation |3.40| given the
bilinearity of covariance.

Cov(FeOy, NiO3) =Cov(Fe + 20, Ni + 30)
=Cov(Fe, Ni) + 3Cov(Fe,O) + Cov(Ni,O) + (2 -3)Cov(0,0) (3.40)
=6var(0) = 605

Here Fe, O, and Ni are standing in for the respective ionic volumes. Thus, the covariance
between any two complex ions is a weighted summation over the variances of the common
elements where the weights are the products of the subscripts.

Given that dz’ is independent of €2 the variance with respect to the volumes is dependent
solely on the depth increments, dz;. The variance of one such increment is defined in equation

3.44

m 2
var(dz;|lwo, wi, ....wy,) = [Z (%dzz) o2
~ j

J

m—1

227:,:;

odz;

w; 0

8dzz Cov(wj,wk) (3.41)

Recall that: 5 i Q1

codz = =,

00,7 T 0 T Tz,
which can be generalized as equation [3.42al for any possible ionic volume through the use of
an indicator variable, [3.42b| that establishes if the ith ions identity is equivalent to the jth

possible ionic identity.

9 g G
&uj o ‘/Z_2

1if w; = O
[(wiji) :{ , 1T Wj i

I(w]‘, Qz) (342&)

3.42b
0, else ( )
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Substituting equation into equation results in the following simplification.

- Cdz 2
> (%) )
i J
m m—1 C
dz
233 (-
ik N
Now consider the variance of Z; given w provided in [3.44] and the corresponding simpli-
fications using equation [3.42]

var(dz|wo, wi, ....wp) =

(3.43)

_I_

) ](wj,Qi)I(wk,Qi)C’ov(wj,wk)]

i

var(Z;|wo, wi, ....m) = Z var(dz;|wo, wi, ....wn) (3.44a)
J
0 N\, "R 0z 0z

var(Z;|wo, wi, ..-W) :zj: (8—%22) i j zk: B, aWkC’ov(wj,wk)] (3.44Db)

: 2
m (2 1

var(Z;|wo, wi, ....wm) =03, Z (Z WI(%’ Q) aij
k

Z 2 (Z Z V%%z](wja Qo) (wy, Qb)) Cov(wj, wk)]

j a b
(3.44c)

+ 2073,

In these equations the indicator variables are responsible for setting the covariance terms to
zero when the compared depth increments, dz, and dz;, are not dependent on the respective
ionic volumes, w; and wy. The indicator variable also ensures that the variance of an indi-
vidual increment is only contributed alongside dz; which are dependent on the same ionic
volume.

For the remainder of this work the covariance terms are neglected due to the use of the
IVAS provided ionic volumes for which the constituent volumes are ill-defined. Furthermore,
the impact of mass-spectra ranging and the notion of probabilistic assignment of identity
are left as future work once current advancements in the ranging process have been adopted
within the IVAS (or its successors) software |14} 13 54, [81} |80}, 28].

3.2 The Bas protocol

The Bas reconstruction protocol employs a small angle approximation such that a simple
point projection transforms the detector coordinates. A fundamental flaw with this method
when applied to modern instruments is that the field-of-view has greatly increased since
the original work by Bas et al and the small angle approximation is no longer valid with
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respect to the flight path [5]. Performing reconstructions with this procedure will result in
an artificially narrowed field-of-view and an elongated tip as the volume associated with the
wide field-of-view now contributes to an enlarged depth increment.

Continuing from section |3.1] equation the Bas protocol treats the detector image as
a point projection of the sample such that equation describes the magnification of the
detector image when given a known flight length, L, and another user-defined parameter the
image compression factor, {. Equations through further further define the partials
of M.

: . L
Mipr()] — MPTOJ(L,f, Rz) ~ + 1 (345)
ER;
oM 1 MP -1
7 — — ? 3.46
oL ¢R; L ( )
Mproj L MPTOj -1
oM L M (3.47)
o€ &R, 3
OMI™ L M — 1
OR; ER? R; ( )
\ 2 N\ 2 i\ 2
OMP" OMP"™ oM™
0'12\4pmj - ( oL ) O'i + ( 86 > 0-52 + ( OR; > 0-12%1' (349)

Taking the ratios of the above derivatives shows that the relative importance of L, §, and V;
to Var(M}"*) is proportional to their ratios shown below.

aMiproj 2 aMlproj 2
oL )/ ¢ (

aMiproj 2 8Miproj 2 ;

( oL ) /< OR; > - (f) (3:51)

VAN IV ECAN A

(#3) /(%) - (8) o5

Given that the magnitude of L is approximately 180 and that £ generally between 1 and 2
it follows from equation that:

S\ 2 o\ 2
M ML
7 < 2
( o ) N( % ) (3.53)

Indicating that accurate estimation of £ is more important the L for reducing the error
in M. A similar comparison is omitted for R; as it varies throughout the experiment

%)2 (3.50)
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and because it is a function of V;, F,ks. Full error propagation must also consider these
derivatives which are accounted for via the chain rule.

oM™ M OR;

= R v (3.54)
OMP™ OMP™ OR;
oF —  OF OF (3.55)
OMP™ 9MP™ OR;
Ok; — Oky Ok (3:56)

The first term in the above is constant among all three equations such that the ratios are
the ratios of the derivatives of R; instead as shown below.

o HC R R
(8]\845:@)2/ (a](\;[g;oj)Q B (%)2/ (gZ)Q _ (%)2 (3.58)

Taking some conventional values for F' and k of 33 and 3.3 in the case of steel specimens the

ratio in equation [3.58|is less than one and indicates that (OM!" /OF )2 < (oM /ak;f)Q.
This behavior should generally remain even with different sets of /' and £ as values for the
evaporation field are roughly an order of magnitude larger than the field factor. Additionally,
as voltage ranges from 1,000V to 8,000V in a typical experiment equation should also
evaluate to less than one in all circumstances.

A full analysis of Var(M? ) would require comparisons between L and ¢ to V;, F, ks as
well, however now that the general method has been described such analyses will be reserved
for the final reconstructed coordinates.

Spatial uncertainty in X, Y

The original position of an ion is found by projecting the event position with respect to
the detector onto the current specimen apex. For a small field of view and a straight flight
path instrument a single point projection as demonstrated in is sufficient whereas either
a large field of view or a reflectron instrument would require corrections for the curvature
of the flight path. An overview of the process for calculating the X, Y coordinates can be
found in figure [3.3]

The reconstructed X coordinate and the immediate partials are given by equations [3.59
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through
. Xdet Xdet
Xi= X(X;letaszmj) = Zm' = Lsz (3.59)
M e +1
(13
0X; 1 X;
8Xdet = Mpmj = Xdet (360)
0X; X det B X; ]
o gy M 00
Continuing with Y; and it’s derivatives below:
. Ydet Ydet
Y, = Y(Y;detv Mz‘pm]) = roi Lsz (3'62)
M S+l
13
aY; 1 Y;
8Yd5t - Mproj = Ydet <363)
8Y; Ydet Y;
=—-— = (3.64)

aMlproj (M.proj) 2 - Miproj

Error propagation and sensitivity analyses is demonstrated first using X; as the same
equations and relationships will hold for Y; with the exception that all instance of X; and
X4 would be substituted with Y; and Y;%. Noting that X; has dependencies on L, £, and

ER L

dz=R(1-(1-(X 2+Y 2)/R?)"?)

Figure 3.3: Placement of an ion on the hemispherical cap in X, Y alongside the depth
correction under the Bas reconstruction protocol.
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R; through M?" with R; introducing dependencies on V;, F, and k; the complete list of
partials for X; are described in equations through

0X; X; X, 0X; M7 —1
= 3.60 i_ 94
gxdd X (3:60) oF ~ o R, (3.67)
aXZ X’L o]
ey (3:61) 0X; _ 0Xi OMI™ R, (3.68)
oM, M; . OF OMP™ OR; F '
Xz' Xz Mp'roy —1 T0j
i (3.65) OX, ___0X, OMIUR. o
aMi ' @kf 8Mépmj OR; k‘f '
X, 0X; MP™ —1 :
LA B 0X; 0X; OM" R,
o oMPTT ¢ (3.66) ! (3.70)

oV, oM OR; V;

Using the process demonstrated in equations and for X; the partials are first
grouped into two sets of like terms, {L, &} and {F, ks, V;} with X% as an outlier. Focusing
first on {L, &} the squared ratio of the partial is identical to that of such that equation
[3.53] still holds and is expanded to include o7 and o¢ below where p; indicates the percent
error of L and &.

aX’L 2 6Xl 2 L2
<8L) U%S(af) o} foraigf—Zag (3.71)
2 2
(%ﬁ? oL~ (85?) of if o = piL*, of = p;¢’ (3.72)

Recalling that L ~ 380 and that £ is in [1, 2], equation shows that errors in & will
generally dominate the final error estimate in comparison to L. A comparable impact by
0?2 would require it to be approximately 190 times that of 02. Such a measurement error
is orders of magnitude greater than any true measurement uncertainty for the flight path
length in conventional instruments and so the influence of L can generally be treated as
negligible in the case of the small-angle reconstruction.

Continuing with the impact of {F, ks, V;} the first two terms in the partials cancel re-
sulting in ratios identical to those derived in equations and [3.58] Including the error
terms as in [3.71] then results in:

8Xi 2 aXz 2 8XZ 2 12 F?
<W) oy, < (8_F> oh < (a_k‘f> a,zf for o}, < F—ZQU% and o7 < k—202f (3.73)

F
X\’ X\ 2 X\ 2
(gVZ> 7 = (%Fl) oF = <g;{;f) o, if oy, = pIVi?, oF = piF?, o}, = pik} (3.74)

From the above, it would generally require the error in F' to be an order of magnitude
larger than that of k¢ to overcome this trend recalling that I’ is generally an order of
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magnitude larger than ky. Furthermore, for the applied voltage to be the dominant error
term then oy, would have to be approximately 100 times larger than o or 1,000 times that
of o,. If instead the uncertainty is expressed as a percent error as in equation with a
constant percent amongst all variables the three variables have equal contributions to the
final uncertainty.

Determination of the sensitivity between the groups {L, &}, {F, kf, Vi} and X remains
and comparing {L, ¢} with {F, ks, V;} provides direct relationships with the exception of £
and ky. The results can be summarized with only two equations.

axX\* (0x\* [(Vi\®
(5 (9

oxX\* , (0X:\* (k)
/ = (£ (3.76)

o€ Oky 13

As V; > L for all V; equation [3.75| allows the impact of L to be directly compared with
k¢ and F' in addition to the voltage. However, because  and k; are of similar order and
magnitude there is no guarantee that £ > k; or vice-versa in equation and heavily
depend on the user selected parameters. Thus, for the Bas reconstruction we consider £y

to have a lesser or comparable impact to £ on the uncertainty in X; denoted by <. In the
absence of computational work validating the ratios with respect to X we expect that:

0X;\*  [0X:\* _ [(0X:\® _ [0X:\?_ [0X:\?
< < < N 3.77
(7)< (&) <(5F) < (&) = (%) 70
Recalling that the only difference between X; and Y; is the usage of Y% instead of Xd¢
all of the derivations above from equations through apply with the aforementioned

substitution. In the interest of brevity only the observations regarding the relative impor-
tance of different variables with respect to the propagation of error are included below.

@}2)202 < (%?)2‘72 for of S é—jag (3.78)

(?}?)2"% ~ <%?>20§ if o} =pi L% of = pi¢ (3.79)

(gé)QU\Q/i < (2}12)20% < (2:;)20,%f for 0‘2/1_ < ?—’zafp and U% < %azf (3.80)
(g}vfi)Q"% - (g};):% - <%>20i.f it o, = p}V?, o = piF*, o =pik}  (3.81)

AN ) AT AT AT A%
<8L) <(8%> <(8F) <(akf> 5(@5) (3.82)
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Spatial uncertainty in Z due to dz

Section [3.1| provided the basis for understanding the depth uncertainty within atom probe
reconstructions as a function of the cumulative depth increment but thus far neglected to
account for the reconstruction specific depth correction, dz;. The depth correction corre-
sponds to placement of the ion atop the specimen apex and thus is bound by [0, R/2]. In
this case 0 indicates placement of the ion directly atop the specimen apex. Under the coni-
cal model with a hemispherical cap the maximum correction indicates evaporation from the
point at which the cap and cone intersect. As shown in equation this correction factor
is dependent on the lateral position of the evaporation event.

X2 +Y?
dz} = d2'(R;, X2, Y?) = R, (1 — 41— %) (3.83a)
Xdet 2 + Ydet 2
=R [1- 1 — ( i ) ( i ) (383b)

(MP77)* R

While initially dependent on R;, X;, and Y; as in equation substitution for X;, and
Y; reveals a dependence on the detector coordinates and the magnification. Repeating this
process for the magnification factor, etc. shows that dz/ is a function of X4 Y4 [ ¢ F,
k¢, and V;. The derivatives required under application of linear error propagation are then:

0Xi 12 ' oL oM L (3:88)
R; i A
0dz; Yi Odz __0dz oM]"™ 5.59)
o, [ _x? (3:85) 9~ oM O& |
) - ak (3.90)
i " 0X,; — _
adj; _ 94z 9 — (3.86) OF  OR; OF
OXT - OX; 0K, oz, 0dOR, o1
adjit _ 2 a};; (3.87) Oks  OR; Oky
ovie ovoy od  0d: OR, .
OV, OR; OV; -

Once more observation of the partials reveals that the variables can be grouped into three
sets such that the error contributions can be trivially compared. These sets are the same
as those for the spatial uncertainty in (X,Y’) namely; { X% Y%} {L, &}, and {F, kg, V;}.
However, two of the required partials (9dz,/OMP™™, 0dz;/OR;) have yet to be defined as X;
and Y; both introduce dependencies on M/ " while the original equation for dz as well as
X; and Y; share dependencies on R;. These two derivatives given in equations and
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serve to complicate non-numeric comparisons between the three variable sets.

odz! adz; 0X; odz,  0Y;

5)FT = 3%, 3 T oY, 93 (3.93)
0X; 8Mip’"°j aY; aMg”""j (XE +Yi2)
9ds! (Xl 8Mlpmj OR; + K@Mfmj aR; 2R; dz’
OR; < X2+Y.2>0'5 - R; (394
1-— T’

Comparing the constituents within the three sets as in equations through re-
veals the expected relationships reaffirming those described for the uncertainty in the ) dz;
and those for the spatial error in (X;, Y;) with the exception that three sets cannot be
compared with one another. An additional observation comes from X! and Y% as there
comparison is the only one which depends on the spatial position of the event. Under
the conditions that the event is near the | X = |Y9!| lines or near the detector cen-
ter the influence of the two parameters are approximately equal. X% dominates Y%

and vice versa when the events are near the detectors X and Y axis respectively. As a

simplification the sensitivity of Var(dz!) to (X4, Y) is treated as approximately equal.

adz, \® [ 0dzl \® [ Xd\? adz\* | (9dZN\?  (kp\

(8Xidet) /(ay;det> = (Y;det> (3'95> (3}7) /<6kf) = (F) <1 (3.97)
adz, 2 adz, 2 £\’ dz} 2 adz! 2 (Vi ?

(GL) /(85) :(Z> <1 (3.96) (8F) /(81/;) _<f> >1 (3.98)

Similar to the sensitivity of ) dz; equation cannot be generalized to the final depth
coordinate, Z;. Based upon both sets of sensitivities one would expect equation to hold
for Z; however this would require the covariance terms to be neglected. A sensitivity analysis
for Z; then requires a numeric evaluation which is omitted from this segment as a numeric
evaluation on one specimen cannot be generalized to all samples given the large range of
input variability even if the associated uncertainties were of similar magnitude.

odz} 2~ adz \* [ ddz! 2< adz\? odz} 2< odz} 2< adz\? (3.99)
Xt ) T\ gyt oL ¢ aV; OF Ok; ‘

3.3 The Gault protocol

Recall that the aforementioned Bas reconstruction protocol requires the use of a small angle
approximation and thus is most valid for small field-of-view instruments. Modern atom
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probes such as the LEAP series possess wide field-of-view made possible in part due to
the local electrode configuration. To account for the wide field-of-view the coordinates are
calculated following the protocols outlined by Gault [36]. The Gault protocols themselves are
improvements upon the original wide-angle reconstructions outlined by Geiser and included
in the works of Larson et al that sought to diminish the reliance on specimen geometry
assumptions [74].

The two key differences between the Bas and Gault protocols are that the volume in-
crement in Gault accounts for specimen apex post evaporation and subtracts the volume of
a second hemispherical cap from the truncated cone when performing a shank-angle recon-
struction and that Gault protocol is performed in a cylindrical coordinate space as described
in equations [3.100| and [3.101] prior to being converted to the final euclidean coordinates. Note
however, that the reconstruction presented here uses a strictly voltage-based evolution com-
parable to the wide-angle reconstruction provided by the open source Atom Probe Toolbox
52

ry = (X0 Y) = \/(Xidet)2 + (vyer)? (3.100)
¢i — ¢(Yid6t7X£16t) — atan2 (}/idet7 X;let) (3101)

Note that atan2 denotes the signed arctangent. The partial derivatives of r and ¢ are
then given below:

O =X X (3.102)
r; = = .
DX det T \/(Xidet)Q + (Yidet>2
a }/idet Y;det
Gy = e = ————s (3.103)
z VER
o Ydet Ydet
= - i 3.104
8Xidet¢ 7“2-2 (A)(Z’det)2 + (Y;det)z ( )
o Xidet X’idet
(9Y;-d€t ¢Z = 7,22 - (deet)Q + (}/’idet)Q (3105)

From equations [3.102f to |3.105| it is clear that the partials are proportional to one another
such that the following two relationships stand.

0 -det

0 1

(Xget)_laXdetri = (Y; )_1 8Ydetri — T‘_ (3106)
Ydet -1 d - Xdet -1 0 . 1
(Y;™) W@' = (X;{) 8Yd€t¢i =72 (3.107)

Now that the cylindrical coordinates have been established the projected launch angle
and the derivatives with respect to its direct dependencies L, the flight length, and r; and
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are defined in equations [3.108| through [3.110}

07 = 67 (L,r;) = atan <%) — tan \/(Xidet)

2 + (Y;det) 2

H 7 (3.108)
€ 2 € 2
o, V() 4 (v
8_LH (L,ri) = L2 1 2N\ (Xdet)2+(y_det)2 (3.109)
< + ﬁ) L2 (1 + = 2 d )
0 P B 1 1
50" (L) = (3.110)

L (1 + 2_32) L (1 + (deEt) [_;(Yidet) )

However, because r; is itself dependent on the detector coordinates full error propagation of
0F must consider the derivatives with respect to X2 and Y;%' which can be accounted for
via the chain rule.

d
0 d d ax et Ui Xdet
——0 (L, 1) = ——ri——0F = : = - (3.111)
0X ! AT (1) (1 N (X?”)Q;(‘Gdetf)
d
a d d dydet,rl Ydet
——0"(L,r;) = ri—0F = = : (3.112)
det et L 2 det\? det)?
o, N A (1 L ) ) )

From equations [3.111] and [3.112] it is clear that the relationship described in equation
holds true. The simplification of future derivatives will be left as an exercise for the reader
given that the methodology has been defined, although it will be noted when partials can
be related to one another.

Given that the projected flight angle, 67, is due to the compression of the original flight
angle, 6, the image compression factor is utilized as a correction factor. The correction
method differs from the Bas protocol however in that a simple magnification correction
is not applied but instead #F is uncompressed to return the true angle, 6, using the user
estimate of the image compression factor, £ as shown in equation [3.113

0; =0(£,0) = 07 + asin (£ — 1) sin (6])) (3.113)

0 is then directly dependent on ¢ and 67 which introduces dependencies on L, X and
Y. The partials with respect to the direct dependencies can then be defined below.

5 0(¢.0;) = o (9') (3.114)
V(6 - 1)%sin? (07) +
o(e.07) — — oD ) = +1 (3.115)

" V- (€~ 1)%sin? 67) +
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Now that the true flight angle has been found only the radius is left to determine the radial
placement of the ion relative to the specimen’s major axis. In the absence of a predefined
shank angle this protocol will once again relate the radius of curvature to the voltage. Recall
equation and the partial derivatives originally detailed in equations [3.3]

R, = kfl}: (3-2)
SRk P) = = 63
%R(%k‘faF) = —% = _F‘z/;f B4
o, Rk ) = 1 =~ i 63

Furthermore note the following relationship between the three derivatives which will be later
used to simplify more complex expressions.

9, 0 0 Vi
Vel R(Vi ke F) = —F——R(Vi, k. F) = —kj——R(Vi k. F) = —— = R, (3.116
8%( 1 F) o Vi by, F) fakf( 1 F) i F (3.116)
The radial distance and the partial derivatives are defined in equations through [3.119]
0
0

At this point, the shared dependencies of X;, Y;, and Z; have been established and only
defining their functions and derivatives in the subsequent two sections remain.

Spatial uncertainty in X, Y

Finally, the reconstructed X, Y coordinates are found by converting the polar coordinates
¢; and d; to cartesian coordinates. Here ¢; represents the angle of the event on the detector
and d; the radial distance from the apex. Starting with X and it’s partial derivatives in

equations [3.120| through |3.122

Xi = X(d;, ¢;) = d; cos(¢;) = RiXZdet sin(6) (3.120)
()

9¢;
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Now continuing with Y; and it’s derivatives below:

Y =Y (di, ¢:) = d;sin(¢;) = Fd 7 sin(0) (3.123)
xe* (r?
0
%Y(di, ¢;) = d; cos (¢;) (3.125)

At this point it should be noted that will focus primarily on algebraic approximations as
exact solutions as in section |3.2] is infeasible for the wide angle reconstructions. This is
due to the nested trigonometric functions which prevent even algorithmic methods, such
as trigsimp, from arriving at a solution within a reasonable time frame [34]. However,
the relative importance of some terms can be shown algebraically and the overall behavior
validated computationally.

Starting with X; consider first the influence of V;, F', and k; on whose partials are denoted
below according to the chain rule.

oV 9d; OR; OV, (3.126)
90X, 0X, dd; OR;
OF  dd; OR; OF (3.127)
X X Od; .
0X;  0X; 0d; OR, (3.128)

Ok; _ 0d; OR; Ok;

All three derivatives share the first two terms and thus taking the ratios will result in only
the partials with respect to R; remaining for comparison. Note that due to the partials
cancelling the following two ratios are also true with respect to Y;.

ox;\°  [(0X:\* [(F\’
= (= 3.129
() 1 (Gr) () 512
OxX;\* (90X, \*  [(kr\®
= (=L 3.130
(o) 1 (Gr) - (%) 620
Taking some conventional values for F' and k; of 33 and 3.3 the ratio in equation [3.130
is less than one and this behavior should remain for different sets of values as F' is roughly

an order of magnitude larger than the field factor, ky. Furthermore, as the voltage ranges
from 1,000V to 8,000V in a typical experiment than [3.129| should also evaluate to less than
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one in all circumstances. Subsequently, the following relationships hold.

0X;\? 0X;\? 0X;\?
3.131
(aw> <(8F> <<akf) (3.131)
0X;\? 0X;\? 0X;\? V2 F?
(W) oy < (8F> o < (8kf) O'sz for o}, < F—’QU% and 0% < k_20]%f (3.132)
? 3

X\ Xi\’ X\’
(52) ot = (50) ot = (52) o, 6ot = st o =otr®. o, =it (3139

From these relationships we note that error in ky has a larger impact than F' or V; as
shown inwhere given an equal magnitude of error k; produces the largest contribution.
Generally, it would require the error in /' to be an order of magnitude larger than that of k;
to overcome this trend given typical values of the two. Furthermore, for the applied voltage
to be the dominant error term then oy, would have to be approximately 100 times larger
than op or 1,000 times that of oy, . If instead the uncertainty is expressed as a percent error
with a constant percent amongst all variables the three variables have equal contributions to
the final uncertainty. Note that the same relationships holds true for Y;, which are included
below, but the derivation is left out in the interest of both brevity and completeness.

AN AN ) %

134
<8w> <(8F> <<8kf) (3.134)
i\ v\ vi\" o _ VP s F?
(5_‘/1) oy, < (G_F) o < (a—kf) oy, for oy, < T 0F and o7 < gakf (3.135)

Y\’ Y\ aY;\”
(52) ot = () ot = () ot ot =sivih o =str®. of, = stk (3130

The influence of L, £, X# and Y% remain and can be grouped into two subgroups of

similar behavior, {L, £} and { X Y%}, Starting with L and £ the two partial derivatives
share two terms in common although the flight length L requires one additional term.

0X;  0X,dd; 96
8¢ ad; 06; d¢
0X;  0X,dd; 96; 967
L — d; 80, 00F oL

(3.137)

(3.138)

Once again the ratio of the squared partials is taken in order to show that the estimation
of the image compression factor generally has a larger impact than any measurement uncer-
tainty in the flight length. Note that 6 ~ r;/L according to the small angle approximation
as the detector radius, r; is roughly 15mm at most while the flight length is on the order of
380mm for a LEAP 4000 XHR.
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() () - () ()
[ €-Deos@®F) 1] 2
_ \/— (€ —1)%sin? (6F) + 1
sin (6F) r
\/— (€ —1)*sin? (A7) + 1

cvo-ere [ |
N \/_(5_1)2(QZJD)2+1 L? (1+£—%) (3.139)

[ (07) }
Ve 1P Er)P 41

*

via small angle approximations

2
N2
—1)(1— (%) /2
[ 00—
VoD () 41
2\ 2
2 i
[L (145) ]
Given that L >> r; taking the limit as r;/L approaches 0 provides a further approxima-

tion of [3.139] Additionally, this limit also indicates the exact behavior along the reconstruc-
tion’s major axis.
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( .
) aXZ 2/ aXZ 2 Nm‘/L—>0 \/_ (6 B 1)2 (%)2 + 1 ri/L—0 L
ro/is0 \ O oc ) =

(E-Da-0/2
Ve D207 41
[L* (1 +0)]

[— (€= 1)*(0)* +1]

~

52
%—2

Knowing that the magnitude of L is approximately 380 and that the image compression
factor is generally between 1 and 2 then the following is expected.

OX\° _ (0X;\?
1 < (A
(%)N(%) (3141)
aXz 2 2 < aXz ? 2 fOI' 2 < L_2 2 (3 142)
5L o7 S o€ o aLN€20€ .
90X\ oxX:\*> .
( 5L ) o2~ (8_5) ag if 07 = p;iL, ag =pi€ (3.143)

From this, it is observed that errors in ¢ will generally contribute to the final error estimate
more than L, such that for a comparable impact 0% would need to be approximately 190
times that of £&. Such a measurement error is orders of magnitude greater than any true
measurement uncertainty for the flight path length and so the influence of L can generally
be treated as negligible.

To account for the induced error in Y; recall that the terms for %)d‘;i and ggz dropped out
of the ratio in equation |3.139, This same cancellation will occur for the partials with respect

to Y; such that:
ov;\?  [0Y;\? ox\?> [0X;\*
(6L)/(65)ZZ<GL) /(as) (3.144)

It follows then that the same relationships described in equations [3.141] and [3.133] apply for




CHAPTER 3. RECONSTRUCTION ERROR PROPAGATION 40

(5) = (5

Y.

> (3.145)

L? 2
< ) 5( ) o for o} S = £ (3.146)
ay; Y, ,
(26) ot (20 ozt s =it o7 = e (3.147)

Now that L and & have been accounted for the partials with respect to X and Y4
are considered. Note that the detector coordinates determine r; and are thus involved in the
calculation of both d; and ¢; resulting in a summation. For X; the partials are given as:

0X;  0X;0d; 86; 007 Ori  0X; 0¢;
OXdt — 9d; 90; 00F Or; 90Xt 9g; OX
0X,;0d; 00; 00F Xt 09X, Yt

" 0d; 06,007 o, 1, 04 12 (3.148)

2

Ringiet (\/ (§—1) cos (Gf))H + 1) cos (¢;) cos (6;)

—(¢-1)?sin? (0F Y d; sin (¢;)

Ly ((0F) +1) T

DY~ 9d; 99, 06T 9XT T D, oYt
0X;0d; 96; Y 9X; Xt
od; 80; 00F r;  d¢; r? (3.149)

2

(§—1) cos (GZP)
Riydd +1 ) ez
] <\/_(§—1)25in2 (or)+1 )COS (94) cos (8  X{d; sin (¢y)

2
The same simplifications using small angle approximation and limit as r(i/L) tends to 0
determines that the ratio of the squared partials is just the squared ratio of the detector

coordinates. Thus, near the detector center X and Y% contribute equally to the final
uncertainty and will result in stronger dependencies as | X2 — Y| diverges from zero.

C(0Xo NP 0Xi Y . [ oxi\?, . [ox:\? (Xt
(iflr—?o (5X—flet) / (ay—flet) - 0?130 (ax—flet) /o?r—lgo <(’9Y;det) - (Y;det)Q (3.150)
Applying the same procedure as applied in equations [3.148] to [3.150] results in the following
partials for Y;.

Y; B %% 00; (99ip or; n % 0o; (3.151)
OX{ ~ 0d; 09; 997 Or; X[ T 0g; OX '
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Y, _ 0Y;8d; 96; 067 Or; aY; 0¢;

DY~ Od; 06; 00T Or; VT | Oy OY 1

N v N v\ o\ (X))
(i) (orin) = Coen) g (o) = G 0199
All of the prior analyses can be summarized for both X and Y according to|3.154]and [3.155
however comparison between the sets: { X2 Y4} {L, £}, and {F, ky, V;}, proves impossible
without a numeric solution that cannot be trivially generalized for multiple specimens. The

required computational validation is included alongside the analysis and calibration of a the
hematite system detailed in section [3]

0X; \* _ (0X: ' (0X:\' _(0X:\ (0X:\' _ (0X:\" _ (0X:\ (3.154)
aXxdet ) 7\ gy et dL ¢ Vi OF Ok '

OV N (0¥ NT (oY, 2< ov.\* oL 2< o%; 2< 0¥, )" (3.155)
Xt ) 7\ gy et oL ¢ v, OF Ok; '

(3.152)

Spatial uncertainty in Z

Recall that in the Bas protocol the depth calculation is dependent on assigning each ion an
individual depth increment, dz, and a correction term dz’ that describes the placement on
the specimen apex. The Gault reconstruction’s depth determination is identical with the
exception of dz’. Equations through denotes the correction term and the partials

under the wide-angle voltage-based reconstruction.

dz; = dZ'(R;,0;) = —R; cos (6;) + R; (3.156)
9
8R,-dz (R;,0;) =1 —cos (6;) (3.157)

Continuing with the dependencies introduced by R; consider the partials with respect to
Vi, F', and ky.
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Odz;  Odz; OR;

3. = 3R, BV (3.159)
ddz,  9dz, OR,
OF  OR; OF (3.160)
odz!  9dz OR;

ot Budbui 161
Ok;  OR; Ok (3.161)

Similar to the partials for X; and Y; taking the ratios of the three partials results in the ratio
of the parameters as had been observed in [3.129] and [3.130] Subsequently the statements
described by equations |3.131] through [3.133] also hold for dz] such that:

odz\ 2 A A
L G L .162
(5) < (%) <(akf> (3.162)
/ 2 ! 2 ! 2 2 2
(%Cijz) oy < (%CZ@) o < (%‘Zj) ng for o}, < %0% and o7 < k—QO'Zf (3.163)
i r

adz; 2 odz; 2 adz;
(av-) 7= (817) 7= (akf) oi, if oy, =piVi', o =piF?, of, = pik; (3.164)

Note however that dz; and dz; have common dependencies and so the above relationship will
are not guarantied to apply to the final depth, Z;.

The impact of §; remains which results in dz] being dependent upon L, £, X and Y.
Taking the partials with respect to L and £ under the expectation that they will result in a
similar effect on dz] we find that one term is shared and the flight length requires one further
term.

Odz;  ddz; 00;
o8 06, o
ddz,  0dz; 00; 00F

OL — 06; 067 OL

(3.165)

(3.166)

Using the small angle approximation for #7" and taking the limit as r;/L approaches zero as
in equation |3.140| provides the following approximation of the squared ratio of ddz;/0¢ and

ddz!/OL.
adz\?  [0dz\? 00; 06F 960;\> &2
li ! )] = lim L) &= 3.167
Byt ( aL) /< € ) o/ L0 (aaP aL) /<ag) L2 (3.167)
Recalling that L is on the order of 380 mm for the LEAP 4000 series instruments and that
& typically ranges from 1 to 2 then £ is the dominant source of error in comparison to L for
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dz. given the following conditions.

adz\ > adz\ >
7 < 7
(aL) < ( ag) (3.168)
adz\* adz\? L?
[ < [ 2 f 2 « 2 2 1
(GL) TS ) o for o7 S 5205 (3.169)
adz\? adz\? , .

< 5L ) o? ~ ( o ) ag if 07 = piL, O'? = pi€ (3.170)

Finally accounting for the detector coordinates we arrive at equations [3.171] and |3.172]

dXdet — 9d; 96; 06F dr; dX It
adz,  9dz,dd; 96; 90F O

Yt~ dd; 86; 06F dr; aY

The ratio is then simply expressed without the need of approximations as:

odz, \? [ 0d=L\* ([ or \*, [ or \? (X&)’

<8Xid6t> / (aY—ldet) - (aXidet> / <ay;det) - (Y;det)2 (3173>
As in the case of X; and Y; the detector coordinates approximately contribute the same
amount of error near the detector center and near the 45°, 135°, 225°, 315° lines projecting

from the origin. One term will become dominate as | X — Y%| diverges from zero.
Equation summarizes the observations regarding the partials of dz] thus far and
indicates the same relationships as derived in the small-angle case. Once again there exist
no closed form solutions that enable comparison between the sets: { X Y4} {L, £}, and
{F, ks, V;}. Furthermore, the nested trig functions further obfuscate the true comparisons
as in the case of {L, &} due to the need of simplifying assumptions. Finally, as in the case of

the small-angle reconstruction these association do not hold for Z; which requires a numeric
comparison.

odz \? odz \?* [0dz\* odz\? odz\? odz\? odz\?
— ) = ! L) < - L o< L o< ! (3.174)
OX et QY det oL ~\ o€ oV, oF Ok;

(3.171)

(3.172)

3.4 Conclusions with respect to small and wide-angle
reconstructions

In conclusion we find that for both small and wide-angle reconstructions the spatial uncer-
tainty for the reconstructed X and Y coordinates are most sensitive to the image compression
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factor and field factor followed by the evaporation field. Comparatively the instrument spe-
cific flight length and applied voltage are negligible and align with our expectations given
that the flight length is a known quantity for each LEAP model and that the only error
associated with voltage should be dependent on the voltage controller. Opposing these are
the user defined parameters of which only the field is a well estimated parameter prior to
calibration by using the expected value for pure materials. The image compression factor
and field factor are most commonly used by the user to calibrate the reconstruction accord-
ing to their prior assumptions. One common method for this is to adjust the field factor
such that the interplanar spacing of the specimen matches the true value for the material
and adjust the image compression factor to minimize the planar curvature.

Furthermore, a generalized evaluation is not available for the depth coordinate, Z;, how-
ever analysis of its constituent components the cumulative depth > dz; and depth correction
dz] suggest that in agreement with X and Y the user defined factors are the most important
parameters to minimize the final uncertainty. This analysis also suggests the instrument
specific parameters with the exception of instrument efficiency are negligible. The efficiency
is not required for calculation of (X, Y) but is as important as the field factor and image
compression factor for > dz; and presumably Z;.

It is also observed that the voltage and ionic volume estimates have an unpredictable
influence on Z; due to inclusion of covariance terms. The covariance terms with respect to
voltage can likely be neglected alongside the expected low measurement error in the applied
voltage, however should not be neglected in the case of ionic volume. Error propagation with
respect to the volume provides two covariance terms, the first of which accounts for when
two events possess the same ionic volume which is accounted for in our work. The second
covariance term accounts for when two complex ion volume estimates rely on the same simple
ion estimates as in the case of FeO and NiO3 which would share a dependence on the volume
of oxygen. This term is neglected within our analysis due to a lack of information regarding
the IVAS software’s internally computation.
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Chapter 4

Methods for error minimization

Given the cumulative nature of the depth uncertainty derived in section it is of interest
to minimize the variance as both a global measure and a local measure. Both measures are
influenced by the point processing order within the reconstruction and thus a natural exten-
sion of pointwise error propagation is to alter the reconstruction order such that the measures
of error are minimized. First, alternate reconstruction origins are explored as a error mini-
mization method while preserving the cumulative depth increments of the reconstructions.
Second, this process is used to establish a new distance metric designed to minimize pairwise
variances while accounting for the pairwise covariance of all points within the reconstruction.

4.1 Alternate reconstruction origins

Prior to investigating the effect of altering the reconstruction order a global measure of
uncertainty must first be defined to provide a method of comparing multiple reconstructions.
For this purpose either the sum of squared errors, or the mean squared error, equation
4.2 can serve as a global metric representing in aggregate the error associated with each
point. This metric is also primarily focused on the depth coordinate as the X, Y positions
of each ion are independent and should not be impacted by the reconstruction order.

N SSEZ
SSE; = Za%i (4.1) MSEz = N (4.2)

=1

The only difference between the two metrics is accounting for the number of points, N,
used in the estimate of the summed squared error. Thus when comparing reconstructions
of the same point cloud SSFEy is sufficient, however when comparing the results of different
point clouds M SFE; should instead be used as the sample sizes will differ. Focusing then
on equation and substituting in the expanded variance for Z; provides a representation
of the summed square error with separate contributions from the depth correction and the
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cumulative depth increment.

SSE; = Z Var (Z dz2-> + Var(dz') + 2cov <Z dz;, dz’)] (4.3a)
i=0 L j=0 J=0

~ i Var (i dzi)
i=0 §=0

(4.3b)

Neglecting both the covariance terms and the correction terms dz’ the depth increment
provides the basis for minimizing error based on the reconstruction origin. Recall the deriva-
tives of each individual depth increment can be described according to for the constant
variables.

ddz F(T)\ ., @ F(T)

o = (d%) (—T ) = Caym (B-222)
2, if Tis in {F, ks, L}
1, it T = Q

where F(T) ={ ' (3.221)

=2, if Tis in {V;, &}

—1, if Tisin {Sp,n}
From the above, one can observe that the primary differences between any two points (i, j)
are the assigned ionic volume, €2, and the voltage of the evaporation event, V. As a non-

rigorous exercise neglect the covariance components of the summation and assume that the
variance of a depth increment is proportional to the volume-voltage component of equation

B.22al such that: '
n 7 2
SSEz~a) [Z (%)

i=0 Lj=0 J

(4.4)

where « indicates the proportionality. Assuming then that the system is monoisotopic the
ionic volume can be removed from the summation as a further constant. As a logical extreme
consider the scenarios where the reconstruction origin is set at ¢« = 0, denoted as R0 and is
set at ¢ = n with the summation terminating at 0, denoted as RN. Accounting for the first
term within SSE, for both scenarios results in the following:

) (4.5a)

—4 —4
itV
j=1

~ o (N Vit + i i v ) (4.5b)

i=1 Lj=1

SSEf® ~ a (VO—‘* +>
=1




CHAPTER 4. METHODS FOR ERROR MINIMIZATION 47

) (4.6a)
) (4.6b)

Given the above and that Vy > Vj we expect that the error contribution from point
N, N- V]\74 is smaller than that of point 0, N - V;*. Further separation of the summations
for points N — 1 through N — 4 and points 1 through 4 gives the following which can be
extended for all remaining points.

%

Wi 2 v

j=N-1

£

=N-1

0
>
=N—
1
~a <N Vit )
i=N

1 —

% 1

SSEN ~ o <V1\74 +

SSEgoma<N-%4+(N—1)-V14+(N—2)-V24+(N—3)-v;4

i (4.7)
v )

j=5
SSEIN ~ o (N-VN—4+(N—1)-v1;41+(N—2)~V];42+(N—3)-V];43

£

+(N—4).V44+Zn:

1=5

) (4.8)

Considering that Viy_; should be larger than V; for all i in equations [4.7]and [4.§]it is expected
that SSEX > SSEZYN meaning that a reconstruction which is built up from the last
detected ion should have lower total error than one which is formed starting at the first
detected ion.

1
+(N—4)- Vit + Z
=N

) —

Computational validation

The prior hypothesis that a reconstruction starting at the Nth event results in lower total
error cannot be explicitly proven, so instead the uncalibrated hematite specimen with unit
variance is used for computational validation. Note however, that while many assumptions
were required to arrive at the hypothesis the calculations do not use any simplifying assump-
tions. Furthermore, changing the reconstruction origin from 0 to N does not require any
modifications to the reconstruction code but does require the input data to be reversed and
that negative voltages be provided.

A visual representation of Var(Z;) is provided in figure for both the normal recon-
struction starting at ¢ = 0 and the one starting at ¢ = N which will be referred to as a
reversed reconstruction going forward. From this figure the impact of the cumulative error is
inverted for the reversed reconstruction with maximum uncertainties achieved at the top of
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2.5% Propagation for APT Cross Section
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Figure 4.1: Heatmap indicating the pointwise depth uncertainties of a slice along the Z
coordinate for a conventional and reversed origin small-angle reconstruction.

the conventional reconstruction and minimal uncertainty at the base of the specimen. The
true comparison is made with the SSFE however which is 1.45e7 and 7.3e6 for the normal
and reversed reconstructions respectively. These values for the SSE are in agreement with
our hypothesis, but do not reveal if there is an optimal origin for the reconstruction. The
optimal origin on a per-specimen basis is determined by iterating through the indices of
the points and performing a reconstruction with each as the origin. As in the case for the
reversed reconstruction minimal modification is required for the reconstruction algorithms,
in this case the data is split into two segments ¢ < j and j < N where the position of the
origin, j, is fixed at 0. The first segment undergoes a conventional reconstruction and the
second segment the reverse reconstruction before the two are recombined into one final set
of coordinates. For each index the SSE is stored and the reconstruction with the minimum
SSFE is selected as the best reconstruction. From figure the ideal origin is found to be
point 437154 with an SSFE of 2.2e6. The final uncertainty map is provided in figure and
indicates that points near the origin preserve minimum error and that points near the two
extremes of the dataset have maximum error.

One final observation can be made for the conventional, reversed, and optimal (otherwise
referred to as middle-out) reconstruction through analysis of the cumulative distribution
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Origin optimization via Golden Section Search
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Figure 4.2: Plot measuring the sum of squared error (SSE) of a small-angle reconstruction as
a function of the reconstruction origin. Parameter search was accomplished using the golden
section search (GSS) method.

function for the observed Var(Z) presented in figure .4, Here the three reconstructions
are denoted by the origin points; 0, 437154, and 1299346 respectively, and the conventional
method possesses a relatively linear CDF indicating a uniform distribution of possible vari-
ance throughout the majority of the reconstruction with a final nonlinear region. The other
extreme represented by the reverse reconstruction shows a highly skewed distribution with
60% of the data being contained within a linear regime until a variance of six where the curve
transitions to a curved portion prior to leveling off. While the majority of the data exists
at lower variances then the conventional the maximum variance is larger. The middle-out
reconstruction combines the skewed distribution of the reversed focused on low variance with
the relative quick plateau near 100% of the data that the conventional possessed. Further-
more, due to each of the spatial extremes being dependent only on a portion of the data the
maximum variance is significantly lower than either of the other reconstructions.
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2.5% Error Propagation for Optimal Reconstruction
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Figure 4.3: Heatmap indicating the pointwise depth uncertainties of a slice along the Z coor-
dinate for the optimal reconstruction origin as determined by the SSE(Z). The reconstruction
origin is indicated by the orange square marker.
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Figure 4.4: CDF'’s of variance for each type of reconstruction as a function of the reconstruc-
tion origin. Blue indicates a conventional reconstruction while orange and green indicate a
"middle-out” and reverse reconstruction.
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4.2 Ordered euclidean distance

As the reconstruction origin is shown to impact the global uncertainty via the sum of squared
errors and minimizes the local uncertainty we propose a new definition of euclidean distance
for analysis of atom probe data that attempts to minimize error and account for pairwise
covariance. For points i, j the variance of the conventional squared euclidean distance is
given according to equation below.

Var (D(i,7)?) =4(AX)? [Var(X;) + Var(X;) — Cov(X;, X;)]

+4(AY)? [Var(Y;) + Var(Y;) — Cou(Y;, Y;))

+4(AZ)? Var(Z) + Var(Z;) — Cov(Z;, Z;)]

+ 8(AX)(AY) [Cov(X;,Y;) + Cou(X;,Y;) — Cov( i, Y;) — Cou(X;,Y;)]
+ 8(AX)(AZ) [Cov(X;, Z;) + Cov(X;, Z;) — Cov(X;, Z;) — Cov( X, Z;)]
+8(AY)(AZ) [Cov(Y;, Z;) + Cou(Y;, Z;) — Cov(Y;, Z;) — Cov(Y;, Z;)]

(4.9)

While the pointwise variances are known given the methods of reconstruction error propa-
gation outlined in sections and |3.3| for small and wide-angle reconstructions the pairwise
covariances of the coordinates are unknown. The first approach to address the unknown
covariance is the use of the Cayley-Schwarz inequality which is expected to produce an over-
estimate of the distance uncertainty. Alternatively, alongside the reconstruction fourteen
pairwise covariance matrix could be constructed and referenced resulting in the additional
memory consumption of a (N, N, 15) array. The final option is to define a new distance
metric that exploits the order of events to minimize the redundant calculations in the depth
coordinates. Consider the following ordered euclidean distance with the substitution of
for the depth coordinates.

i ! 2
D(i,5)* = (X; — X;)? + (Y = Y;)* + (dz; —dZ+ > dm = dzl> (4.10a)
1=0 1=0
max(i,5) 2
= (Xi = X))+ (Vi = Y;)* + | d2| — d2} + sgn(i — j) Z dz (4.10b)
I=min(i,5)+1

The primary difference in the two distances is the separation of Z; and Z; into cumulative
depth increment and the depth correction prior to cancellation of redundant increments
and introduction of a sign function, sgn. Practically equation is performing a local
reconstruction over all points in [i, j] and setting the smaller of the two indices to the origin.
This local reconstruction accounts for the covariances between the increments but neglects
to account for the remaining terms. Considering that D(i, j) is not just dependent on points

i, j but on the full set of reconstruction input variables, {F, ks, L., 7, Xfljt, Yldft, 0, V} with
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2 and V indicating all possible voltages and ionic volumes, the variance can be defined
with respect to the partial derivatives. Equation does provide a format conducive to
simplifying the derivatives (except for 2 and V') and one example for an arbitrary variable,
T, is provided in equation [4.11]

aD(Zvj)Q 9 2 9 2
TEGJ) Y X vy
o~ ar NN i T
9 max(i,j) 2 (411)
+o7 dz; — dzj + sgn(i — j) Z dz
I=min(i,j)+1

The derivative is further expanded and broken down into an X, Y, and Z component in the
equations below.

0 , e
9 , oy, oy,
S = =20 =) (G - ) (412D)
9 max(i,j)
8—T(ZZ- — Z;)? =2 | dz} — dz}; + sgn(i — j) Z dz
I=min(i,j)+1
o (4.12¢)
odz!  0dZ | &R adz
{ or T } sgnli = J) Z T
I=min(i,j)+1

Utilizing equations through removes the need to store the covariance matrices
but would require the partials to be either stored or computed as part of the metric for all
of the input variables. Storage would require an array of shape (N, N + 40, 3) given N
unique voltages, approximately 30 ionic species, and the constant terms in comparison to
the aforementioned (N, N, 15) array required for the covariance method. If stored as the same
data type the covariance matrix route would require approximately five times the memory
as the the ordered euclidean distance with stored partials.

From a practical perspective the ordered euclidean distance provides an advantage with
respect to the memory consumption, although this diminishes in importance if small subsets
of the data are being reconstructed and analyzed. Furthermore, the current reconstruction
protocols already calculate the individual partial derivatives when determining the final
result such that the modification to provide additional outputs is trivial. Whereas relying on
pairwise covariance matrices will requires substantial changes to the reconstruction codes.
A key advantage to the pairwise method however is the ability to generalize to additional
metrics by referencing the established covariance matrices.

There is one final approach to propagating error through arbitrary metrics that it would
be remiss to omit from this discussion. That being the use of monte-carlo error propagation
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(MCEP) instead of linear error propagation for the reconstruction process. MCEP has three
main advantages; 1. minimal memory usage, 2. minimal assumptions, 3. online covariance
calculation, and one disadvantage in the computational complexity and runtime. Performing
and storing the coordinates for M monte-carlo simulations results in an (N, M, 3) array with
M < N and thus a lower memory usage compared to either the pairwise covariance or the
stored partials. With respect to advantage 2. the only assumptions that MCEP makes it
related to the distributions of the input variables as opposed to assumed both input and
outputs are normally distributed. Finally, online covariance calculations can be performed
on demand using the stored data along axis 1 for given points (i, j) in [0, N].
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Chapter 5

Calibration methods and sensitivity
validation

The primary experimental aim of this chapter is to develop a calibration method for thin film
oxides which provides error bounds on the calibrated reconstruction parameters. Given the
calibration uncertainty, the secondary goal is to test the hypothesis that ions far from the
reconstruction origin possess higher spatial uncertainty and that the incremental increases
in the depth uncertainty are due to to the cumulative nature of the depth as described in
for experimental atom probe specimen.

For this analysis a BCC Fe specimen with an approximately 5 — 6 nm Fe57 enriched thin
film grown in the [1 0 0] direction was provided by Pacific Northwest National Laboratory for
which an initial shank-angle reconstruction presented in figure [5.1] alongside a calibrated and
uncalibrated small-angle reconstruction. Conventional manufacturing of APT specimens was
performed using a Ga focused ion beam (FIB) for both rough cuts and annular sharpening,
and the APT data was collected using a CAMECA LEAP 4000X HR equipped with a UV
355 nm laser. The known growth orientation and flat interface of the Feb7 layer provide
ideal conditions to calibrate the reconstruction according to the interplanar spacing and the
specimen curvature which are predominantly governed by the £ and kf parameters.

The interplanar spacing calibration requires knowledge of the lattice parameter for the
analyzed planes. Indexing of poles in atom probe reconstructions require multiple poles to
be visible on the detector projection. However, the controlled growth orientation ensures
that the plane orientation is known even in the presence of only a single crystallographic
pole. For BCC Fe the lattice parameter is 0.2866 nm, however the target interplanar spacing
as measured by the atom probe should instead be 0.143 as the plane defined by the body-
centered atoms will also be visible within the reconstruction.

In the case of curvature the isotopically enriched thin film when perpendicular to the atom
probe analysis direction can provide a global picture of the reconstruction’s curvature through
measurement of the film interfaces. In comparison, measures of curvature which focus on
the crystallographic planes can only provide a local estimate with diminishing accuracy as
the distance from the pole is increased. Furthermore, by using isotopic enrichment instead
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Figure 5.1: Comparison of a PNNL provided shank angle reconstruction (subfigure a.), a
calibrated Bas reconstruction (subfigure b.), and an uncalibrated Bas reconstruction (sub-
figure c.). For recon a. and c. an image compression factor, £, of 1.750 and a field factor,
k¢, of 3.3 are used. While for recon b. § and ky are set to 1.073 and 3.098 respectively. The
evaporation field is set to 33.0V/nm? for all reconstructions. Subfigures a. and b. depict a
flattened distribution of Fe57 ions at a depth of 25 nm whereas c. depicts a high curvature
interface.

of elemental enrichment distortions in the reconstruction caused by transitioning between
regions of differing required evaporation fields is minimized.

5.1 Calibration method

Interplanar spacing calibration

For interplanar spacing calibration we rely on the standard methods described in Gault et
al. and Larson et al. involving spatial distribution maps. Spatial distribution maps
(SDM) are defined according to the depth-only distance between nearby ions such that peaks
correspond to atomic planes when they can be resolved. For these estimates to be accurate
the planes must be orthogonal to the analysis direction or a parabolic background will be
observed within the SDM. To correct for this background by aligning the analysis direction
perpendicular to the crystallographic planes multiple methods exist such as DF-Fit, plane
orientation extraction (POE), and the hough-transform, although for this work POE is used

Plane orientation extraction

Plane orientation extraction (POE) was originally proposed alongside local crystallography
mapping (LCM) to provide methods for systematic calibration of atom probe reconstruc-
tions in Araullo-Peters et al. , which should be referenced for an in depth discussion on
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Figure 5.2: Selection of crystallographic pole according to a series detector hitmaps cor-
responding to different event subsets. The crystallographic pole is found to be located at
(—3.069,—2.353). A. is the hitmap for events 0 through 711604, B. events 711604 through
1423208, C. events 1423208 through 2134813, and D. events 2134813 through 2846417.

the method. In this work only POE is utilized as the detector hitmap data used in our
reconstructions only have single poles violating LCM’s reliance on multiple poles.

POE does not requires the presence of a pole, however provides the most accurate cali-
brations in the vicinity of pole figures. As shown in figure poles manifest circular regions
with lower detection rates, although may have a central peak. Separating the data into
multiples slices the position of the pole can be tracked as a function of event number and
thus depth by searching for the central peak. The pole radius can then be adjusted such
that the locally depleted region is fully contained with a cylindrical ROI. Selection of the
radius greatly impacts the efficacy of the POE method, with an insufficient radii resulting
in insufficient counting statistics and an excessive radii resulting in an increased background
level for subsequent distance histograms or spatial distribution maps.

Once the pole is extracted from the detector map, a spherical ROI at point, P, with a
radius Rpog is selected for further analysis. The point P can either be selected according
to the midpoint or mean point of the pole ROI. Subsequently a series of plane orientations
N(¢,0©) where (¢, ©) indicate the azimuthal and elevation angles, are evaluated to determine
the rotation which best describes the planar arrangement within the spherical ROI.

The evaluation function from |2| can be summarized as:

1. Calculate the perpendicular distance between N (¢, ©) and each point, p;, such that
D(p; — P) < Rpog-

2. Construct a distance histogram as depicted in figure [5.3h.

3. Apply a 1D fast fourier transform, see figure [5.3b, with a median filter to separate the
high crystallinity component of the FTT from the characteristic noise.

4. Determine maximum amplitude for comparison with other N(¢,©).

Once the evaluation function has been applied to all possible planes the peak strength
can be plotted relative to (¢, ©) as seen in figure with the maxima corresponding to the
optimal planar orientation as a high amplitude within the FFT indicates a high degree of
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Figure 5.3: A, Distance histogram of best fit plane. B, fast fourier transform of A. C,
Amplitude maps of maxima for each plane(¢, ©). A high amplitude area is found for (¢, ©)
of (4.0, 39.0) in C. indicating the optimal rotation.
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A. Pre rotation B. Post rotation
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Figure 5.4: Example SDM pre (A.) and post (B.) applying the POE rotation. Post-rotation
the peak intensities are maximized while the peak widths are minimized.

crystallinity. Prior application of POE indicate that varying ¢ from 0° to 360° and © from
0° to 45° with a step size of 1° is sufficient to find the correct rotation [2, 23, 22]. If a local
calibration was desired such that POE was applied for thousands of points replacing the
grid search with a gradient approach would be recommended to improve the computational
efficiency.

Spatial distribution map

The most conventional way to determine the interplanar spacing within an atom probe
reconstruction is the spatial distribution map although there are two alternatives. The first
alternative is to use the distance histogram from the POE process, which is essentially a
SDM limited to one analysis point centered on the extracted plane [2]. A second option is
used in crystallography-mediated reconstruction (CMR) and relies on mean-shift clustering
to identify each atomic plane within the ROI [23| 22]. Once each planes mean position
is identified their orientation is corrected for and the average interplanar spacing is found.
While effective mean-shift clustering is less developed as a technique when compared to
spatial distribution maps and the distance histogram approach has limited count statistics.
Thus, as shown in figure a standard SDM is used to calculate the interplanar spacing
once the data has been reoriented using POE.

From a SDM the interplanar spacing is defined as the average distance between the local
maxima. This is conventionally performed using parameterized peak search algorithms based
on the full width half max (FWHM) or difference in subsequent extrema [40, 85]. Inspired by
DF-Fit a parameterless method is introduced to extract the extrema based on the residual
of the best fit parabola [55]. In Haley, Bagot, and Moody [55] it was recognized that fitting
a parabola to a calibrated SDM results in a parabola that matches the average value over
each peaks resulting in areas of under-estimation and over-estimation which corresponding
to the peaks and valleys present in the SDM.
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Figure 5.5: Peak Extraction process. Subfigure A. contains the initial SDM (spatial distri-
bution map) and parabola fit while subfigure B. shows the residuals of the fit. The signed
residuals are presented in C, while the extracted maxima are plotted alongside the initial
SDM in D.

Making use of the residuals does not requires the magnitudes but purely the sign of each
value which when plotted in figure [5.5| returns —1 for the valleys and 1 for each peak. An
absolute difference in two subsequent signs of 2 indicates a boundary between two extrema.
From each set of boundaries the midpoint can be taken as an approximate location of the
extrema. A more accurate estimate can be found by taking the maxima/minima within
these bounds and a gaussian mixture-model could be used to provide the most accurate
estimate at computational cost. Finally, with the maxima known the interplanar spacing is
defined as the mean separation between subsequent maxima with an error corresponding to
the standard deviation of the separation.

Curvature calibration

As opposed to the methods described by Alec et al for crystal mediated reconstructions
utilizing DF-Fit to estimate curvature and thus calibrate £ we instead make use of specimen
specific features [55] 23, 22]. In the case of grown thin films on a planar substrate, the cur-
vature is known to be flat and the isotopically enriched region makes for an ideal calibration
portion of the data as they specimen should have a constant evaporation field and thus the
curvature of either interface is appropriate for conventional curvature calibrations. However,
we propose instead to fit a parabaloid, equation to the point cloud composed of the
enriched isotopes instead of either interface.

Doing so makes the approach more generalizable and robust when compared to using an
interface and will prioritize regions of the data with higher isotopic density. This prioritiza-
tion diminishes the need for explicit filtration of the isotope from the non-enriched portion
of the dataset. If increased accuracy is required the data points could be weighted inversely
proportional to the voronoi volume further biasing the fitting process to the high density
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thin film region.

z= z—j + z—z (5.1a)
_q. (z —20)*  (y—%0)°
(TN -
_ (e —20)*  (y— o)’ c
= ( s + s ) +C (5.1c)

Here the base equation for a parabaloid, is generalized to account for a shifted
maxima through (zo, y9, C') and a variable concavity indicated by the sign of S. Note however
that these equations are only relevant for elliptic parabaloids due to each term having the
same sign. The original scaling factors (a,b) can be reclaimed through (zs,ys, S) as shown
below.

0= 5.2
N (5.2)
=L (5.3)

V151

Once the best-fit parabaloid has been identified the gaussian and mean curvatures, pre-
sented in equations and are used to characterize the curvature of the film. Fixing
the field factor and then minimizing the curvature over many ¢ then determines the optimal
compression factor conditioned on the field factor.

4

K(u,v,a,b) = 5.4
S T R
qu?  M?
@b+ — +
H(u,v,a,b) = a 73 (5.5)
- qu?  4?
a?b 1—}-?'}‘?

Both of the provided curvature equations indicate a pointwise curvature at point (u,v)
and are maximized at the origin of the parabaloid. It should also be noted that neither
formulae are scale invariant. To provide a consistent comparison among multiple ¢ the depth
coordinate of the reconstruction stack is scaled to [0,100] and the (X,Y) coordinates are
scaled according to (X%, V%) using min-max scaling routines. Furthermore the curvature
is always estimated at the origin s.t. the gaussian and mean curvatures are maximized for a
given reconstruction.
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Figure 5.6: Reconstructions along the Pareto front, the set of non-dominated solutions. Re-
con 1 is the solution with minimal curvature, but has the largest difference in the interplanar
spacing while Recon 4 minimizes the difference in interplanar spacing at the cost of curva-
ture. Recon 2 and 3 present reconstructions with a balance of minimal curvature and correct
interplanar spacing.

Multiobjective optimization

With the two objective functions defined only the optimization method is left to be defined.
In the ideal case it should be enough to first optimize k; such that the interplanar spacing is
accurate followed by a subsequent minimization of curvature to select £&. However, the inter-
planar spacing and curvature are functions of both parameters and so the second calibration
step is not guarantied to preserve the results of the first. One possible solution is to then
optimize each function in an iterative fashion until the parameters converge. Neither conver-
gence nor the existence of a single local minima with respect to both objective is guarantied.
Thus this problem falls under the purview of multi-objective optimization routines. ,

The goal of multi-objective optimization is to identify a pareto front, a set non-dominated
solutions, instead of a single optimal solution. Where a “non-dominated solution is one in
which no one objective function can be improved without a simultaneous detriment to at least
one of the other objectives” . The majority of optimization routines rely on evolutionary
or swarm-based approaches to identify the pareto front , . In this work the Pymoo
python package is employed to identify the pareto front, an example of which is provided
in figure |5.6| alongside possible reconstructions. Pymoo provides a selection of evolutionary
algorithms, although in this work U-NSGA-III is used as it is especially efficient for problems
with few objective functions as opposed to those optimized for many-objective problems ,
108].
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Multi-criteria decision making (MCDM)

As finding the pareto set is insufficient to select a singular (&, ks) for the reconstruction a
decision criterion must be introduced to select the ideal reconstruction from the pareto set.
A detailed discussion on possible decision criterion is presented in Wang and Rangaiah [123].
Of note are the TOPSIS protocol, which is one of the most commonly used methods, and
the GRA protocol. GRA has the advantage of being parameterless while TOPSIS requires
user defined weights to indicate the priority of each objective function. A non-parametric
version of TOPSIS can be accessed by setting the weights to 1 for each objective however so
user interaction is not inherently required.

TOPSIS, technique for order of preference by similarity to ideal solution, works by first
constructing a best-case, A,, and worst-case scenario, A,,. For a minimization problem A,
is defined as the minimum value for each objective observed in the pareto-front. It follows
that A, is then the maximum values of the pareto-front. Given these two solutions the goal
of TOPSIS is to minimize the distance from A; and maximize the distance from A,. Let
C' indicate a costs matrix of shape (m,n) where m indicates the number of pareto sets and
n the number of objective function. TOPSIS then begins by normalizing and weighting the
cost matrix as in equations [5.6) and where w indicates the function weights.

Cy

CZOTm = 72 (56)
\/ Zkz:l ij
vaeight = "My )
(5.8)

Note that equation describes vector normalization according to the original descrip-
tion of TOPSIS as in Hwang and Yoon [60]; for a detailed discussion on alternative nor-
malization schemes see Vafaei, Ribeiro, and Camarinha-Matos [121]. Once weighted the
reference solutions and the distances to each solution within the pareto front are defined
below.

Ay = {maa:(C;”eight]j =1,,..,n} (5.9)

Ay = {min(C"|j = 1,,...,n} (5.10)

Diy = | Y _(Cweisht — A,,)2 (5.11)
\&

Dib — \ Z(C’weiyht _ Ab)Z (512)
j=1

Finally a similarity metric, s;, is defined in equation to indicate the relative proximity of
a pareto solution to the ideal and non-ideal solutions. The pareto solution which maximizes
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this metric is considered to be optimal [60].

Di’LU
Si D+ D, (5.13)
As previously mentioned GRA, gray relational analysis, is a non-parameterized alterna-
tive to TOPSIS which compares the pareto solutions to an ideal solution and neglects to
consider a non-ideal solution. GRA starts similarly to TOPSIS in that the costs matrices
are first normalized but instead of vector normalization min-max scaling is performed as in
equation for a minimization routine.

CGRA max; (Cij) —Cjj

max;(Ci;) — min;(Cy;) (5.14)

The reference point for each objective and the difference from the pareto solutions are then
defined according to equations and

AjGRA = mamZ(FZ]) (515)
AFy, = |AS™ — F,| (5.16)

From this point the gray relational coefficient, GRC, is defined below such that the maxima
indicates the optimal pareto solution.

min AFU + maz(AF;;)

e = Z ; + max(AF;;) (5.17)

Our analysis indicates that both GRA and unweighted TOPSIS identify the same optimal

solution of (1.050, 3.074) corresponding to Recon 2 in figure 5.6} Given that two of the three

objective functions provide a measure of curvature the following weights, [0.25,0.25,0.5],

were provided to TOPSIS to place a higher emphasis on the interplanar spacing resulting.

This weighting ensures the total influence of curvature and interplanar spacing are equivalent
and results in an estimate of (1.073,3.098) depicted in figure [5.6]

Calibration uncertainty

Neither the multiobjective optimization routines nor the pareto-optimal selection methods
employed in this work do not provide the error estimates required to perform error prop-
agation. Thus, a method to estimate the uncertainty of £, ks, or preferably both must be
designed. Thankfully, an error bound for the interplanar spacing can be estimated from the
SDM as long as a minimum of three peaks are observed. As for the curvature estimate it
would be possible to perform linear error propagation for the gaussian and mean curvature
using the error bounds on the best-fit parabaloid’s coefficients. However, Pymoo does not
support inclusive of uncertainty estimates for the objective functions thus error must be
incorporated after identification of the pareto set.
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Given [Var(K;),Var(H;),Var(D)] the first approach to quantify the error of the cal-
ibration utilizes monte-carlo error propagation as described in section 2.3] Assuming K, H,
and D"*! follow normal distributions each pareto solution’s objective functions would be per-
turbed according to the corresponding variance. Once the perturbed pareto set is generated
the GRA and TOPSIS protocol would be used to find the pareto optimal solution and the
corresponding (&, k) recorded. This process would then be repeated many times and the
calibrated values expressed as the mean and standard deviation of the stored (§, k). Note,
that these estimates are correlated and thus violate the assumptions of reconstruction error
propagation detailed in section [3|

As an alternative linear error propagation can be performed using Var(D!!) and the
following empirical relationship between D"k, and & [40, [23].

k’ 2
DM o (?‘) (5.18a)

2
D' — ¢ (%) +b (5.18b)
Where a indicates the proportionality constant and b a constant term which are solved by
fitting a linear regression model with (k;/€)? and D" as the independent and dependent
variables. The model is specifically fit to a subset of the pareto front excluding the optimal
solution from |5.1| corresponding to a (&, kf) of (1.073,3.098). To account for the variance in
Dy the subset is weighted according to the inverse of the variance as specified in Seabold
and Perktold [107]. According to the weighted linear regression shown the proportionality
constant is equal to 0.016+2e—4 and the intercept is equal to 0.1264+2e—3. The covariance of a
and b is further estimated to be —3.61e-7 indicating that errors have an inverse relationship.
Equation is subsequently rearranged below to solve for k; as a function of £, D" q,
and b.

hkl _
by = ey 20 (5.19)
a

Given that Var(D!*) is known from the calibration process and the weighted regression
provides a covariance matrix for a and b an estimate of possible k; values which would
produce the measured interplanar spacing can be determined through application of linear
error propagation. The partial derivatives for equation [5.19| are defined in equations
through and the complete variance equation is provided in equation [5.24]
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Figure 5.7: Weighted linear regression along the pareto front describing D"*! as a function
of £, the image compression factor, and ky, the field factor. The red dashed lines indicate
the regression and its confidence intervals, and the error bars are the 1o.
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+ (f—;) cov(a, b)

The same process can be repeated to find Var(€) as a function of Var(k;) and Var(D"*)
resulting in an estimate of (1.073+£0.010) which is a 0.965% error. However due to the inter-
dependence of Var(¢) and Var(ky) an estimate of both cannot be provided simultaneously.
When used in conjunction with reconstruction error propagation £ is assumed to have zero
error and Var(ky) is provided as an input. Var(ks) is chosen instead of Var(§) as the field
factor is expected to have a larger influence on the pointwise spatial uncertainty. Combining
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this process with the results of the calibration procedure presented in provides the follow-
ing reconstruction parameter estimates, (1.07340, 3.098+£0.030), given that oprw = 1.91e-3.
The percent error on k; is then only 0.968% for this calibration.

5.2 Uncertainty quantification

Quantification of the reconstruction error is performed in two fashions; the first of which
assesses the absolute sensitivity of the reconstruction to each parameter, by assuming a
unit variance, while the second assumes a uniform percent variance in order to estimate the
scaling behavior of the variance with respect to the final ion positions. Furthermore, it is
necessary to consider the percent error scenario as the applied voltages can reach values of
8kV and there can be upwards of 50 ionic species with unique volumes. For both V and
(2 then a singular variance parameter is insufficient to describe the true error where as a
percent error would allow the analysis to account for the range of values by automatically
scaling the variance given to the error propagation equations.

Sensitivity

Starting with sensitivity the two prevailing paradigms are local sensitivity analysis (LSA)
and global sensitivity analysis (GSA) [102]. LSA strictly defines the sensitivity of a response
variable as the slope with respect to it’s inputs (U), letting X5 represent the response
variable this corresponds to the partial derivative as in [5.25]

5 Bas

S(XP* U) = s for Uin (F kg, & Lyn, X Y2V, Q) (5.25)
Because Sy, the sensitivity coefficient, corresponds to the partial derivative the reconstruc-
tion’s sensitivity can be calculated by providing the reconstruction program a variance of
one for the variable of interest. Under this constraint on the variance it can be shown that:

5XBas
ouUu

2
Var(XP*|\Var(U) =1) = ( ) = S3(X P U) (5.26)
Extending LSA to account for interactions between variables requires a computationally
expensive evaluation of higher order partial derivatives for all possible permutations of
U. However, the presence of interactions can be found by comparing the sum of the
squared sensitivities to Var(XP®|Var(u) = 1 for uin U) which represents the variance
of X7 evaluated with a unit variance for all possible parameters. If > . ; S(XP*,U) <
Var(XP*|Var(u) = 1 for uin U) then there are negatively correlated variables while a
larger summation indicates positive correlations.

While LSA provides a rigorous definition of sensitivity it is inadequate to characterize
the sensitivity for variables which exist over a larger domain. Global measures, such as
Sobol indices, attempt to generalize results over all of the factor space but lack a unique



CHAPTER 5. CALIBRATION METHODS AND SENSITIVITY VALIDATION 67

definition of sensitivity [102, 111]. In the case of atom probe it would be beneficial to apply
GSA to the detector coordinates and voltages as they occupy a large range of values within
a reconstruction. However, we are predominantly concerned with the pointwise error of
individual ions and thus rely only on LSA. A global understanding of sensitivity is instead
achieved by analyzing how the sensitivity varies with respect to the spatial position of the
ions.

Local sensitivity analysis

In order to visualize the sensitivity as a function of position in the reconstruction a series
of subsets within the reconstruction are selected. To measure the impact on the (X, Y)
coordinates the first ROI is taken with respect to the Z coordinate and is selected for Z in
[—25.9, —23.6] such that the thin film is contained. The variances for this slice is presented
in figure 5.8 A. through D. Next, a thin strip is selected within the slice to isolate a specific
range of X or Y coordinates. In the case of the sensitivity of X and Y the strip is selected to
minimize the possible ranges of the Y coordinate, and thus Y%, for analysis of X and vice
versa as the X does not depend on Y% in the Bas reconstruction. The depth correction, d#’,
is dependent on both sets of detector coordinates however and so instead an ROI rotated 45°
with respect to the origin is selected ensuring that both coordinates have an equal impact on
Var(dz"). For visual consistency the same ROI is used for > dz; despite it being independent
of both X! and Y%, The sensitivities with respect to the four most influential variables is
then provided in figure 5.8 E. through H.

From this figure we see that Var(X) and Var(Y') are maximized when the magnitudes are
maximized resulting in asymmetric variance. Var(dz') and Var()_ dz;) possess symmetric
variance about the origin instead and in the case of Var(dz’) is maximized at the edges of the
detector. Despite Var()_ dz;) being independent of the detector coordinates we find that
there is a relationship between variance and (X,Y’) with a lower variance measured at the
reconstruction’s edge. This is likely due to the voltage as field evaporation requires higher
voltages at the center of the reconstruction due to blunting of prior evaporation events.

Further conclusions are drawn from the sensitivity figures, E. through H., where it is
observed that X, Y, and d2’ are most sensitive to X% and Y% at the reconstruction’s
center implying that the higher variance at the specimen edge is not due to the detector
coordinates as one might expect. As the distance from the center increases we observe that
¢ is the most influential parameter followed by k¢. F'is then found to be the least influential
of these four parameters. Var()_ dz;) is observed to be most sensitive to the ionic volume
estimates, €2, followed by the efficiency, 7, image compression factor, &, and field factor,
k¢. The normalized sensitivities are not observed to have a strong association with spatial
position.

The same style of analysis is repeated with respect to depth, however the ROI selection
process is altered to minimize any possible effects of (X,Y). First, a cylindrical shell is
extracted with a minimum and maximum radius corresponding to 7 and 8 nm, one half of

this shell is then unfolded in figure A. through D. In the case of Var(X?5%) the half-shell
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Figure 5.8: Total variance of X, Y, d2/, and ) dz; as a function of (X, Y) coordinates
indicated by figures; A, B, C, and D. Figures E through H present the sensitivity normalized
by total variance for the four most influential parameters in the Bas reconstruction. Data is
collected within the horizontal slice bounded by depths of —25.9 and —23.6 nm.
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Figure 5.9: Total variance of X, Y, d2’, and ) dz; as a function of Z coordinate indicated
by figures; A, B, C, and D. Figures E through H present the sensitivity normalized by total
variance for the four most influential parameters in the Bas reconstruction. Data is collected
within the cylindrical shell bounded by a radius of 7 and 8 nm.

is split along the Y axis and the opposite holds for Var(Y5). The depth coordinates are
split based off the same 45° rotation about the Z axis as was used in figure [5.8, The final
ROI used to assess the sensitivity with respect to depth is then centered at 0 for Var(dz’)
and Var(} dz;) and near 3.5 nm from the center for Var(X?) and Var(Y5%).

From the top row of figures it is observed that Var(X) and Var(Y) do not strongly
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Table 5.1: Sensitivity of the Bas reconstruction coordinates to the input parameters as
measured by the average normalized sensitivity, S?(C,U), where C the assessed coordinate
with respect to the variable, U, and * indicates normalization by Var(C). Reconstruction
parameters and corresponding sensitivity are listed row-wise in order of highest to lowest
sensitivity. The final row indicates the sum of the sensitivities for each coordinate, where a
value of 1 indicates that there are no unaccounted for interaction terms.

Coord (C) X Bas y Bas dz' > dz;
Priority | U E[S?2(C,U)] | U E[S?2(C,U)] |U E[S?2(C,U)] | U E[S?(C,U)]

1 ¢ 7.88e—1 19 7.83e—1 £ 9.48e-1 Q 9.98e-1

2 k¢ 1.16e-1 kg 1.23e-1 kg 2.67e—2 n 1.11e-3

3 Xt 9.46e-2 ydet  9.39¢-2 Xt 1.27e-2 £ 5.0le—4

4 F 8.34e—4 F 8.27e—4 ydet  1.25¢-2 k¢ 6.01e-5

5 L 6.22e—6 L 6.17e—6 F 2.35e—4 F 5.29e—-7

6 Vv 2.56¢—8 % 2.56¢—8 L 7.48¢—6 L 3.95¢-09
7 ydet (.00 Xdet (.00 1% 7.28¢-7 % 1.91e-11
8 Q 0.00 Q 0.00 Q 0.00 ydet (.00

9 n 0.00 n 0.00 n 0.00 X%t 0.00

Sum 1.00 £1.50e-16 | 1.00 =+£1.50e-16 | 1.00 =£1.67e-16 | 1.00 =+£1.82e-16

depend on depth and instead are maximized as X %% and Y5 increase. Opposing these are
Var(dz') and Var()_ dz) which are greatly influenced by depth but with differing direc-
tionality. Var(dz') is maximized near the beginning of the reconstruction at low depths and
low voltages where as Var () dz;) is maximized at the end of the reconstruction as expected
due to the cumulative nature of the coordinate. As for the normalized sensitivities the four
most influential parameters are the same for each variance as a function of depth. X, Y, and
dz', all sharing share a positive correlation between depth and the sensitivity to the detector
coordinates.

Assigning a final ranking of parameter importance for each output is done by measuring
the average normalized sensitivity throughout the reconstruction and is presented below in
table The results of the sensitivity analysis agree with the proposed ranking of variables
according to estimates of the partial derivatives in with the added benefit of comparing
all variables where as originally the relative importance of the sets: {ks, F,V'}, {¢, L}, and
{ X%t ydetl could not be assessed. From these comparisons it is of note that with the
exception of Y dzj, £ is the most influential parameter and that V' is of negligible importance
in all cases. Furthermore, the reconstruction is more sensitive to the detector coordinates
then previously thought with them generally possessing the third or fourth highest average
sensitivity. It bears repeating however that this analysis does not account for the differing
magnitudes of error the variables possess as it is equivalent to the scenario where each variable
has the same variance, when in reality it is unlikely that all variables even have variance of
similar magnitude. For instance consider that the calibrated value for £ is 3.098+0.030 and
has an percent error of approximately 1%; given that F' was assigned a value of 33 the error
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of 0.030 would be equivalent to 0.01% of F'. Furthermore, both V" and Q exist over a wide
range of values and a single variance is insufficient to represent their impact. Given these
limitations this analysis is extended to consider the variance conditioned upon a percent
error.

Percent error analysis

Recalling that the partial derivatives of X?% or Y5 with respect to any of the input
variables, denoted as U, are equal to % for a shared constant, C, consider the scenario where
each variable is assigned a percent error, oy = pU. Equation implies then that for a
given percent error X 2% and Y529 are equally sensitive to all variables with an exception
for the impact of X7 on Y 5% and vice versa.

Var(XP|Var(U) = (pUY?) = (‘”(?U) (UY? = (%) WUP=C*  (20)

This does not apply fully to either dz’ or ) dz;, however there are subsets of variables
with equivalent impact. It is expected that the sets (ks, F,V), (&, L), and (XP<,YPe)
effect dz’ equally given a percent error, while for )" dz; the impact of 7 is expected to be
1/4 that of ¢ and €2 cannot be predicted succinctly as its the expanded derivatives depends
on the frequency of each ionic species. Plotting the results in figure validates theses
expectations both as a function of (XPes yBas),

From this we also confirm that Var(X?%) and Var(Y?%) scale in a quadratic fashion
with respect to XB% and YB% respectively. Whereas the analysis of Var(dz') along the
45° diagonal is best described as a fourth-order polynomial which shows steep increases in
variance at the edges of the dataset and while not clearly visible a local maximum near
the center surrounded by two local minima. It is also observed that for equal percent
errors & and L have the largest impact on the variance while the remaining variables have
a comparable impact, albeit the datapoints corresponding to X and YP¢ have a higher
degree of scatter. Finally for ) dz; the variance is highest at the center and decreases as
a function of distance from the center for all variables. Furthermore, the efficiency is found
to have the smallest impact, approximately 1/4 that of £ and L. There does not however
appear to be a large discrepancy between the impacts of (ks, F,V, L,&,Q). Differences in
Var(d_ dz;) are expected to be more pronounced for larger specimen depths and so the
behaviors with respect to Z7% are plotted in [5.11}

Var(X), Var(Y), and Var(dz') appear to be equally sensitive to the input variables
as in figure [5.10l However while Var(X) and Var(Y) possess relatively constant values
irregardless of depth Var(dz') is decreasing instead; standing in contrast to Var(>_ dzy)
which increases exponentially with respect to depth. In the latter’s case n is the least
influential parameter while (k¢, F,V, L,&) are represented as just a single curve. The ionic
volume, €2 does not possess uniform behavior from roughly 15 to 20 nm has the largest impact
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Figure 5.10: Total variance of X, Y, d2/, and ) dz; as a function of (X, Y) coordinates
given by percent errors indicated by figures; A, B, C, and D. Figures E through H present
the variance given a uniform percent error in each variable. Data is collected within the
horizontal slice bounded by depths of —25.9 and —23.6 nm.
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Figure 5.11: Total variance given a percent error of X, Y, dz/, and ) dz; as a function of Z
coordinate indicated by figures; A, B, C, and D. Figures E through H present the variance
given a uniform percent error in each variable. Data is collected within the cylindrical shell
bounded by a radius of 7 and 8 nm.
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before appearing to overlap with (k¢, F,V, L, &) prior to diverging at 30 nm. The region from
20 to 30 nm corresponds roughly to the thin film and it is unclear if this behavior is due
solely to changes in the composition or related to the calibration process.

5.3 Conclusions

In summary it was demonstrated that performing multiobjective optimization over a com-
bination of conventional interplanar spacing calibration techniques and non-conventional
global curvature estimates was sufficient to optimize £ and ky simultaneously. Furthermore,
it was shown that error bounds for either { or k; could be established by fitting equation
[5.18b] rewritten below, along the entirety of the pareto front. The optimal values for k; and
¢ were found to be 3.098+0.030 and 1.073+0.010 which correspond to a roughly 1% error in
either parameter. This analysis also exposed a limitation of the error propagation equations
as the estimate of k; depends on ¢ and vice versa violating the assumptions of |3| that none
of the input parameters are correlated.

k 2
DR — ¢ ({) +b (5.130)

Additionally performing a sensitivity analysis with respect to both a unit variance and a
uniform percent variance showed X5 Y54 and dz’ are most sensitive to errors in £ and k;
as was predicted during the derivations in 3| Noting that dz’ only consists of the correction
term which places the ion atop the hemispherical cap, it was found that cumulative depth
term, Y dz;, was most sensitive to €2, n, £, and k; in descending order when considering
a unit variance. When instead a percent error was applied the importance of 1 diminished
while the variance due to (2, £, and k; converged.

When considering entirety of the depth coordinate Var(} dz;) was found to be greater
than Var(dz') for all ions implying that Var(Z?%) is dominated by Var(>_ dz;) neglecting
any covariance terms. Additionally, Var()_ dz;) was found to be positively correlated with
specimen depth such that the position of points near the specimen base are ill-defined in
comparison to those at the specimen apex. These final two observations appear to confirm our
initial hypothesis, however we had predicted that the positions and properties of features,
represented by many ions, would have increasing uncertainty. While it was shown that
the variance of an individual ion agreed with our hypothesis we neglected to consider the
covariance. Neglecting the covariance between points will result in either an overestimate or
underestimate of error dependent upon the sign of the correlation and the explicit calculation.
For example, accounting for covariance in differences such as those found in the euclidean
distance formula will result in lower estimates of error if the points are positively correlated.
A positive correlation is expected to be the case between subsequent ions as the term Z5
can be written as a sum of Z2%¢ and a depth increment. Further, analysis that computes the
covariance between ions is thus necessary to determine if the hypothesis applies to complex
features and not individual ions.
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Chapter 6

Measurement of epitaxially grown
thin films

In this chapter the ion specific analysis from [5| is expanded to large scale structures, the
isotopically enriched thin film, and properties, interplanar spacing, present within the BCC
Fe specimen. The purpose of error propagation with respect to the interplanar spacing, dp,
is to identify any biases or discrepancies introduced by the scaling step in the calibration
process. While determining the thickness of the thin film and its associated error is relevant to
the self-diffusion studies this specimen is apart of. This sample is the as-grown non-oxidized
state which serves as a baseline to compare to oxidized atom probe specimen extracted from
the same foil. Thus an accurate measurement of the film thickness and understanding of
the uncertainties are imperative to determine if the oxidized sample’s concentration profiles
have statistically meaningful differences from the non-oxidized scenario.

6.1 Monte-Carlo reconstructions

So far in this work linear error propagation has been used to calculate the pointwise error
within the atom probe reconstruction and to provide closed form expressions to understand
the significance of each reconstruction parameter. At this point, however linear error prop-
agation is insufficient to analyze the uncertainty in either dpy; or the film thickness. This is
for two reasons; 1. both measurements are dependent on multiple ions simultaneously and
would require calculations of the the all N - (NN —1) covariance terms with N equal to 3.6¢e6,
2. the iterative and discrete nature of the sub-computations prohibit practical differentiation
of the full functions.

Instead a monte-carlo approach which was touched on in as an alternative for prop-
agating error in distance calculations and described in is employed. Monte-carlo error
propagation, MCEP, is one of the most common methods for handling so called black-box
type problems, but is also commonly used alongside linear error propagation [3| 75, 33].
For the following applications of MCEP a series of reconstructions are created with fixed
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values for the evaporation field, flight length, image compression factor, and efficiency of
{F : 33.0V/nm,L : 382mm,§ : 1.073,n : 0.36} and the field factor, ks is represented as
a normal distribution with mean of 3.098 and standard deviation of 0.030. The remaining
inputs, voltage (1), ionic volume (), X9 and Y% are defined according to the instrument
and are assumed to have zero error.

For each reconstruction ky is sampled from the aforementioned normal distribution and
the measured interplanar spacing and film thickness are saved. The mean of these results
over all reconstructions is taken as the final measurement and the standard deviation is
considered to represent the uncertainty. As an alternative, the deviation of the mean could
be taken but this will converge to zero as the number of monte-carlo reconstructions increase
and does not provide meaningful information about the spread between the reconstructions.

6.2 Interplanar spacing comparison

Given each monte-carlo reconstruction the same process used in is employed to deter-
mine the average interplanar spacing as well as each individual difference in peak position.
Unlike the calibration procedure however the point cloud is not scaled to a standard size
and dimension. This was required during the calibration because the changing field and
image compression factors caused large fluctuations in the point cloud dimensions such that
an apriori defined ROI was insufficient for finding the required orientation or interplanar
spacing. Standardization of the data was chosen instead of designing a separate calibration
procedure for the ROI dimensions. One goal of this analysis is to then compare the interpla-
nar spacing in the non-standardized case and determine if the calibration process produced
biased estimates of djy;.

Monte-Carlo plane orientation extraction

The same hyperparameters were used for the monte-carlo POE process as in the calibration
step. As the pole position is dependent on the detector coordinates and not k; the same
pole was extracted for all reconstructions. Here the pole center and radius were defined as
[—3.07,—2.35] and 2.5 mm. Given a reconstruction a spherical ROI possessing a 2.5 nm
radius was then placed at the mean position of the Fe58 ions contained within the pole. In
all cases the elevation angle, ©, was incremented from 0° to 45° while the azimuthal angle,
¢ ranged from —180° to 180°. The step size for both angles was 1°.

Analysis of 1,000 monte-carlo simulations provides a set of three distinct (¢, ©) corre-
sponding to (—180,0), (58,1), and (57,1), which are plotted alongside a randomly chosen
amplitude map in figure . The (—180,0) rotation accounted for 998 of the reconstruc-
tions. This indicates that planes within the region of interest remain highly orthogonal to
the analysis direction given perturbation in the field factor, k;. The other two rotations are
likely due to minor numerical fluctuations in the intensity map supported by the presence



CHAPTER 6. MEASUREMENT OF EPITAXIALLY GROWN THIN FILMS 7

Random Monte-Carlo Amplitude Map
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Figure 6.1: Distribution of (¢, ) as determined by plane orientation extraction overlaid
atop a randomly chosen amplitude map. There are three unique rotations with a rotation of
(—180°,0°) for 998 reconstructions and a single reconstruction each for (57°,1°) and (58°,1°).

of a large band of high intensity values for all possible ¢. Fixing ¢ the intensity is then
inversely proportional to ©.

Note, that the minimal rotation is expected given that aligning the detector center with
the crystallographic pole is a known method to minimize the relative curvature of the planes
at the pole. Furthermore, the atom probe specimen was specifically made to be perpendicular
to the [1 0 0] planes. Finally, the discrete nature of the grid search is likely the reason for
the unique rotation angles, whereas a continuous mapping may have exposed a sub-degree
spread.

Monte-Carlo Dy

The spatial distribution maps, SDM, were generated by placing a one nm spherical ROI
about each Feb8 ion in order to preferentially target the thin film. For each reconstruction
the the individual peak positions within the SDM were stored alongside the adjacent plane
spacing, and the interplanar spacing’s mean and standard deviation.

From figure thirteen distinct planes, indexed from 0 to 12, are resolved within the
spherical ROI. Recall that the lattice parameter is 0.2866 nm for BCC Fe and that the
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Figure 6.2: Option B. Distribution of thirteen peaks extracted from the spatial distribution
maps (SDMs) of 1,000 monte-carlo reconstruction. Each peak, approximating the relative
position of an atomic plane, is defined according to a normal distribution, N(z, o).

expected interplanar spacing is 0.1433 nm given that the body-centered plane is resolvable.
Then it should be possible to resolve fourteen planes within the ROI as it spans a total
length of 2 nm. However, as the central peak corresponds to the plane each ion belongs to
only thirteen peaks can be observed.

The number of resolved planes and their planes remained constant for all of the recon-
structions. Assuming that each peak follows a gaussian distribution the standard deviation
increased proportionally with the average distance, D, from the reference ion. Each monte-
carlo reconstruction then provided eleven estimates for [1 0 0]. Taking the mean and standard
deviation of all 11,000 estimates then provides final estimate for D, of 0.142 4-4.2¢-3 nm.
Repetition of this analysis while fixing k¢ as 3.098 produces an estimate of 0.142 + 3.45¢-3
nm while the as provided reconstruction estimates the spacing to be 0.150 £ 3.05e-3.

The monte-carlo estimates and the fixed field factor estimates are comparable differing
only in that the monte-carlo possesses a larger uncertainty as one would expect. However,
the PNNL provided reconstruction is less accurate tending toward higher values, but is
marginally more precise. According to the calibration procedure the expected value for
DM was 1.433 + 1.91e-3. When compared to the prior three measurements we observe
the lowest standard deviation and also that the mean value is higher than 0.142 despite
the same field factor being used. This discrepancy could be due to the scaling procedure
increase the number of peaks within the SDM or biasing the results, however the exact cause
is indeterminate.
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6.3 Film thickness

Measurement of concentration profile FWHM as a proxy for film
thickness

The standard method of measuring the size of features possessing either elemental or isotopic
enrichment is to generate a 1D concentration profile orthogonal to the feature surface |40,
74]. This is done under the assumption that the width, often defined as the full width at half
maximum or FWHM, of the concentration profile is correlated with the physical properties
of the feature of interest. For this experiment the property of interest is the film thickness
as a function of lateral position within the reconstruction. Given that the film should be
nearly perpendicular to the depth coordinate due to the calibration process a cylindrical
ROI centered with the reconstruction is sufficient to measure the film thickness. However, as
mentioned during the calibration and interplanar spacing measurements the film orientation
is expected to diverge as it approaches reconstruction boundaries. To measure the thickness
as a function of radius an annular ROI is used instead of a purely cylindrical one.

Once the ROI is identified the 1D concentration profile is calculated. This is commonly
accomplished by generating a histogram of the depth coordinates within the ROI, requiring
user input to determine the bin size. For atom probe the bin sizes are often set as a multiple of
the lattice parameter or an estimate of the current reconstruction’s resolution. Besides errors
induced by binning the primary downside to this method is that the histogram produces
a discrete estimate. As an alternative kernel density estimates (KDE) can be employed
which provide a continuous distribution, but increase the number of required inputs as most
methods require both a kernel and an associated bandwidth which is equivalent to the bin
size. While there are optimization routines for both bandwidth and bin size the former
generally relies on k-fold cross validation and is computationally expensive whereas the later
is insufficient for analysis of multimodal distributions. Recent advancements in density
estimates have however removed these limitations by optimizing the kernel instead of the
bandwidth as demonstrated by fastkde [95, 94].

Despite these advancements this study found that computing the concentration profile
using the fastkde method was not cost effective when performed for multiple ROI over
many monte-carlo reconstructions. Furthermore, the kernel density estimates are inherently
normalized which makes it difficult to calculate ratios of different isotopes. In lieu of this a
sliding window estimate was using to leverage the computational simplicity of the histograms
while producing a pseudo-continuous measurement of the concentration profile. In this
method the equivalent to the bandwidth or bin size is the window size, which was set as a
multiple of the lattice parameter.

In figure [6.3] an example of the Fe58 and Fe57 abundance are plotted in the leftmost
graph with a span indicating the FWHM with respect to the Feb8 ions. The distributions of
these two isotopes show a relative increase in the Feb8 content centered at a depth of —26
nm which corresponds with the thin film. Instead of using purely the Fe58 ions to measure
the thickness according to the FWHM, a ratio measurement is presented in the rightmost



CHAPTER 6. MEASUREMENT OF EPITAXIALLY GROWN THIN FILMS 80

Example FWHM calculation for ROI centered at 7 nm
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Figure 6.3: Depiction of the sliding-window method for estimating 1D concentration profiles.
The estimate is applied to both Feb7 and Feb8 species with the FWHM of the Feb8 profile
shown with a vertical span in subfigure A. An example of a relative concentration profile is
shown on the right-hand side, subfigure B, alongside a generalized normal, gennormal, fit to
the data which is able to accurately capture the tophat profile whereas a normal distribution
would result in an artificially sharp apex.

figure. One advantage of this is that the noise levels at the top of the Feb58 enriched region
are decreased and the borders of the peak are sharpened. Finally, a generalized normal
distribution with background, eq [6.1], is also fit to the data to provide one final estimate
of the FWHM. This is done to account for the baseline concentration of Feb8 within the
surrounding matrix and when the background is low should agree with the FWHM of the
relative measurement.

In this equation 3, «, and p are the parameters inherent to the generalized normal
distribution while A and B are the amplitude and background corrections. The shape
parameter, 3, controls the degree to which the generalized normal approximates its children
distributions which consists of normal and Laplacian distributions to name a few. When
[ is two the distribution approaches a normal whereas one indicates a Laplacian. As 3
approaches inf the distribution models a uniform distribution. Generally the peak apex
flattens as [ increases as is observed in figure [6.3] « is the typical scale parameter governing
the spread of the distribution and g is the mean. This function does also contain the gamma
function, I'(1//5) which serves as a normalizing constant.

A (2ar<ﬁ1/@>”p [‘ Sl

) +B (6.1)
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Measurement of Film thickness with respect to a sliding annular

ROI

Following the process outlined above the film thickness is measured for a series of annular ROI
with a fixed radial width of 1.433 nm which corresponds to five times the lattice parameter
of BCC Fe. When the annuli are compared they are represented as the mean radius of the
annulus, for example if the annulus is bound by the radii, 5 and 7 nm, is is described as the
R6 annulus. Similar to the sliding window estimate for the concentration profile a pseudo-
continuous description of the film thickness is produced by incremented the mean radius of
the annulus in step sizes of 0.22567 nm. This step size was determined by the number of
desired measurements and according to the minimum and maximum radius to probe.

The results of this analysis over 200 reconstructions is provided in figure for 100
different annuli. Compared to the monte-carlo interplanar spacing estimate which took four
hours to evaluate 1,000 reconstruction, these calculations took thirteen hours providing a
limit on the number of simulations that could be performed. Note that the error bars in
the figure denote the 1o bounds and that while the measurement specific errors had minor
fluctuations the average error in the estimates remained fairly constant over all radii. The
fitted FWHM error had the least fluctuations and the errors averaged to approximately 0.10
nm regardless of measurement method.

From the figure it can be seen that the initial measurements of the mean film thickness
hover in the range of 5.2 to 5.4 nm which the FWHM of the Fe58 isotopes providing the
lower bound. These estimates are relatively consistent up to a mean radius of 10 nm at
which the measured thickness decreases to a local minima of 5.0 nm for the Fe58 FWHM
and a a minima of 5.2 for the gennormal fit. There is a slight recovery in the FWHM values
at the mean ROI radius approaches 16 nm, however this is followed by an ever decreasing
estimate which drops from an estimate of 5.1 nm for the gennormal fit at a radius of 20 nm
to approximately 4.6 nm over a 3 nm change in the mean radius.

Comparison of the three over the sliding roi

There are four possibles causes for this behavior: 1. the true film thickness is not uniform,
2. measurement of the profile over an annulus is insufficient to capture asymmetry induced
by the reconstruction, 3. the remaining curvature in the reconstruction is resulting in a
non-orthogonal estimate of film thickness, 4. the use of a global compression factor for the
reconstruction is resulting in a point cloud compression which is proportional to the radius
of the ions. Cause 1 is unlikely as epitaxial film growth generally produces films with a high
degree of uniformity. Possibility 2 cannot be ruled out given that the bounds of X5 and
Y Bes are [—24.9,32.2] and [—24.732.7] nm due to to placement of the detector center at the
pole. We consider this an a less probable source of error compared to 3 and 4 however as the
maximum annulus radius was set to 23.3 to preempt measurement of an annulus partially
populated with ions.

This leaves option 3 and 4, if cause 4 is assumed to be negligible then a non-orthogonal
measurement is expected to provide an increase in the FWHM as the signal should be signal
should be diluted with a lower peak intensity as only a portion of the ions are appropriately
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