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Abstract

Estimation and Utilization of Reconstruction Uncertainty for Atom Probe Feature
Extraction

by

Evan Still

Doctor of Philosophy in Engineering-Nuclear Engineering

University of California, Berkeley

Professor Peter Hosemann, Chair

Atom Probe Tomography (APT) is a powerful analytical technique for 3D characterization
of materials at the atomic scale which has been widely used to study irradiation induced
features. However, the accuracy and reliability of the atom probe reconstruction and post-
processing methods such as cluster analysis is often neglected. In an effort to account for
both of these limitations we introduce a two-step method for quantifying the quality of an
atom probe reconstruction and the resulting secondary analysis.

First, we developed a pointwise measure of uncertainty for APT data based on linear er-
ror propagation. This approach provide a systematic way of estimating the uncertainty
in the atom positions and the most influential reconstruction parameters. The pointwise
uncertainty measure can be used to assess the local quality of APT data and govern alter-
nate reconstruction directions which minimize uncertainty. Furthermore, focusing the error
analysis not on resolution but on parameter and coordinate uncertainty enables error to be
propagated through complex processes such as the measurement of isotopically enriched thin
films.

Second, we developed a method which extends monte-carlo consensus clustering from K-
based clustering algorithms to density-based clustering algorithms. In doing so a measure of
relative stability is introduced to describe the ambiguity of clustering observed in an APT
sample and automate the selection of the distance parameter for DBSCAN (Density-based
spatial clustering of applications with noise). Our approach uses Monte-Carlo perturbation
statistics, and thus could be linked to use the pointwise uncertainty established in the first
part of this work, to generate alternate atom probe datasets and then apply DBSCAN to
each of these datasets. In doing so the sample size for which to calculate grows in magnitude
enabling more thorough post-clustering filtration methods with which to extract clusters
from high-noise scenarios. We use statistical methods to analyze the results and determine
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the optimal DBSCAN parameters that maximize the clustering performance and minimize
the uncertainty.

The efficacy and utility of pointwise error propagation is demonstrated through a case study
on the measurement of an isotopically enriched iron thin film while our novel clustering algo-
rithm, Density-based Monte-Carlo Consensus Clustering (DMC3), is benchmarked against a
round robin study on binary Fe-Cu systems with an emphasis on irradiation induced hard-
ening. Our approaches provides a quantitative and objective way of assessing the quality of
APT data and improving the reliability of APT data analysis.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the world has been facing a serious issue of climate change, and it has
become imperative for the global community to shift towards sustainable and renewable
sources of energy. Nuclear fission energy has been used commercially to produce electricity
for the last 60 years, and the arguments for its continued use as a solution to the climate
crisis primarily focused on the socioeconomic implications and the environmental impact
compared to alternative fuel sources. On the socioeconomic front, nuclear energy provides a
reliable baseload energy and it is believed that it will aid emerging economies on their path
to energy independence without disproportionately impacting underserved communities [52,
103, 70, 53]. Thus far use of nuclear energy has prevented over 1.84 million deaths related
to air pollution and 60 gigatonnes (Gt) of CO2 greenhouse gas emissions that would have
resulted from burning fossil fuels [69, 93]. Furthermore, current predictions indicate that
nuclear energy could prevent an additional 420k-7.04 million deaths and 80-240 Gt of CO2
emissions by 2050 [69]. However, similar to other extractive industries it is often underserved
communities which are impacted most by the exploitative tactics of mining conglomerates
and the residual health impacts from mismanaged waste leading to resistance from the local
populous [90, 76, 101, 53]. Without confronting the historic impacts of nuclear energy
on underprivileged communities and working to address the concerns of the modern-day
stakeholders in the use and growth of nuclear power will be stifled on the social stage,
regardless of legislative or technical solutions to the economic, security, and safety challenges
that so far have limited the expansion of nuclear.

Nuclear fission energy has been used commercially to produce electricity for more than
60 years for commercial power generation. The United States, being world’s largest producer
of nuclear power, has accounted for more than 30% of electricity generated by nuclear power
in the world. The 93 currently operating nuclear reactors account for 20% of the USA’s
electricity production [93]. In the United States, nuclear power plants are either pressurized
water reactors (PWRs) or boiling water reactors (BWRs), with other reactor types including
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heavy water reactors, gas-cooled reactors, graphite-moderated reactors, and liquid-metal-
cooled reactors primarily serving as research reactors. Despite the low rate of mortality
compared to other fuel sources such as goal, there have been several accidents in the past
that have resulted in nuclear radiation leaks, including the Three Mile Island accident in
the United States and the Chernobyl and Fukushima disasters [100]. These incidents have
caused public concern regarding the safety of nuclear power plants and have motivated the
development of improved reactor designs that incorporate accident tolerant fuels and passive
safety mechanisms as core requirements of fourth generation reactors [118, 11, 15, 99, 118,
68, 51, 1].

Challenges for generation IV reactors

Generation IV reactors are still in the conceptual design stage, but they hold great promise
in terms of addressing some of the current limitations of nuclear energy. These reactors
aim to achieve higher fuel efficiency, reduce the volume and longevity of nuclear waste, and
enhance safety features. One of the key features of these reactors is the use of new types of
fuel, such as liquid metal, gas, or molten salt, which could potentially provide higher energy
yields and longer fuel cycles. Additionally, development the aforementioned passive are a
primary avenue of research, funding via multiple US Department of Energy (DOE) programs
[21, 49].

The implementation of Generation IV reactors faces significant technical and regulatory
challenges. The use of new fuel types and coolants requires the development of new materials
that can withstand the extreme environments within the reactor, such as high temperatures,
corrosive salts, and fast neutron fluxes. One of the main challenges for materials in current
and next-generation reactors is the effect of radiation damage on the mechanical properties of
these materials. Radiation damage can cause changes in the microstructure of the materials,
such as the formation of voids, dislocations, and precipitates, which can lead to material
embrittlement and degradation of mechanical properties. Additionally, radiation can cause
changes in the chemical properties of materials, resulting in changes to local chemistry.

Another challenge for materials in reactors is the need for materials that can withstand
high temperatures and corrosive environments in spite of chemical changes depletion brought
on by irradiation, implantation, and transmutation. Many of the structural materials used in
reactors, such as stainless steels and nickel-based alloys, have excellent corrosion resistance
but are limited by their temperature capabilities. The development of new materials, such
as advanced ceramics and high-temperature alloys, that can withstand higher temperatures
and harsher environments could lead to more efficient and safer reactor designs [110].

In summary, nuclear energy has the potential to play a critical role in combating climate
change and providing sustainable and reliable energy sources. Current and next-generation
reactor designs offer significant improvements in terms of fuel efficiency, waste reduction,
and safety features. However, the development of new materials that can withstand the
extreme environments within reactors is critical for realizing the full potential of nuclear
energy. Addressing the challenges associated with materials science in nuclear energy will
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require sustained investment in research and development to improve our understanding of
material behavior in extreme environments and to develop new materials with enhanced
properties. It is important for policymakers, the nuclear industry, and the scientific commu-
nity to collaborate and prioritize the development of advanced materials for nuclear energy
applications. By addressing the materials science challenges, we can unlock the full potential
of nuclear energy and realize a clean, sustainable, and reliable energy future.

1.2 Irradiation effects

Radiation damage is a critical issue for the longevity of materials in a reactor environment
not only due to the intrinsic damage to the crystal structure but the synergistic effects with
other degradation phenomena. The degree of radiation damage is quantified by the average
number of times, each atom has been displaced from its lattice site, which is the definition of
displacement per atom (dpa). These displacements originate from the transfer of energy from
incoming energetic particles (neutron and ion) to lattice atoms, such that energy transfer is
sufficient to break the bonds of that atom and its neighbors, denoted as the displacement
energy. The displaced atom goes on to cause further displacements producing interstitials,
vacancies, and anti-site defects in a chain reaction referred to as a displacement cascade.
While the majority of the defects annihilate during the subsequent recombination process,
the remaining defects form defect clusters, migrate to defect sinks, or remain as anti-site
defects. The increase in point defect concentration contributes to radiation-enhanced dif-
fusion, and thus phase instability, dissolution, and segregation of elements. These indirect
phenomena then enhance other degradation phenomena such as corrosion, creep, and em-
brittlement, etc. The accumulation of radiation-induced defects (interstitial/vacancy loops,
voids, precipitates) lead to significant hardening and embrittlement of the structural mate-
rials, which significantly influences the safety consideration of the structural components in
service.

The Kinchin-Pease model is a widely used approach for describing and correlating the
behavior of point defects in crystalline materials with the measure of dpa under radiation
exposure. The fundamental assumption of the Kinchin-Pease model is that the number of
point defects generated in a material is proportional to the dpa. It also assumes that the
migration of point defects is driven by random thermal motion, and that the rate of defect
migration depends on the concentration of defects and the concentration of mobile point
defects such as vacancies [92, 71]. Despite these limiting assumptions the Kinchin-Pease
model remains widely used in part due to the experimental difficulty in measuring the true
number of displacements given recombination and its efficacy at providing a relative measure
to compare the presence of phenomena for the same class of materials.

There have been efforts to overcome these limitations, namely sophisticated models such
as the Norgett-Robinson-Torrens (NRT) model and the Modified Kinchin-Pease (MKP)
model [91, 18]. These models take into account the effects of displacement cascades, as
well as the migration and interaction of point defects, in predicting the behavior of materials
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exposed to high-energy particles [18]. While the NRT model and the MKP model are more
complex than the Kinchin-Pease model, but they provide more accurate predictions of the
behavior of materials exposed to radiation.

Thus far only displacement damage has been considered however there is a second dom-
inant mechanism for radiation damage. That being transmutation damage where a nuclear
reaction transmutes a lattice atom into another element or isotope. Under a fast spectrum
neutron flux, transmutation of alloying elements does not typically happen in high enough
quantities to have an effect on the thermodynamic stability of the alloy. However, the pro-
duction of alpha particles from (n, α) reactions have a significant effect on the mechanical
properties of the alloy. The production of alpha particles and the subsequent capture of
electrons can lead to formation of helium bubbles which in steel can lead to significant
embrittlement, reducing the material’s ability to deform and absorb energy [16, 30].

Radiation enhanced phenomena

Irradiation-assisted creep and swelling are two volumetric phenomena that affect the behavior
and properties of materials exposed to radiation. Creep is a type of plastic deformation that
occurs over an extended period of time to a material that is exposed to elevated temperature
and stress [131, 10, 86, 79]. There are three modes of creep with two modes governed
by diffusion, which enable mass transfer within the material by mobile point defects [134,
98]. The first and diffusionless mode of creep is called dislocation climb and takes place at
relatively high stresses and low temperatures. In this mode, plastic deformation of a crystal
can be achieved by shifting an extra plane of atoms one lattice spacing across the crystal
plane and is not governed by diffusion but can be enhanced via solute drag [133, 130, 77, 19,
124, 12].

The second mode of creep is Coble creep, which occurs at relatively moderate tempera-
tures and stresses. In Coble creep, the deformation mechanism involves atoms diffusing along
grain boundaries where there are increased vacancy concentrations allowing conservation of
volume but eliciting shape change [134, 98]. For both dislocation and Coble creep grain
boundary sliding is generally observed and preventing the formation of cracks and voids at
the grain boundaries [31, 132, 125, 115]. In some cases, though the presence of structural
features such as coherent precipitates can inhibit the movement of adjacent grains prevent-
ing grain boundary sliding and thus enabling crack formation [125, 115]. The third mode of
creep is Nabarro-Herring creep, which occurs at high temperatures and low stresses. While
both Nabarro-Herring and Coble creep rely on atomic diffusion Nabarro-Herring describes
atoms diffusion across the grains and is not limited to the grain boundaries requiring a higher
activation energy [134, 98, 10, 86, 79]. Another important distinction for these two modes
is that Coble creep possesses a directional dependence. This dependence is based on the
alignment of the grains major-axis with the application of stress. If the grains are mainly
aligned orthogonal to the stress direction for instance the diffusing atoms will have to travel
orthogonal to the loading direction along grain boundaries until a new parallel boundary is
reached before they can travel in the same direction as the stress and vacancy gradient [119].
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Swelling is the volumetric increase of a material and the coupled reduction of density,
and it occurs as a result of the interactions between interstitials and dislocations during the
initial displacement cascade. In the initial displacement cascade, interstitials and vacancies
are created in equal numbers, and subsequent recombination reduces their concentrations
equivalently. However, interstitials are able to travel through the crystal lattice more rapidly
than vacancies and dislocations have a larger capture radius for interstitials than vacancies
[127, 89, 129]. interstitials The combination of enhanced mobility and capture radius, which
is due to the larger stress field that an interstitial imposes on the surrounding crystal, the
excess interstitials are quickly absorbed by dislocations, leaving behind an excess of vacancies.
Swelling exhibits temperature dependence, and its degree is governed by the point defect
concentrations, which were developed through point defect balance equations, evaluating the
strength of each source and sink for each type of defect at a given temperature and in the
case of 316 stainless steel maximum swelling was found to occur at 500◦C when irradiated
to 30 dpa. This experiment found that the bubbles were the primary contributor to the
swelling and not voids [56].

The temperature dependence of irradiation-assisted creep and swelling cannot be un-
derstated and is critical in understanding the underlying mechanisms and predicting their
effects. Irradiation-induced point defects can contribute to the onset of dislocation climb and
Coble creep at lower temperatures than what would be observed otherwise. On the other
hand the onset of Nabarro-Herring creep typically takes place at high temperatures such that
that the equilibrium vacancy concentration exceeds that which are produced under irradia-
tion [6, 56, 89]. In this case the kinetics are predominately governed temperature rather and
not radiation. The degree of swelling is also governed by the point defect concentrations,
which are temperature-dependent. When the temperature is too low, swelling is inhibited,
as the point defects do not have sufficient mobility to coalesce into voids. If the temperature
is too high, then the high mobility of point defects allows them to be consumed by point
defect sinks at a rate exceeding that of void production. In the moderate temperature range,
void swelling is able to occur, as the point defects have sufficient mobility to cluster, but
insufficient mobility to reach absorption sites [64].

Radiation induced precipitation

Stainless steel pressure vessels are an essential component of a nuclear power plant, which
houses the nuclear reactor core and its coolant under high pressure and temperature. How-
ever, the radiation environment in a nuclear reactor can lead to changes in the microstructure
and mechanical properties of stainless steel, impacting its safety and reliability. One of the
primary concerns is radiation-induced precipitation and embrittlement, which can be exac-
erbated by the presence of impurities such as copper [96, 97, 82, 67].

Radiation-induced precipitation occurs when solute atoms in the steel aggregate to form
precipitates due to the increase in defect concentrations resulting from as irradiation. In
reactors this process is caused by the displacement of atoms due to energetic neutrons, but
can also be emulated to some degree by the use of heavy ions in lab environments. Under the
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enhanced diffusion conditions of irradiation, the solute species may undergo rapid diffusion
that enables the solutes to aggregate near nucleation sites such as grain boundaries [65, 67,
82]. In the case of stainless steel, this radiation induced segregation can alter the corrosion
resistance due to the nucleation of chromium carbides at the grain boundary which depletes
the surface chromium concentration and/or embrittle the material altering its toughness
depending on the specific precipitate structure [62].

One of the most significant solute species for embrittlement is copper. Historically, the
copper concentration in steel was minimized such that copper precipitates could not form
under normal use cases. However, the point defect generation resulting from irradiation
enables precipitation even with sub 0.1 wt% Cu content leading to significant changes in the
mechanical properties of the steel [87, 97, 96]. Segregation and subsequent precipitation for
solutes such as Cu and Mn,at the grain boundaries results in local loss of ductility referred
to as grain boundary embrittlement. Underlying this phenomena is the decrease in the
cohesion energy of the grain boundary, which reduces the resistance to deformation, leading
to cracking or fracture [] gb embrittlement irradiation induced cu precipitation.

The exact hardening mechanisms; coherency, modulus mismatch, and order strengthen-
ing, given Cu precipitates in steel alloys varies depending on the specific alloys and size of
the precipitates. The impact of fine Cu precipitates in BCC steel has been predominantly
estimated using the dispersed barrier hardening model [97, 96, 116]. In this model the in-
dividual precipitates are assumed to act as barriers to dislocation motion according to the
Orowan mechanism where the precipitates act as pinning points about which the dislocations
bow and produce dislocation loops until the stress is sufficient to shear the features [97, 96,
116, 126]. Superposition is then used to expand the model to consider the impact of many
precipitates.

In the above scenario the fine scale precipitates are generally BCC and coherent with the
surrounding matrix and thus an example of coherency strengthening. Due to the coherency
there is no strict ”barrier” preventing dislocation movement through the precipitates, but
instead the relative mismatch in lattice spacing of the features produces a strain field which
interacts with the dislocation causing the hardening. On the other hand as Cu precipitates
grow in size they transition to an FCC lattice and modulus hardening is a better descriptor
of the strengthening mechanism. Modulus strengthening occurs due to the mismatch in the
elastic modulus between the precipitates and the matrix. The relative mismatch in modulus
results in lattice strains which increase the resistance to dislocation motion [104, 63]. In this
scenario the Cu precipitates possess a lower modulus than the matrix, contributing to an
increase in strength of the material without leaving behind Orowan loops [104].
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1.3 Reproducible data analysis for APT

Technique summary

As a characterization technique atom probe tomography (APT) fills a unique niche by com-
bining isotopic information with a three-dimensional reconstruction to investigate the atomic
arrangement of materials. Improvements to the atom probe, such as the inclusion of UV
lasers, have enabled to study a wide range of materials, including metals, semiconductors, ce-
ramics, and polymers. APT is particularly useful for studying radiation-induced microstruc-
tures because it can provide a detailed 3D view of the material at the atomic scale.

For example, APT has been used to study the formation of voids in metals exposed
to high-energy radiation. Voids are empty spaces that form in the material as a result of
radiation damage, and they can have a significant impact on the mechanical properties of the
material. APT can identify the position and size of individual voids in the material, allowing
researchers to study their formation and evolution over time. Similarly, APT has been used
to study the formation of dislocation loops in metals exposed to radiation. Detection of
dislocation loops however remains difficult with atom probe and requires the loops to become
decorated by solute species in high concentrations [113, 47, 48].

In practice, APT works as follows: a small needle-shaped sample is prepared and mounted
on a conductive tip, which is then placed inside a high-vacuum chamber. A high electric
field is applied to the tip, which ionizes atoms from the surface of the sample that are then
accelerated according to a potential gradient and towards a detector. As the ions impact
the detector, a mass-to-charge ratio is assigned based upon the time past between the pulse
application and collision. The location on the position-sensitive is then combined with
assumptions about the flight path and material properties to back project the ions resulting
in a 3d reconstruction of their initial location [5, 36, 40, 74].

One of the key advantages attributed to APT is an extremely high spatial resolution. It
can identify individual atoms with a resolution of about 0.1 nm in depth and 0.3 nm later-
ally, which is comparable to the resolution of conventional transmission electron microscopy
(TEM), although high resolution and atomic scale TEM can achieve much higher resolution
with less ambiguity [44, 43, 24]. While a 0.1 nm depth and 0.3 nm lateral resolution was
attributed to APT, in truth achieving this requires samples with well understood evapo-
ration properties such as silicon and calibration of the reconstruction by tweaking many
input parameters to resolve features with known properties apriori [85, 38, 42]. This is most
commonly done by indexing crystallographic poles in the detector hit map and measuring
the interplanar spacing, hence the sub nm resolution, or as is the case for this work by
minimizing the curvature of an isotopically enriched thin film [85, 38, 42, 23, 22]. These
features are absent in many specimens and in those cases reconstructions are tuned by the
eye of subject matter experts with local measurements of the interatomic spacing providing
a vague definition of resolution.
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Uncertainty quantification of APT reconstructions and analysis

In light of these limitations on the resolution of atom probe this work aims to quantify
the uncertainty of the reconstruction on a point by point basis using linear error propaga-
tion. Doing so with linear error propagation enables closed form solutions describing each
input variable’s impact on the depth and lateral uncertainties determining the importance
of accurately selecting each variable. The aim of this approach is two fold, 1. is to confirm
community beliefs on the most important variables, and 2. to assess if observations on lateral
vs depth resolution also apply to pointwise error. Conventional wisdom dictates that the
evaporation field/field factor and image compression factor are the most important parame-
ters as varying these provide the largest visual changes for a reconstruction. The discussion
of resolution vs error is focused on the a summative step in the reconstruction algorithm
where the depth coordinate of the second, third, etc. ions depend on the prior points. It
then follows that the depth uncertainty should increase as a function of evaporation order
while the lateral uncertainty remains relatively constant. The hypothesis can be summarized
as follows:
Sole use of resolution is an insufficient measure of variability for atom probe reconstructions
because:.

• The X, Y dimensions possess heteroscedastic variance.

• The Nth ion’s position in Z is dependent on the prior N-1 ions resulting in a variance
that scales with ion order and thus sample depth.

– Thus, features identified near the specimen base are inherently less accurate than
those at the specimen apex.

To evaluate this hypothesis chapters 2 and 3 establish the principles behind the employed
error propagation methods and demonstrate the application of linear error propagation to
the reconstruction algorithm. With these observation chapter 4 reflects on how the pointwise
error estimates can be used for complex calculations given the covariance between points.
Chapter 5 then demonstrates how a thin film can be used to calibrate the image compression
factor and field factor. Additionally, this chapter provides a numerical sensitivity analysis
of the different input parameters as a function of spatial position within the atom probe
tip. Finally, chapter 6 demonstrates how these methods can be applied when estimating the
aforementioned thin film’s thickness and how the the thickness varies as a function of lateral
position.

Automation of APT Analysis

The remainder of this thesis focuses on the extraction of features from atom probe data,
specifically the use of clustering algorithms to identify solute-enriched precipitates. Such
algorithms can be loosely grouped into K-based methods, where the user supplies the number
of clusters (K) to find, and density-based methods where the user provides an effective density
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threshold with which to define clusters. For the analysis of atom probe data density-based
methods make up the majority of used algorithms, with density-based spatial clustering of
applications with noise (DBSCAN) being of special importance [122, 27, 78, 46].

DBSCAN is one of the original density-based clustering algorithms and has been applied
to a wide variety of machine learning and data analysis problems over nearly every scientific
field which employs clustering algorithms. As a density-based clustering algorithm DBSCAN
establishes a density threshold through the use of two parameters: epsilon (ε) and order (O),
otherwise referred to as minimum points (MinPts) [29]. Epsilon is a distance threshold that
defines the maximum distance between two points in a cluster. If two points are within
epsilon distance of one another, they are considered part of the same cluster. The order
parameter (O) specifies the minimum number of points required for a cluster to be formed
and expanded. Points that are not part of any cluster are considered noise and in the case
of atom probe would represent the matrix distribution of a solute species.

When analyzing APT data using DBSCAN, selecting the appropriate values for epsilon
and order is critical to obtaining accurate and meaningful results. There are several methods
for selecting appropriate values for epsilon and order. One common method is to use the
k-distance graph, which plots the distance to the k-th nearest neighbor for each point in the
dataset. The k-distance graph can be used to visually identify appropriate values for epsilon
given an order of k. The knee point of the graph is a good starting point for selecting epsilon
although this method is known to breakdown for data with a high background concentration
and still leaves the order parameter to be set.

Parameter selection for DBSCAN and other density-based methods have been relatively
stagnant over the past decade despite significant strides being made for the selection of the
cluster number in K-based methods. In particular, recent developments of the monte-carlo
consensus methods have leveraged computational power to automatically select K for K-
means, K-centroids, etc. and even provides a hypothesis test to ensure that the data is
better represented by multiple clusters as opposed to one cluster. This is a fundamental
limitation of all K-based clustering algorithms. In chapter 7 the consensus clustering process
is modified for use with density-based algorithms resulting in density-based monte-carlo
consensus clustering or DMC3. The ability for DMC3 to optimize both the order and epsilon
parameter in variable noise levels is also assessed here. Then in chapter 8 DMC3 is applied
to a set of simulated Fe-Cu systems that were a part of prior round robin study to provide
a basis of comparison with the analysis of leading subject matter experts [27, 78].
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Chapter 2

Summary of error propagation
methods

2.1 Approaches to uncertainty propagation

Prior attempts to understand the inherent inaccuracies in the atom probe reconstruction
process have focused on determining an experimental interplanar spacing to compare with
known lattice parameters to both calibrate the dataset and estimate the resolution of APT
[44, 42]. In this context, differences from the known lattice parameters are representative of
the bias in our estimate while the resolution is indicative of experimental uncertainty. Note
that the accuracy of such measurements has an inverse relationship with the distance from
the reference feature often a pole figure.

The emphasis on resolution is carried over from microscopy and provides context on the
smallest identifiable features given the system hardware, but does not provide information
such as variance, mean, and median for individual measurements. To instead quantify the
uncertainty on a pointwise basis statistical methods for error propagation are employed. This
work focuses predominantly on linear propagation of error from an experimental standpoint
however additionally details monte-carlo methods for instances where application of linear
propagation is inapplicable due to either theoretical or practical constraints.

2.2 Linear propagation of uncertainty

Consider a quantity x which is a function, f, of two measurements, u and v, for which the
variance, var(x) is unknown. Assume that (x, u, v) are representative of approximately
normal random variables denoted (X, U, V) where (U, V) posses known variances and a
covariance, cov(U, V). Additionally assume that f is continuous, differentiable, and can be
locally approximated as a linear function. Then var(X) is given according to equation 2.1
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which can alternatively be written in terms of the standard deviations, σ [117, 72, 7].
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When propagating uncertainty through a series of operations it is common to utilize a
step by step approach to determine the error of individual operations and treat those as the
deviations for a subsequent operation. One consideration when employing this approach is
that a series of independent measurements may result in non-zero covariance in subsequent
steps if multiple intermediate variables share dependencies. To demonstrate this aspect
consider the scenario where U, V are no longer representative of measurements but calculated
quantities similar to X with an unknown cov(U, V). Furthermore, in this example let U, V
be function of a series of independent measurements, M1 and M2. Directly using equation
2.1 in this scenario will result in an error estimate that cannot incorporate the cov(U, V).
There are three approaches to then include the covariance term in this estimate, the first of
which employs the conventional covariance formula, equation 2.2, the second employing the
Cauchy-Schwarz inequality, equation 2.3, and the third of which involves rewriting the final
function for X in terms of M1 and M2.

cov(U, V ) =
1

N

N∑
i=1

(ui − u)(vi − v) (2.2)

Firstly, utilization of equation 2.3 gives an exact magnitude and sign of the covariance
however requires multiple sample pairs for each measurement, mi, and thus (ui, vi). A posi-
tive covariance indicates the scenario where an overestimate of U is always accompanied by
an overestimate in V with respect to the mean values resulting in (ui − u) and (vi − v) pos-
sessing the same sign. An alternative scenario is where an overestimate in U is accompanied
by an underestimate in V which results in a negative covariance, and thus a smaller total
variance than expected without the covariance correction. The final scenario is where an
overestimate in U is accompanied by an underestimate of equal magnitude in V resulting in
a covariance of 0 but does not mean the variables are independent.

|cov(U, V )| ≤
√
var(U)var(V ) (2.3)

Secondly, in the absence of multiple sample pairs but known variances the Cauchy-
Schwarz inequality, equation 2.3, provides an upper bound on the magnitude of the co-
variance but does not indicate the relationship between the two variables and thus the sign.
From this an upper and lower bound can be provided on the variance of X, as shown in
equations 2.4 and 2.5, but the distribution of var(X) will remain unknown.

C =

(
∂f

∂U

)2

var(U) +

(
∂f

∂V

)2

var(V ) (2.4)
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C − |2 ∂f
∂U

∂f

∂V

√
var(U)var(V )| ≤ var(X) ≤ C + |2 ∂f

∂U

∂f

∂V

√
var(U)var(V )| (2.5)

The final approach is to substitute the functions for U, V into X such that X incorporates
the input variables for U, V. If U = f(M1) and V = f(M1,M2) then X = f(M1,M2).
Equation 2.1 can then be rewritten in terms of M1 and M2 which if independent removes
the need for the covariance term and alternatively have a known covariance. For a more
complex series of equations with an arbitrary number of variables equations 2.1 can be
generalized as a summation over the partial derivatives and variances with respect to each
variable. In equations 2.6 X is written as a function of M which represents a list of variables,
M1,M2, ...MN to iterate over.

var(X) =

|M |∑
i=1

(
∂f

∂Mi

)2

var(Mi) +

|M |∑
i=1

|M |−i∑
j=1

2
∂f

∂Mi

∂f

∂Mi+j

cov(Mi+j,Mj) (2.6a)

σ2
X =

|M |∑
i=1

(
∂f

∂Mi

)2

σ2
Mi

+

|M |∑
i=1

|M |−i∑
j=1

2
∂f

∂Mi

∂f

∂Mi+j

σMi+j ,Mj
(2.6b)

2.3 Monte-Carlo uncertainty propagation

As an alternative to linear propagation of uncertainty monte-carlo methods can instead
be employed to overcome some of the limitations described in section 2.2 in exchange for
increased computational costs. Consider the same initial scenario with random variables (X,
U, V) where x is f(u, v). Furthermore, maintain the assumption that the variables U, V have
known variances and covariance.

The var(X) and E(X) are estimated using a series of N monte-carlo trials where each trial
consists of a sampling and evaluation step. In the sampling step random samples u, v are
drawn from U, V. In this scenario it is important to note however that if U, V are dependent
variables that one of the samples must be drawn from the conditional distribution. For
instance if u is sampled from U than v must be drawn from the conditional distribution of
V given u. Next, the evaluation step consists of evaluating f(u, v) and storing the estimate,
x. After N trials E(X) and var(X) are found by taking the mean and variance of x from each
monte-carlo trial. For an algorithmic description of this process reference algorithm 1.

In the prior approach to find the variance of X two additional constraints were required;
1. that X, U, V follow a normal distribution, and 2. that f was continuous, differentiable,
and approximately linear. Constraint 1 is relaxed such that any distribution is valid for U
and V if a random sample can be generated. Constraint 2 is eliminated by treating f as
a black-box. Treatment of f as a black-box further generalizes this application to complex
processes where linear propagation is unsuitable such as tomographic reconstructions [75, 3,
33].
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Algorithm 1 Monte-carlo error propagation

for i = 1 to N do
Create sample ui from U
Create sample vi from U|V
Compute xi = f(ui, vi)

end for

Compute x̂ =

∑N
i=1 xi
N

Compute v̂ar(x) =

∑N
i=1(xi − x̂)2

N − 1

The main detriment to this method is the computational cost required when sampling and
evaluating the function for hundreds if not thousands of times. There are situations however
where monte-carlo has the computational advantage over linear propagation. Generally, this
is restricted to scenarios where the partial derivatives of the function serve as a computational
bottleneck for the linear method. In the case of atom probe tomography this limit is intrinsic
to shank angle reconstructions as the depth increment for each ion is dependent on the prior
ions’ increment. The required derivatives are then a recursive function which is evaluated
for millions of ions.
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Chapter 3

Reconstruction error propagation

Reconstruction of atom probe tomographs continue to be a complex problem due to a mul-
titude of factors, some of which are specimen specific and others artificial. On the specimen
specific front, heterogeneity within the material can lead to distortions in the required evap-
oration field. This impact is most evident in the presence of precipitates where precipitates
with a higher required field relative the matrix resist the evaporation process and eventually
produce protrusions on the specimen surface. Once evaporation is possible these protrusions
act as a secondary tip and lead to a disproportionately large projection of the precipitate
onto the detector surface, referred to as under-focusing [40, 74].

At the other extreme exists over-focusing which occurs when the precipitate preferentially
evaporates leaving a cavity within the specimen. This cavity then projects ions from the
cavity edge inwards shrinking the relative size of the feature and distorting the density.
Proprietary reconstructions algorithms held both by commercial companies and research
institutions serve as the artificial barrier to accurate reconstruction processes. In spite of
this the basic principles of common reconstruction processes are well known and documented
in the literature [40, 5, 74].

All reconstructions are founded upon two principles, 1. the specimen radius of curvature
and the electric field are related and 2. an evaporation event can be converted into a depth
increment and thus the final depth coordinates of the ions can be deduced from the order
of evaporation. The primary difference in reconstruction algorithms is the treatment of the
depth increment, where voltage-based algorithms rely purely on the applied voltage at any
given moment and shank-angle reconstructions require that the changing specimen radius
and depth increment maintain a constant angular relationship. In the analysis presented in
this work the emphasis is placed upon voltage-based methods as shank-angle approaches are
not conducive to linear propagation of uncertainty.
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3.1 Basis for tomographic reconstruction

The base tenant that enables the reconstruction process is that the electric field, F, experi-
enced at the sample apex is inversely proportional the surface curvature and thus the radius,
R, given that the specimen apex is modeled as a hemispherical cap as shown in figure 3.1
alongside the point-projection schematic [50]. To account for the fact that the specimen
shank will result in a decrease in the produced field relative to a perfect sphere a correction
term is included in equation 3.1 and is referred to as the field factor, kf . It should be noted
that while trends have been observed relating the shank angle and radius to kf in the works
of Larson et al, [73], no general trend has been identified. Despite this it has been shown
that trends can be derived for a given material [41].

F = F (V, kf , R) =
V

kfR
(3.1)

L

rdet

R

O

ξR

P

Xdet, Ydet

Ѳ’

Figure 3.1: Schematic view of the ion point-projection from specimen apex. Here O and P
define the apex origin and projection origin and θ′ indicates the compressed launch angle.

As the evaporation process occurs the specimen will inherently blunt given a non-zero
shank angle and result in a decrease in the experienced field. It follows then that an ever
increasing voltage must be applied to induce field evaporation. Given that the voltage,
V, is known and not the specimen curvature equation 3.1 is refactored as equation 3.2 to
determine the radius of curvature during the ith evaporation event at the voltage, Vi. For
both of these equations it should be noted that while V is a measured quantity a global
estimate of F is often used alongside a user defined kf . A common method for estimating F
is to set it equal to the field of the most dominant element or can be determined according to
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field evaporation model [120, 83]. Furthermore, dynamic reconstruction processes attempt
to overcome the limitations on kf and F by providing local estimates of both parameters
such that the lattice spacing is preserved to produce a local estimate of F [38, 41, 57, 22].

Ri = R(Vi, kf , F ) =
Vi
kfF

(3.2)

The partial derivatives for Ri are then:

∂Ri

∂Vi
=

1

Fkf
=
Ri

Vi
(3.3)

∂Ri

∂Vi
= − Vi

F 2kf
= −Ri

F
(3.4)

∂Ri

∂kf
= − Vi

Fk2f
= −Ri

kf
(3.5)

Applying the general form of equation 2.1 to equation 3.2 establishes the following relation-
ships for the uncertainty in Ri given estimates of the variances and or standard deviations
of Vi, kf , and F.

var(Ri) =

(
∂Ri

∂Vi

)2

var(Vi) +

(
∂Ri

∂kf

)2

var(kf ) +

(
∂Ri

∂F

)2

var(F ) (3.6a)

+ 2
∂Ri

∂Vi

∂Ri

∂kf
cov(Vi, kf ) + 2

∂Ri

∂Vi

∂Ri

∂F
cov(Vi, F ) + 2

∂R

∂kf

∂Ri

∂F
cov(kf , F ) (3.6b)

σ2
Ri

=

(
Ri

Vi

)2

σ2
Vi

+

(
Ri

kf

)2

σ2
kf

+

(
Ri

F

)2

σ2
F (3.6c)

In equation 3.6c it is assumed that there are no covariance with respect to the initial
variables. This generally holds with respect to Vi however F and kf often influence the
selection of one another. So much so that it is common to treat them as one variable. For all
further derivations covariances between the initial variables will be neglected but covariances
between dependent variables are accounted for.

Once Ri is found, the spatial coordinates perpendicular to the specimen tip axis (Xi, Yi),
are identified using the detector coordinates and magnification effects of the instrument.
This transformation is dependent on the exact reconstruction protocol and is detailed in
section 3.2 and 3.3 for small-angle and wide-angle reconstructions. Note however, that Xi

and Yi can be calculated independently for each ion.

General spatial uncertainty in Z

From the original approximation of the specimen as a conical segment with a hemispherical
cap the depth coordinate of an ion can be split into two components. The first of which dz’
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indicates the relative position of the ion on the spherical cap and the second dz which will
indicate the incremental change of the apex as the specimen undergoes field evaporation.
The depth coordinate for ion, i, is then given as:

Zi =

(
i∑

j=1

dzj

)
+ dz′i (3.7)

Unlike Xi and Yi where each point can be calculated independently from one another the
position of Zi requires knowledge of the prior i-1 ions. Ignoring dz′i, as it is independent of
dz′j for all (i, j), naive propagation of error for Zi results in a summation of i error terms
corresponding to the current ion and all prior ions depth increments as shown in equation
3.8.

σ2
Zi

=
i∑

j=1

σ2
dzj

(3.8)

It then follows that the uncertainty of points i+ 1 is greater than point i and so on such
that the pointwise error compounds as further points are added to the reconstruction giving
rise to the first hypothesis: the error associated with feature properties scales with respect
to the evaporation order and thus features composed of ions far from the the reconstruction
origin are inherently less accurate. Furthermore, dzi+1, dzi, dzi−1, etc. are not independent
and require the incorporation of at least (i − 1)i/2 covariance terms. If the points have a
positive covariance the resulting variances are expected to be higher than the naive estimate
and is likely the case as each depth increment will be influenced by predominantly shared
variables. The need to consider the covariance terms is avoided by propagation of error for
the final equations written in terms of the initial independent variables, S.

Contributions to dz

Calculation of the depth increment is tied to that of the analyzed volume where this volume
is the summation over the volume of the evaporated ions, Φi, as seen in equation 3.9:

Vevap =
n∑

Ωi (3.9a)

= nevapΩ (3.9b)

where there have been n evaporation events and an average atomic volume, Φ, can serve as
a simplifying assumption. One additional consideration is that of the instrument detection
efficiency, η, resulting in a lesser number of detected events such that nd = ηnevap.

Furthermore, the analyzed volume, Vevap (not to be confused with the applied voltage,
Vi) must still be related to the specimen geometry and the corresponding evolution as a
function of depth as in equation 3.10.

Vevap =

∫ Zmax

0

wv(z)dz (3.10)
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(ΩL2kf
2F2)

(ηSDξ
2V2)dz =

Vevap , Sa

Field of View SD

Figure 3.2: Schematic representation of the depth increment given known evaporated volume
and the surface area for both the specimen and detector.

Here, wv(z), describes the relative volume change as a function of the current depth and
serves as the main difference in existing reconstruction protocols [9, 45, 61, 5]. Combining
equations 3.9 and 3.10 establishes the ion-specific, equation 3.11a, and general form, equation
3.11b, of dz.

dzi =
Ωi

ηwV (zi)
(3.11a)

dz =
Ω

ηwV (z)
(3.11b)

In the case of both voltage-based reconstructions presented in this work Vevap is estimated
as the product of the depth and specimen surface area within the detector field-of-view,
Sa. A reverse projection of the detector surface area, SD, onto the specimen apex tangent
plane, as in figure 3.2, relates the two areas according to equation 3.12 under a small angle
approximation.

Sa =
SD
M2

proj

(3.12)

If the ion volume is assumed to be distributed homogeneously across Sa such that
wV (z) = Sa then combining equations 3.11a and 3.12 while substituting for Mproj establishes
the following relationship which can be written as a constant term, Cdz and non-constant
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component.

dzi =
ΩiL

2F 2k2f
ηSDξ2V 2

i

(3.13a)

= Cdz
Ωi

V 2
i

(3.13b)

Performing error propagation on equation 3.13a requires eight partial derivatives resulting
in the following equations:

∂dzi
∂F

= 2

(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

F

)
(3.14)

∂dzi
∂kf

= 2

(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

kf

)
(3.15)

∂dzi
∂L

= 2

(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

L

)
(3.16)

∂dzi
∂Ωi

=

(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

Ωi

)
(3.17)

∂dzi
∂Vi

= −2

(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

Vi

)
(3.18)

∂dzi
∂ξ

= −2

(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

ξ

)
(3.19)

∂dzi
∂SD

= −
(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

SD

)
(3.20)

∂dzi
∂η

= −
(
L2F 2k2fΩi

ηSDξ2V 2
i

)(
1

η

)
(3.21)

As written above it is evident that the eight partials can be expressed as a product of dzi and
1/T where T indicates which variable the derivative is with respect to. The eight equations
can be then condensed into one equation 3.22a with the inclusion of F (T ) to account for the
constant term.

∂dzi
∂T

= (dzi)

(
F (T )

T

)
= Cdz

Ωi

V 2
i

F (T )

T
(3.22a)

where F (T ) =


2, if T is in {F, kf , L}
1, if T = Ωi

−2, if T is in {Vi, ξ}
−1, if T is in {SD, η}

(3.22b)

Cumulative effect of dzi

So far the interdependence of evaporation events has been neglected however, as noted in
equation 3.7 each ion is associated with a unique depth increment, dzi, but the total depth
of an ion is dependent on the preceding ions. It is thus important to distinguish between
measurement dependent variables, such as voltage and ionic identity, and universal variables,
such as the previously established L, F, kf , ξ, η, and Sdet.

To demonstrate how error propagation can be utilized without introducing covariance
terms for the non-ion specific variables consider the error contribution of F. The partial
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derivative for Zi with respect to F can be written and simplified as follows:

∂Zi
∂F

=
∂

∂F

((
i∑

j=1

dzj

)
+ dz′i

)
(3.23a)

=
∂

∂F

(
i∑

j=1

dzj

)
+

∂

∂F
dz′i (3.23b)

=

(
i∑

j=1

∂

∂F
dzj

)
+

∂

∂F
dz′i (3.23c)

For now focus on the summation as dz′i is reconstruction specific. Substituting equation
3.22a for ∂dzj/∂F replaces the summation of derivatives with a summation of the original
dzj for j ≤ i.

∂Zi
∂F

=

(
i∑

j=1

2dzj
1

F

)
+

∂

∂F
dz′i (3.24a)

=
2

F

(
i∑

j=1

dzj

)
+

∂

∂F
dz′i (3.24b)

= Cdz
2

F

(
i∑

j=1

Ωj

V 2
j

)
+

∂

∂F
dz′i (3.24c)

Note that this substitution is applicable for all but two of the variables, Ωi and Vi, as those
properties are event specific. The general form of the derivatives of Zi are thus:

∂Zi
∂T

=
F (T )

T

(
i∑

j=1

dzj

)
+

∂

∂T
dz′i for T in {F, kf , L, ξ, SD, η} (3.25a)

= Cdz
F (T )

T

(
i∑

j=1

Ωj

V 2
j

)
+

∂

∂T
dz′i (3.25b)

Focusing on the summative component of Zi the following ratios expose the relative
importance of each variable described by equation 3.25a. Voltage and ionic volumes are
neglected in this comparison as each point may have a distinct measurement which affects
the summation in an inconsistent way compared to {F, kf , L, ξ, SD, η} and will instead be
covered in the following sections.
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(
∂
∑
dzj

∂F

)2

/

(
∂
∑
dzj

∂kf

)2

=

(
kf
F

)2

< 1

(3.26)(
∂
∑
dzj

∂F

)2

/

(
∂
∑
dzj

∂L

)2

=

(
L

F

)2

> 1

(3.27)(
∂
∑
dzj

∂F

)2

/

(
∂
∑
dzj

∂η

)2

=

(
2η

F

)2

< 1

(3.28)(
∂
∑
dzj

∂kf

)2

/

(
∂
∑
dzj

∂ξ

)2

=

(
ξ

kf

)2

. 1

(3.29)

(
∂
∑
dzj

∂SD

)2

/

(
∂
∑
dzj

∂η

)2

=

(
η

SD

)2

< 1

(3.30)(
∂
∑
dzj

∂ξ

)2

/

(
∂
∑
dzj

∂SD

)2

=

(
2SD
ξ

)2

> 1

(3.31)(
∂
∑
dzj

∂ξ

)2

/

(
∂
∑
dzj

∂η

)2

=

(
2η

ξ

)2

≈ 1

(3.32)(
∂
∑
dzj

∂L

)2

/

(
∂
∑
dzj

∂SD

)2

=

(
2SD
L

)2

> 1

(3.33)

The ratios are evaluated using some typical magnitudes of {F, kf , L, ξ, SD, η} which are
{33, 3.3, 380, 1.65, π152, .80} for 304SS as the basis for a numerical comparison. Organizing
the partials according to the ratios reveals the following ranking of uncertainty sensitivity.(
∂
∑
dzj

∂SD

)2

<

(
∂
∑
dzj

∂L

)2

<

(
∂
∑
dzj

∂F

)2

<

(
∂
∑
dzj

∂kf

)2

.

(
∂
∑
dzj

∂ξ

)2

≈
(
∂
∑
dzj

∂η

)2

(3.34)
Generally the differences between variables are stark and often an order of magnitude in
difference however three variables; kf , η, ξ are of comparable magnitude and thus the ranking
is not guarantied.

In the case of η and ξ the two parameters respectively range from 0.5 to a theoretical limit
of 1 and 1 to 2. Given that η is multiplied by a factor of 2 in equation 3.32 the numerator
and denominator would both occupy [1, 2] and the actual comparison will depend on the user
specified ξ and instrument specific η. For the analysis of kf in this work a value of 3.3 is used
resulting in a smaller squared partial when compared to ξ or η. The field factor however is
often used as a calibration factor and can occupy a great range of possible values depending
on the exact calibration method and calibration feature. The impact of calibration factor
is left out of this analysis and thus we conclude that (∂

∑
dzj/∂kf )

2 is approximately less
than (∂

∑
dzj/∂ξ)

2. Finally, it should be noted that the ranking in equation 3.34 does not
necessarily hold true for the partials of Zi as the behavior of dz′i and covariance terms must
be accounted for.

Voltage contribution

The evaporation process is dependent upon the maintenance of a standing voltage in addi-
tion to a voltage pulse and it is possible that both have an intrinsic error. As a simplifying
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assumption treat these as a singular voltage such that there is only one associated measure-
ment error associated. This assumption is supported by the availability of the raw data as
the LEAP and associated software only provide two data formats that include the voltage
information, and even then do not always record the voltages separately but only provide
a total voltage. From this assumption there are two possible approaches to account for
the voltage component dependent upon the nature of the voltage pulse and the instrument
accuracy.

Approach one treats each voltage pulse as an independent measurement with an asso-
ciated error. Under this approach Zi is a function of i voltages and thus i different error
contribution terms. Equation 3.35 describes the partial derivatives of Zi with respect to an
applied voltage, Vj.

∂Zi
∂Vj

=

(
i∑

k=1

∂

∂Vj
dzk

)
+

∂

∂Vj
dz′i for j < i (3.35)

Note, that for both reconstruction methods in this work dz′i is dependent solely on Vi and
that the ion specific depth increments, denoted here as dzk, are independent of Vj when
j 6= k. Therefor ∂

∂vj
dzk = 0 for j 6= k and ∂

∂Vj
dzi = 0 for j 6= i. The first i-1 terms then share

a common form while the ith term must also account for the depth adjustment, equation
3.36.

∂Zi
∂Vj

=

{
∂
∂Vj
dzj = − 2

Vj
dzj, if j < i

∂
∂Vj
dzj + ∂

∂Vj
dz′i = − 2

Vj
dzj + ∂

∂Vj
dz′i, if j = i

(3.36)

By neglecting the covariance terms the overall voltage can then be written as the following
summation:

var(Zi|V0, V1, ....Vi) =

[
i−1∑
j

(
2

Vj
dzj

)2

σ2
Vj

]
+

[
− 2

Vi
dzi +

∂

∂Vi
dz′i

]2
σ2
Vi

(3.37)

The above approach is especially useful when the system is modeled using percent error
for voltage as the percent error, pjVj, as the V 1

j term from ∂dzj/∂Vj cancels with the the
one contained within ΣVj . An alternative scenario is that of a fixed error, σV , regardless of
the applied voltage. Substituting σV in for all σVi results in the following simplification of
equation 3.37.

var(Zi|V0, V1, ....Vi) = σ2
V

([
i−1∑
j

(
2

Vj
dzj

)2
]

+

[
− 2

Vi
dzi +

∂

∂Vi
dz′i

]2)
(3.38)

Thus far, the voltage pulses have been assumed to be independent and to assess the validity
of this assumption both the physics underlying field evaporation and the control systems of
the atom probe should be considered. From the perspective of evaporation physics recall that
the required voltage to induce an evaporation event is dependent on the material specific
field, F , and the specimen apex’s curvature, R. If the specimen is homogeneous then F
remains constant and only the curvature determines the required voltage.
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Assuming the conventional conical shape for the specimen shaft then it follows that the
specimen apex is blunted with each evaporation and thus both the radius and evaporation
voltage increase. It follows that the expectation of Vi, E(Vi), should be greater than E(Vi−1)
and that if E(Vi−1) + σVi−1

is applied prior than E(Vi) ≥ E(Vi−1) + σVi−1
. This relationship

shows that the expectations are positively correlated. It should be noted that the samples
are often heterogeneous and have other features that can alter the required field. One such
feature are crystallographic poles which generally require a lower field such that if event i
and i-1 are from different poles then Vi is not guarantied to be greater than Vi−1 [25, 39, 37,
40].

Now consider the voltages from an instrumentation perspective. The LEAP does not
require the voltage curves to be monotonic and can lower the applied voltage to account for
changes in the experimental conditions and is controlled via a threshold on the detection
rate. The detection rate is often set to 0.01 ions per pulse with the main goal of reducing
simultaneous evaporation events but also reduces the correlation between subsequent events
[74]. This controls the rate at which the voltage changes such that if the rate is below the
threshold the instrument voltage is increased more rapidly but if the rate is exceeded the
voltage ramp rate is decreased and can even be negative resulting in a lower pulse voltage
than the prior. This behavior is most often seen when precipitates or other material phases
are encountered with a lower required field or when microfractures occur which effectively
sharpen the specimen [74, 40].

Furthermore, inverting the rate suggests that there are approximately 100 pulses per
evaporation and thus 100 pulses in between events. In the homogeneous case established
prior a pulse voltage would be most strongly correlated with the preceding pulse. It follows
that the correlation between two pulses decreases as the number of intermediate pulses
increase. Applying this to the evaporation event suggests that a discrepancy in event i-1,
σi−1, affect on event i is likely to be overwhelmed by errors in the intermediary 100 pulses
which are not provided in the user accessible data format.

Under the above considerations the authors believe that the covariances can neither be
robustly estimated from an experimental standpoint nor will have a significant impact on the
reconstruction. Despite this, the full variance is provided as equation 3.39 and the Cayley-
Schwarz inequality, equation 2.3, would be required to estimate the impact given that no
concrete associations between pulses can be derived. Note that dzj is further simplified as
in equation 3.13b.

var(Zi|V0, V1, ....Vi) =

[
4C2

dz

i−1∑
j

(
Ωj

V 2
j

)2 σ2
Vj

V 2
j

]
+

[
4C2

dz

i−1∑
j

1−2∑
k

(
Ωj

V 2
j

)(
Ωk

V 2
k

)
Cov(Vj, Vk)

VjVk

]

+

[
2Cdz

Ωi

V 2
i

− Vi
∂dz′i
∂Vi

]2 σ2
Vi

V 2
i

+

[
2
i−1∑
j

(
Cdz

Ωj

V 2
j

)(
Cdz

Ωi

V 2
i

− Vi
∂dz′i
∂Vi

)
Cov(Vj, Vi)

VjVi

]
(3.39)
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Volume Contribution

Ionic volumes remain the only variables that have yet to be accounted. For each event the
TOF generates a M-Z spectrum which is used to assign an ionic identity and thus volume for
each ion. For the following derivations neglect the uncertainties in the spectrum and those
in the subsequent identity assignment. Consider instead the errors in m ionic volumes where
ω = {ω1, ω2, ....ωm}, not to be confused with Ωi which is the volume assigned to the ith
evaporation event and must be equivalent to a value contained within ω. Note that the most
commonly used volumes are those assigned by the IVAS software which does not provide a
clear definition for its volumes.

It is reasonable to assume however that if each element has a prescribed ionic volume
than complex ions such as FeO2 would be the sum of the individual volumes. Under this
operating assumption complex ions which share a constituent are correlated. For example
consider the ionic volumes for FeO2 and NiO3 which share oxygen as a common constituent.
The covariance of the two complex ions can be separated as in equation 3.40 given the
bilinearity of covariance.

Cov(FeO2, NiO3) =Cov(Fe+ 2O,Ni+ 3O)

=Cov(Fe,Ni) + 3Cov(Fe,O) + Cov(Ni,O) + (2 · 3)Cov(O,O)

=6var(O) = 6σ2
O

(3.40)

Here Fe, O, and Ni are standing in for the respective ionic volumes. Thus, the covariance
between any two complex ions is a weighted summation over the variances of the common
elements where the weights are the products of the subscripts.

Given that dz’ is independent of Ω the variance with respect to the volumes is dependent
solely on the depth increments, dzi. The variance of one such increment is defined in equation
3.44.

var(dzi|ω0, ω1, ....ωm) =

[
m∑
j

(
∂

∂ωj
dzi

)2

σ2
ωj

]
+

[
2

m∑
j

m−1∑
k

∂dzi
∂ωj

∂dzi
∂ωk

Cov(ωj, ωk)

]
(3.41)

Recall that:
∂

∂Ωi

dzi =
dzi
Ωi

= Cdz
Ωi

v2i

1

Ωi

which can be generalized as equation 3.42a for any possible ionic volume through the use of
an indicator variable, 3.42b, that establishes if the ith ions identity is equivalent to the jth
possible ionic identity.

∂

∂ωj
dzi =

Cdz
V 2
i

I(ωj,Ωi) (3.42a)

I(ωj,Ωi) =

{
1, if ωj = Ωi

0, else
(3.42b)
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Substituting equation 3.42a into equation 3.41 results in the following simplification.

var(dzi|ω0, ω1, ....ωm) =

[
m∑
j

(
Cdz
v2j

I(ωj,Ωi)

)2

σ2
ωj

]

+

[
2

m∑
j

m−1∑
k

(
Cdz
vivj

)2

I(ωj,Ωi)I(ωk,Ωi)Cov(ωj, ωk)

] (3.43)

Now consider the variance of Zi given ω provided in 3.44 and the corresponding simpli-
fications using equation 3.42.

var(Zi|ω0, ω1, ....ωm) =
i∑
j

var(dzj|ω0, ω1, ....ωm) (3.44a)

var(Zi|ω0, ω1, ....ωm) =
m∑
j

(
∂

∂ωj
zi

)2

σ2
ωj

+

[
2

m∑
j

m−1∑
k

∂zi
∂ωj

∂zi
∂ωk

Cov(ωj, ωk)

]
(3.44b)

var(Zi|ω0, ω1, ....ωm) =C2
dz

m∑
j

(
i∑
k

1

V 2
k

I(ωj,Ωk)

)2

σ2
ωj

+ 2C2
dz

[
m∑
j

m−1∑
k

(
i∑
a

i∑
b

1

V 2
a V

2
b

I(ωj,Ωa)I(ωk,Ωb)

)
Cov(ωj, ωk)

]
(3.44c)

In these equations the indicator variables are responsible for setting the covariance terms to
zero when the compared depth increments, dza and dzb, are not dependent on the respective
ionic volumes, ωj and ωk. The indicator variable also ensures that the variance of an indi-
vidual increment is only contributed alongside dzi which are dependent on the same ionic
volume.

For the remainder of this work the covariance terms are neglected due to the use of the
IVAS provided ionic volumes for which the constituent volumes are ill-defined. Furthermore,
the impact of mass-spectra ranging and the notion of probabilistic assignment of identity
are left as future work once current advancements in the ranging process have been adopted
within the IVAS (or its successors) software [14, 13, 54, 81, 80, 28].

3.2 The Bas protocol

The Bas reconstruction protocol employs a small angle approximation such that a simple
point projection transforms the detector coordinates. A fundamental flaw with this method
when applied to modern instruments is that the field-of-view has greatly increased since
the original work by Bas et al and the small angle approximation is no longer valid with
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respect to the flight path [5]. Performing reconstructions with this procedure will result in
an artificially narrowed field-of-view and an elongated tip as the volume associated with the
wide field-of-view now contributes to an enlarged depth increment.

Continuing from section 3.1 equation 3.2 the Bas protocol treats the detector image as
a point projection of the sample such that equation 3.45 describes the magnification of the
detector image when given a known flight length, L, and another user-defined parameter the
image compression factor, ξ. Equations 3.46 through further 3.48 further define the partials
of Mproj

i .

Mproj
i = Mproj(L, ξ, Ri) ≈

L

ξRi

+ 1 (3.45)

∂Mproj
i

∂L
=

1

ξRi

=
Mproj

i − 1

L
(3.46)

∂Mproj
i

∂ξ
= − L

ξ2Ri

= −M
proj
i − 1

ξ
(3.47)

∂Mproj
i

∂Ri

= − L

ξR2
i

= −M
proj
i − 1

Ri

(3.48)

σ2
Mproj

=

(
∂Mproj

i

∂L

)2

σ2
L +

(
∂Mproj

i

∂ξ

)2

σ2
ξ +

(
∂Mproj

i

∂Ri

)2

σ2
Ri

(3.49)

Taking the ratios of the above derivatives shows that the relative importance of L, ξ, and Vi
to V ar(Mproj

i ) is proportional to their ratios shown below.(
∂Mproj

i

∂L

)2

/

(
∂Mproj

i

∂ξ

)2

=

(
ξ

L

)2

(3.50)(
∂Mproj

i

∂L

)2

/

(
∂Mproj

i

∂Ri

)2

=

(
Ri

L

)2

(3.51)(
∂Mproj

i

∂ξ

)2

/

(
∂Mproj

i

∂Ri

)2

=

(
Ri

ξ

)2

(3.52)

Given that the magnitude of L is approximately 180 and that ξ generally between 1 and 2
it follows from equation 3.50 that:(

∂Mproj
i

∂L

)2

.

(
∂Mproj

i

∂ξ

)2

(3.53)

Indicating that accurate estimation of ξ is more important the L for reducing the error
in Mproj

i . A similar comparison is omitted for Ri as it varies throughout the experiment
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and because it is a function of Vi, F, kf . Full error propagation must also consider these
derivatives which are accounted for via the chain rule.

∂Mproj
i

∂Vi
=
∂Mproj

i

∂Ri

∂Ri

∂Vi
(3.54)

∂Mproj
i

∂F
=
∂Mproj

i

∂F

∂Ri

∂F
(3.55)

∂Mproj
i

∂kf
=
∂Mproj

i

∂kf

∂Ri

∂kf
(3.56)

The first term in the above is constant among all three equations such that the ratios are
the ratios of the derivatives of Ri instead as shown below.(

∂Mproj
i

∂Vi

)2

/

(
∂Mproj

i

∂F

)2

=

(
∂Ri

∂Vi

)2

/

(
∂Ri

∂F

)2

=

(
F

Vi

)2

(3.57)(
∂Mproj

i

∂F

)2

/

(
∂Mproj

i

∂kf

)2

=

(
∂Ri

∂F

)2

/

(
∂Ri

∂kf

)2

=

(
kf
F

)2

(3.58)

Taking some conventional values for F and kf of 33 and 3.3 in the case of steel specimens the

ratio in equation 3.58 is less than one and indicates that
(
∂Mproj

i /∂F
)2
<
(
∂Mproj

i /∂kf
)2

.
This behavior should generally remain even with different sets of F and kf as values for the
evaporation field are roughly an order of magnitude larger than the field factor. Additionally,
as voltage ranges from 1,000V to 8,000V in a typical experiment equation 3.57 should also
evaluate to less than one in all circumstances.

A full analysis of V ar(Mproj
i ) would require comparisons between L and ξ to Vi, F , kf as

well, however now that the general method has been described such analyses will be reserved
for the final reconstructed coordinates.

Spatial uncertainty in X, Y

The original position of an ion is found by projecting the event position with respect to
the detector onto the current specimen apex. For a small field of view and a straight flight
path instrument a single point projection as demonstrated in 3.3 is sufficient whereas either
a large field of view or a reflectron instrument would require corrections for the curvature
of the flight path. An overview of the process for calculating the X, Y coordinates can be
found in figure 3.3.

The reconstructed X coordinate and the immediate partials are given by equations 3.59
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through 3.61.

Xi = X(Xdet
i ,Mproj

i ) =
Xdet
i

Mproj
i

=
Xdet
i

LFkf
Viξ

+ 1
(3.59)

∂Xi

∂Xdet
i

=
1

Mproj
i

=
Xi

Xdet
i

(3.60)

∂Xi

∂Mproj
i

= − Xdet
i(

Mproj
i

)2 = − Xi

Mproj
i

(3.61)

Continuing with Yi and it’s derivatives below:

Yi = Y (Y det
i ,Mproj

i ) =
Y det
i

Mproj
i

=
Y det
i

LFkf
Viξ

+ 1
(3.62)

∂Yi
∂Y det

i

=
1

Mproj
i

=
Yi
Y det
i

(3.63)

∂Yi

∂Mproj
i

= − Y det
i(

Mproj
i

)2 = − Yi

Mproj
i

(3.64)

Error propagation and sensitivity analyses is demonstrated first using Xi as the same
equations and relationships will hold for Yi with the exception that all instance of Xi and
Xdet
i would be substituted with Yi and Y det

i . Noting that Xi has dependencies on L, ξ, and

L

rdet

R

O

ξR

P

XR=Xdet/Mproj

YR=Ydet/Mproj

dz’=R(1-(1-(XR
2+YR

2)/R2)1/2)
Xdet, Ydet

Mproj≈L/ξR

Figure 3.3: Placement of an ion on the hemispherical cap in X, Y alongside the depth
correction under the Bas reconstruction protocol.
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Ri through Mproj
i with Ri introducing dependencies on Vi, F , and kf the complete list of

partials for Xi are described in equations 3.60 through 3.70

∂Xi

∂Xdet
i

=
Xi

Xdet
i

(3.60)

∂Xi

∂Mproj
i

= − Xi

Mproj
i

(3.61)

∂Xi

∂L
=

∂Xi

∂Mproj
i

Mproj
i − 1

L
(3.65)

∂Xi

∂ξ
= − ∂Xi

∂Mproj
i

Mproj
i − 1

ξ
(3.66)

∂Xi

∂Ri

= − ∂Xi

∂Mproj
i

Mproj
i − 1

Ri

(3.67)

∂Xi

∂F
= − ∂Xi

∂Mproj
i

∂Mproj
i

∂Ri

Ri

F
(3.68)

∂Xi

∂kf
= − ∂Xi

∂Mproj
i

∂Mproj
i

∂Ri

Ri

kf
(3.69)

∂Xi

∂Vi
=

∂Xi

∂Mproj
i

∂Mproj
i

∂Ri

Ri

Vi
(3.70)

Using the process demonstrated in equations 3.57 and 3.58 for Xi the partials are first
grouped into two sets of like terms, {L, ξ} and {F, kf , Vi} with Xdet

i as an outlier. Focusing
first on {L, ξ} the squared ratio of the partial is identical to that of 3.50 such that equation
3.53 still holds and is expanded to include σL and σξ below where pi indicates the percent
error of L and ξ. (

∂Xi

∂L

)2

σ2
L .

(
∂Xi

∂ξ

)2

σ2
ξ for σ2

L .
L2

ξ2
σ2
ξ (3.71)(

∂Xi

∂L

)2

σ2
L ≈

(
∂Xi

∂ξ

)2

σ2
ξ if σ2

L = p2iL
2, σ2

ξ = p2i ξ
2 (3.72)

Recalling that L ≈ 380 and that ξ is in [1, 2], equation 3.71 shows that errors in ξ will
generally dominate the final error estimate in comparison to L. A comparable impact by
σ2
L would require it to be approximately 190 times that of σ2

ξ . Such a measurement error
is orders of magnitude greater than any true measurement uncertainty for the flight path
length in conventional instruments and so the influence of L can generally be treated as
negligible in the case of the small-angle reconstruction.

Continuing with the impact of {F, kf , Vi} the first two terms in the partials cancel re-
sulting in ratios identical to those derived in equations 3.57 and 3.58. Including the error
terms as in 3.71 then results in:(

∂Xi

∂Vi

)2

σ2
Vi
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(
∂Xi

∂F

)2

σ2
F <

(
∂Xi

∂kf
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σ2
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for σ2
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i

F 2
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F 2

k2F
σ2
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(3.73)(
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σ2
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(
∂Xi

∂kf
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σ2
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if σ2
Vi

= p2iV
2
i , σ

2
F = p2iF

2, σ2
kf

= p2i k
2
f (3.74)

From the above, it would generally require the error in F to be an order of magnitude
larger than that of kf to overcome this trend recalling that F is generally an order of
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magnitude larger than kf . Furthermore, for the applied voltage to be the dominant error
term then σVi would have to be approximately 100 times larger than σF or 1,000 times that
of σkf . If instead the uncertainty is expressed as a percent error as in equation 3.74 with a
constant percent amongst all variables the three variables have equal contributions to the
final uncertainty.

Determination of the sensitivity between the groups {L, ξ}, {F, kf , Vi} and Xdet
i remains

and comparing {L, ξ} with {F, kf , Vi} provides direct relationships with the exception of ξ
and kf . The results can be summarized with only two equations.(

∂Xi

∂L

)2

/

(
∂Xi

∂Vi

)2

=

(
Vi
L

)2

(3.75)(
∂Xi

∂ξ

)2

/

(
∂Xi

∂kf

)2

=

(
kf
ξ

)2

(3.76)

As Vi > L for all Vi equation 3.75 allows the impact of L to be directly compared with
kf and F in addition to the voltage. However, because ξ and kf are of similar order and
magnitude there is no guarantee that ξ > kf or vice-versa in equation 3.76 and heavily
depend on the user selected parameters. Thus, for the Bas reconstruction we consider kf
to have a lesser or comparable impact to ξ on the uncertainty in Xi denoted by .. In the
absence of computational work validating the ratios with respect to Xdet

i we expect that:(
∂Xi

∂L

)2

<

(
∂Xi

∂Vi

)2

<

(
∂Xi

∂F
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<

(
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∂kf
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.

(
∂Xi

∂ξ

)2

(3.77)

Recalling that the only difference between Xi and Yi is the usage of Y det
i instead of Xdet

i

all of the derivations above from equations 3.60 through 3.77 apply with the aforementioned
substitution. In the interest of brevity only the observations regarding the relative impor-
tance of different variables with respect to the propagation of error are included below.(
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(3.82)
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Spatial uncertainty in Z due to dz′i
Section 3.1 provided the basis for understanding the depth uncertainty within atom probe
reconstructions as a function of the cumulative depth increment but thus far neglected to
account for the reconstruction specific depth correction, dz′i. The depth correction corre-
sponds to placement of the ion atop the specimen apex and thus is bound by [0, R/2]. In
this case 0 indicates placement of the ion directly atop the specimen apex. Under the coni-
cal model with a hemispherical cap the maximum correction indicates evaporation from the
point at which the cap and cone intersect. As shown in equation 3.83b this correction factor
is dependent on the lateral position of the evaporation event.

dz′i = dz′(Ri, X
2
i , Y

2
i ) = Ri

(
1−

√
1− X2

i + Y 2
i

R2
i

)
(3.83a)

= Ri

1−

√√√√1−
(
Xdet
i

)2
+
(
Y det
i

)2(
Mproj

i

)2
R2
i

 (3.83b)

While initially dependent on Ri, Xi, and Yi as in equation 3.83a substitution for Xi, and
Yi reveals a dependence on the detector coordinates and the magnification. Repeating this
process for the magnification factor, etc. shows that dz′i is a function of Xdet

i , Y det
i , L, ξ, F ,

kf , and Vi. The derivatives required under application of linear error propagation are then:

∂dz′i
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Xi√

1− X2
i +Y

2
i

Ri

(3.84)

∂dz′i
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(3.85)
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(3.86)
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(3.87)
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(3.89)

∂dz′i
∂F
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∂Ri
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(3.90)

∂dz′i
∂kf

=
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∂Ri

∂Ri

∂kf
(3.91)

∂dz′i
∂Vi

=
∂dz′i
∂Ri

∂Ri

∂Vi
(3.92)

Once more observation of the partials reveals that the variables can be grouped into three
sets such that the error contributions can be trivially compared. These sets are the same
as those for the spatial uncertainty in (X, Y ) namely; {Xdet

i , Y det
i }, {L, ξ}, and {F, kf , Vi}.

However, two of the required partials (∂dz′i/∂M
proj
i , ∂dz′i/∂Ri) have yet to be defined as Xi

and Yi both introduce dependencies on Mproj
i while the original equation for dz′i as well as

Xi and Yi share dependencies on Ri. These two derivatives given in equations 3.93 and 3.94
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serve to complicate non-numeric comparisons between the three variable sets.

∂dz′i
∂Mproj

i
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∂dz′i
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∂Xi
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+
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(3.93)
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dz′i
Ri

(3.94)

Comparing the constituents within the three sets as in equations 3.95 through 3.98 re-
veals the expected relationships reaffirming those described for the uncertainty in the

∑
dzj

and those for the spatial error in (Xi, Yi) with the exception that three sets cannot be
compared with one another. An additional observation comes from Xdet

i and Y det
i as there

comparison is the only one which depends on the spatial position of the event. Under
the conditions that the event is near the |Xdet

i | = |Y det| lines or near the detector cen-
ter the influence of the two parameters are approximately equal. Xdet

i dominates Y det
i

and vice versa when the events are near the detectors X and Y axis respectively. As a
simplification the sensitivity of V ar(dz′i) to (Xdet

i , Y det
i ) is treated as approximately equal.

(
∂dz′i
∂Xdet

i

)2

/

(
∂dz′i
∂Y det

i

)2

=

(
Xdet
i

Y det
i

)2

(3.95)(
∂dz′i
∂L

)2

/

(
∂dz′i
∂ξ

)2

=

(
ξ

L

)2

< 1 (3.96)

(
∂dz′i
∂F

)2

/

(
∂dz′i
∂kf

)2

=

(
kf
F

)2

< 1 (3.97)(
∂dz′i
∂F

)2

/

(
∂dz′i
∂Vi

)2

=

(
Vi
F

)2

> 1 (3.98)

Similar to the sensitivity of
∑
dzj equation 3.99 cannot be generalized to the final depth

coordinate, Zi. Based upon both sets of sensitivities one would expect equation 3.99 to hold
for Zi however this would require the covariance terms to be neglected. A sensitivity analysis
for Zi then requires a numeric evaluation which is omitted from this segment as a numeric
evaluation on one specimen cannot be generalized to all samples given the large range of
input variability even if the associated uncertainties were of similar magnitude.

(
∂dz′i
∂Xdet

i

)2

≈
(
∂dz′i
∂Y det

i

)2 (
∂dz′i
∂L

)2

<

(
∂dz′i
∂ξ

)2 (
∂dz′i
∂Vi

)2

<

(
∂dz′i
∂F

)2

<

(
∂dz′i
∂kf

)2

(3.99)

3.3 The Gault protocol

Recall that the aforementioned Bas reconstruction protocol requires the use of a small angle
approximation and thus is most valid for small field-of-view instruments. Modern atom
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probes such as the LEAP series possess wide field-of-view made possible in part due to
the local electrode configuration. To account for the wide field-of-view the coordinates are
calculated following the protocols outlined by Gault [36]. The Gault protocols themselves are
improvements upon the original wide-angle reconstructions outlined by Geiser and included
in the works of Larson et al that sought to diminish the reliance on specimen geometry
assumptions [74].

The two key differences between the Bas and Gault protocols are that the volume in-
crement in Gault accounts for specimen apex post evaporation and subtracts the volume of
a second hemispherical cap from the truncated cone when performing a shank-angle recon-
struction and that Gault protocol is performed in a cylindrical coordinate space as described
in equations 3.100 and 3.101 prior to being converted to the final euclidean coordinates. Note
however, that the reconstruction presented here uses a strictly voltage-based evolution com-
parable to the wide-angle reconstruction provided by the open source Atom Probe Toolbox
[32]

ri = r
(
Xdet
i , Y det

i

)
=

√(
Xdet
i

)2
+
(
Y det
i

)2
(3.100)

φi = φ
(
Y det
i , Xdet

i

)
= atan2

(
Y det
i , Xdet

i

)
(3.101)

Note that atan2 denotes the signed arctangent. The partial derivatives of r and φ are
then given below:

∂

∂Xdet
i

ri =
Xdet
i

ri
=

Xdet
i√(

Xdet
i

)2
+
(
Y det
i

)2 (3.102)

∂

∂Y det
i

ri =
Y det
i

ri
=

Y det
i√(

Xdet
i

)2
+
(
Y det
i

)2 (3.103)

∂

∂Xdet
i

φi = −Y
det
i

r2i
= − Y det

i(
Xdet
i

)2
+
(
Y det
i

)2 (3.104)

∂

∂Y det
i

φi =
Xdet
i

r2i
=

Xdet
i(

Xdet
i

)2
+
(
Y det
i

)2 (3.105)

From equations 3.102 to 3.105 it is clear that the partials are proportional to one another
such that the following two relationships stand.

(Xdet
i )−1

∂

∂Xdet
i

ri = (Y det
i )−1

∂

∂Y det
i

ri =
1

ri
(3.106)

(Y det
i )−1

∂

∂Xdet
i

φi = (Xdet
i )−1

∂

∂Y det
i

φi = − 1

r2i
(3.107)

Now that the cylindrical coordinates have been established the projected launch angle
and the derivatives with respect to its direct dependencies L, the flight length, and ri and
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are defined in equations 3.108 through 3.110.

θPi = θP (L, ri) = atan
(ri
L

)
= atan


√(

Xdet
i

)2
+
(
Y det
i

)2
L

 (3.108)

∂

∂L
θP (L, ri) = − ri

L2
(

1 +
r2i
L2

) = −

√(
Xdet
i

)2
+
(
Y det
i

)2
L2

(
1 +

(Xdet
i )

2
+(Y det

i )
2

L2

) (3.109)

∂

∂ri
θP (L, ri) =

1

L
(

1 +
r2i
L2

) =
1

L

(
1 +

(Xdet
i )

2
+(Y det

i )
2

L2

) (3.110)

However, because ri is itself dependent on the detector coordinates full error propagation of
θPi must consider the derivatives with respect to Xdet

i and Y det
i which can be accounted for

via the chain rule.

∂

∂Xdet
i

θP (L, ri) =
d

dXdet
i

ri
d

dri
θPi =

d
dXdet

i
ri

L
(

1 +
r2i
L2

) =
Xdet
i

Lri

(
1 +

(Xdet
i )

2
+(Y det

i )
2

L2

) (3.111)

∂

∂Y det
i

θP (L, ri) =
d

dY det
i

ri
d

dri
θPi =

d
dY det

i
ri

L
(

1 +
r2i
L2

) =
Y det
i

Lri

(
1 +

(Xdet
i )

2
+(Y det

i )
2

L2

) (3.112)

From equations 3.111 and 3.112 it is clear that the relationship described in equation 3.107
holds true. The simplification of future derivatives will be left as an exercise for the reader
given that the methodology has been defined, although it will be noted when partials can
be related to one another.

Given that the projected flight angle, θP , is due to the compression of the original flight
angle, θ, the image compression factor is utilized as a correction factor. The correction
method differs from the Bas protocol however in that a simple magnification correction
is not applied but instead θP is uncompressed to return the true angle, θ, using the user
estimate of the image compression factor, ξ as shown in equation 3.113.

θi = θ
(
ξ, θPi

)
= θPi + asin

(
(ξ − 1) sin

(
θPi
))

(3.113)

θ is then directly dependent on ξ and θPi which introduces dependencies on L, Xdet
i , and

Y det
i . The partials with respect to the direct dependencies can then be defined below.

∂

∂ξ
θ
(
ξ, θPi

)
=

sin
(
θPi
)√

− (ξ − 1)2 sin2 (θPi ) + 1
(3.114)

∂

∂θPi
θ
(
ξ, θPi

)
=

(ξ − 1) cos
(
θPi
)√

− (ξ − 1)2 sin2 (θPi ) + 1
+ 1 (3.115)
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Now that the true flight angle has been found only the radius is left to determine the radial
placement of the ion relative to the specimen’s major axis. In the absence of a predefined
shank angle this protocol will once again relate the radius of curvature to the voltage. Recall
equation 3.2 and the partial derivatives originally detailed in equations 3.3, 3.4, 3.5.

Ri =
Vi
kfF

(3.2)

∂

∂Vi
R(Vi, kf , F ) =

1

Fkf
=

1

Fkf
(3.3)

∂

∂F
R(Vi, kf , F ) = −Ri

F
= − Vi

F 2kf
(3.4)

∂

∂kf
R(Vi, kf , F ) = −Ri

kf
= − Vi

Fk2f
(3.5)

Furthermore note the following relationship between the three derivatives which will be later
used to simplify more complex expressions.

Vi
∂

∂Vi
R(Vi, kf , F ) = −F ∂

∂F
R(Vi, kf , F ) = −kf

∂

∂kf
R(Vi, kf , F ) =

Vi
kfF

= Ri (3.116)

The radial distance and the partial derivatives are defined in equations 3.117 through 3.119.

di = d(Ri, θi) = Ri sin (θi) (3.117)

∂

∂Ri

d(Ri, θi) = sin (θi) (3.118)

∂

∂θi
d(Ri, θi) = Ri cos (θi) (3.119)

At this point, the shared dependencies of Xi, Yi, and Zi have been established and only
defining their functions and derivatives in the subsequent two sections remain.

Spatial uncertainty in X, Y

Finally, the reconstructed X, Y coordinates are found by converting the polar coordinates
φi and di to cartesian coordinates. Here φi represents the angle of the event on the detector
and di the radial distance from the apex. Starting with X and it’s partial derivatives in
equations 3.120 through 3.122.

Xi = X(di, φi) = di cos(φi) =
RiX

det
i sin(θi)√(

Xdet
i

)2
+
(
Y det
i

)2 (3.120)

∂

∂di
X(di, φi) = cos (φi) (3.121)

∂

∂φi
X(di, φi) = −di sin (φi) (3.122)
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Now continuing with Yi and it’s derivatives below:

Yi = Y (di, φi) = di sin(φi) =
RiY

det
i sin(θi)√(

Xdet
i

)2
+
(
Y det
i

)2 (3.123)

∂

∂di
Y (di, φi) = sin (φi) (3.124)

∂

∂φi
Y (di, φi) = di cos (φi) (3.125)

At this point it should be noted that will focus primarily on algebraic approximations as
exact solutions as in section 3.2 is infeasible for the wide angle reconstructions. This is
due to the nested trigonometric functions which prevent even algorithmic methods, such
as trigsimp, from arriving at a solution within a reasonable time frame [34]. However,
the relative importance of some terms can be shown algebraically and the overall behavior
validated computationally.

Starting with Xi consider first the influence of Vi, F , and kf on whose partials are denoted
below according to the chain rule.

∂Xi

∂Vi
=
∂Xi

∂di

∂di
∂Ri

∂Ri

∂Vi
(3.126)

∂Xi

∂F
=
∂Xi

∂di

∂di
∂Ri

∂Ri

∂F
(3.127)

∂Xi

∂kf
=
∂Xi

∂di

∂di
∂Ri

∂Ri

∂kf
(3.128)

All three derivatives share the first two terms and thus taking the ratios will result in only
the partials with respect to Ri remaining for comparison. Note that due to the partials
cancelling the following two ratios are also true with respect to Yi.(

∂Xi

∂Vi

)2

/

(
∂Xi

∂F

)2

=

(
F

Vi

)2

(3.129)(
∂Xi

∂F

)2

/

(
∂Xi

∂kf

)2

=

(
kf
F

)2

(3.130)

Taking some conventional values for F and kf of 33 and 3.3 the ratio in equation 3.130
is less than one and this behavior should remain for different sets of values as F is roughly
an order of magnitude larger than the field factor, kf . Furthermore, as the voltage ranges
from 1,000V to 8,000V in a typical experiment than 3.129 should also evaluate to less than
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one in all circumstances. Subsequently, the following relationships hold.(
∂Xi

∂Vi

)2

<

(
∂Xi

∂F

)2

<

(
∂Xi

∂kf

)2

(3.131)(
∂Xi

∂Vi

)2

σ2
Vi
<

(
∂Xi

∂F

)2

σ2
F <

(
∂Xi

∂kf

)2

σ2
kf

for σ2
Vi
≤ V 2

i

F 2
σ2
F and σ2

F ≤
F 2

k2F
σ2
kf

(3.132)(
∂Xi

∂Vi

)2

σ2
Vi

=

(
∂Xi

∂F

)2

σ2
F =

(
∂Xi

∂kf

)2

σ2
kf

if σ2
Vi

= p2iV
2
i , σ

2
F = p2iF

2, σ2
kf

= p2i k
2
f (3.133)

From these relationships we note that error in kf has a larger impact than F or Vi as
shown in 3.132 where given an equal magnitude of error kf produces the largest contribution.
Generally, it would require the error in F to be an order of magnitude larger than that of kf
to overcome this trend given typical values of the two. Furthermore, for the applied voltage
to be the dominant error term then σVi would have to be approximately 100 times larger
than σF or 1,000 times that of σkF . If instead the uncertainty is expressed as a percent error
with a constant percent amongst all variables the three variables have equal contributions to
the final uncertainty. Note that the same relationships holds true for Yi, which are included
below, but the derivation is left out in the interest of both brevity and completeness.(

∂Yi
∂Vi

)2

<

(
∂Yi
∂F

)2

<

(
∂Yi
∂kf

)2

(3.134)(
∂Yi
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(
∂Yi
∂F

)2

σ2
F <

(
∂Yi
∂kf

)2

σ2
kf

for σ2
Vi
≤ V 2

i

F 2
σ2
F and σ2

F ≤
F 2

k2F
σ2
kf

(3.135)(
∂Yi
∂Vi

)2

σ2
Vi

=

(
∂Yi
∂F

)2

σ2
F =

(
∂Yi
∂kf

)2

σ2
kf

if σ2
Vi

= p2iV
2
i , σ

2
F = p2iF

2, σ2
kf

= p2i k
2
f (3.136)

The influence of L, ξ, Xdet
i , and Y det

i remain and can be grouped into two subgroups of
similar behavior, {L, ξ} and {Xdet

i , Y det
i }. Starting with L and ξ the two partial derivatives

share two terms in common although the flight length L requires one additional term.

∂Xi

∂ξ
=
∂Xi

∂di

∂di
∂θi

∂θi
∂ξ

(3.137)

∂Xi

∂L
=
∂Xi

∂di

∂di
∂θi

∂θi
∂θPi

∂θPi
∂L

(3.138)

Once again the ratio of the squared partials is taken in order to show that the estimation
of the image compression factor generally has a larger impact than any measurement uncer-
tainty in the flight length. Note that θPi ≈ ri/L according to the small angle approximation
as the detector radius, ri is roughly 15mm at most while the flight length is on the order of
380mm for a LEAP 4000 XHR.
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(
∂Xi

∂L

)2

/

(
∂Xi

∂ξ

)2
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∂θi
∂θPi

∂θPi
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)2

/

(
∂θi
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(
θPi
)√

− (ξ − 1)2 sin2 (θPi ) + 1
+ 1

2 − ri

L2
(

1 +
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L2

)
2

 sin
(
θPi
)√
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2
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+ 1
+ 1
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(
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+ 1

2
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≈
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(
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/2√

− (ξ − 1)2
(
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L

)2
+ 1

+ 1

2 [
− (ξ − 1)2

(ri
L

)2
+ 1

]
[
L2

(
1 +

r2i
L2

)2
]

(3.139)

Given that L >> ri taking the limit as ri/L approaches 0 provides a further approxima-
tion of 3.139. Additionally, this limit also indicates the exact behavior along the reconstruc-
tion’s major axis.
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lim
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2
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(3.140)

Knowing that the magnitude of L is approximately 380 and that the image compression
factor is generally between 1 and 2 then the following is expected.(

∂Xi
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)2

.
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∂Xi

∂L

)2

σ2
L ≈

(
∂Xi

∂ξ

)2

σ2
ξ if σ2

L = piL, σ
2
ξ = piξ (3.143)

From this, it is observed that errors in ξ will generally contribute to the final error estimate
more than L, such that for a comparable impact σ2

L would need to be approximately 190
times that of ξ. Such a measurement error is orders of magnitude greater than any true
measurement uncertainty for the flight path length and so the influence of L can generally
be treated as negligible.

To account for the induced error in Yi recall that the terms for ∂Xi

∂di
and ∂di

∂θi
dropped out

of the ratio in equation 3.139. This same cancellation will occur for the partials with respect
to Yi such that: (

∂Yi
∂L

)2

/

(
∂Yi
∂ξ

)2

=

(
∂Xi

∂L

)2

/

(
∂Xi

∂ξ

)2

(3.144)

It follows then that the same relationships described in equations 3.141 and 3.133 apply for
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Yi. (
∂Yi
∂L
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∂Yi
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L = piL, σ
2
ξ = piξ (3.147)

Now that L and ξ have been accounted for the partials with respect to Xdet
i and Y det

i

are considered. Note that the detector coordinates determine ri and are thus involved in the
calculation of both di and φi resulting in a summation. For Xi the partials are given as:

∂Xi

∂Xdet
i

=
∂Xi

∂di

∂di
∂θi

∂θi
∂θPi

∂θPi
∂ri
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−(ξ−1)2 sin2 (θPi )+1

+ 1
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2
+ 1
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(3.148)

∂Xi

∂Y det
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(3.149)

The same simplifications using small angle approximation and limit as r(i/L) tends to 0
determines that the ratio of the squared partials is just the squared ratio of the detector
coordinates. Thus, near the detector center Xdet

i and Y det
i contribute equally to the final

uncertainty and will result in stronger dependencies as |Xdet
i − Y det

i | diverges from zero.
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)2(
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)2 (3.150)

Applying the same procedure as applied in equations 3.148 to 3.150 results in the following
partials for Yi.

∂Yi
∂Xdet

i

=
∂Yi
∂di

∂di
∂θi

∂θi
∂θPi

∂θPi
∂ri

∂ri
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i

+
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∂φi
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∂Xdet

i

(3.151)
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∂Yi
∂Y det

i
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(3.152)
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All of the prior analyses can be summarized for both X and Y according to 3.154 and 3.155
however comparison between the sets: {Xdet

i , Y det
i }, {L, ξ}, and {F, kf , Vi}, proves impossible

without a numeric solution that cannot be trivially generalized for multiple specimens. The
required computational validation is included alongside the analysis and calibration of a the
hematite system detailed in section 5.
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(3.154)
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∂Yi
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(3.155)

Spatial uncertainty in Z

Recall that in the Bas protocol the depth calculation is dependent on assigning each ion an
individual depth increment, dz, and a correction term dz’ that describes the placement on
the specimen apex. The Gault reconstruction’s depth determination is identical with the
exception of dz’. Equations 3.156 through 3.158 denotes the correction term and the partials
under the wide-angle voltage-based reconstruction.

dz′i = dz′(Ri, θi) = −Ri cos (θi) +Ri (3.156)

∂

∂Ri

dz′(Ri, θi) = 1− cos (θi) (3.157)

∂

∂θi
dz′(Ri, θi) = Ri sin (θi) (3.158)

Continuing with the dependencies introduced by Ri consider the partials with respect to
Vi, F , and kf .
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∂dz′i
∂Vi

=
∂dz′i
∂Ri

∂Ri

∂Vi
(3.159)

∂dz′i
∂F

=
∂dz′i
∂Ri

∂Ri

∂F
(3.160)

∂dz′i
∂kf

=
∂dz′i
∂Ri

∂Ri

∂kf
(3.161)

Similar to the partials for Xi and Yi taking the ratios of the three partials results in the ratio
of the parameters as had been observed in 3.129 and 3.130. Subsequently the statements
described by equations 3.131 through 3.133 also hold for dz′i such that:(

∂dz′i
∂Vi

)2

<

(
∂dz′i
∂F

)2

<

(
∂dz′i
∂kf

)2

(3.162)(
∂dz′i
∂Vi

)2

σ2
Vi
<

(
∂dz′i
∂F

)2

σ2
F <

(
∂dz′i
∂kf

)2

σ2
kf

for σ2
Vi
≤ V 2

i

F 2
σ2
F and σ2

F ≤
F 2

k2F
σ2
kf

(3.163)(
∂dz′i
∂Vi

)2

σ2
Vi

=

(
∂dz′i
∂F

)2

σ2
F =

(
∂dz′i
∂kf

)2

σ2
kf

if σ2
Vi

= p2iV
2
i , σ

2
F = p2iF

2, σ2
kf

= p2i k
2
f (3.164)

Note however that dzi and dz′i have common dependencies and so the above relationship will
are not guarantied to apply to the final depth, Zi.

The impact of θi remains which results in dz′i being dependent upon L, ξ, Xdet
i , and Y det

i .
Taking the partials with respect to L and ξ under the expectation that they will result in a
similar effect on dz′i we find that one term is shared and the flight length requires one further
term.

∂dz′i
∂ξ

=
∂dz′i
∂θi

∂θi
∂ξ

(3.165)

∂dz′i
∂L

=
∂dz′i
∂θi

∂θi
∂θPi

∂θPi
∂L

(3.166)

Using the small angle approximation for θPi and taking the limit as ri/L approaches zero as
in equation 3.140 provides the following approximation of the squared ratio of ∂dz′i/∂ξ and
∂dz′i/∂L.

lim
ri/L→0

(
∂dz′i
∂L

)2

/

(
∂dz′i
∂ξ

)2

= lim
ri/L→0

(
∂θi
∂θPi

∂θPi
∂L

)2

/

(
∂θi
∂ξ

)2

≈ ξ2

L2
(3.167)

Recalling that L is on the order of 380 mm for the LEAP 4000 series instruments and that
ξ typically ranges from 1 to 2 then ξ is the dominant source of error in comparison to L for
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dz′i given the following conditions. (
∂dz′i
∂L

)2

.

(
∂dz′i
∂ξ

)2

(3.168)(
∂dz′i
∂L

)2

σ2
L .

(
∂dz′i
∂ξ

)2

σ2
ξ for σ2

L .
L2

ξ2
σ2
ξ (3.169)(

∂dz′i
∂L

)2

σ2
L ≈

(
∂dz′i
∂ξ

)2

σ2
ξ if σ2

L = piL, σ
2
ξ = piξ (3.170)

Finally accounting for the detector coordinates we arrive at equations 3.171 and 3.172.

∂dz′i
∂Xdet

i

=
∂dz′i
∂di

∂di
∂θi

∂θi
∂θPi

∂θPi
∂ri

∂ri
∂Xdet

i

(3.171)

∂dz′i
∂Y det

i

=
∂dz′i
∂di

∂di
∂θi

∂θi
∂θPi

∂θPi
∂ri

∂ri
∂Y det

i

(3.172)

The ratio is then simply expressed without the need of approximations as:(
∂dz′i
∂Xdet

i

)2

/

(
∂dz′i
∂Y det

i

)2

=

(
∂ri
∂Xdet

i

)2

/

(
∂ri
∂Y det

i

)2

=

(
Xdet
i

)2(
Y det
i

)2 (3.173)

As in the case of Xi and Yi the detector coordinates approximately contribute the same
amount of error near the detector center and near the 45◦, 135◦, 225◦, 315◦ lines projecting
from the origin. One term will become dominate as |Xdet

i − Y det
i | diverges from zero.

Equation 3.174 summarizes the observations regarding the partials of dz′i thus far and
indicates the same relationships as derived in the small-angle case. Once again there exist
no closed form solutions that enable comparison between the sets: {Xdet

i , Y det
i }, {L, ξ}, and

{F, kf , Vi}. Furthermore, the nested trig functions further obfuscate the true comparisons
as in the case of {L, ξ} due to the need of simplifying assumptions. Finally, as in the case of
the small-angle reconstruction these association do not hold for Zi which requires a numeric
comparison.

(
∂dz′i
∂Xdet

i

)2

≈
(
∂dz′i
∂Y det

i

)2 (
∂dz′i
∂L

)2

.

(
∂dz′i
∂ξ

)2 (
∂dz′i
∂Vi

)2

<

(
∂dz′i
∂F

)2

<

(
∂dz′i
∂kf

)2

(3.174)

3.4 Conclusions with respect to small and wide-angle

reconstructions

In conclusion we find that for both small and wide-angle reconstructions the spatial uncer-
tainty for the reconstructed X and Y coordinates are most sensitive to the image compression
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factor and field factor followed by the evaporation field. Comparatively the instrument spe-
cific flight length and applied voltage are negligible and align with our expectations given
that the flight length is a known quantity for each LEAP model and that the only error
associated with voltage should be dependent on the voltage controller. Opposing these are
the user defined parameters of which only the field is a well estimated parameter prior to
calibration by using the expected value for pure materials. The image compression factor
and field factor are most commonly used by the user to calibrate the reconstruction accord-
ing to their prior assumptions. One common method for this is to adjust the field factor
such that the interplanar spacing of the specimen matches the true value for the material
and adjust the image compression factor to minimize the planar curvature.

Furthermore, a generalized evaluation is not available for the depth coordinate, Zi, how-
ever analysis of its constituent components the cumulative depth

∑
dzi and depth correction

dz′i suggest that in agreement with X and Y the user defined factors are the most important
parameters to minimize the final uncertainty. This analysis also suggests the instrument
specific parameters with the exception of instrument efficiency are negligible. The efficiency
is not required for calculation of (X, Y ) but is as important as the field factor and image
compression factor for

∑
dzi and presumably Zi.

It is also observed that the voltage and ionic volume estimates have an unpredictable
influence on Zi due to inclusion of covariance terms. The covariance terms with respect to
voltage can likely be neglected alongside the expected low measurement error in the applied
voltage, however should not be neglected in the case of ionic volume. Error propagation with
respect to the volume provides two covariance terms, the first of which accounts for when
two events possess the same ionic volume which is accounted for in our work. The second
covariance term accounts for when two complex ion volume estimates rely on the same simple
ion estimates as in the case of FeO and NiO3 which would share a dependence on the volume
of oxygen. This term is neglected within our analysis due to a lack of information regarding
the IVAS software’s internally computation.
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Chapter 4

Methods for error minimization

Given the cumulative nature of the depth uncertainty derived in section 3.1 it is of interest
to minimize the variance as both a global measure and a local measure. Both measures are
influenced by the point processing order within the reconstruction and thus a natural exten-
sion of pointwise error propagation is to alter the reconstruction order such that the measures
of error are minimized. First, alternate reconstruction origins are explored as a error mini-
mization method while preserving the cumulative depth increments of the reconstructions.
Second, this process is used to establish a new distance metric designed to minimize pairwise
variances while accounting for the pairwise covariance of all points within the reconstruction.

4.1 Alternate reconstruction origins

Prior to investigating the effect of altering the reconstruction order a global measure of
uncertainty must first be defined to provide a method of comparing multiple reconstructions.
For this purpose either the sum of squared errors, 4.1 or the mean squared error, equation
4.2, can serve as a global metric representing in aggregate the error associated with each
point. This metric is also primarily focused on the depth coordinate as the X, Y positions
of each ion are independent and should not be impacted by the reconstruction order.

SSEZ =
N∑
i=1

σ2
Zi

(4.1) MSEZ =
SSEZ
N

(4.2)

The only difference between the two metrics is accounting for the number of points, N,
used in the estimate of the summed squared error. Thus when comparing reconstructions
of the same point cloud SSEZ is sufficient, however when comparing the results of different
point clouds MSEZ should instead be used as the sample sizes will differ. Focusing then
on equation 4.1 and substituting in the expanded variance for Zi provides a representation
of the summed square error with separate contributions from the depth correction and the
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cumulative depth increment.

SSEZ =
n∑
i=0

[
V ar

(
i∑

j=0

dzi

)
+ V ar(dz′) + 2cov

(
i∑

j=0

dzj, dz
′
)]

(4.3a)

≈
n∑
i=0

[
V ar

(
i∑

j=0

dzi

)]
(4.3b)

Neglecting both the covariance terms and the correction terms dz′ the depth increment
provides the basis for minimizing error based on the reconstruction origin. Recall the deriva-
tives of each individual depth increment can be described according to 3.22a for the constant
variables.

∂dzi
∂T

= (dzi)

(
F (T )

T

)
= Cdz

Ωi

V 2
i

F (T )

T
(3.22a)

where F (T ) =


2, if T is in {F, kf , L}
1, if T = Ωi

−2, if T is in {Vi, ξ}
−1, if T is in {SD, η}

(3.22b)

From the above, one can observe that the primary differences between any two points (i, j)
are the assigned ionic volume, Ω, and the voltage of the evaporation event, V . As a non-
rigorous exercise neglect the covariance components of the summation and assume that the
variance of a depth increment is proportional to the volume-voltage component of equation
3.22a such that:

SSEZ ≈ α
n∑
i=0

[
i∑

j=0

(
Ωj

V 2
j

)2
]

(4.4)

where α indicates the proportionality. Assuming then that the system is monoisotopic the
ionic volume can be removed from the summation as a further constant. As a logical extreme
consider the scenarios where the reconstruction origin is set at i = 0, denoted as R0 and is
set at i = n with the summation terminating at 0, denoted as RN . Accounting for the first
term within SSEZ for both scenarios results in the following:

SSER0
Z ≈ α

(
V −40 +

n∑
i=1

[
V −40 +

i∑
j=1

V −4j

])
(4.5a)

≈ α

(
N · V −40 +

n∑
i=1

[
i∑

j=1

V −4j

])
(4.5b)
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SSERN
Z ≈ α

(
V −4N +

0∑
i=N−1

[
V −4N +

i∑
j=N−1

V −4j

])
(4.6a)

≈ α

(
N · V −4N +

1∑
i=N−1

[
i∑

j=N−1
V −4j

])
(4.6b)

Given the above and that VN � V0 we expect that the error contribution from point
N, N · V −4N is smaller than that of point 0, N · V −40 . Further separation of the summations
for points N − 1 through N − 4 and points 1 through 4 gives the following which can be
extended for all remaining points.

SSER0
Z ≈ α

(
N · V −40 + (N − 1) · V −41 + (N − 2) · V −42 + (N − 3) · V −43

+ (N − 4) · V −44 +
n∑
i=5

[
i∑

j=5

V −4j

]) (4.7)

SSERN
Z ≈ α

(
N · V −4N + (N − 1) · V −4N−1 + (N − 2) · V −4N−2 + (N − 3) · V −4N−3

+ (N − 4) · V −4N−4 +
1∑

i=N−5

[
i∑

j=N−5
V −4j

]) (4.8)

Considering that VN−i should be larger than Vi for all i in equations 4.7 and 4.8 it is expected
that SSER0

Z � SSERN
Z meaning that a reconstruction which is built up from the last

detected ion should have lower total error than one which is formed starting at the first
detected ion.

Computational validation

The prior hypothesis that a reconstruction starting at the Nth event results in lower total
error cannot be explicitly proven, so instead the uncalibrated hematite specimen with unit
variance is used for computational validation. Note however, that while many assumptions
were required to arrive at the hypothesis the calculations do not use any simplifying assump-
tions. Furthermore, changing the reconstruction origin from 0 to N does not require any
modifications to the reconstruction code but does require the input data to be reversed and
that negative voltages be provided.

A visual representation of V ar(Zi) is provided in figure 4.1 for both the normal recon-
struction starting at i = 0 and the one starting at i = N which will be referred to as a
reversed reconstruction going forward. From this figure the impact of the cumulative error is
inverted for the reversed reconstruction with maximum uncertainties achieved at the top of



CHAPTER 4. METHODS FOR ERROR MINIMIZATION 48

Figure 4.1: Heatmap indicating the pointwise depth uncertainties of a slice along the Z
coordinate for a conventional and reversed origin small-angle reconstruction.

the conventional reconstruction and minimal uncertainty at the base of the specimen. The
true comparison is made with the SSE however which is 1.45e7 and 7.3e6 for the normal
and reversed reconstructions respectively. These values for the SSE are in agreement with
our hypothesis, but do not reveal if there is an optimal origin for the reconstruction. The
optimal origin on a per-specimen basis is determined by iterating through the indices of
the points and performing a reconstruction with each as the origin. As in the case for the
reversed reconstruction minimal modification is required for the reconstruction algorithms,
in this case the data is split into two segments i ≤ j and j ≤ N where the position of the
origin, j, is fixed at 0. The first segment undergoes a conventional reconstruction and the
second segment the reverse reconstruction before the two are recombined into one final set
of coordinates. For each index the SSE is stored and the reconstruction with the minimum
SSE is selected as the best reconstruction. From figure 4.2 the ideal origin is found to be
point 437154 with an SSE of 2.2e6. The final uncertainty map is provided in figure 4.3 and
indicates that points near the origin preserve minimum error and that points near the two
extremes of the dataset have maximum error.

One final observation can be made for the conventional, reversed, and optimal (otherwise
referred to as middle-out) reconstruction through analysis of the cumulative distribution



CHAPTER 4. METHODS FOR ERROR MINIMIZATION 49

Figure 4.2: Plot measuring the sum of squared error (SSE) of a small-angle reconstruction as
a function of the reconstruction origin. Parameter search was accomplished using the golden
section search (GSS) method.

function for the observed Var(Z) presented in figure 4.4. Here the three reconstructions
are denoted by the origin points; 0, 437154, and 1299346 respectively, and the conventional
method possesses a relatively linear CDF indicating a uniform distribution of possible vari-
ance throughout the majority of the reconstruction with a final nonlinear region. The other
extreme represented by the reverse reconstruction shows a highly skewed distribution with
60% of the data being contained within a linear regime until a variance of six where the curve
transitions to a curved portion prior to leveling off. While the majority of the data exists
at lower variances then the conventional the maximum variance is larger. The middle-out
reconstruction combines the skewed distribution of the reversed focused on low variance with
the relative quick plateau near 100% of the data that the conventional possessed. Further-
more, due to each of the spatial extremes being dependent only on a portion of the data the
maximum variance is significantly lower than either of the other reconstructions.
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Figure 4.3: Heatmap indicating the pointwise depth uncertainties of a slice along the Z coor-
dinate for the optimal reconstruction origin as determined by the SSE(Z). The reconstruction
origin is indicated by the orange square marker.

Figure 4.4: CDF’s of variance for each type of reconstruction as a function of the reconstruc-
tion origin. Blue indicates a conventional reconstruction while orange and green indicate a
”middle-out” and reverse reconstruction.
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4.2 Ordered euclidean distance

As the reconstruction origin is shown to impact the global uncertainty via the sum of squared
errors and minimizes the local uncertainty we propose a new definition of euclidean distance
for analysis of atom probe data that attempts to minimize error and account for pairwise
covariance. For points i, j the variance of the conventional squared euclidean distance is
given according to equation 4.9 below.

V ar
(
D(i, j)2

)
=4(∆X)2 [V ar(Xi) + V ar(Xj)− Cov(Xi, Xj)]

+ 4(∆Y )2 [V ar(Yi) + V ar(Yj)− Cov(Yi, Yj)]

+ 4(∆Z)2 [V ar(Zi) + V ar(Zj)− Cov(Zi, Zj)]

+ 8(∆X)(∆Y ) [Cov(Xi, Yi) + Cov(Xj, Yj)− Cov(Xi, Yj)− Cov(Xj, Yi)]

+ 8(∆X)(∆Z) [Cov(Xi, Zi) + Cov(Xj, Zj)− Cov(Xi, Zj)− Cov(Xj, Zi)]

+ 8(∆Y )(∆Z) [Cov(Yi, Zi) + Cov(Yj, Zj)− Cov(Yi, Zj)− Cov(Yj, Zi)]

(4.9)

While the pointwise variances are known given the methods of reconstruction error propa-
gation outlined in sections 3.2 and 3.3 for small and wide-angle reconstructions the pairwise
covariances of the coordinates are unknown. The first approach to address the unknown
covariance is the use of the Cayley-Schwarz inequality which is expected to produce an over-
estimate of the distance uncertainty. Alternatively, alongside the reconstruction fourteen
pairwise covariance matrix could be constructed and referenced resulting in the additional
memory consumption of a (N, N, 15) array. The final option is to define a new distance
metric that exploits the order of events to minimize the redundant calculations in the depth
coordinates. Consider the following ordered euclidean distance with the substitution of 3.7
for the depth coordinates.

D(i, j)2 = (Xi −Xj)
2 + (Yi − Yj)2 +

(
dz′i − dz′j +

i∑
l=0

dzl −
l∑
l=0

dzl

)2

(4.10a)

= (Xi −Xj)
2 + (Yi − Yj)2 +

dz′i − dz′j + sgn(i− j)

 max(i,j)∑
l=min(i,j)+1

dzl

2

(4.10b)

The primary difference in the two distances is the separation of Zi and Zj into cumulative
depth increment and the depth correction prior to cancellation of redundant increments
and introduction of a sign function, sgn. Practically equation 4.10 is performing a local
reconstruction over all points in [i, j] and setting the smaller of the two indices to the origin.
This local reconstruction accounts for the covariances between the increments but neglects
to account for the remaining terms. Considering that D(i, j) is not just dependent on points
i, j but on the full set of reconstruction input variables, {F, kf , L, ξ, η,Xdet

i,j , Y
det
i,j ,Ω, V } with
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Ω and V indicating all possible voltages and ionic volumes, the variance can be defined
with respect to the partial derivatives. Equation 4.10 does provide a format conducive to
simplifying the derivatives (except for Ω and V ) and one example for an arbitrary variable,
T , is provided in equation 4.11.

∂D(i, j)2

∂T
=
∂

∂T
(Xi −Xj)

2 +
∂

∂T
(Yi − Yj)2

+
∂

∂T

dz′i − dz′j + sgn(i− j)

 max(i,j)∑
l=min(i,j)+1

dzl

2 (4.11)

The derivative is further expanded and broken down into an X, Y, and Z component in the
equations below.

∂

∂T
(Xi −Xj)

2 =2(Xi −Xj)

(
∂Xi

∂T
− ∂Xj

∂T

)
(4.12a)

∂

∂T
(Yi − Yj)2 =2(Yi − Yj)

(
∂Yi
∂T
− ∂Yj
∂T

)
(4.12b)

∂

∂T
(Zi − Zj)2 =2

dz′i − dz′j + sgn(i− j)

 max(i,j)∑
l=min(i,j)+1

dzl


·

[∂dZ ′i
∂T
− ∂dZ ′j

∂T

]
+ sgn(i− j)

 max(i,j)∑
l=min(i,j)+1

∂dzl
∂T

 (4.12c)

Utilizing equations 4.12a through 4.12c removes the need to store the covariance matrices
but would require the partials to be either stored or computed as part of the metric for all
of the input variables. Storage would require an array of shape (N, N + 40, 3) given N
unique voltages, approximately 30 ionic species, and the constant terms in comparison to
the aforementioned (N, N, 15) array required for the covariance method. If stored as the same
data type the covariance matrix route would require approximately five times the memory
as the the ordered euclidean distance with stored partials.

From a practical perspective the ordered euclidean distance provides an advantage with
respect to the memory consumption, although this diminishes in importance if small subsets
of the data are being reconstructed and analyzed. Furthermore, the current reconstruction
protocols already calculate the individual partial derivatives when determining the final
result such that the modification to provide additional outputs is trivial. Whereas relying on
pairwise covariance matrices will requires substantial changes to the reconstruction codes.
A key advantage to the pairwise method however is the ability to generalize to additional
metrics by referencing the established covariance matrices.

There is one final approach to propagating error through arbitrary metrics that it would
be remiss to omit from this discussion. That being the use of monte-carlo error propagation
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(MCEP) instead of linear error propagation for the reconstruction process. MCEP has three
main advantages; 1. minimal memory usage, 2. minimal assumptions, 3. online covariance
calculation, and one disadvantage in the computational complexity and runtime. Performing
and storing the coordinates for M monte-carlo simulations results in an (N, M, 3) array with
M � N and thus a lower memory usage compared to either the pairwise covariance or the
stored partials. With respect to advantage 2. the only assumptions that MCEP makes it
related to the distributions of the input variables as opposed to assumed both input and
outputs are normally distributed. Finally, online covariance calculations can be performed
on demand using the stored data along axis 1 for given points (i, j) in [0, N].
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Chapter 5

Calibration methods and sensitivity
validation

The primary experimental aim of this chapter is to develop a calibration method for thin film
oxides which provides error bounds on the calibrated reconstruction parameters. Given the
calibration uncertainty, the secondary goal is to test the hypothesis that ions far from the
reconstruction origin possess higher spatial uncertainty and that the incremental increases
in the depth uncertainty are due to to the cumulative nature of the depth as described in 3
for experimental atom probe specimen.

For this analysis a BCC Fe specimen with an approximately 5− 6 nm Fe57 enriched thin
film grown in the [1 0 0] direction was provided by Pacific Northwest National Laboratory for
which an initial shank-angle reconstruction presented in figure 5.1 alongside a calibrated and
uncalibrated small-angle reconstruction. Conventional manufacturing of APT specimens was
performed using a Ga focused ion beam (FIB) for both rough cuts and annular sharpening,
and the APT data was collected using a CAMECA LEAP 4000X HR equipped with a UV
355 nm laser. The known growth orientation and flat interface of the Fe57 layer provide
ideal conditions to calibrate the reconstruction according to the interplanar spacing and the
specimen curvature which are predominantly governed by the ξ and kf parameters.

The interplanar spacing calibration requires knowledge of the lattice parameter for the
analyzed planes. Indexing of poles in atom probe reconstructions require multiple poles to
be visible on the detector projection. However, the controlled growth orientation ensures
that the plane orientation is known even in the presence of only a single crystallographic
pole. For BCC Fe the lattice parameter is 0.2866 nm, however the target interplanar spacing
as measured by the atom probe should instead be 0.143 as the plane defined by the body-
centered atoms will also be visible within the reconstruction.

In the case of curvature the isotopically enriched thin film when perpendicular to the atom
probe analysis direction can provide a global picture of the reconstruction’s curvature through
measurement of the film interfaces. In comparison, measures of curvature which focus on
the crystallographic planes can only provide a local estimate with diminishing accuracy as
the distance from the pole is increased. Furthermore, by using isotopic enrichment instead
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Figure 5.1: Comparison of a PNNL provided shank angle reconstruction (subfigure a.), a
calibrated Bas reconstruction (subfigure b.), and an uncalibrated Bas reconstruction (sub-
figure c.). For recon a. and c. an image compression factor, ξ, of 1.750 and a field factor,
kf , of 3.3 are used. While for recon b. ξ and kf are set to 1.073 and 3.098 respectively. The
evaporation field is set to 33.0V/nm3 for all reconstructions. Subfigures a. and b. depict a
flattened distribution of Fe57 ions at a depth of 25 nm whereas c. depicts a high curvature
interface.

of elemental enrichment distortions in the reconstruction caused by transitioning between
regions of differing required evaporation fields is minimized.

5.1 Calibration method

Interplanar spacing calibration

For interplanar spacing calibration we rely on the standard methods described in Gault et
al. [40] and Larson et al. [74] involving spatial distribution maps. Spatial distribution maps
(SDM) are defined according to the depth-only distance between nearby ions such that peaks
correspond to atomic planes when they can be resolved. For these estimates to be accurate
the planes must be orthogonal to the analysis direction or a parabolic background will be
observed within the SDM. To correct for this background by aligning the analysis direction
perpendicular to the crystallographic planes multiple methods exist such as DF-Fit, plane
orientation extraction (POE), and the hough-transform, although for this work POE is used
[55, 2, 128].

Plane orientation extraction

Plane orientation extraction (POE) was originally proposed alongside local crystallography
mapping (LCM) to provide methods for systematic calibration of atom probe reconstruc-
tions in Araullo-Peters et al. [2], which should be referenced for an in depth discussion on
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Figure 5.2: Selection of crystallographic pole according to a series detector hitmaps cor-
responding to different event subsets. The crystallographic pole is found to be located at
(−3.069,−2.353). A. is the hitmap for events 0 through 711604, B. events 711604 through
1423208, C. events 1423208 through 2134813, and D. events 2134813 through 2846417.

the method. In this work only POE is utilized as the detector hitmap data used in our
reconstructions only have single poles violating LCM’s reliance on multiple poles.

POE does not requires the presence of a pole, however provides the most accurate cali-
brations in the vicinity of pole figures. As shown in figure 5.2 poles manifest circular regions
with lower detection rates, although may have a central peak. Separating the data into
multiples slices the position of the pole can be tracked as a function of event number and
thus depth by searching for the central peak. The pole radius can then be adjusted such
that the locally depleted region is fully contained with a cylindrical ROI. Selection of the
radius greatly impacts the efficacy of the POE method, with an insufficient radii resulting
in insufficient counting statistics and an excessive radii resulting in an increased background
level for subsequent distance histograms or spatial distribution maps.

Once the pole is extracted from the detector map, a spherical ROI at point, P, with a
radius RPOE is selected for further analysis. The point P can either be selected according
to the midpoint or mean point of the pole ROI. Subsequently a series of plane orientations
N(φ,Θ) where (φ,Θ) indicate the azimuthal and elevation angles, are evaluated to determine
the rotation which best describes the planar arrangement within the spherical ROI.
The evaluation function from [2] can be summarized as:

1. Calculate the perpendicular distance between N(φ,Θ) and each point, pi, such that
D(pi − P ) ≤ RPOE.

2. Construct a distance histogram as depicted in figure 5.3a.

3. Apply a 1D fast fourier transform, see figure 5.3b, with a median filter to separate the
high crystallinity component of the FTT from the characteristic noise.

4. Determine maximum amplitude for comparison with other N(φ,Θ).

Once the evaluation function has been applied to all possible planes the peak strength
can be plotted relative to (φ,Θ) as seen in figure 5.3c with the maxima corresponding to the
optimal planar orientation as a high amplitude within the FFT indicates a high degree of
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Figure 5.3: A, Distance histogram of best fit plane. B, fast fourier transform of A. C,
Amplitude maps of maxima for each plane(φ, Θ). A high amplitude area is found for (φ, Θ)
of (4.0, 39.0) in C. indicating the optimal rotation.
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Figure 5.4: Example SDM pre (A.) and post (B.) applying the POE rotation. Post-rotation
the peak intensities are maximized while the peak widths are minimized.

crystallinity. Prior application of POE indicate that varying φ from 0◦ to 360◦ and Θ from
0◦ to 45◦ with a step size of 1◦ is sufficient to find the correct rotation [2, 23, 22]. If a local
calibration was desired such that POE was applied for thousands of points replacing the
grid search with a gradient approach would be recommended to improve the computational
efficiency.

Spatial distribution map

The most conventional way to determine the interplanar spacing within an atom probe
reconstruction is the spatial distribution map although there are two alternatives. The first
alternative is to use the distance histogram from the POE process, which is essentially a
SDM limited to one analysis point centered on the extracted plane [2]. A second option is
used in crystallography-mediated reconstruction (CMR) and relies on mean-shift clustering
to identify each atomic plane within the ROI [23, 22]. Once each planes mean position
is identified their orientation is corrected for and the average interplanar spacing is found.
While effective mean-shift clustering is less developed as a technique when compared to
spatial distribution maps and the distance histogram approach has limited count statistics.
Thus, as shown in figure 5.4 a standard SDM is used to calculate the interplanar spacing
once the data has been reoriented using POE.

From a SDM the interplanar spacing is defined as the average distance between the local
maxima. This is conventionally performed using parameterized peak search algorithms based
on the full width half max (FWHM) or difference in subsequent extrema [40, 85]. Inspired by
DF-Fit a parameterless method is introduced to extract the extrema based on the residual
of the best fit parabola [55]. In Haley, Bagot, and Moody [55] it was recognized that fitting
a parabola to a calibrated SDM results in a parabola that matches the average value over
each peaks resulting in areas of under-estimation and over-estimation which corresponding
to the peaks and valleys present in the SDM.
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Figure 5.5: Peak Extraction process. Subfigure A. contains the initial SDM (spatial distri-
bution map) and parabola fit while subfigure B. shows the residuals of the fit. The signed
residuals are presented in C, while the extracted maxima are plotted alongside the initial
SDM in D.

Making use of the residuals does not requires the magnitudes but purely the sign of each
value which when plotted in figure 5.5 returns −1 for the valleys and 1 for each peak. An
absolute difference in two subsequent signs of 2 indicates a boundary between two extrema.
From each set of boundaries the midpoint can be taken as an approximate location of the
extrema. A more accurate estimate can be found by taking the maxima/minima within
these bounds and a gaussian mixture-model could be used to provide the most accurate
estimate at computational cost. Finally, with the maxima known the interplanar spacing is
defined as the mean separation between subsequent maxima with an error corresponding to
the standard deviation of the separation.

Curvature calibration

As opposed to the methods described by Alec et al for crystal mediated reconstructions
utilizing DF-Fit to estimate curvature and thus calibrate ξ we instead make use of specimen
specific features [55, 23, 22]. In the case of grown thin films on a planar substrate, the cur-
vature is known to be flat and the isotopically enriched region makes for an ideal calibration
portion of the data as they specimen should have a constant evaporation field and thus the
curvature of either interface is appropriate for conventional curvature calibrations. However,
we propose instead to fit a parabaloid, equation 5.1c, to the point cloud composed of the
enriched isotopes instead of either interface.

Doing so makes the approach more generalizable and robust when compared to using an
interface and will prioritize regions of the data with higher isotopic density. This prioritiza-
tion diminishes the need for explicit filtration of the isotope from the non-enriched portion
of the dataset. If increased accuracy is required the data points could be weighted inversely
proportional to the voronoi volume further biasing the fitting process to the high density
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thin film region.

z =
x2

a2
+
y2

b2
(5.1a)

= S ·
(

(x− x0)2
xs2

+
(y − y0)2
ys2

)
+ C (5.1b)

=

(
(x− x0)2

xs
+

(y − y0)2
ys

)
+ C (5.1c)

Here the base equation for a parabaloid, 5.1a, is generalized to account for a shifted
maxima through (x0, y0, C) and a variable concavity indicated by the sign of S. Note however
that these equations are only relevant for elliptic parabaloids due to each term having the
same sign. The original scaling factors (a, b) can be reclaimed through (xs, ys, S) as shown
below.

a =
xs√
|S|

(5.2)

b =
ys√
|S|

(5.3)

Once the best-fit parabaloid has been identified the gaussian and mean curvatures, pre-
sented in equations 5.4 and 5.5, are used to characterize the curvature of the film. Fixing
the field factor and then minimizing the curvature over many ξ then determines the optimal
compression factor conditioned on the field factor.

K(u, v, a, b) =
4

a2b2
(

1 +
4u2

a4
+

4v2

b4

)2 (5.4)

H(u, v, a, b) =
a2 + b2 +

4u2

a2
+

4v2

b2

a2b2
(

1 +
4u2

a4
+

4v2

b4

)1/3
(5.5)

Both of the provided curvature equations indicate a pointwise curvature at point (u, v)
and are maximized at the origin of the parabaloid. It should also be noted that neither
formulae are scale invariant. To provide a consistent comparison among multiple ξ the depth
coordinate of the reconstruction stack is scaled to [0, 100] and the (X, Y ) coordinates are
scaled according to (Xdet, Y det) using min-max scaling routines. Furthermore the curvature
is always estimated at the origin s.t. the gaussian and mean curvatures are maximized for a
given reconstruction.
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Figure 5.6: Reconstructions along the Pareto front, the set of non-dominated solutions. Re-
con 1 is the solution with minimal curvature, but has the largest difference in the interplanar
spacing while Recon 4 minimizes the difference in interplanar spacing at the cost of curva-
ture. Recon 2 and 3 present reconstructions with a balance of minimal curvature and correct
interplanar spacing.

Multiobjective optimization

With the two objective functions defined only the optimization method is left to be defined.
In the ideal case it should be enough to first optimize kf such that the interplanar spacing is
accurate followed by a subsequent minimization of curvature to select ξ. However, the inter-
planar spacing and curvature are functions of both parameters and so the second calibration
step is not guarantied to preserve the results of the first. One possible solution is to then
optimize each function in an iterative fashion until the parameters converge. Neither conver-
gence nor the existence of a single local minima with respect to both objective is guarantied.
Thus this problem falls under the purview of multi-objective optimization routines. [88, 8]

The goal of multi-objective optimization is to identify a pareto front, a set non-dominated
solutions, instead of a single optimal solution. Where a “non-dominated solution is one in
which no one objective function can be improved without a simultaneous detriment to at least
one of the other objectives” [88]. The majority of optimization routines rely on evolutionary
or swarm-based approaches to identify the pareto front [135, 20]. In this work the Pymoo
python package is employed to identify the pareto front, an example of which is provided
in figure 5.6 alongside possible reconstructions. Pymoo provides a selection of evolutionary
algorithms, although in this work U-NSGA-III is used as it is especially efficient for problems
with few objective functions as opposed to those optimized for many-objective problems [8,
108].
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Multi-criteria decision making (MCDM)

As finding the pareto set is insufficient to select a singular (ξ, kf ) for the reconstruction a
decision criterion must be introduced to select the ideal reconstruction from the pareto set.
A detailed discussion on possible decision criterion is presented in Wang and Rangaiah [123].
Of note are the TOPSIS protocol, which is one of the most commonly used methods, and
the GRA protocol. GRA has the advantage of being parameterless while TOPSIS requires
user defined weights to indicate the priority of each objective function. A non-parametric
version of TOPSIS can be accessed by setting the weights to 1 for each objective however so
user interaction is not inherently required.

TOPSIS, technique for order of preference by similarity to ideal solution, works by first
constructing a best-case, Ab, and worst-case scenario, Aw. For a minimization problem Ab
is defined as the minimum value for each objective observed in the pareto-front. It follows
that Aw is then the maximum values of the pareto-front. Given these two solutions the goal
of TOPSIS is to minimize the distance from Ab and maximize the distance from Aw. Let
C indicate a costs matrix of shape (m,n) where m indicates the number of pareto sets and
n the number of objective function. TOPSIS then begins by normalizing and weighting the
cost matrix as in equations 5.6 and 5.7 where w indicates the function weights.

Cnorm
ij =

Cij√∑m
k=1C

2
kj

(5.6)

Cweight = Cnorm · w (5.7)

(5.8)

Note that equation 5.6 describes vector normalization according to the original descrip-
tion of TOPSIS as in Hwang and Yoon [60]; for a detailed discussion on alternative nor-
malization schemes see Vafaei, Ribeiro, and Camarinha-Matos [121]. Once weighted the
reference solutions and the distances to each solution within the pareto front are defined
below.

Aw = {max(Cweight
j |j = 1, , ..., n} (5.9)

Ab = {min(Cweight
j |j = 1, , ..., n} (5.10)

Diw =

√√√√ n∑
j=1

(Cweight − Aw)2 (5.11)

Dib =

√√√√ n∑
j=1

(Cweight − Ab)2 (5.12)

Finally a similarity metric, si, is defined in equation 5.13 to indicate the relative proximity of
a pareto solution to the ideal and non-ideal solutions. The pareto solution which maximizes
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this metric is considered to be optimal [60].

si =
Diw

Diw +Dib

(5.13)

As previously mentioned GRA, gray relational analysis, is a non-parameterized alterna-
tive to TOPSIS which compares the pareto solutions to an ideal solution and neglects to
consider a non-ideal solution. GRA starts similarly to TOPSIS in that the costs matrices
are first normalized but instead of vector normalization min-max scaling is performed as in
equation 5.14 for a minimization routine.

CGRA
ij =

maxi(Cij)− Cij
maxi(Cij)−mini(Cij)

(5.14)

The reference point for each objective and the difference from the pareto solutions are then
defined according to equations 5.15 and 5.16.

AGRAj = maxi(Fij) (5.15)

∆Fij = |AGRAj − Fij| (5.16)

From this point the gray relational coefficient, GRC, is defined below such that the maxima
indicates the optimal pareto solution.

GRCi =
1

m

n∑
j=1

min(∆Fij) +max(∆Fij)

∆Fij +max(∆Fij)
(5.17)

Our analysis indicates that both GRA and unweighted TOPSIS identify the same optimal
solution of (1.050, 3.074) corresponding to Recon 2 in figure 5.6. Given that two of the three
objective functions provide a measure of curvature the following weights, [0.25, 0.25, 0.5],
were provided to TOPSIS to place a higher emphasis on the interplanar spacing resulting.
This weighting ensures the total influence of curvature and interplanar spacing are equivalent
and results in an estimate of (1.073, 3.098) depicted in figure 5.6.

Calibration uncertainty

Neither the multiobjective optimization routines nor the pareto-optimal selection methods
employed in this work do not provide the error estimates required to perform error prop-
agation. Thus, a method to estimate the uncertainty of ξ, kf , or preferably both must be
designed. Thankfully, an error bound for the interplanar spacing can be estimated from the
SDM as long as a minimum of three peaks are observed. As for the curvature estimate it
would be possible to perform linear error propagation for the gaussian and mean curvature
using the error bounds on the best-fit parabaloid’s coefficients. However, Pymoo does not
support inclusive of uncertainty estimates for the objective functions thus error must be
incorporated after identification of the pareto set.
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Given [V ar(Ki), V ar(Hi), V ar(D
hkl
i )] the first approach to quantify the error of the cal-

ibration utilizes monte-carlo error propagation as described in section 2.3. Assuming K, H,
and Dhkl follow normal distributions each pareto solution’s objective functions would be per-
turbed according to the corresponding variance. Once the perturbed pareto set is generated
the GRA and TOPSIS protocol would be used to find the pareto optimal solution and the
corresponding (ξ, kf ) recorded. This process would then be repeated many times and the
calibrated values expressed as the mean and standard deviation of the stored (ξ, kf ). Note,
that these estimates are correlated and thus violate the assumptions of reconstruction error
propagation detailed in section 3.

As an alternative linear error propagation can be performed using V ar(Dhkl
i ) and the

following empirical relationship between Dhkl, kf , and ξ [40, 23].

Dhkl ∝
(
kf
ξ

)2

(5.18a)

Dhkl = a

(
kf
ξ

)2

+ b (5.18b)

Where a indicates the proportionality constant and b a constant term which are solved by
fitting a linear regression model with (kf/ξ)

2 and Dhkl as the independent and dependent
variables. The model is specifically fit to a subset of the pareto front excluding the optimal
solution from 5.1 corresponding to a (ξ, kf ) of (1.073, 3.098). To account for the variance in
Dhkl the subset is weighted according to the inverse of the variance as specified in Seabold
and Perktold [107]. According to the weighted linear regression shown 5.7 the proportionality
constant is equal to 0.016±2e–4 and the intercept is equal to 0.126±2e–3. The covariance of a
and b is further estimated to be −3.61e–7 indicating that errors have an inverse relationship.
Equation 5.18b is subsequently rearranged below to solve for kf as a function of ξ, Dhkl, a,
and b.

kf = ξ

√
Dhkl − b

a
(5.19)

Given that V ar(Dhkl
i ) is known from the calibration process and the weighted regression

provides a covariance matrix for a and b an estimate of possible kf values which would
produce the measured interplanar spacing can be determined through application of linear
error propagation. The partial derivatives for equation 5.19 are defined in equations 5.20
through 5.23 and the complete variance equation is provided in equation 5.24.
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Figure 5.7: Weighted linear regression along the pareto front describing Dhkl as a function
of ξ, the image compression factor, and kf , the field factor. The red dashed lines indicate
the regression and its confidence intervals, and the error bars are the 1σ.

∂kf
∂ξ

=

(
Dhkl − b

a

)1/2

(5.20)

∂kf
∂Dhkl

=
ξ

2a

(
D − b
a

)−1/2
(5.21)

∂kf
∂a

= − ξ

2a

(
D − b
a

)1/2

(5.22)

∂kf
∂b

= − ξ

2a

(
D − b
a

)−1/2
(5.23)

V ar(kf ) =

(
Dhkl − b

a

)
V ar(ξ) +

(
ξ2

4a
· 1

Dhkl − b

)
V ar(Dhkl)

+

(
ξ2

4a3
· (Dhkl − b)

)
V ar(a) +

(
ξ2

4a
· 1

Dhkl − b

)
V ar(b)

+

(
ξ2

4a2

)
cov(a, b)

(5.24)

The same process can be repeated to find V ar(ξ) as a function of V ar(kf ) and V ar(Dhkl)
resulting in an estimate of (1.073±0.010) which is a 0.965% error. However due to the inter-
dependence of V ar(ξ) and V ar(kf ) an estimate of both cannot be provided simultaneously.
When used in conjunction with reconstruction error propagation ξ is assumed to have zero
error and V ar(kf ) is provided as an input. V ar(kf ) is chosen instead of V ar(ξ) as the field
factor is expected to have a larger influence on the pointwise spatial uncertainty. Combining
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this process with the results of the calibration procedure presented in 5.1 provides the follow-
ing reconstruction parameter estimates, (1.073±0, 3.098±0.030), given that σDhkl = 1.91e–3.
The percent error on kf is then only 0.968% for this calibration.

5.2 Uncertainty quantification

Quantification of the reconstruction error is performed in two fashions; the first of which
assesses the absolute sensitivity of the reconstruction to each parameter, by assuming a
unit variance, while the second assumes a uniform percent variance in order to estimate the
scaling behavior of the variance with respect to the final ion positions. Furthermore, it is
necessary to consider the percent error scenario as the applied voltages can reach values of
8kV and there can be upwards of 50 ionic species with unique volumes. For both V and
Ω then a singular variance parameter is insufficient to describe the true error where as a
percent error would allow the analysis to account for the range of values by automatically
scaling the variance given to the error propagation equations.

Sensitivity

Starting with sensitivity the two prevailing paradigms are local sensitivity analysis (LSA)
and global sensitivity analysis (GSA) [102]. LSA strictly defines the sensitivity of a response
variable as the slope with respect to it’s inputs (U), letting XBas represent the response
variable this corresponds to the partial derivative as in 5.25.

S(XBas
i , U) =

δXBas
i

δU
for U in (F, kf , ξ, L, η,X

det
i , Y det

i , Vi,Ωi) (5.25)

Because SU , the sensitivity coefficient, corresponds to the partial derivative the reconstruc-
tion’s sensitivity can be calculated by providing the reconstruction program a variance of
one for the variable of interest. Under this constraint on the variance it can be shown that:

V ar(XBas|V ar(U) = 1) =

(
δXBas

δU

)2

= S2(XBas
i , U) (5.26)

Extending LSA to account for interactions between variables requires a computationally
expensive evaluation of higher order partial derivatives for all possible permutations of
U . However, the presence of interactions can be found by comparing the sum of the
squared sensitivities to V ar(XBas

i |V ar(u) = 1 for u in U) which represents the variance
of XBas

i evaluated with a unit variance for all possible parameters. If
∑

u in U S(XBas
i , U) <

V ar(XBas
i |V ar(u) = 1 for u in U) then there are negatively correlated variables while a

larger summation indicates positive correlations.
While LSA provides a rigorous definition of sensitivity it is inadequate to characterize

the sensitivity for variables which exist over a larger domain. Global measures, such as
Sobol indices, attempt to generalize results over all of the factor space but lack a unique
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definition of sensitivity [102, 111]. In the case of atom probe it would be beneficial to apply
GSA to the detector coordinates and voltages as they occupy a large range of values within
a reconstruction. However, we are predominantly concerned with the pointwise error of
individual ions and thus rely only on LSA. A global understanding of sensitivity is instead
achieved by analyzing how the sensitivity varies with respect to the spatial position of the
ions.

Local sensitivity analysis

In order to visualize the sensitivity as a function of position in the reconstruction a series
of subsets within the reconstruction are selected. To measure the impact on the (X, Y)
coordinates the first ROI is taken with respect to the Z coordinate and is selected for Z in
[−25.9,−23.6] such that the thin film is contained. The variances for this slice is presented
in figure 5.8, A. through D. Next, a thin strip is selected within the slice to isolate a specific
range of X or Y coordinates. In the case of the sensitivity of X and Y the strip is selected to
minimize the possible ranges of the Y coordinate, and thus Y det, for analysis of X and vice
versa as the X does not depend on Y det in the Bas reconstruction. The depth correction, dz′,
is dependent on both sets of detector coordinates however and so instead an ROI rotated 45◦

with respect to the origin is selected ensuring that both coordinates have an equal impact on
V ar(dz′). For visual consistency the same ROI is used for

∑
dzj despite it being independent

of both Xdet and Y det. The sensitivities with respect to the four most influential variables is
then provided in figure 5.8, E. through H.

From this figure we see that V ar(X) and V ar(Y ) are maximized when the magnitudes are
maximized resulting in asymmetric variance. V ar(dz′) and V ar(

∑
dzj) possess symmetric

variance about the origin instead and in the case of V ar(dz′) is maximized at the edges of the
detector. Despite V ar(

∑
dzj) being independent of the detector coordinates we find that

there is a relationship between variance and (X, Y ) with a lower variance measured at the
reconstruction’s edge. This is likely due to the voltage as field evaporation requires higher
voltages at the center of the reconstruction due to blunting of prior evaporation events.

Further conclusions are drawn from the sensitivity figures, E. through H., where it is
observed that X, Y , and dz′ are most sensitive to Xdet and Y det at the reconstruction’s
center implying that the higher variance at the specimen edge is not due to the detector
coordinates as one might expect. As the distance from the center increases we observe that
ξ is the most influential parameter followed by kf . F is then found to be the least influential
of these four parameters. V ar(

∑
dzj) is observed to be most sensitive to the ionic volume

estimates, Ω, followed by the efficiency, η, image compression factor, ξ, and field factor,
kf . The normalized sensitivities are not observed to have a strong association with spatial
position.

The same style of analysis is repeated with respect to depth, however the ROI selection
process is altered to minimize any possible effects of (X, Y ). First, a cylindrical shell is
extracted with a minimum and maximum radius corresponding to 7 and 8 nm, one half of
this shell is then unfolded in figure 5.9, A. through D. In the case of V ar(XBas) the half-shell
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Figure 5.8: Total variance of X, Y , dz′, and
∑
dzj as a function of (X, Y) coordinates

indicated by figures; A, B, C, and D. Figures E through H present the sensitivity normalized
by total variance for the four most influential parameters in the Bas reconstruction. Data is
collected within the horizontal slice bounded by depths of −25.9 and −23.6 nm.
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Figure 5.9: Total variance of X, Y , dz′, and
∑
dzj as a function of Z coordinate indicated

by figures; A, B, C, and D. Figures E through H present the sensitivity normalized by total
variance for the four most influential parameters in the Bas reconstruction. Data is collected
within the cylindrical shell bounded by a radius of 7 and 8 nm.

is split along the Y axis and the opposite holds for V ar(Y Bas). The depth coordinates are
split based off the same 45◦ rotation about the Z axis as was used in figure 5.8. The final
ROI used to assess the sensitivity with respect to depth is then centered at 0 for V ar(dz′)
and V ar(

∑
dzj) and near 3.5 nm from the center for V ar(XBas) and V ar(Y Bas).

From the top row of figures it is observed that V ar(X) and V ar(Y ) do not strongly
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Table 5.1: Sensitivity of the Bas reconstruction coordinates to the input parameters as
measured by the average normalized sensitivity, S2

∗(C,U), where C the assessed coordinate
with respect to the variable, U , and ∗ indicates normalization by V ar(C). Reconstruction
parameters and corresponding sensitivity are listed row-wise in order of highest to lowest
sensitivity. The final row indicates the sum of the sensitivities for each coordinate, where a
value of 1 indicates that there are no unaccounted for interaction terms.

Coord (C) XBas Y Bas dz′
∑
dzj

Priority U E[S2
∗(C,U)] U E[S2

∗(C,U)] U E[S2
∗(C,U)] U E[S2

∗(C,U)]
1 ξ 7.88e–1 ξ 7.83e–1 ξ 9.48e–1 Ω 9.98e–1
2 kf 1.16e–1 kf 1.23e–1 kf 2.67e–2 η 1.11e–3
3 Xdet 9.46e–2 Y det 9.39e–2 Xdet 1.27e–2 ξ 5.01e–4
4 F 8.34e–4 F 8.27e–4 Y det 1.25e–2 kf 6.01e–5
5 L 6.22e–6 L 6.17e–6 F 2.35e–4 F 5.29e–7
6 V 2.56e–8 V 2.56e–8 L 7.48e–6 L 3.95e–09
7 Y det 0.00 Xdet 0.00 V 7.28e–7 V 1.91e–11
8 Ω 0.00 Ω 0.00 Ω 0.00 Y det 0.00
9 η 0.00 η 0.00 η 0.00 Xdet 0.00

Sum 1.00 ±1.50e–16 1.00 ±1.50e–16 1.00 ±1.67e–16 1.00 ±1.82e–16

depend on depth and instead are maximized as XBas and Y Bas increase. Opposing these are
V ar(dz′) and V ar(

∑
dzk) which are greatly influenced by depth but with differing direc-

tionality. V ar(dz′) is maximized near the beginning of the reconstruction at low depths and
low voltages where as V ar(

∑
dzj) is maximized at the end of the reconstruction as expected

due to the cumulative nature of the coordinate. As for the normalized sensitivities the four
most influential parameters are the same for each variance as a function of depth. X, Y , and
dz′, all sharing share a positive correlation between depth and the sensitivity to the detector
coordinates.

Assigning a final ranking of parameter importance for each output is done by measuring
the average normalized sensitivity throughout the reconstruction and is presented below in
table 5.1. The results of the sensitivity analysis agree with the proposed ranking of variables
according to estimates of the partial derivatives in 3.2 with the added benefit of comparing
all variables where as originally the relative importance of the sets: {kf , F, V }, {ξ, L}, and
{Xdet, Y det} could not be assessed. From these comparisons it is of note that with the
exception of

∑
dzk ξ is the most influential parameter and that V is of negligible importance

in all cases. Furthermore, the reconstruction is more sensitive to the detector coordinates
then previously thought with them generally possessing the third or fourth highest average
sensitivity. It bears repeating however that this analysis does not account for the differing
magnitudes of error the variables possess as it is equivalent to the scenario where each variable
has the same variance, when in reality it is unlikely that all variables even have variance of
similar magnitude. For instance consider that the calibrated value for kf is 3.098±0.030 and
has an percent error of approximately 1%; given that F was assigned a value of 33 the error
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of 0.030 would be equivalent to 0.01% of F . Furthermore, both V and Ω exist over a wide
range of values and a single variance is insufficient to represent their impact. Given these
limitations this analysis is extended to consider the variance conditioned upon a percent
error.

Percent error analysis

Recalling that the partial derivatives of XBas or Y Bas with respect to any of the input
variables, denoted as U , are equal to C

U
for a shared constant, C, consider the scenario where

each variable is assigned a percent error, σU = pU . Equation 5.27 implies then that for a
given percent error XBas and Y Bas are equally sensitive to all variables with an exception
for the impact of XDet on Y Bas and vice versa.

V ar(XBas|V ar(U) = (pU)2) =

(
δXBas

δU

)2

(pU)2 =

(
C

U

)2

(pU)2 = C2 (5.27)

This does not apply fully to either dz′ or
∑
dzj, however there are subsets of variables

with equivalent impact. It is expected that the sets (kf , F, V ), (ξ, L), and (XDet, Y Det)
effect dz′ equally given a percent error, while for

∑
dzj the impact of η is expected to be

1/4 that of ξ and Ω cannot be predicted succinctly as its the expanded derivatives depends
on the frequency of each ionic species. Plotting the results in figure 5.10 validates theses
expectations both as a function of (XBas, Y Bas).

From this we also confirm that V ar(XBas) and V ar(Y Bas) scale in a quadratic fashion
with respect to XBas and Y Bas respectively. Whereas the analysis of V ar(dz′) along the
45◦ diagonal is best described as a fourth-order polynomial which shows steep increases in
variance at the edges of the dataset and while not clearly visible a local maximum near
the center surrounded by two local minima. It is also observed that for equal percent
errors ξ and L have the largest impact on the variance while the remaining variables have
a comparable impact, albeit the datapoints corresponding to XDet and Y Det have a higher
degree of scatter. Finally for

∑
dzj the variance is highest at the center and decreases as

a function of distance from the center for all variables. Furthermore, the efficiency is found
to have the smallest impact, approximately 1/4 that of ξ and L. There does not however
appear to be a large discrepancy between the impacts of (kf , F, V, L, ξ,Ω). Differences in
V ar(

∑
dzj) are expected to be more pronounced for larger specimen depths and so the

behaviors with respect to ZBas are plotted in 5.11.
V ar(X), V ar(Y ), and V ar(dz′) appear to be equally sensitive to the input variables

as in figure 5.10. However while V ar(X) and V ar(Y ) possess relatively constant values
irregardless of depth V ar(dz′) is decreasing instead; standing in contrast to V ar(

∑
dzJ)

which increases exponentially with respect to depth. In the latter’s case η is the least
influential parameter while (kf , F, V, L, ξ) are represented as just a single curve. The ionic
volume, Ω does not possess uniform behavior from roughly 15 to 20 nm has the largest impact
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Figure 5.10: Total variance of X, Y , dz′, and
∑
dzj as a function of (X, Y) coordinates

given by percent errors indicated by figures; A, B, C, and D. Figures E through H present
the variance given a uniform percent error in each variable. Data is collected within the
horizontal slice bounded by depths of −25.9 and −23.6 nm.



CHAPTER 5. CALIBRATION METHODS AND SENSITIVITY VALIDATION 73

Figure 5.11: Total variance given a percent error of X, Y , dz′, and
∑
dzj as a function of Z

coordinate indicated by figures; A, B, C, and D. Figures E through H present the variance
given a uniform percent error in each variable. Data is collected within the cylindrical shell
bounded by a radius of 7 and 8 nm.
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before appearing to overlap with (kf , F, V, L, ξ) prior to diverging at 30 nm. The region from
20 to 30 nm corresponds roughly to the thin film and it is unclear if this behavior is due
solely to changes in the composition or related to the calibration process.

5.3 Conclusions

In summary it was demonstrated that performing multiobjective optimization over a com-
bination of conventional interplanar spacing calibration techniques and non-conventional
global curvature estimates was sufficient to optimize ξ and kf simultaneously. Furthermore,
it was shown that error bounds for either ξ or kf could be established by fitting equation
5.18b, rewritten below, along the entirety of the pareto front. The optimal values for kf and
ξ were found to be 3.098±0.030 and 1.073±0.010 which correspond to a roughly 1% error in
either parameter. This analysis also exposed a limitation of the error propagation equations
as the estimate of kf depends on ξ and vice versa violating the assumptions of 3 that none
of the input parameters are correlated.

Dhkl = a

(
kf
ξ

)2

+ b (5.18b)

Additionally performing a sensitivity analysis with respect to both a unit variance and a
uniform percent variance showed XBas, Y Bas, and dz′ are most sensitive to errors in ξ and kf
as was predicted during the derivations in 3. Noting that dz′ only consists of the correction
term which places the ion atop the hemispherical cap, it was found that cumulative depth
term,

∑
dzj, was most sensitive to Ω, η, ξ, and kf in descending order when considering

a unit variance. When instead a percent error was applied the importance of η diminished
while the variance due to Ω, ξ, and kf converged.

When considering entirety of the depth coordinate V ar(
∑
dzj) was found to be greater

than V ar(dz′) for all ions implying that V ar(ZBas) is dominated by V ar(
∑
dzj) neglecting

any covariance terms. Additionally, V ar(
∑
dzj) was found to be positively correlated with

specimen depth such that the position of points near the specimen base are ill-defined in
comparison to those at the specimen apex. These final two observations appear to confirm our
initial hypothesis, however we had predicted that the positions and properties of features,
represented by many ions, would have increasing uncertainty. While it was shown that
the variance of an individual ion agreed with our hypothesis we neglected to consider the
covariance. Neglecting the covariance between points will result in either an overestimate or
underestimate of error dependent upon the sign of the correlation and the explicit calculation.
For example, accounting for covariance in differences such as those found in the euclidean
distance formula will result in lower estimates of error if the points are positively correlated.
A positive correlation is expected to be the case between subsequent ions as the term ZBas

i

can be written as a sum of ZBas
i−1 and a depth increment. Further, analysis that computes the

covariance between ions is thus necessary to determine if the hypothesis applies to complex
features and not individual ions.
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Chapter 6

Measurement of epitaxially grown
thin films

In this chapter the ion specific analysis from 5 is expanded to large scale structures, the
isotopically enriched thin film, and properties, interplanar spacing, present within the BCC
Fe specimen. The purpose of error propagation with respect to the interplanar spacing, dhkl,
is to identify any biases or discrepancies introduced by the scaling step in the calibration
process. While determining the thickness of the thin film and its associated error is relevant to
the self-diffusion studies this specimen is apart of. This sample is the as-grown non-oxidized
state which serves as a baseline to compare to oxidized atom probe specimen extracted from
the same foil. Thus an accurate measurement of the film thickness and understanding of
the uncertainties are imperative to determine if the oxidized sample’s concentration profiles
have statistically meaningful differences from the non-oxidized scenario.

6.1 Monte-Carlo reconstructions

So far in this work linear error propagation has been used to calculate the pointwise error
within the atom probe reconstruction and to provide closed form expressions to understand
the significance of each reconstruction parameter. At this point, however linear error prop-
agation is insufficient to analyze the uncertainty in either dhkl or the film thickness. This is
for two reasons; 1. both measurements are dependent on multiple ions simultaneously and
would require calculations of the the all N · (N − 1) covariance terms with N equal to 3.6e6,
2. the iterative and discrete nature of the sub-computations prohibit practical differentiation
of the full functions.

Instead a monte-carlo approach which was touched on in 4.2 as an alternative for prop-
agating error in distance calculations and described in 2.3 is employed. Monte-carlo error
propagation, MCEP, is one of the most common methods for handling so called black-box
type problems, but is also commonly used alongside linear error propagation [3, 75, 33].
For the following applications of MCEP a series of reconstructions are created with fixed
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values for the evaporation field, flight length, image compression factor, and efficiency of
{F : 33.0V/nm,L : 382mm, ξ : 1.073, η : 0.36} and the field factor, kf is represented as
a normal distribution with mean of 3.098 and standard deviation of 0.030. The remaining
inputs, voltage (V ), ionic volume (Ω), Xdet, and Y det are defined according to the instrument
and are assumed to have zero error.

For each reconstruction kf is sampled from the aforementioned normal distribution and
the measured interplanar spacing and film thickness are saved. The mean of these results
over all reconstructions is taken as the final measurement and the standard deviation is
considered to represent the uncertainty. As an alternative, the deviation of the mean could
be taken but this will converge to zero as the number of monte-carlo reconstructions increase
and does not provide meaningful information about the spread between the reconstructions.

6.2 Interplanar spacing comparison

Given each monte-carlo reconstruction the same process used in 5.1 is employed to deter-
mine the average interplanar spacing as well as each individual difference in peak position.
Unlike the calibration procedure however the point cloud is not scaled to a standard size
and dimension. This was required during the calibration because the changing field and
image compression factors caused large fluctuations in the point cloud dimensions such that
an apriori defined ROI was insufficient for finding the required orientation or interplanar
spacing. Standardization of the data was chosen instead of designing a separate calibration
procedure for the ROI dimensions. One goal of this analysis is to then compare the interpla-
nar spacing in the non-standardized case and determine if the calibration process produced
biased estimates of dhkl.

Monte-Carlo plane orientation extraction

The same hyperparameters were used for the monte-carlo POE process as in the calibration
step. As the pole position is dependent on the detector coordinates and not kf the same
pole was extracted for all reconstructions. Here the pole center and radius were defined as
[−3.07,−2.35] and 2.5 mm. Given a reconstruction a spherical ROI possessing a 2.5 nm
radius was then placed at the mean position of the Fe58 ions contained within the pole. In
all cases the elevation angle, Θ, was incremented from 0◦ to 45◦ while the azimuthal angle,
φ ranged from −180◦ to 180◦. The step size for both angles was 1◦.

Analysis of 1, 000 monte-carlo simulations provides a set of three distinct (φ,Θ) corre-
sponding to (−180, 0), (58, 1), and (57, 1), which are plotted alongside a randomly chosen
amplitude map in figure 6.1. The (−180, 0) rotation accounted for 998 of the reconstruc-
tions. This indicates that planes within the region of interest remain highly orthogonal to
the analysis direction given perturbation in the field factor, kf . The other two rotations are
likely due to minor numerical fluctuations in the intensity map supported by the presence
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Figure 6.1: Distribution of (φ, θ) as determined by plane orientation extraction overlaid
atop a randomly chosen amplitude map. There are three unique rotations with a rotation of
(−180◦, 0◦) for 998 reconstructions and a single reconstruction each for (57◦, 1◦) and (58◦, 1◦).

of a large band of high intensity values for all possible φ. Fixing φ the intensity is then
inversely proportional to Θ.

Note, that the minimal rotation is expected given that aligning the detector center with
the crystallographic pole is a known method to minimize the relative curvature of the planes
at the pole. Furthermore, the atom probe specimen was specifically made to be perpendicular
to the [1 0 0] planes. Finally, the discrete nature of the grid search is likely the reason for
the unique rotation angles, whereas a continuous mapping may have exposed a sub-degree
spread.

Monte-Carlo Dhkl

The spatial distribution maps, SDM, were generated by placing a one nm spherical ROI
about each Fe58 ion in order to preferentially target the thin film. For each reconstruction
the the individual peak positions within the SDM were stored alongside the adjacent plane
spacing, and the interplanar spacing’s mean and standard deviation.

From figure 6.2 thirteen distinct planes, indexed from 0 to 12, are resolved within the
spherical ROI. Recall that the lattice parameter is 0.2866 nm for BCC Fe and that the
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Figure 6.2: Option B. Distribution of thirteen peaks extracted from the spatial distribution
maps (SDMs) of 1,000 monte-carlo reconstruction. Each peak, approximating the relative
position of an atomic plane, is defined according to a normal distribution, N(x̄, σ).

expected interplanar spacing is 0.1433 nm given that the body-centered plane is resolvable.
Then it should be possible to resolve fourteen planes within the ROI as it spans a total
length of 2 nm. However, as the central peak corresponds to the plane each ion belongs to
only thirteen peaks can be observed.

The number of resolved planes and their planes remained constant for all of the recon-
structions. Assuming that each peak follows a gaussian distribution the standard deviation
increased proportionally with the average distance, D, from the reference ion. Each monte-
carlo reconstruction then provided eleven estimates for [1 0 0]. Taking the mean and standard
deviation of all 11, 000 estimates then provides final estimate for Dhkl

MC of 0.142± 4.2e–3 nm.
Repetition of this analysis while fixing kf as 3.098 produces an estimate of 0.142± 3.45e–3
nm while the as provided reconstruction estimates the spacing to be 0.150± 3.05e–3.

The monte-carlo estimates and the fixed field factor estimates are comparable differing
only in that the monte-carlo possesses a larger uncertainty as one would expect. However,
the PNNL provided reconstruction is less accurate tending toward higher values, but is
marginally more precise. According to the calibration procedure the expected value for
Dhkl
Cal was 1.433 ± 1.91e–3. When compared to the prior three measurements we observe

the lowest standard deviation and also that the mean value is higher than 0.142 despite
the same field factor being used. This discrepancy could be due to the scaling procedure
increase the number of peaks within the SDM or biasing the results, however the exact cause
is indeterminate.
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6.3 Film thickness

Measurement of concentration profile FWHM as a proxy for film
thickness

The standard method of measuring the size of features possessing either elemental or isotopic
enrichment is to generate a 1D concentration profile orthogonal to the feature surface [40,
74]. This is done under the assumption that the width, often defined as the full width at half
maximum or FWHM, of the concentration profile is correlated with the physical properties
of the feature of interest. For this experiment the property of interest is the film thickness
as a function of lateral position within the reconstruction. Given that the film should be
nearly perpendicular to the depth coordinate due to the calibration process a cylindrical
ROI centered with the reconstruction is sufficient to measure the film thickness. However, as
mentioned during the calibration and interplanar spacing measurements the film orientation
is expected to diverge as it approaches reconstruction boundaries. To measure the thickness
as a function of radius an annular ROI is used instead of a purely cylindrical one.

Once the ROI is identified the 1D concentration profile is calculated. This is commonly
accomplished by generating a histogram of the depth coordinates within the ROI, requiring
user input to determine the bin size. For atom probe the bin sizes are often set as a multiple of
the lattice parameter or an estimate of the current reconstruction’s resolution. Besides errors
induced by binning the primary downside to this method is that the histogram produces
a discrete estimate. As an alternative kernel density estimates (KDE) can be employed
which provide a continuous distribution, but increase the number of required inputs as most
methods require both a kernel and an associated bandwidth which is equivalent to the bin
size. While there are optimization routines for both bandwidth and bin size the former
generally relies on k-fold cross validation and is computationally expensive whereas the later
is insufficient for analysis of multimodal distributions. Recent advancements in density
estimates have however removed these limitations by optimizing the kernel instead of the
bandwidth as demonstrated by fastkde [95, 94].

Despite these advancements this study found that computing the concentration profile
using the fastkde method was not cost effective when performed for multiple ROI over
many monte-carlo reconstructions. Furthermore, the kernel density estimates are inherently
normalized which makes it difficult to calculate ratios of different isotopes. In lieu of this a
sliding window estimate was using to leverage the computational simplicity of the histograms
while producing a pseudo-continuous measurement of the concentration profile. In this
method the equivalent to the bandwidth or bin size is the window size, which was set as a
multiple of the lattice parameter.

In figure 6.3 an example of the Fe58 and Fe57 abundance are plotted in the leftmost
graph with a span indicating the FWHM with respect to the Fe58 ions. The distributions of
these two isotopes show a relative increase in the Fe58 content centered at a depth of −26
nm which corresponds with the thin film. Instead of using purely the Fe58 ions to measure
the thickness according to the FWHM, a ratio measurement is presented in the rightmost
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Figure 6.3: Depiction of the sliding-window method for estimating 1D concentration profiles.
The estimate is applied to both Fe57 and Fe58 species with the FWHM of the Fe58 profile
shown with a vertical span in subfigure A. An example of a relative concentration profile is
shown on the right-hand side, subfigure B, alongside a generalized normal, gennormal, fit to
the data which is able to accurately capture the tophat profile whereas a normal distribution
would result in an artificially sharp apex.

figure. One advantage of this is that the noise levels at the top of the Fe58 enriched region
are decreased and the borders of the peak are sharpened. Finally, a generalized normal
distribution with background, eq 6.1, is also fit to the data to provide one final estimate
of the FWHM. This is done to account for the baseline concentration of Fe58 within the
surrounding matrix and when the background is low should agree with the FWHM of the
relative measurement.

In this equation β, α, and µ are the parameters inherent to the generalized normal
distribution while A and B are the amplitude and background corrections. The shape
parameter, β, controls the degree to which the generalized normal approximates its children
distributions which consists of normal and Laplacian distributions to name a few. When
β is two the distribution approaches a normal whereas one indicates a Laplacian. As β
approaches inf the distribution models a uniform distribution. Generally the peak apex
flattens as β increases as is observed in figure 6.3. α is the typical scale parameter governing
the spread of the distribution and µ is the mean. This function does also contain the gamma
function, Γ(1/β) which serves as a normalizing constant.

A ·
(

β

2αΓ(1/β)
exp

[
−
( |x− µ|

α

)β])
+B (6.1)
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Measurement of Film thickness with respect to a sliding annular
ROI

Following the process outlined above the film thickness is measured for a series of annular ROI
with a fixed radial width of 1.433 nm which corresponds to five times the lattice parameter
of BCC Fe. When the annuli are compared they are represented as the mean radius of the
annulus, for example if the annulus is bound by the radii, 5 and 7 nm, is is described as the
R6 annulus. Similar to the sliding window estimate for the concentration profile a pseudo-
continuous description of the film thickness is produced by incremented the mean radius of
the annulus in step sizes of 0.22567 nm. This step size was determined by the number of
desired measurements and according to the minimum and maximum radius to probe.

The results of this analysis over 200 reconstructions is provided in figure 6.4 for 100
different annuli. Compared to the monte-carlo interplanar spacing estimate which took four
hours to evaluate 1, 000 reconstruction, these calculations took thirteen hours providing a
limit on the number of simulations that could be performed. Note that the error bars in
the figure denote the 1σ bounds and that while the measurement specific errors had minor
fluctuations the average error in the estimates remained fairly constant over all radii. The
fitted FWHM error had the least fluctuations and the errors averaged to approximately 0.10
nm regardless of measurement method.

From the figure it can be seen that the initial measurements of the mean film thickness
hover in the range of 5.2 to 5.4 nm which the FWHM of the Fe58 isotopes providing the
lower bound. These estimates are relatively consistent up to a mean radius of 10 nm at
which the measured thickness decreases to a local minima of 5.0 nm for the Fe58 FWHM
and a a minima of 5.2 for the gennormal fit. There is a slight recovery in the FWHM values
at the mean ROI radius approaches 16 nm, however this is followed by an ever decreasing
estimate which drops from an estimate of 5.1 nm for the gennormal fit at a radius of 20 nm
to approximately 4.6 nm over a 3 nm change in the mean radius.

Comparison of the three over the sliding roi
There are four possibles causes for this behavior: 1. the true film thickness is not uniform,

2. measurement of the profile over an annulus is insufficient to capture asymmetry induced
by the reconstruction, 3. the remaining curvature in the reconstruction is resulting in a
non-orthogonal estimate of film thickness, 4. the use of a global compression factor for the
reconstruction is resulting in a point cloud compression which is proportional to the radius
of the ions. Cause 1 is unlikely as epitaxial film growth generally produces films with a high
degree of uniformity. Possibility 2 cannot be ruled out given that the bounds of XBas and
Y Bas are [−24.9, 32.2] and [−24.732.7] nm due to to placement of the detector center at the
pole. We consider this an a less probable source of error compared to 3 and 4 however as the
maximum annulus radius was set to 23.3 to preempt measurement of an annulus partially
populated with ions.

This leaves option 3 and 4, if cause 4 is assumed to be negligible then a non-orthogonal
measurement is expected to provide an increase in the FWHM as the signal should be signal
should be diluted with a lower peak intensity as only a portion of the ions are appropriately
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Figure 6.4: The film thickness, measured according to the FWHM of the concentration
profiles as a function of mean radius of the annular ROI. The Fe58 profile is depicted in blue
while the the relative abundance of Fe58 to all Fe species and its gennormal fit are shown in
orange and green respectively. The error bars correspond to 1σ as measured from the monte-
carlo reconstructions. As the annulus departs from the reconstruction center the measured
thickness decreases gradually until an mean radius of approximately 17 nm at which point
the estimate decreases rapidly reaching minimum of 4.6 nm.

aligned and a corresponding larger spread. In extreme cases the spread could manifest as
a general increase in the background signal and a decrease in the FWHM, however fitting
method should explicitly correct for this. The gennormal FWHM measurement exhibits
the same behavior as the other two measurements which should be more susceptible and so
while possible this is considered less likely than 4. These causes are not mutually exclusive
and we expect some curvature as the multiobjective optimization was unable to ensure
that both the curvature and difference from the true interplanar spacing was zero. It is
then a possibility that compression within the reconstruction overrides the influence of non-
orthogonal measurements. To further probe this behavior we turn our attention to the fit
parameters for generalized normal over all annuli in figure 6.5.

Analysis of the gennormal fit parameters
The scale parameter is approximately 14 for the first ROI and decreases steadily as a

function of radius to minimum of 4. This indicates that the concentration profile is akin
to a tophat kernel near the center of the reconstruction as was observed in figure 6.3 and
while it does not reach a true gaussian distribution, with β = 2, the apex takes on a higher
curvature. The scale parameter, α, which also governs shape to a lesser degree does not
change as rapidly and remains with a mean value of 2.75 for most radii. There is a local
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Figure 6.5: Fit parameters of the generalized normal distribution with uniform backgrounds
and associated 1σ error bounds as a function of mean ROI radius. Subfigure A. shows
the shape parameter, β which is shown to decrease as function of radius approaching a
more gaussian distribution starting from a flattop kernel. Subfigure B. measures the scale
parameter, α, which averages near a value of 2.75 nm until a radius of 20 nm at which
point is decreases rapidly. Subfigure C. depicts the distributions mean which is a proxy for
measuring the thin film’s center. The mean position reaches a local minimum near −26 nm
near a radius of 10 nm prior to increasing to an approximate maxima of −24 nm at a the
maximum ROI radius of 23.3 nm. Subfigure D. plots the amplitude, A, which is inversely
proportional with radius and generally decreases with the exception of a peak near 20 nm.
Subfigure E. depicting the background parameter, B, sits in the 0.22 to 0.24 range until a
maxima of 0.032 is reached near a mean radius of 16 with a subsequent drop at 20 nm which
corresponds with the peak in amplitude.
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minima near a radius of 12.5 nm and a significant global minima of 2.55 nm at the final
measured radii. This drastic drop begins near a radius of 20 nm, and suggests that the ions
are becoming more concentrated within a smaller region and supports cause 4, the hypothesis
that over-compression at the extremes of the reconstruction are the source of the smaller
FWHM values.

Moving from the shape governing parameters the impact of radius on, µ, indicates that
the center of the film remains near an initial value of −26 nm up until a radius of 12.5 nm
at which point the mean position of the film increases with a inflection point near an ROI
radius of 16 nm and a final film position of −24 nm. This measurement suggests that their
is non-negligible curvature affecting the fitting process supporting hypothesis 3. From this
however, a comparable impact on the scale parameter is expected which does not exhibit
significant changes over the same range of radii.

Looking to the amplitude, A, and background contributions, B, it is seen that A is on
average inversely proportional although it is not a linear relationship for the rate of decrease
begins to increases near a radius of 10 nm. As the background is relatively constant in this
range and β is decreasing resulting in a more strongly peaked apex it is likely the changes in
amplitude are due to the changes in the generalized normal’s maxima and not other causes.
While the background is approximately constant there is a notable spike which appears to
correlate with the apparent inflection point at an ROI radius of 16 nm in the µ curve.

In summary analysis of the fitting parameters suggests a non-negligible curvature in the
thin film results in a gradual decreases of the FWHM at intermediate radii as supported
by observations of µ and B. While rapid changes in α observed from 20 nm onward corre-
sponding to an equivalent change in the measured FWHM suggests that a radius dependent
compression effect exists which is amplified nears the edges of the reconstruction.

Comparison to as-provided reconstruction

Given the as-provided reconstruction the same process is repeated with two changes, the
first of which is that the number of sliding annuli is increased from 100 to 122 with the same
radial step size. As the spatial bounds are now [−33.8, 34.8] and [−29.8, 37.3] for XPNNL

and Y PNNL an increased number of ROI maintains the same prior step size. The maximum
radius for the annuli are increased proportionally to 29 nm to prevent analysis of a partially
filled ROI. The second change is that no monte-carlo reconstructions can be performed to
estimate the uncertainty of the calculations. However, it is still possible to calculate the
uncertainty in the estimates of the gennormal fit using the fit covariance matrix.

The results are summarized in figure 6.6 where similar trends can be observed to the
calibrated reconstruction. The FWHM values once again decrease with respect to mean
radius, however this appears to be at a higher rate, prior to undergoing a rapid drop in
FWHM measurements at 25 nm instead of the at 20 nm. Also, the FWHM values tend to
be higher relative to those from the calibrated reconstruction starting at value of 5.65 nm
and reaching a minima of 4.9 nm. The gennormal fit parameters also exhibit comparable
behavior but shifted to higher radii. The main difference in behavior is that of the mean
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radius which ranges from −27.5 to −28.5 nm and has a roughly parabolic shape with a
local minima and two local maxima of equivalent magnitude at the minimum and maximum
radius. If the shifting mean position is indicative of film curvature as proposed this implies
that despite having lesser curvature the same general trend of decreasing FWHM is observed.
Furthermore, the fact that the same rapid drop in FWHM is observed for large radii supports
the proposal that over-compression of the thin film is the cause for this behavior. One final
observation is that on average ratio of the film thicknesses of the calibrated and PNNL
reconstruction over the first 100 annuli is 0.933 while the ratio of the measured interplanar
spacing is 0.9446. It appears then that the difference in film thickness estimates may be due
primarily to the differences in the interplanar spacing.
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Figure 6.6: FWHM estimates and fit parameters of the generalized normal distribution for
the as-provided PNNL reconstruction. 1σ error bounds are provided as a function of mean
ROI radius when possible based upon the covariance matrix of the gennormal fit. Subfigure
A. depicts three different FWHM measurements decreasing as a function of radius with a
large change in radius occurring near a radius of 25 nm. Subfigure B. shows the shape
parameter, β which is shown to decrease as function of radius approaching a more gaussian
distribution starting from a flattop kernel. Subfigure C. measures the scale parameter which
fluctuates between 2.88 and 2.94 nm until a radius of 25 nm at which point is decreases
rapidly. Subfigure D. depicts the distributions mean which is a proxy for measuring the thin
film’s center. Starting at an estimate of −27.4 the mean position reaches a local minimum
near−28 nm near a radius of 16 nm prior to returning near to the original estimate. Subfigure
E. plots the amplitude, A, which is inversely proportional with radius and generally decreases
with the exception of a minor peak near 25 nm. Subfigure F. depicting the background
parameter, B, sits in the 0.22 to 0.24 range until a maxima of 0.032 is reached near a mean
radius of 22.5 nm with a subsequent decrease.
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6.4 Conclusions

In this chapter it has been shown that monte-carlo approaches are appropriate to provide
estimates of uncertainty for complex calculations as demonstrated by calculating the in-
terplanar spacing and film thickness for the isotopically enriched BCC Fe specimen. With
respect to the interplanar spacing the original calibration method provided as estimate of
0.1433± 1.91e–3 nm while the monte-carlo approach found that the interplanar spacing was
0.142± 4.2e–3 nm. While no formal hypothesis tests were carried out to compare these two
estimates both fall well within opposite’s error and suggest that the scaling component of
the calibration did not greatly bias the results. Furthermore, it was shown that the original
as provided reconstructions had a higher estimate of 0.150 ± 3.05e–3 and that the differ-
ences in the interplanar spacing manifested when measuring the film thicknesses, were for
each measured ROI the calibrated thin film was measured as 0.933 of the provided PNNL
reconstruction.

Speaking of the thickness measurements for the thin film, a procedure for analyzing the
1D concentration profiles through a sliding annular ROI was proposed to calculate spatially
aware estimates of the film thickness with respect to the radius from the reconstruction
center. For both reconstructions it was observed that the film thickness, when measured
using the FWHM, decreased as a function of the mean ROI radius up until a drop-off point
which was 20 nm for the calibrated reconstruction where a significant rapid change in the
FWHM was seen. Analysis of the fitting parameters for the generalized normal distributions
fit to the concentration profiles suggested that while the calibrated film did possess residual
curvature that alone did no explain the gradual decrease in thickness which was observed
in the PNNL reconstruction which had no-observed curvature according to the fit’s mean
parameter. The drop-off at large radii is instead believed to be due to over-compression of
the point cloud as this was associated with equivalent drops in the scale parameter of the
fit, α.

According to the calibrated reconstruction and monte-carlo estimates the film thickness
ranged from 5.4 nm to 5.0 nm over a 20 nm spread prior to the rapid descent to 4.6 nm. In
the case of the as provided reconstruction the thickness was found to be within 5.7 nm and
5.3 nm within a 25 nm span over the mean radius and reached a global minima at 4.9 nm.
The growth target for this specimen was the 5 to 6 nm range and with the exception of the
high radius measurements both reconstruction support that this growth target was achieved
when measured via the FWHM. It should be noted however, that alternative measurements
such as the full width at tenth maximum, TWHM, would result in larger estimates.
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Chapter 7

Consensus clustering

7.1 Theory

Monti Consensus Clustering

Parameter selection is a fundamental limitation of both k-centers and density based clustering
algorithms. For k-based clustering algorithms Monti et al. [84] proposed consensus clustering,
a resampling-based parameter selection method. The aim of of consensus clustering is to
measure the inherent stability of the resulting clusters for random perturbations of the
original dataset. In Monti clustering parameter selection and cluster validation is achieved
through visualization of a Consensus matrix, measuring the likelihood points are clustered
together, and analysis of the empirical cumulative distribution function (ECDF) for all values
within the matrix.

Definition of Consensus

Considering that atom probe tomography data is a point set contained within three spatial
dimensions we identify a generalized point set, S, within RN. Let S(1), S(2), ... S(H) indicated
the perturbations of S where H is the number of perturbations to generate and S(h) indicates
an individual perturbation. M(h) then denotes the NxN connectivity matrix for S(h) and is
defined below:

Mh(i, j)

{
1, if i, j are contained within the same cluster

0, else
(7.1)

Initially, the Monti protocol employed resampling of S and thus used a series indicator
matrices I(h) to provide a normalization of M (h) as M (p) shown in equation 7.2. Here p
indicates the algorithm parameters and in the case of Monti et al. is the number of expected
clusters and for DBSCAN would be (O, ε). The indicator matrices are required as points
(i, j) are not guaranteed to exist in each resample. In the absence of subsampling eq 7.2
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is simplified to equation 7.3 and uses the number of perturbations, H, as the normalization
constant.

M(p)(i, j) =

∑
M (h)(i, j)∑
I(h)(i, j)

(7.2)

M(p)(i, j) =

∑
M (h)(i, j)

H
(7.3)

Thus the consensus index, M(p)(i, j), measures the number of times points i and j are
assigned to the same cluster normalized with respect to the number of perturbations that
contain both points. M(i, j) is bound within 0 to 1, where perfect consensus is achieved
whenM is populated only with 1 and 0. This indicates that clustering on each S(h) produces
identical clustering partitions with respect to each pair of points.

FromM(p), two measures of consensus are defined corresponding to an individual cluster
and an individual point, si. First, let us introduce the cluster consensus, m(k), which
measures the average consensus between pairs assigned to a cluster. Let Ik indicates the
indices of points belonging to cluster k.

m(k) =
1

Nk(Nk − 1)/2

∑
i,j∈Ik
i<j

M(i, j) (7.4)

The second statistic mi(k) measures the average consensus of point i, ei, relative to all
other points in the cluster where 1{ei ∈ Ik} returns 1 when the condition is true and 0
otherwise:

mi(k) =
1

Nk − 1{ei ∈ Ik}
∑
j∈Ik
i 6=j

M(i, j) (7.5)

Selection Criterion

Monti et al, proposed analysis of M’s value distribution, the consensus distribution, for
identification of the optimal k-parameter. As previously mentioned perfect consensus is
achieved when M is populated solely by 1 and 0 which would result in an ECDF with a
relatively flat region between the two values which is demonstrated in figure 7.1. Monti
provides the following definition for the consensus ECDF from 0 to 1:

CDF (c) =
I
∑
M(i, j) ≤ c

N(N − 1)/2
(7.6)

Here N indicates the number of rows and thus columns of the consensus matrix, M, as it is
a square matrix and I.... is the indicator function. Identification of the ideal cluster number
is then achieved by comparing the relative areas, A(K), underneath the ECDF as follows:

A(K) =
∑

[xi − xi−1]CDF (xi) (7.7)
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Figure 7.1: Empirical cumulative distribution function (ECDF) of the consensus matrix. C1

and C2 denote the consensus value hyper-parameters used in the Şenbabaoğlu, Michailidis,
and Li [109] method of consensus clustering. Recommended values for these parameters are
0.1 and 0.9 times the total number of clustering attempts, and were reported to have minimal
impact on the results [109, 66].

For incremental steps in K the maximum of the proportional change in area ∆(K) serves
as a general rule of thumb for finding optimal K±1 due to the assumption that inherently
unstable spurious clusters will provide negligible changes in A(K).

∆(K) =

{
A(K), if K = 2
A(K+1)−A(K)

A(K)
, if K > 2

(7.8)

The preceding definition of ∆(K) is the most general form of the metric, however as noted
by Monti et al, not all clustering algorithms guarantee that A(K) decreases as the number of
expected clusters, K, increases and thus modifications have to be made per algorithm. For
use with self-organizing maps it is specifically mentioned that A(K) should be replaced with
Â(K), the maximum observed area for all evaluated K.

Method Limitations

While the Monti procedure has inherent limitations when applied to K based clustering
algorithms it is not certain that the same complications will exist for density based appli-
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cations due to the change in parameter from the number of clusters to a representation of
local density. The necessity of changing the selection criterion is evident as it is unclear if
increases in a distance threshold in many density based clustering algorithms will result in
the same relative behavior captured by 7.8. Nor is it obvious how to apply the proportional
change method to multi-parameter algorithms such as DBSCAN. However, optimizing over
non-K parameters also circumvents the inability of ∆(K) to distinguish between one and
two clusters. Another source of ambiguity which is relevant for all advancements of Monti
consensus clustering is the treatment of noise or matrix data in density based approaches.
If the noise is treated as a cluster the consensus matrix could be influenced by the percent
of noise data through biasing of the distribution to one, on the other hand omitting the
consensus of noise may instead bias the distribution to values of zero. The final limitation is
computational as CC requires clustering of H permutations resulting in O(HA) complexity
where H is the number of perturbations and A is the complexity of the clustering algorithm.

Proportion of Ambiguous Clustering

Development of the PAC metric

Lacking a rigorous assessment and comparison of consensus clustering to alternative metrics,
Şenbabaoğlu, Michailidis, and Li [109], demonstrated the impact of intra-cluster distances
and singular clusters on Monti consensus clustering in genomics data. For both square and
circular unimodal distributions CC identified a bias to larger K in the absence of cluster
structure, with the circular data splitting into seven clusters as opposed to the minimum
threshold of two suggested by Monti et al. Furthermore, a K=4 partition for the square data
was most stable and it was hypothesized that the four corners served as an anchor point.

Assessment of ∆(K) for structured data was carried through generation of up to six
normal distributions with a set intra-cluster separation distance. CC continued to separate
single clusters into stable subclusters and was also shown to have maxima at K = 3 regardless
of the number of clusters for a wide range of separation distances. To overcome these biases
the Proportion of Ambiguous Clustering (PAC) with the selection criterion defined below:

PACk(x1, x2) = CDFk(x2)− CDFk(x1) (7.9)

optimal K = arg min
k

PACk (7.10)

The PAC score introduces two additional hyperparameters x1 and x2 bound on the range
(0, 1) which influence the area of the CDF where the degree of flatness is measured. When
compared to ∆(K) as well as five other metrics for the multimodal datasets PAC is reported
as having an overall accuracy of 80% while the next highest metric achieved 60% and ∆(K)
a value of 40%.
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Considerations of PAC for clustering dense data

Concerns regarding the behavior of ∆(k) for non K-based methods is resolved through PAC
due to its independent of prior parameter evaluations and ease of translation to multi-
parameter algorithms. An additional undisclosed merit of PAC is the possibility of opti-
mization routines to reduce the number of function calls and thus time complexity of the
overall search of parameter space. It should be noted however that such routine’s often rely
on the PAC parameter space being continuous and differentiable which is unknown. Due to
PAC’s independence from prior results it also opens up direct comparison of clustering al-
gorithms for the same dataset such that the ideal algorithm and parameter combo possesses
the minimum PAC.

While PAC poses less challenges for application with density based algorithms there are
two possible scenarios which will result in a PAC of zero for a wide range of parameters.
The first of which occurs when the entire dataset is reported as a singular cluster when the
density threshold is set below the optimal value and the second of which is when the dataset
is labeled completely as noise. The latter occurs when the density threshold is sufficiently
high that no features exceed this value. In these cases M will be populated entirely by 1s or
0s and thus the PAC will be zero due to the density being distributed over a single value.
It is also unclear if the PAC distribution is unimodal or bimodal with respect to the input
parameters. In the bimodal case a local minima between the maxima may be sufficient, but
selection in the unimodal case is ambiguous.

M3C: Monte Carlo Consensus Clustering

Relative Clustering Stability Index

Monte Carlo reference-based consensus clustering (M3C)’s goal is to eliminate the systematic
bias present in the original CC algorithm and provide a formal hypothesis test to differentiate
between one and two clusters for K-based clustering. The premise of M3C is to generate a
series of reference datasets which emulate the real data’s characteristics such as covariance
structure without the presence of clustering hierarchies and structure [66]. Direct comparison
of the PAC scores for the original data to a wide range of simulated datasets is achieved
through a new metric the relative cluster stability index (RCSI) below:

RCSIK = log10(
1

B

∑
PrefKb)− log10(PrealK) (7.11)

Here B indicates the number of Monte Carlo simulations or reference datasets for a given K
while Pref and Preal correspond to the PAC score for a given simulation and the original
dataset. In this scheme a negative RCSI represents a scenario where the clusters in the real
data are less stable than those in the references and a positive value indicates the opposite.
Theoretically, the optimal parameter should then correspond to the maximum measured
RCSI.
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The RCSI alone does not resolve the K = 1/2 dilemma so John et al, introduced a
hypothesis test to identify if the number of clusters is statistically significant. The Monte
Carlo p-value, Pk, tests the hypothesis that Preal came from a single gaussian cluster against
the null hypothesis that it was generated from multiple gaussian clusters according to a set
significance level, α. To calculate Pk, let OK and B represent the number of Pref less than
or equal to Preal and total number of simulations respectively. Pk is then:

PK =
Ok + 1

B + 1
(7.12)

Application to density-based clustering

While calculation of PAC does not produce any significant changes in time complexity the
introduction of simulations by M3C changes the complexity from O(HA) to O(BHA) where
the addition of B represents the number of reference datasets. In the event of parallel
computing the complexities for the PAC and RCSI metrics can be cut by a factor of C, the
number of processors. B can be set to a low value to save on computational resources in
exchange for higher error in the average Pref and lack of power for the Monte Carlo p-value.
For context John et al, set B and H both to 100 and noted that the runtime was heavily
impact by the number of samples in the datasets as the initial algorithms complexity is
multiplied by the BH total computations for a single parameter.

Similar, to PAC being biased to zero in extreme cases with density based algorithms the
RCSI is theorized to return highly negative and even undefined values in two edge cases.
Consider that for APT the null hypothesis is instead that the data is uniformly distributed
representing the matrix distribution of some element of interest and assume that the real
data’s average density is higher than the references. In this scenario, it is possible that
for some parameter set clustering the real data identifies clusters while the reference does
not. Ignoring the noise data, Pref would then be zero and the RCSI undefined. This is
also the result when the real dataset is identified as singular cluster while the references
are still subdivided into multiple clusters. It is further unclear how minimal clustering in
either dataset will impact the RCSI and if the maxima is still corresponds to the optimal
parameter.

7.2 DMC3: Density-based Monte Carlo Consensus

Clustering

Accounting for noise

In adapting M3C for density-based clustering algorithms the existence of ”noise” data which
falls below the effective density thresholds identifying a cluster must be addressed. The two
most direct options available are to either treat the ”noise” label as a cluster and consider
thus increment M (p)(i, j) when points i and j are labeled as noise during a permutation or
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to reject the ”noise” cluster and not increment M (p)(i, j). One complication with either
approach is the prediction of its influence on the consensus distribution due to the variable
amount of ”noise” in an individual dataset. In low noise applications neither method is likely
to greatly bias the end results, however in high noise scenarios, such as those in APT data,
option one is expected to bias the consensus distribution to one due to the high consensus
in the ”noise” cluster. Alternatively, neglecting the noise may bias the distribution to zero
instead. Thankfully both the prior defined PAC and RCSI possess two hyperparameters
(x1, x2) which can be set to omit the large value density at zero or one.

Inclusion of the noise into M is then dependent on the information they contain, points
near the boundary clusters are more likely to be interchangeably labeled as belonging to the
cluster or noise and measuring the consensus of these points relative to the ”noise” cluster
and real clusters. On the other hands points sufficiently far from clusters are unlikely to
contribute additional information about the real clusters, but may provide information on
spurious clusters that arise from statistical noise in the background. To address the possible
benefit of noise inclusion define a new noise connectivity matrix, Mh

N(i, j), and two new

consensus matrices corresponding to the noise consensus,M(p)
N (i, j), and the overall labeling

consensus, M(p)
L (i, j), below:

Mh
N(i, j)

{
1, if i, j are labeled as noise

0, else
(7.13)

M(p)
N (i, j) =

∑
M

(h)
N (i, j)∑

I(h)(i, j)
(7.14)

M(p)
L (i, j) =

(∑
Mh

N(i, j) +Mh(i, j)
)∑

I(h)(i, j)
≈M(p)

N (i, j) +M(p)(i, j) (7.15)

Deriving new metrics ambiguity metrics based uponM(p)
N (i, j) andM(p)

L (i, j) follows the
same procedures as the PAC (equations 7.6 and 7.9) resulting in the proportion of ambiguous
noise, PAN, and proportion of ambiguous labeling, PAL. The ambiguity metrics are further
used alongside reference data to calculate the relative noise stability index, RNSI, and relative
label stability index, RLSI, according to equation 7.11.

Cross consensus measurements

A common occurrence for non-hierarchical algorithms is cluster fragmentation, where a sin-
gular cluster is split into multiple clusters due to a combination of local density fluctuations
within the cluster and variability in density among the cluster such that a single density
threshold does not accurately describe all of the features. The measure of cross consensus is
introduced as a means to compute the average consensus between two clusters indicating the
overlap of the two features and identifying possible cluster fragmentation. The definition of
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cross consensus below is similar to the cluster consensus, 7.4, with a different normalization
constant.

m(k1, k2) =
1

Nk1Nk2

∑
i∈Ik1
j∈Ik2

M(i, j) (7.16)

Cross consensus is bound within the range (0, 1) such that values near 0 indicate no
association between clusters and values near 1 indicate a high degree of association. While
a large value of cross consensus can suggest that the two clusters were fragmented from an
original larger cluster cross consensus also qualitatively indicates the spatial proximity of two
features because nearby clusters are more likely to exchange points during the permutation
process. Generally, given a maximum permutation distance, D, clusters separated by at least
2D should return a near zero cross consensus. It should be noted that a cross consensus of
one is impossible as two features with cross consensus of one would instead be grouped as a
single cluster by the clustering algorithm.

Determining the point and cluster consensus for the noise data follows the same formula
as equations 7.4 and 7.5 with M

(p)
N (i, j) instead of M (p)(i, j). Furthermore despite the point

consensus in equation 7.5 being intended to only compute a point’s consensus with its as-
signed cluster the equation does allow comparisons between any point and any cluster due
to the use of indicator variables in the normalization constant. Thus, any modifications
to account for noise also should allow comparison of non-noise points to the overall noise
feature.

Ambiguity as a function of ε

Consider a set of three gaussian clusters, σCl = 0.2 arb. unit, placed within a low density
matrix such that each cluster contains a dense core with a smooth density transition indi-
cating the cluster boundary. The perturbation in each dimension is defined according to
independent gaussian distributions with σ arbitrarily defined as σCl/4. The original point
cloud is provided in Figure 7.2A. alongside three example perturbations in B. through D.
Application of the perturbations artificially inflate the physical size of the clusters and mix
the matrix and cluster points at the boundary. Fixing the order parameter at six we can
investigate how either the PAC or PAN scores correspond with the consensus of individual
points. In this comparison the clusters observed in the unperturbed data act as the refer-
ence. Note, that the minimum recommended order parameter for a 2-D point cloud is four,
although analysis of larger datasets or those composed of high density features generally re-
quire values in excess of the minimum. The minimum value is most appropriate for datasets
with negligible noise and a large degree of cluster separation.

Behavior of PAC as a function of ε

Plotting PAC as a function of ε in figure 7.3 alongside the pointwise cluster consensus (top-
row) and pointwise noise consensus (bottom-row), modifications of equation 7.5 it is seen
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Figure 7.2: Example of generated synthetic data for a three cluster system in A. alongside
three independent perturbations in B. through D.

that the PAC curve displays two local maxima and a single non-zero local minima. From
here on the pointwise noise consensus is referred to as mi(−1) while mi(k) is left to refer to
pointwise consensus of the observed clusters.

Near the first maxima at an ε of ≈ 0.13, it is found that cluster cores have a maximum
cluster consensus in the 0.7 to 0.8 range where as the points near the cluster-matrix interface
report values approaching 0.6. For this epsilon the majority of the matrix report near zero
consensus for all mi(k) as one would expect. Conversely, the noise-consensus measurements
indicate that the matrix points report a mi(−1) between 0.8 to 1.0, with lower values of
approximately 0.6 at the interface. As expected the cluster-cores report a near zero mi(−1).
From this first point-cloud it should be noticed that max(mi(−1)) is significantly higher
than max(mi(k)) despite a PAC score on the order of 0.13. In this case the noise consensus
scores are indicating that the clustering algorithm is confident in the binary assignment of
points to either cluster or noise. When clustering the non-perturbed data four clusters of
sizes 181, 172, 176, and 6 points were observed while analysis of the perturbed point clouds
suggest that on average 7± 2 clusters were observed over the 100 perturbations resulting in
a size distribution consisting of 740 clusters in total. The mean and standard deviation of
the size distribution was 73 ± 77 points with a maximum of 186 points. While the average
cluster size was below the expected size of 176 points the maximum only differs by 12 points.
Given the above clustering results it is unlikely that the cluster cores are being fragmented
from an excessive density threshold but a small amount of minor features are arising at the
cluster borders under the applied perturbations.

It is then expected that at the local minima the number of clusters should decrease
and that mi(k) should increase as the algorithm becomes more confident in the assignment
of points to a specific cluster. Indeed, this is what is observed at an ε of ≈ 0.21, where
mi(k) approaches 1.0 for the dense cores. The consensus of the boundary points also in-
crease indicating that they are placed within the same clusters more consistently despite
the perturbation. Simultaneously, more of the matrix points are assigned to the clusters
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Figure 7.3: A 3-cluster synthetic point cloud is plotted at four different epsilon values cor-
relating to extrema and inflection points of PAC in subfigure E. The series of top-row point
clouds (A. through D.) are color coded according to the maximum cluster consensus on a
pointwise basis, Max(mi(K)), while the bottom-row point clouds (F. through I.) are color
coded according to the noise consensus, mi(−1). For both measures of consensus values
near 0 and 1 indicate high degrees of certainty in label assignment and in the case of cluster
consensus low ambiguity in the PAC score.
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which results in lower mi(−1). A less obvious observation is that the spatial width of the
cluster-matrix interface also increases proportionally to the search radius, ε, and so points
farther from the interface begin to be clustered. Because of this even points far from the
individual clusters such as those in the upper-left quadrant defined on the ranges of [−2, 0]
and [0, 2] for X, Y report on average a mi(−1) of 0.4 despite the absence of clusters within
this quadrant. This is a result of the pointwise noise consensus being more representative of
global phenomena as it compares the co-assignment of points as noise regardless of physical
distance. This stands in contrast to the cluster consensus which is limited inherently to
points in close spatial proximity of a specific cluster. It should be noted however that de-
spite a lower PAC of 0.! the number of observed clusters has increased while the average sizes
compared to the prior maxima. A set of 18 clusters were extracted from the nonperturbed
point cloud yet 15± 2 clusters were identified over the 100 perturbations. In the former the
three main features grew in size up to 200 points while the majority of the clusters were in
the range of 10 points. The perturbed cluster sets actually showed a decrease in the average
size to 50 ± 82 points. From this point it is clear that minimizing the ambiguity does not
necessarily correlate with the correct size statistics.

Moving to the second local maxima at ≈ 0.32, which was proposed to correspond to
random clustering within the matrix we observe that pointwise cluster consensus values
continue to increase with a large proportion of points achieving perfect cluster consensus.
At a distance of 1 arb. unit from the cluster interfaces the average mi(k) is ≈ 0.65. This
behavior is most evident in the space between the three clusters, while random fluctuations
are the most likely culprit for the cluster consensus of points in the upper-left quadrant.
The pointwise cluster consensus in the upper-left quadrant are elevated compared to the
prior minima, but are lower than the values found in quadrants containing clusters. The
prior trends regarding mi(−1) continue and at this point the majority of the points report
near-zero consensus, due to the continuous assignment of matrix points to different clusters.
The clustering trends of the point cloud invert compared to the prior minima with respect to
the number of clusters with only seven clusters found in the nonperturbed data and 3± 1.5
in the perturbed point clouds. At this ε the average sizes also increase to 307 indicating that
the matrix is constituting a larger proportion of each observed cluster.

Finally, the right-skewed tail of the second maxima is examined which shows universal
clustering of all points as a single cluster with a consensus value approaching 1.0 to a set of 2
clusters. Conversely, all points report a noise-consensus value of 0 continuing the previously
identified trends. This is evidence of the aforementioned 0 ambiguity edge-case which the
use of reference distributions is intended to correct for.

Behavior of PAN as a function of ε

Turning to the correlation of pointwise behavior with the PAN values in figure 7.4 it is
observed to be similar to PAC, but the effects are less pronounced in proximity to the
extrema, which occur at lower ε. It should be the noted that while the curve shapes and
prevalence of extrema is dependent on the relative proportion of the points composing the
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Figure 7.4: A 3-cluster synthetic point cloud is plotted at four different epsilon values cor-
responding to the PAN’s extrema and inflection points in subfigure E. The series of top-row
point clouds (A. through D.) are color coded according to the maximum cluster consensus
on a pointwise basis, Max(mi(K)), while the bottom-row point clouds (F. through I.) are
color coded according the noise consensus values, mi(−1). For both measures of consensus
values near 0 and 1 indicate high degrees of certainty in label assignment and in the case of
noise consensus low ambiguity in the PAN score.

clusters and matrix, the PAN curve in this case has a primary low ε maxima with a gradual
decrease up to a 0.14 arb. units for ε at which point there is a change in the rate and minor
plateau before the final drop in PAN to zero. This plateau is likely due to the influence of
random clustering of the matrix as was the case in the second extrema for the PAC value.

At the first extrema, 0.085, the pointwise cluster consensus figure shows a negligible
consensus between the points and any identified clusters, while mi(−1) is near 1.0 for the
majority of the points. The cluster cores serve as the exception which report values closer to
0.4. The juxtaposition of these two values indicate that while the cluster cores are inconsis-
tently classified as noise alongside the matrix points, the found clusters are also inconsistent
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given the point cloud perturbations. Practically, the noise consensus indicates that these
points are likely to belong to a cluster compared to the rest of the dataset but the exact
grouping of these points as individual clusters is indeterminate. When compared to the
PAC’s first maxima the ambiguity in the noise metrics do appear to be the result of cluster
fragmentation as an average of 16± 3 clusters were observed over the perturbations with a
lower maximum cluster size of 112 and a size of 20± 22. The observed cluster sets are best
described as consisting of high-density cores with surrounding satellite clusters.

In the absence of a clear minima ε is increased to 0.14 to correspond approximately to
the right-hand inflection point. Here it is observed that mi(−1) of the dense cores approach
zero indicating that these points are highly likely to belong to clusters while maintaining
values near 1.0 for the matrix atoms indicating consistent association with the noise label.
Simultaneously, the cluster consensus for these matrix points remain near zero, but the cores
of the clusters have increased consensus with the identified clusters s.t. the cluster centers
report an average mi(k) of 0.65. It then appears that at this ε the resulting clusters are
providing a more balanced split between consistent allocation of points to individual clusters
and assignment as noise. Note that, detailed analysis of the cluster set is neglected in this
dection as a near identical cluster set was described alongside discussion of the PAC’s first
extrema located at an ε of 0.13

The next ε investigated is 0.2 which was selected to represent an approximate location of
the second extrema due to its lack of prevalence in this dataset and the proximity to the local
minima of the PAC score. Due to this the extracted clusters sets are comparable and are
left out f this section to instead focus on the consensus scores. At this point, the pointwise
consensus behavior begins to converge with that reported as a function of PAC. Here the
cluster consensus approaches 1.0 for the cluster’s cores, but the noise consensus measurements
of the matrix points have begun to decrease towards 0.5 indicating less confidence in the
classification of these points as noise.

Continuing to the edge-case of zero ambiguity in the noise assignment, we find that much
like the previous analysis of the PAC values the noise consensus is universally near zero while
the cluster consensus approaches 0.6 and upwards for points known to belong to the matrix.
The near-zero noise consensus and the zero PAN values implies that all points belong to a
cluster and should not be labeled noise, and that the only ambiguity within the clustering
results is tied to the assignment of points to specific clusters.

Overview of PAN and PAC

In summary analysis of figure 7.3 and 7.4 suggests that the PAC and PAN values represent
certainty in different aspects of the clustering outputs. When the notion of ambiguity sepa-
rated into two measurements PAC is indicative of the consistency of co-assigning points to a
cluster whereas the PAN metric is measuring instead the likelihood that points are labeled
as noise regardless of how often they are placed within the same cluster. The use of these
two metrics and subsequently the corresponding relative stability metrics is dependent on
the properties of the clustering output the user desires to optimize.
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Considering a low to zero background noise scenario such as those in Monti et al. [84]
the PAC score is suggested for use as the concern is consistent clustering and not correct
identification of noise the For high background scenarios the choice is less clear, for a single
pass clustering attempt it may be that the PAC score is more useful than the PAN score to
prevent cluster fragmentation and overlap. On the other hand preliminary analysis suggests
that a two-stage or multi-pass approach optimizing the first clustering step according to PAN
would accurately remove the noise-atoms. From here the output would be treated as a new
point cloud for a subsequent step where the individual clusters are extracted from a now low-
noise environment using PAC. This style of two-stage analysis using clustering algorithms
is uncommon compared to other noise reduction techniques but has been used before by
applying the density-based clustering (DeBaCL) algorithm to the output of hierarchical
Density-based spatial clustering of applications with noise (HDBSCAN) [46, 47, 48].

Behavior of RCSI and RNSI as a function of ε

Thus far only the ambiguity scores for the real data have been thoroughly discussed alongside
the pointwise consensus scores. Discussion of the relative stability metrics must focus on the
final clustering and accuracy to a known truth given that there exist no current pointwise
equivalents. Therefor a reference distribution is defined for comparison with the synthetic
set of clusters. Assuming a homogeneous distribution of solute species within the matrix
using a uniform distribution with a fixed density would provide the best reference. In our
experiments the solute density is known, however this information is unknown apriori for
the majority of atom probe experiments. In the case of experimental atom probe the most
common method to produce a reference dataset is to randomly sample from the remaining
ions until the total number of points match the point cloud of interest [122, 26, 112, 27,
17, 114]. This approach is also referred to as random labeling or mass-randomization and is
selected even if it subpar in the current application so that the analysis is better reflective
of the experimental scenario.

Thus a uniform distribution consisting of 10Npoints is generated within the same spatial
bounds as the synthetic dataset such that when subsampling Npoints for the 24 reference
distributions it is unlikely to generate an identical subset. In the experimental case, a
single large subsampling could serve as the parent distribution for the references or each
reference could be generated from the complete point cloud. The former is chosen in this
implementation of DMC3 to reduce the amount of memory used to store the parent point
cloud. Each reference distribution is then perturbed 100 times for each ε. The subsequent
PAC and RCSI scores are provided in 7.5 while the PAN and RNSI scores are provided in
7.6.

Comparing PACreal and PACref it is observed that PACref only has one extrema which
in theory corresponds to the random clustering expected to occur in the matrix. The shift
of this peak, ∆P , to lower ε relative to PACreal is likely the result of the reference method
overestimating the background density, as Npoints is dependent on the amount of points
contained within clusters and those arising from the matrix. If this is the case then ∆P
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Figure 7.5: Comparison of cluster ambiguity scores, PAC, in subfigure A. and the resulting
relative cluster stability index, RCSI, in subfigure B. between a three cluster system and a
uniform reference. The resulting cluster outputs for three different ε are provided in subfig-
ures C. through E. The clustered data denoted as real shows two maximas corresponding to
ambiguity of the clusters and matrix while the reference data shows a single maxima rep-
resentative of the matrix as expected. A comparison of the RCSI and the adjusted mutual
information, AMI, below shows that the AMI is maximized near the minima in disagreement
with the maxima as described in prior works.
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should approach 0 as Nmatrix approaches Npoints. It follows then that the error between the
true matrix density and reference density should be minimized in high-noise datasets.

The relative cluster stability index is plotted alongside a metric of accuracy, the adjusted
mutual information (AMI), in 7.5B. Compared to alternative metrics such as the adjusted
rand index the AMI better reflects the accuracy of class assignments when the class sizes
are unbalanced or are small in comparison to the total dataset. To calculate the AMI the
labels from clustering the nonperturbed data is compared to the ground truth known from
the data generation process. Additionally, the impact of the random perturbations on the
dataset could be gauged by comparing the perturbed cluster labels to either the ground truth
or nonperturbed labels. The comparison to the ground truth is not available in the case of an
experimental dataset but comparing the perturbed and nonperturbed cluster outputs would
remain possible.

Comparing the RCSI and AMI we find that unlike conventional consensus clustering
maximizing the RCSI does not correlate to maximizing the AMI [66]. Instead this suggests
that the best AMI, 0.894, is achieved when transitioning from highly negative RCSI, indi-
cating a higher ambiguity in the real data, to a positive RCSI. Optimization routines would
be unable to converge to such a point and so minimizing the RCSI appears to be the best
approximation to ensure a sufficient, although non-optimal AMI of 0.888. Do note however,
that there is a second negative region for high ε, due to the mismatch between the right-hand
tails of the PAC curves. In the case of this dataset this region can be filtered out of the
optimization by enforcing a minimum number of clusters of two. This constraint matches
the inability of the prior methods to distinguish between one and two features.

Assuming an accurate density for the references selecting this minima is akin to running
a mini-max optimization routine for the dual parameter system of PACref and PACreal.
Alternatively, minimization of the RCSI can be described as maximizing the ambiguity due
to the clusters while minimizing the ambiguity induced from the background point density,
reflected by the low reference ambiguity. Figure 7.5C-E supports this description as the final
cluster set in D. is composed of three well defined clusters with zero features arising from the
random noise, while A. fragments the clusters and E. finds 17 features due to the random
density fluctuations within the background distribution. Furthermore the resulting cluster
sizes for the minima match closely with the expected mean size of 174.

Analysis of the noise metrics confirms that the zero-crossing point is near ideal with an
AMI of 0.888, but unlike the RCSI minimization is not a sufficient target for optimization.
The reason being that while the RCSI had an initial rapid decrease into the negatives followed
by a gradual approach to the local minima the RNSI approaches the minima abruptly and
slowly increases until a rapid transition to positive values is achieved. The result of this
is that the minima would occur at smaller epsilon and farther from both the zero-crossing
point and AMI’s maximum relative to the RCSI. Maximization of RNSI is left as the only
optimization target, however is limited in use because 1. there is not a sharply peaked
extrema and 2. the maxima corresponds with random clustering of the matrix as seen in
Figure 7.6. Similar to the RCSI there is a second negative region due to the mismatch in
ambiguity curves however there are also fluctuations for large ε. The fluctuations are likely
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Figure 7.6: Comparison of noise ambiguity scores, PAN, in subfigure A. and the resulting
relative noise stability index, RNSI, in subfigure B. between a three cluster system and a
uniform reference. The resulting cluster outputs for three different ε are provided in sub-
figures C. through E. Both the clustered data and reference data possess a single maxima.
Max(PANreal) corresponds to cluster ambiguity and possesses a right hand tail due to am-
biguity arising from the matrix. Max(PANref) is approximately aligned with this tail sup-
porting the conclusion it is due to the matrix. A comparison of the RNSI and the adjusted
mutual information, AMI, below shows that the AMI is maximized near the zero-crossing
point. Despite the identification of spurious clusters at the maxima the AMI suggests it is a
superior optimization target compared to the minima.
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Figure 7.7: Influence of an increased proportion of matrix (noise) atoms on the ambiguity
metrics measured as the maximas of PACreal and PANreal in subfigures A. and B. as well
as the difference in positions of the maxima in subfigures C. and D. As the noise percentage
increases max(PACreal) initially appears stagnant prior to increasing as the noise percentages
surpass 80%. C. shows that the PACreal extrema approaches PACref linearly as the noise
percentage increases. Contrary to this behavior is the PAN data in B. and D. Here there are
two distinct regions with the noise percentages greater than 75% showing similar behavior
to PAC while the opposite is observed below this threshold.

due to a sharp increase in the matrix ambiguity when the point cloud is being merged into
a small number of large clusters and could be addressed by the same constraint on cluster
number similar to the RCSI.

Importance of noise

While analyzing the impact of ε on the relative stability metrics the impact of the noise
was neglected and only the impact of correct density estimates was acknowledged. However,
the fact that these curves do not just depend on the density of the clusters and matrix but
also on the ratio of high to low density data was alluded to. While changes in the reference
density shift only shift the position of the reference extrema changes to the noise proportion
of the dataset alters both peak positions and magnitudes as shown in 7.7

In 7.7A. the magnitude of the PACreal extrema is plotted as a function of the per-
cent noise showing that from 50% to 70% noise the maxima remains at approximately 0.75
Past 70% the noise percent and maxima appear positively correlated albeit with scatter.
Furthermore the difference in extrema positions between the reference and real PAC scores,
∆P (PAC) depicted in 7.7C. shows that the distance measured in units of ε decreases. Given
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Figure 7.8: Impact of noise percentage for four PAN curves. Treating the PAN curve as a
decomposition of a cluster and noise ambiguity the decrease in max(PANreal) corresponds
to a less prevalent cluster PAN peak as seen when increasing the noise percentage from A. to
B. Moving from B. to C. crosses a threshold such that the matrix PAN peak is the dominant
extrema which continues to increase in magnitude as in D. At D. the noise component would
most strongly match that of PANref resulting in the smaller difference in peak position.

that this maxima corresponds to the ambiguity arising from spurious clustering of the ma-
trix atoms this implies that similarity between the PACreal and PACref curves increase as
the noise percentage of the dataset increases. Stated differently, in high noise situations the
reference more accurately reflects the matrix distribution of atoms but does not account for
the interaction between the clusters and matrix.

Focusing instead on 7.7B. and D. it is observed that the peak magnitude is composed of a
linearly decreasing region and an increasing region with the split occurring near a noise level
of 70%. Analysis of the peak positions in D. reinforce that 70% noise indicates a difference in
behavior as for lower noise percentages the extrema for PANref is at higher ε than PANreal
with the difference increasing as a function of the noise percent. However, at 70% there is a
sharp decrease to a value of 0.02 for all remaining noise levels. In the prior discussion on the
behavior of the ambiguity scores as a function of ε it was proposed that the curves should be
considered as a mixture of two features with one indicating ambiguity primarily due to the
clusters and the other the ambiguity arising from noise. Considering this perspective and
that the reference attempts to simulate the matrix it seems that prior to 70% noise level the
maximum PAN scores corresponds to the cluster component and post 70% is the matrix.
The specific curves for a set of four noise levels is plotted below in 7.8 as confirmation of
this hypothesis.
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Figure 7.9: Difference in accuracy metrics relative to the maximum observed AMI when
minimized (A.) and maximized (B.). The highest observed AMI per noise level is used
as a standardization metric to account for the increased difficulty of clustering high noise
datasets. With an exception at 50.0% noise minimization is shown to provide AMI scores
that are within 0.025 of the maximum AMI up to a noise percent of 73, at which point the
AMI degrades more quickly than expected in the highest noise scenarios. Maximization of
the RCSI becomes less accurate as the noise percent increases and the difference relative the
optimal solution is an order of magnitude larger than minimization

Above, it is clear than 7.8A. demonstrates a scenario where the initial clustering of the
high-density data results in the highest ambiguity scenario based off the presence of one
dominant extrema with a right-hand tail for the lower-density portion of the dataset. Oppo-
site this, D. shows the scenario where the low-density data provides the highest ambiguity
and there is a left-hand shelf for the high-density region. In between these two are B. and
C. where an overlap of the high-density and low-density regions results in a raised plateau
with a PAN of approximately 0.50 with two minor extrema. For 71.9% noise the left-hand
extrema is the maxima while the right-hand extrema is larger for 74.2%. For the tested noise
levels this behavior differs from the PAC scores where the right-hand low-density extrema
was always the maxima.

The impact of the noise percent on the use of the relative stability indices as optimization
metrics is explored in figures 7.9 and 7.10. In these figures the impact is measured as the
difference in the adjusted mutual information, AMI, between the selected cluster set and the
most accurate set for each noise level.

Analysis of the RCSI optimizations above shows that minimization outperforms max-
imization for all tested noise levels. The best case scenario for the maximization occurs
at 50.0% noise whereas minimization of the RCSI results in smaller differences relative to
the best-case clustering until 70.0% noise is reached at which point the accuracy begins to
decrease. Given that 50.0% was the lowest tested noise level and this is the point when the
two optimizations are most similar it is possible that in low noise situations maximization is
preferred. However, given that high-noise scenarios are more representative of typical atom
probe datasets minimization of the metric is recommended.
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Figure 7.10: Difference in accuracy metrics relative to the maximum observed AMI when
minimized (A.) and maximized (B.). The highest observed AMI per noise level is used
as a standardization metric to account for the increased difficulty of clustering high noise
datasets. Minimization of the RNSI is shown to have increasing accuracy as a function of
the noise percentage. Whereas maximization results in increasing accuracy until 70.0% noise
at which point there is an abrupt increase in accuracy until there is drop off in the relative
accuracy at 90.0%

Minimization of the RNSI in A. depicts the opposite trends of RCSI maximization ob-
served in 7.9B. and provides an increasing accuracy compared to the optimal solution as the
noise percentage increases. Maximization on the other hand demonstrates poor relative AMI
values above 90.0% noise but values on the same order as the minimization of the RCSI.
The decreasing accuracy begins 70.0% which is expected to correspond to the change in the
dominant extrema discussed in reference to figure 7.8. It appears then that either min(RCSI)
or max(RNSI) are sufficient optimization metrics over the largest range of background levels,
but given that the efficacy of min(RCSI) degrades more slowly compared the max(RNSI) it
is identified as the optimization metric. To support this claim, the optimized cluster sets for
low, medium, and high-noise proportion data are provided in 7.11 through 7.13 alongside
the solution that maximizes the AMI.

In the lowest noise scenario at 47.8% the optimal solution in A. found one additional
cluster alongside min(RCSI) in B. However, while the extra cluster in A. is due to random
clustering of the noise component of the dataset the feature in B. is spatially linked to one of
the seeded clusters. In C. the larger selected ε from maximizing the RNSI resulted in larger
clusters and additional random clusters. Finally, as expected the smaller distance threshold
found in D. when minimizing the RNSI resulted in the lowest AMI and clusters which are
fragmented due to a high density threshold. In the medium noise scenario of 73.2% the
optimal solution in A. found the correct number of cluster and the correct size distribution.
The minimization of the RCSI found one additional cluster from the background and a second
feature which appears to be a fragment of the seeded clusters. In C. the larger selected ε
from maximizing the RNSI did not result in larger clusters as in the low-noise scenario but
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Figure 7.11: Comparison of cluster outputs when using A. max(AMI), B. min(RCSI), C.
max(RNSI), and D. min(RNSI) to select ε given an order of 6 for a low-noise scenario. In
A. a single spurious cluster was found originating from the matrix, while any excess clusters
in B. and D. are due to cluster fragments. In C. an extra six clusters were found in close
proximity to the real features.
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Figure 7.12: Comparison of cluster outputs when using A. max(AMI), B. min(RCSI), C.
max(RNSI), and D. min(RNSI) to select ε given an order of 6 for a medium-noise scenario.
The optimal solution in A. found the exact number of clusters with a correct mean size.
B. found two additional clusters, one of which as a cluster fragment and another from the
matrix. An additional seven clusters were found in C. arising from the matrix while the
excess clusters in D. remain from fragmentation.
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Figure 7.13: Comparison of cluster outputs when using A. max(AMI), B. min(RCSI), C.
max(RNSI), and D. min(RNSI) to select ε given an order of 6 for a high-noise scenario. In
the optimal solution, A., a set of five random clusters were observed in addition to the three
known features. B. and C. show the same behavior at increased rate with 14 additional
clusters in B. and 30 in C. No additional clusters are found in D. that come from the matrix
but instead two clusters are split.

still resulted in seven additional clusters due to the noise. Using the RNSI minima as the
metric continued to provide the lowest AMI and result in cluster fragments.

With a noise level of 92.0% the high noise scenario continued the trends observed in the
prior two examples when maximizing the AMI and RNSI, as well as minimizing the RCSI
where random clusters are found due to the noise in larger amounts. Now, subfigure D.
using min(RNSI) as the metric still produced fragments, but no longer had the lowest AMI
among the optimization metrics. Instead at an AMI of 0.86 it outperformed both of the
other two metrics. Note that because the AMI compares the accuracy of labeling both noise
and clustered points it will be biased towards label assignments which correctly identify the
largest features, in this case the noise. Because of this while minimization of the RNSI is
not ideal for finding the correct clusters it is very efficient at removing the noise component
of the data leaving the densest part of the clusters. On the other hand min(RCSI) is less
efficient at identifying the noise component but the three largest clusters are much closer to
their true sizes.

One final way in which the ambiguity and stability metrics are impacted by noise is
the metric continuity with respect to the clustering parameters. Consider the ”ideal” case
where the clusters exists in a vacuum with nonexistent matrix. In this scenario, the cluster
ambiguity is expected to still have two maxima, one of which corresponds to high levels
of cluster fragmentation and a second which corresponds to when ε is sufficiently large to
enable trading of the cluster’s border points. In between these two peaks there is an expected
zero-ambiguity region where each cluster achieves perfect consensus. Given this scenario each
peak of the PAC curve is expected to be continuous given a sufficient number of points within
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Figure 7.14: Impact of noise incorporation on the proportion of ambiguous clustering (PAC)
and relative cluster stability (RCSI) metrics. In subfigure A. the absence of noise results in
variable continuity. At low ε values continuous behavior is shown during the core forma-
tion phase, but exhibits discrete jumps in the remaining three phases. In contrast stands
subfigure B, where the addition of 3% noise atoms removed almost all discontinuous jumps.
Additionally, the relative size of the core formation extrema is reduced by an order of mag-
nitude. Also show how this makes the position of the extrema match better. i.e. noise
enhanced random variable

each cluster and therefore the full curve should be continuous. However, when downsampling
the high noise dataset such that the noise level is 10% instead of 90&, the second peak in
7.14A. is surrounded by discrete jumps in the the PAC. The reference data does not show
this behavior, but the RCSI in 7.14B. maintains these discrete changes. In the case of PAC
this occurs for larger ε that corresponds to the few background points being assigned to
clusters inconsistently for short spans of ε. Once the ε is sufficiently large for the current
ambigious points it is routinely assigned to the same clusters resulting in a rapid drop in
the PAC score. increase the background concentration reestablishes PAC as a continuous
measure because individual perturbations do not greatly impact the localized density around
each point.

Thus far it has been established that higher levels of background noise, 1. enable naive
density estimates that are more representative of the true matrix distribution, 2. establishes
more consistent minimization objectives, and 3. ensures that the ambiguity and relative
stability metrics remain as continuous objective functions. In other words, the presence of
noise is beneficial to DMC3 and enhances the robustness of the algorithms and accuracy of
the reference distribution generation. In light of this counter-intuitive reliance on a non-zero
noise concentration the term, noise enhanced random variable (NERV) is coined to describe
the relative stability indices.
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Figure 7.15: Tricontour maps for RCSI (A.) and RNSI (B.) for the 92% matrix dataset. Both
RCSI and RNSI are biased towards large order, with (ε, O) of (0.611, 48) and (0.234, 43)
corresponding to the global minima. The AMI scores for those two positions are 0.62 and
0.59 compared to the most optimal solution with an AMI of 0.81 at (0.297, 29).

Optimal parameter selection for density-based algorithms

Thus far the discussion of parameter optimization has focused on the distance parameter
given a fixed order parameter. Extension to a two-parameter optimization has proven prob-
lematic due to 1. the computational complexity, and 2. an observed bias in both the RCSI
and RNSI metrics. Addressing the computational complexity is trivial in comparison to
correcting for the bias and was accomplished by using a gaussian process, available in Head
et al. [58], to estimate parameter space and converge on a on a global minima. The goal
of using gaussian process regression is to provide an approximation of the RCSI and RNSI
metrics expressed as a series of multivariate gaussians [35, 106]. Once initialized given an
exploratory search of the parameter space the approximation is used to suggest the next
sets of parameters to evaluate which are then used to update the approximation iteratively.
While the initial generation is costly the gaussian process limits the number of function
evaluations needed to converge compared to traditional optimization routines. Due to the
increased efficiency compared to line-scans as was done in the prior section the metric’s bias
was discovered and is shown by the contour maps in figure 7.15.

It is evident that both metrics are biased towards the selection of high order parameters
which does not correspond with the highest accuracy scores when measured by the adjusted
mutual information. This limits the efficacy of DMC3 as a general method for two-parameter
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optimization but specifically impacts the ability of DMC3 to identify small clusters when
both DBSCAN input parameters are variable. Fixing the order parameter however does
enable optimization of the ε parameter.

Cluster filtration by perturbation statistics

Filtration of cluster sets based on a minimum feature size is commonplace within both
the atom probe and clustering communities. The minimum feature size is normally set
by analyzing the cluster size distribution with the rational being that the size distribution
is bimodal with a peak or small clusters due to random density fluctuations and a peak
corresponding to the average feature size assuming they are homogeneous. However, the
number of clusters present serves as a fundamental limit when estimating the size distribution
and the bimodal assumption is not guarantied. One method to circumvent this limitation is
to instead approximate the size distribution for a uniform point cloud and set the minimum
cluster size such that it minimizes the chance of a cluster from the uniform background to
be included in the final cluster set. This approach is expanded upon for DMC3 by exploiting
the perturbed datasets to increase the sample size.

Using the high-noise dataset from 7.2 as an example originally only 17 clusters were
observed and on average only 22.3 clusters were found in the non-perturbed references.
Inclusion of the cluster sets from the perturbed data increases the sample size of real clusters
from 17 to 2113 and increases the reference clusters from 22.3 per reference to 2, 229. In total
there are 55, 630 samples with which to generate any cluster statistics of interest. In this
case, we investigate the cluster size, in figure 7.16A, as is done in conventional approaches,
but also include the cluster consensus scores in figure 7.16B.

In the above size distributions the reference data has a zero-probability chance for clusters
greater than 17 points in size. Choosing this as the min sample size is an aggressive filtration
step which removes 1, 809 of the clusters from the analysis of the perturbed data resulting
in a mean cluster size of 160.8 instead of 28.8. Furthermore, applying this constraint to the
non-perturbed data reduces the number of clusters from 17 to three and increase the mean
size from 37.1 to 180.3. Given that three clusters were seeded with mean size of 175 the
resulting cluster sets are much closer to the truth given this filtration. This is confirmed by
the AMI which improves from 0.807 to 0.920 which is comparable to the accuracy of the
low-noise scenario.

The same style of filtration can be performed with the cluster consensus scores as well.
Using the same simplistic threshold the maximum consensus found in the perturbed refer-
ences is 0.055. With this threshold the mean size of the perturbed clusters is 81.96, while
four clusters of mean size 82.0 were found in the non-perturbed data. This filtration step is
less effective than using the cluster size and only improves the AMI to 0.916. Both of the
above flirtations are rudimentary and only made use of the reference distributions, while the
main benefit of the perturbation statistics is for the implementation of more complex filters
such as those based off of conditional probabilities. Furthermore, using multiple independent
test statistics such as size and consensus in tandem enables the clusters to be grouped to
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Figure 7.16: Perturbation statistics for cluster size, A., and cluster consensus B. For the
perturbations of the real datasets containing clusters and the references representative of
matrix distribution. The perturbations of the real dataset have a bimodal distribution in
both cases as expected but additionally has a non-zero consensus between the two modes
for the cluster consensus. The reference distributions have a unimodal distribution based
around small clusters with low consensus representing clusters which originate from random
matrix clustering.

better understand what the different clusters represent. As shown in figure 7.17A. the scatter
plot of the size and consensus is composed of two subfeatures. One of which corresponds
to large cluster size and high consensus which compose the cluster cores as confirmed by
plotting the point clouds for all perturbations in figure 7.17B. This leaves the the second
grouping for small cluster size that expands over the entire range of consensus values. By
introducing the statistics for the reference distributions this feature is further split into a
low and high-consensus region. The high-consensus region corresponds the boundary region
of the clusters as indicated by the ring structures in figure 7.17D. while the low-consensus
region is representative of the random clustering originating in the background distribution.
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Figure 7.17: 2D scatter plot of cluster size and cluster consensus for the perturbed datasets,
A., alongside the portions of the dataset corresponding to each region of the scatter plot.
The cluster cores correlating with large sizes and high consensus are presented in B. while
the interfaces between the clusters and the matrix are expressed in D. as a ring structure.
The random clusters represented by small size and low consensus are plotted in C.
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Chapter 8

Application of DMC3 to simulated
Fe-Cu alloys

To demonstrate the efficacy of DMC3 with respect to conventional clustering of atom probe
specimens a DMC3 is used to set the ε parameter for a given order and min points on a
series of synthetic APT datasets. These datasets originate from a round robin study where
nine different atom probe groups analyzed the same data to both develop best practices for
clustering and to determine the expected clustering variability due to user bias [78, 27]. Ac-
cording to the data generation tools published by the Marquis group for subsequent work it
is believed that each of the datasets started with an FCC iron lattice with a random solution
of Cu atoms in the matrix achieved by randomly replacing Fe atoms [46, 47]. Additional Cu
was added to the dataset as Cu-rich precipitates by randomly changing the Fe atoms within
a fixed region of interest per cluster to the target composition. To generate smooth concen-
tration gradients a gaussian displacement was applied to each atom with the delocalization
distance set to be a multiple of the lattice parameter. Finally, downsampling was applied to
replicate the detection efficiency, 37%, of the atom probe.

While the above data generation process is believed to be the same as in Marquis et al.
[78] it could not be verified and so in order to provide a direct comparison with the literature
the original data from the round robin study was acquired from the researchers at Pacific
Northwest National Lab who partook in the study. However, as this data does not come with
cluster labels a set of similar synthetic datasets were generated using the toolbox developed
for Ghamarian and Marquis [46] and Ghamarian, Yu, and Marquis [47]. The datasets in the
original study were referred to as D1, D2, D3, and D4 but in this work DM will be used
to denote the round robin datasets and DE will specify that the data was newly produced
for this work. A visual overview of the DM data is provided in figure 8.1 while the cluster
properties; size (atoms), radius (nm), Cu concentration, and the matrix Cu concentration
are provided in table 8.1.

While the original study was primarily concerned with the number of observed clusters
and the mean size the logical extension is to consider the impact of user bias and the
associated uncertainty on nuclear relevant properties such as hardness. Under the dispersed
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A. DM1 B. DM2 C. DM3 D. DM4

Figure 8.1: Comparison of the four datasets from Marquis et al. [78]. Dataset 1, or DM1,
is a high contrast dataset with large separation distance between clusters. Dataset 2, or
DM2, focuses on identification of small clusters. Dataset 3, or DM3, contains many large
clusters in close proximity to one another. Dataset 4, or DM4, contains a high background
concentration of Cu which makes visualizing the clusters impossible even with downsampling
of the point cloud.

Table 8.1: Cluster and matrix properties for the four synthetic datasets analyzed in Marquis
et al. [78]. All properties except for the size as measured in number of atoms are provided
in the literature while the sizes were specified according to internal documents [105]). Nk

indicates the number of clusters and composition is abbreviated to comp.

Dataset Nk Radius Size Cluster Matrix Inter-cluster
(nm) (atoms) Comp. (at. %) Comp. (at. %) Spacing (nm)

DM1 176 1.1± 0.1 139 75 < 0.07 5
DM2 96 1.2± 0.1 30 20 < 0.07 6
DM3 275 1.2± 0.1 44 40 < 0.07 2.2
DM4 169 1.0± 0.1 30 30 10 6

barrier hardening model the expected hardening for each set of calculations is calculated
according to equation 8.1b[4, 116].

∆σY = mαµb
√
Nd (8.1a)

= mαµb
√

2Nr (8.1b)

Where m = 3.06 is the Taylor factor of the FCC system, µ = 86GPa is the shear modulus
of 304SS, b = a0

√
3/2 is the burgers vector of the < 111 > family of dislocations, N is the

number density, and d is the precipitate diameter [97, 104, 116, 4, 126]. The strengthening
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Table 8.2: Discrepancy in cluster sizes when measured by radius and atom number as well
as the calculated sizes given the other property.

Dataset Radius Radius(Size) Size Size(Radius)
(nm) (nm) (atoms) (atoms)

DM1 1.1± 0.1 1.04 139 142± 38
DM2 1.2± 0.1 1.02 30 49± 12
DM3 1.2± 0.1 0.92 44 98± 23
DM4 1.0± 0.1 0.91 30 40± 12

parameter α is size-dependent and given by Hu et al. [59] as equation 8.2b

α = 1− exp
[
−
(

d

dref

)n]
(8.2a)

= 1− exp
[
−
(

2r

dref

)n]
(8.2b)

Here the reference diameter, dref , and the scaling parameter, n, are set to 4 nm and 2 as in
Bai et al. [4]. To make use of the hardening and scaling equations for cluster sets either the
number of atoms must be converted into a physical radius or the radius must be calculated
from the point cloud. The latter is sensitive to aberrations from the reconstruction so the
former is used with the equivalent radius governed by equation 8.3[4].

r =

(
nCu
η

3VCu
4πfCu

)1/3

(8.3)

This modification of the equations described in Bai et al. [4] accounts for the atom probe
detection efficiency, η, to calculate the radius as a function of Cu’s atomic volume, VCu and
the atomic fraction of Cu, fCu. Applying this conversion to the reported cluster sizes in
atoms and the inverse to the radius we find that there is a discrepancy in the cluster sizes
as reported. Generally the reported cluster radii are larger than the calculated values while
the reported atom numbers are lower than expected given the radii. These observations are
detailed in table 8.2. In light of this the expect3d hardening for each dataset is calculated
with the reported size as measured in atoms and not the reported radii.

8.1 Dataset 1: large clusters with high concentration

contrast

The original dataset, DM1, and the new equivalent set, DE1, were designed as the simplest
data to accurately cluster by having both large features with high spatial separation and
a high contrast with respect to the Cu composition of the clusters and matrix. DE1 was
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Figure 8.2: Cluster set properties (A.) and adjusted mutual information scores (B.) for
optimized DBSCAN parameter sets for DE1, a low noise high contrast FCC dataset. On
average DMC3 underestimated the number of clusters and overestimated their sizes, but still
maintained high AMI’s exceeding 0.8 for all parameter sets. Setting order and min points
both to 6 produced the best cluster set when measured by AMI.

produced using the cluster maker code provided by the Marquis group with the cluster radius
set to 1.1 ± 0.1, cluster Cu concentration of 75%, matrix Cu concentration of 0.07%, inter-
cluster spacing of 5 nm, and 176 clusters [46, 48]. The primary goal of this second dataset
is to provide a dataset with a known solution as that information was omitted in the round
robin dataset. Using the cluster labels to estimate the cluster size in atoms we find that
the clusters are 143± 25 as opposed to 139 atoms for DM1. Unlike DM1 this results in the
radius and number of atoms of the clusters being in agreement as estimating the number of
atoms from radius gives 142± 38 and a radius given size of 1.09± 0.07.

Fixing the order and min point parameters according to those used by each group during
the round robin DMC3 was used to optimize the epsilon parameter, ε. Note that the clus-
tering parameters were not provided in Marquis et al. [78] but were acquired from internal
documents [105]. The differences in the cluster number and sizes are provided in figure 8.2A,
while the adjusted mutual information score per parameter set is from 8.2B.

From 8.2A. it is clear that DMC3 overestimated the cluster sizes at the cost of underes-
timated the number of clusters found in DM1. At worst the mean cluster size was 8 atoms
larger than the expected value of 143 and only 168 clusters were extracted instead of 176.
The closest in terms of absolute properties were the parameters for group 8, with a deficit of
only 5 clusters and an excess in mean size of 1.5 atoms. This group however is not optimal
when the known cluster labels are used for comparison, in this case the best AMI is achieved
by group 7 with group 6 as the second best showing that the best match in terms of cluster
properties is not inherently the most accurate dataset.

Moving on to DM1, the first comparison of cluster sizes is maintained (figure 8.3A.) but
instead of using AMI as the second point of comparison the expected hardening (figure 8.3B.)
using the dispersed barrier hardening model is used given estimated cluster sets. Note that



CHAPTER 8. APPLICATION OF DMC3 TO SIMULATED FE-CU ALLOYS 120

−30 −20 −10 0

Size - SizeGT (Atoms)

0

20

40

60

N
k

-
N

k
G
T

(C
lu

st
er

s)

A.
Ref Experiments

DMC3-RCSI

G1 4, 7

G4 5, 20

G5 1, 8

G6,2 1, 10

G7 6, 6

G8 5, 10

G9 1, 7

G1 G4 G5 G6,2 G7 G8 G9

0.4

0.6

0.8

1.0

∆
σ
Y

(G
P

a)

B.

Figure 8.3: Comparison of the as reported group properties to the DMC3 optimized cluster
parameters for DM1, a low noise high contrast FCC dataset. Subfigure A. compares the
estimates of cluster number and size (atoms) while subfigure B. compares the calculated
hardening with the expected hardening given the reported true cluster properties [78]. Hollow
markers indicate the DMC3 results while solid indicate the literature reference. The span is
indicative of the target hardening value’s one standard deviation bounds.

group 9’s results reported an excess of 60 clusters and is omitted from property comparison
to improve the resolution when comparing the remaining groups. The first observation is
that all groups regardless of DMC3 underestimate the cluster size which is in stark contrast
to the analysis of DE1. Furthermore the DMC3 results tend to overestimate the number
of clusters. Together with the earlier observation on the cluster sizes it reinforces the belief
that either A. the data generation process is not the same or B. some properties were not
accurately reported. Looking at figure 8.3B. the mean hardening, ∆σY , predicted by DMC3
is on the lower end of the expected hardening with one standard deviation extending to the
upper bound of the expected value. Groups 1, 4, 6, 7, and 8 report a closer hardness value
to the expected compared to DMC3 while 5 and 2 are lower. All of the clusters sets with
the exception of group 9 do fall within the one σ bounds of the expected. Do note that the
errors on cluster size are not known for the reference experiments.

8.2 Dataset 2: small clusters with low concentration

contrast

The original dataset, DM2, and the new equivalent set, DE2, were designed to emulate the
challenge of identifying small clusters with a lower Cu contrast. DE2 was generated with
the following input parameters; cluster radius of 1.2± 0.1, cluster Cu concentration of 20%,
matrix Cu concentration of 0.07%, inter-cluster spacing of 6 nm, and 96 clusters [46, 48].
Using the cluster labels to estimate the cluster size in atoms we find that the clusters are
49± 10 as opposed to 30 atoms for DM2. Unlike DM2 this results in the radius and number
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Figure 8.4: Cluster set properties (A.) and adjusted mutual information scores (B.) for
optimized DBSCAN parameter sets for DE2, a small cluster low contrast FCC dataset. On
average DMC3 overestimated the number of clusters and their sizes, but still maintained
AMIs ranging from 0.74 to 0.8 for all parameter sets. Setting order and min points to 8 and
11 produced the best cluster set when measured by AMI.

of atoms of the clusters being in agreement as estimating the number of atoms from radius
gives 49± 12 and a radius given size of 1.19± 0.08.

Once again the order and min point parameters were fixed according to those used by
each group during the round robin with epsilon being selected by DMC3. Note that the
clustering parameters were not provided in Marquis et al. [78] but were acquired from internal
documents [105]. The differences in the cluster number and sizes are provided in figure 8.4A,
while the adjusted mutual information score per parameter set is from 8.4B.

From 8.4A. it is clear that DMC3 generally overestimated the cluster sizes and numbers
found in DM2. This difference compared to DM1 is likely due to the a lower density threshold
which allowed random clusters to be found in the matrix and additional matrix atoms to be
added to the clusters. At worst the mean cluster size was 15 atoms larger than the expected
value of 49 and 103 clusters were extracted instead of 96. The closest in terms of absolute
properties were the parameters for group 6, with an excess of only 1 cluster and an excess
in mean size of 5 atoms. This group is nearly optimal with an AMI of 0.78 when the known
cluster labels are used for comparison. The optimal AMI is achieved for group 1’s parameters
which finds an extra two clusters and has a mean size of 58 atoms. Half of the parameter
sets estimated the cluster size within one standard deviation of the true mean size and all
parameter sets were correct within two standard deviations.

Moving on to DM2, the first comparison of cluster sizes is maintained (figure 8.5A.) and
the second point of comparison the expected hardening (figure 8.5B.) using the dispersed
barrier hardening model. The first observation is that DMC3 consistently underestimates
the number of clusters which is once again the opposite of the observations for our generated
data. More often than not it also overestimates the feature sizes. The reference data does
not consistently over/underestimate the number of cluster sizes but the groups with the
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Figure 8.5: Comparison of the as reported group properties to the DMC3 optimized cluster
parameters for DM2, a small cluster low contrast FCC dataset. Subfigure A. compares
the estimates of cluster number and size (atoms) while subfigure B. compares the calculated
hardening with the expected hardening given the reported true cluster properties [78]. Hollow
markers indicate the DMC3 results while solid indicate the literature reference. The span is
indicative of the target hardening value’s one standard deviation bounds.

closer estimate of cluster number tend to overestimate the size, see groups 5, 4, and 7.
These observations reinforces the belief that either A. the data generation process is not
the same or B. some properties were not accurately reported. Looking at figure 8.5B. the
mean hardening, ∆σY , predicted by DMC3 is not consistently on the high or low end of the
expected hardening. With the exception of group 6 the DMC3 hardness values are closer to
the expected value. All of the DMC3 clusters sets fall within the one σ bounds while only
four of the results from Marquis et al. [78] fall within this range.

8.3 Dataset 3: clusters with low separation distance

The original dataset, DM3, and the new equivalent set, DE3, were designed to emulate the
challenge of identifying clusters in close proximity. A common error for this type of data is
merging of adjacent clusters which will result in overestimates to cluster size and an under-
estimate of the number of clusters. DE3 was generated with the following input parameters;
cluster radius of 1.2 ± 0.1, cluster Cu concentration of 40%, matrix Cu concentration of
0.07%, inter-cluster spacing of 2.2 nm, and 275 clusters [46, 48]. Using the cluster labels
to estimate the cluster size in atoms we find that the clusters are 98± 16 as opposed to 44
atoms for DM3. Unlike DM3 this results in the radius and number of atoms of the clusters
being in agreement as estimating the number of atoms from radius gives 98±24 and a radius
given size of 1.19± 0.07.

Once again the order and min point parameters were fixed according to those used by
each group during the round robin with epsilon being selected by DMC3. Note that the
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Figure 8.6: Cluster set properties (A.) and adjusted mutual information scores (B.) for
optimized DBSCAN parameter sets for DE3, a low noise high contrast FCC dataset. On
average DMC3 underestimated the number of clusters and overestimated their sizes, but still
maintained high AMI’s exceeding 0.8 for all parameter sets. Setting order and min points
both to 8 and 15 produced the best cluster set when measured by AMI.

clustering parameters were not provided in Marquis et al. [78] but were acquired from internal
documents [105]. The differences in the cluster number and sizes are provided in figure 8.6A,
while the adjusted mutual information score per parameter set is from 8.6B.

From figure 8.6A. it is clear that DMC3 merged clusters resulting in a gross underestima-
tion of cluster number and larger cluster sizes than exist. At worst the mean cluster size was
20 atoms larger than the expected value of 98 and 240 clusters were extracted instead of 275.
The closest in terms of cluster number were the group 9 parameters with approximately 270
clusters and a size deficit of 8 atoms on average. On the other hand group 1 produced the
cluster set with the smallest overestimate in size. In figure 8.6B. it is evident that despite
the group 4 parameters resulting in the largest difference with respect to cluster size and
number it is the most accurate clustering given an AMI of 0.88. Four of the six parameter
sets resulted in a mean cluster size estimate within one standard deviation.

Moving on to DM3, the first comparison of cluster sizes is maintained (figure 8.7A.) and
the second point of comparison the expected hardening (figure 8.7B.) using the dispersed
barrier hardening model. The first observation is that DMC3 underestimates the number
of clusters and overestimates the size in agreement with the belief that clusters are being
merger. Of note however is the magnitude as the group 4 parameter set overestimated
size by only 20 atoms for DE3 but is overestimating the DM3 sizes by 80. It should be
noted that this difference could be explained by the noted discrepancy in reported cluster
sizes as given the reported radius 98 atoms would be expected in DM3 which would drop
the overestimate by approximately 50 atoms. On average most groups from the literature
underestimate cluster number and overestimate the size with exceptions for group 5 and
9. Looking at figure 8.7B. the mean hardening, ∆σY , predicted by DMC3 is consistently
higher than the expected value with its one standard deviation error bar approaching the
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Figure 8.7: Comparison of the as reported group properties to the DMC3 optimized cluster
parameters for DM3, a low inter-cluster separation distance FCC dataset. Subfigure A.
compares the estimates of cluster number and size (atoms) while subfigure B. compares the
calculated hardening with the expected hardening given the reported true cluster properties
[78]. Hollow markers indicate the DMC3 results while solid indicate the literature reference.
The span is indicative of the target hardening value’s one standard deviation bounds.

mean value. There is not a clear pattern indicating if DMC3 or the literature reference data
provide more accurate estimates of hardening, but groups 5 and 9 are the closest with group
9 being the only estimate to value within target range.

8.4 Dataset 4: small cluster with 10% matrix

concentration.

Prior attempts to perform clustering on DM4 exposed a fundamental flaw in relying on
estimates of cluster number and size alone to gauge group performance. Out of the groups
that used density-based clustering algorithms in Marquis et al. [78] group 7 was the only
one to identify more than 100 clusters with 170 clusters found with a mean size of 69 atoms,
however this result is described as ”a result of chance”. When compared to the ground truth
group 7 missed identifying some subset of the clusters and found an equivalent number of
random clusters resulting in a ”accurate” estimate of the cluster number. In light of this
we diverge from the analysis method carried out for the prior three datasets and initially
perform clustering on DE4 for a single set of order and min points parameters set at (10, 1).
The cluster results for DMC3 are then compared to the best-case clustering results using
the adjusted mutual information, given that the labels are known for DE4, to assess what
further post processing may be of use for DM4.

The intent was then to cluster DM4 using the parameters found by applying DMC3 to
DE4, however due to a discrepancy between the listed cluster Cu content in the internal
documents and the published paper DE4 was generated with a cluster concentration of 40%
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instead of 30% as was reported in Marquis et al. [78]. Ignoring the prior discrepancy with
respect to cluster radius and size this further reduces the ability to generalize from DE4 to
DM4.

DE4 was generated with the following input parameters; cluster radius of 1.0±0.1, cluster
Cu concentration of 40%, matrix Cu concentration of 10%, inter-cluster spacing of 6 nm, and
169 clusters [105]. Using the cluster labels to estimate the cluster size in atoms we find that
the clusters are 58±11 which are roughly double the expected size for DM4. Due to the large
size of DE4 with an excess of 800,000 Cu atoms a spatial subset of the data consisting of
only 90,000 Cu atoms is used to optimize the epsilon parameter. Unlike subsampling which
distorts the point cloud density taking a spatial subset maintains the density and noise-to-
cluster ratio of the data while enabling a similar increase in speed. Even then DMC3 took
approximately nine hours to analyze 100 values for ε.

Given a fixed order of 10 and min points set to 1 DMC3 identified an ε of 0.5777 by
minimizing the RCSI. The resulting cluster set presented in figure 8.8a. however significantly
differs from the ground truth in subfigure B and found 1, 122 clusters with sizes of 12 ± 6
atoms. The AMI score for this label assignment is the lowest of all the DE datasets at 0.158
recalling that 0 is equivalent to random labeling and 1 is perfect. However, for these fixed
order and min point parameters the best AMI scores that can be achieved was found to be
only 0.159 corresponding to an ]epsilon of 0.5771. In other words DMC3 was as accurate as
possible for the single-parameter optimization and a multiobjective optimization routine is
imperative for use with difficult to cluster datasets.

Following this revelation, attempts were made to reincorporate min points as a parameter
by plotting the cluster size distributions in figure 8.9 alongside the cluster consensus distri-
butions. Theses statistics were additionally calculated for 24 reference datasets describing
the null hypothesis. From this two thresholds can be identified based on the likelihood of a
cluster with a given size or consensus originating from the matrix or as an actual component
of a cluster. In doing so 146 clusters in the upper right quadrant of figure 8.9C. are selected
as the improved cluster estimate and plotted in figure 8.10. While the mean size does not
reach the expected value the mean cluster size does increase from 12 to 23 atoms and the
AMI score increase from 0.158 to 0.212.
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Figure 8.8: DMC3 identified clusters (A.) alongside the ground truth cluster (B.) for DE4, a
high matrix concentration dataset. 1, 122 clusters were found with a mean size of 12 atoms
instead of 169 clusters with mean size of 56. The accuracy as measured by AMI was 0.159.

Figure 8.9: Post-processing efforts for the DMC3 cluster set based on cluster consensus
(A.) and cluster size (B.). The scatter plot in C. is then separated based off the identified
threshold values establishing a new cluster set occupying the upper right quadrant. Orange
measurements are from clustering of 24 reference datasets and the blue result from DE4.
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Figure 8.10: DMC3 identified clusters with post-processing based on size and consensus (A.)
alongside the ground truth cluster (B.) for DE4, a high matrix concentration dataset. The
original 1, 122 clusters was reduced to 146 and the mean size of 12 atoms was increased to
23 instead of the expected 169 clusters with mean size of 56. The AMI improved from 0.159
to 0.212.
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Chapter 9

Conclusion

9.1 The uncertainty of Atom Probe

This work had proposed the pointwise uncertainty in atom probe was worse in the depth
dimension and even scaled cumulatively. This hypothesis appears to stand in contradiction
to studies focusing on the resolution of atom probe, however as demonstrated there is a
high degree of correlation between each coordinate estimate such that the pointwise error is
not expected significantly impact local calculations which resolution estimates from spatial
distribution maps, etc. rely on. This hypothesis was shown to hold in theory based upon
application of linear error propagation for all possible atom probe input parameters enabled
sensitivity analysis to be performed for all three atom probe coordinates. Generally, the X
and Y coordinates were found to be most sensitive to the image compression factor, ξ and
the field factor kf while the depth coordinate had an additionally sensitivity to the ionic
volumes, Ω.

Furthermore, this study demonstrated how the calibration of an isotopically-enriched thin
film based on curvature and interatomic spacing was able to provide the initial parameter
uncertainties for propagation not just through the reconstruction but even to the calculation
of the thin film thickness. The thin film was measured by the FWHM to range from 5.0 nm
to 5.4 nm near the center of the specimen but was shown to be sensitive to over compression
of the point cloud near the reconstruction’s edge resulting in a 4.6 nm width. Our results
fell on the lower end of the growth’s target thickness of 5 to 6 nm.

9.2 Use of Density-based Monte-Carlo Consensus

Clustering

On the clustering front the main goal of this work was to automate DBSCAN’s parameter
selection by modifying a consensus clustering approach to work for density-based clustering
algorithms. It was shown that with the modified relative stability metrics it is beneficial to
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minimize and not maximize the metrics as was the case when selecting the optimal cluster
number. Over a wide range of noise percents and cluster conditions minimization of the
RCSI selected near ideal ε parameters for clustering when measured by the adjusted mutual
information score, however attempts to optimize both the distance parameter, ε, and the
order, O, parameter provided evidence that the RCSI is a biased metric that attempts to
choose higher order and ε pairs if allowed that match the same approximate density as lower
order solutions.

With this knowledge, DMC3 was used to select new ε parameters for a set of four synthetic
datasets from a prior round robin study on reproducible atom probe analysis in addition to
four newly simulated datasets [78]. Of these datasets DMC3 provided competitive estimates
on three of the four test scenarios, although was shown to generally favor extraction of denser
cluster cores and omit the boundary zones of the features and was more inclined to merge
clusters in close proximity when compared to the subject matter experts. In the reference
work the main properties of interest were cluster size and number, but this was extended
in this work to also include the hardening coefficient given the observed cluster sets. The
expected hardening according to the DMC3 cluster results was on the low end for the first
two datasets, DM1 and DM2, while the hardening was overestimated for DM3. For all of
these datasets the expected hardening generally fell within one standard deviation of the
DMC3 result and the hardening given the round robin data provided similar estimate to
DMC3. It appears then that DMC3 was not superior to the subject matter experts but
could extract comparable cluster sets and derived properties.

The fourth dataset was omitted from the prior discussion for two reasons 1. the round
robin data came with no ground truth labels which necessitated the generation of our own
datasets and 2. no single group came close to the true solution according to the study
leads with knowledge of the true cluster set. This final dataset consisted of an ultra-high
Cu background of 10% in comparison to the other three datasets with sub 0.007% Cu,
furthermore the clusters said to be 30 atoms in size. Together these factors produce a
difficult dataset to cluster that requires access to the cluster labels to gauge method efficacy.
In light of that DMC3 was instead applied to a new synthetic dataset meant to emulate
the round robin data and DMC3 found an excessive amount of clusters at 1, 122 compared
to the true value of 169. In spite of this sweeping over a large range of ε while holding
order constant found that this solution with an AMI of 0.158 differed from best solution
with an AMI of 0.159. The cluster size and cluster consensus scores were then further used
select a subset of the clusters believed to be real features reducing the cluster set down to
146 features and improving the AMI to 0.211. So while the cluster sets were inaccurate
both in size and number it was not due to DMC3 performing poorly for a single-parameter
optimization but actually a limitation imposed by the current stability metrics which cannot
be used for multi-objective parameter estimation.
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