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RNA-Puzzles Round V: blind predictions  
of 23 RNA structures
 

RNA-Puzzles is a collective endeavor dedicated to the advancement 
and improvement of RNA three-dimensional structure prediction. With 
agreement from structural biologists, RNA structures are predicted by 
modeling groups before publication of the experimental structures. We 
report a large-scale set of predictions by 18 groups for 23 RNA-Puzzles: 
4 RNA elements, 2 Aptamers, 4 Viral elements, 5 Ribozymes and 
8 Riboswitches. We describe automatic assessment protocols for 
comparisons between prediction and experiment. Our analyses reveal 
some critical steps to be overcome to achieve good accuracy in modeling 
RNA structures: identification of helix-forming pairs and of non-Watson–
Crick modules, correct coaxial stacking between helices and avoidance of 
entanglements. Three of the top four modeling groups in this round also 
ranked among the top four in the CASP15 contest.

The prediction of RNA three-dimensional (3D) structure is challeng-
ing because of the complexity and variety of the noncovalent interac-
tions involving the negatively charged phosphates, the stacking of 
the nucleobases and the hydrogen bonding between bases as well as 
between nucleotides. To address this challenge, the RNA-Puzzles pro-
ject was established 12 years ago as a community-wide experiment to 
regularly evaluate the state of the art in RNA structure prediction1–4. 
The overall process is as follows. The organizers (E.W. or Z.M.) are con-
tacted by a structural biologist who has solved and is about to pub-
lish an RNA-containing structure. The RNA sequence is confidentially 
distributed to the modeling groups that accepted to take part in the 
RNA-Puzzles contest. After taking into account the time span before 
publication of the data, a deadline is set for returning the predicted 
RNA models (generally 3–4 weeks for human-based predictions and 
48 h for computer-only webserver predictions without human inter-
vention). The name of the structural biologist group is not disclosed to 
the modeling groups. The process is thus double blind; the structure 
group is unknown to all and the structure is not present in any database. 
Each modeling group is entitled to use any technique or tool available 
to get insight on the RNA fold in human-based modeling. Later (see 
below), the modeling group has the opportunity to describe the tool 
and strategy used for the modeling. The project provides sequences, 
and occasionally additional data for a set of RNAs, and participants are 
challenged to predict their 3D structures before the experimentally 
determined structures are revealed. The RNA-Puzzles project promotes 

advances in the field of RNA structure prediction by stimulating the 
development of new algorithms and improvements of existing ones1–4. 
Furthermore, the RNA-Puzzles project includes continuous refinement 
of the assessment protocols. Depending on the resolution and the 
various functional states or experimental conditions of the experi-
mentally determined structures, alternative RNA states, with local 
molecular details or large re-orientations of helices, can be observed. 
This renders fair and constructive comparisons between predicted 
and experimentally determined models difficult. The reporting pro-
cess is as follows: first, automatic and specific comparisons between 
experimental and predicted models are described. Then, the modeling 
groups validate or comment on these assessments and describe the 
methods they used. Simultaneously, the structural biologists bring 
their own experimental expertise.

Results
Eighteen groups involved in 3D prediction of RNA participated in this 
round. See Methods for descriptions of the prediction tools used by 
each group. Each modeling group may submit sets of results obtained 
from multiple prediction approaches or protocols. Both automatic 
webserver predictions and predictions that include human-based input 
are received (within different deadlines) and analyzed separately. Of the 
18 modeling approaches, only one is based on deep learning (Kollmann).

In the Supplementary Note, the sequences of all Puzzles can be 
found with, when applicable, a description of the sequence differences 

Received: 15 February 2024

Accepted: 29 October 2024

Published online: xx xx xxxx

 Check for updates

 e-mail: e.westhof@ibmc-cnrs.unistra.fr; miao_zhichao@gzlab.ac.cn

A list of authors and their affiliations appears at the end of the paper

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02543-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02543-9&domain=pdf
mailto:e.westhof@ibmc-cnrs.unistra.fr
mailto:miao_zhichao@gzlab.ac.cn


Nature Methods

Analysis https://doi.org/10.1038/s41592-024-02543-9

dependence on length. In Fig. 3 (bottom), the scores reached by the 
various modeling groups (proportional to the number of times the 
models ranked first, second, etc., among the five best models) are 
given. Four groups stand out, three of which are the same as in the 
recent CASP15 (ref. 11) contest on a much smaller number of targets. 
For automatic webserver predictions, RNAComposer12 (Szachniuk 
group) and SimRNA13 (Bujnicki group) performed best with a slight 
preference for RNAComposer.

During the assembly of the RNA modular elements with junc-
tions between them, it is difficult to avoid the formation of knots or 
entanglements. Supplementary Tables 2 and 3 present the number of 
entanglements and their types in the modeled structures calculated 
using RNAspider14,15. The most frequent case is a single strand going 
through an apical loop closing a helix (97 instances). In the Zika Viral 
element, the experimental structure shows the 3′-end about to form 
a knot. The highest number of entanglements was observed in PZ32, 
the Pepper aptamer.

The RNA elements
This group gathers four Puzzles (Supplementary Table 1): an RNA  
element from the 7SK RNA16,17, two variants of the sarcin hairpin  
loop18 and a fragment of the human telomerase RNA19. The two variants  
of the sarcin hairpin are mutations in the 26-mer r(UGCUCCUAGUA 
CGAGAGGACCGGAGUG) that comprises nucleotides 2647-2673 in 
Escherichia coli 23S rRNA and was previously published18. The sarcin 
hairpin is characterized by a set of non-Watson–Crick. In PZ16a, the 
mutation is C2666A and, in PZ16b, the mutations are C2666A, U2653G 
and C2667A. Excellent agreements were generally obtained for these 
two Puzzles as can be seen in Supplementary Fig. 3 and Supplemen-
tary Fig. 4e–i. There is still a spread, surprising considering the struc-
tural homology, in the assessment metrics of the submitted models. 
Extended Data Fig. 1 displays some of the key non-Watson–Crick pairs. 
The triple interaction involving the trans W/H UA and the cis H/S UG 
is well reproduced in the best-modeled structure. However, the trans 
H/H AA pair is not reproduced correctly. The effect of the mutations at 
positions 2653 and 2667 is interesting: the contacts between the amino 
group of C2667 and the O2/O2′ of U2653 are reproduced by the amino 
group of A2667 with N3/O2′ of G2653. Although the G2653:A2667 is 
well reproduced in the modeling, the prediction of U2653:C2667 did 
not integrate that element of structural homology.

The other two Puzzles, PZ11 and PZ30, are difficult, especially 
PZ30, leading to the best r.m.s.d. around 5 Å. PZ11 contains several 
non-Watson–Crick pairs with protonated Cs or As, a possibility rarely 
considered in prediction programs. As can be seen from Supplemen-
tary Fig. 3a–d and Supplementary Fig. 4, the worst heat map regions in 
the DI involve these non-Watson–Crick pairs and bulges (for example 
A34, U40-U41, U63 and C75-A77). PZ30, a structure solved at a rather 
low resolution (3.80 Å) is a three-way junction with large unpaired 
segments linking the joining helices forming an open Y structure. It 
was solved as part of a larger complex (the human telomerase ribo-
nucleoprotein) and interacts with a H2A–H2B histone dimer and the 
telomerase reverse transcriptase protein. Unsurprisingly, the largest 
deviations in the DI occur at single-stranded regions and apical loops.

The Aptamers
Two complexes between an aptamer and its fluorophore (Mango III20 for 
PZ23 and Pepper21 for PZ32) are in this group (Supplementary Table 1). 
PZ23 contains a double G-quartet on top of which stacks the fluoro-
phore, as in related structures (Supplementary Fig. 5a–d). PZ32 does 
not contain a G-quartet but binds the fluorophore in a specific internal 
loop (Supplementary Fig. 5e–h). PZ23 represents a complex task due 
to its unusual structural features. Contrary to most RNA G4s, PZ23 
exhibits a hybrid quadruplex containing two propeller loops and one 
lateral loop22 (Extended Data Fig. 2a and Supplementary Fig. 5i). The syn 
conformations of G22 and G24, which form the two G-quartets, allow 

between the experimental and the modeled structures. The 23 Puzzles 
are classified into five functional groups: isolated RNA elements (four 
Puzzles), selected Aptamers bound to their specific ligand (two Puz-
zles), isolated Viral elements (four Puzzles), Ribozymes crystallized 
as the post-cleavage product (five Puzzles) and Riboswitches bound 
to their ligand (eight Puzzles). In RNA elements and Viral elements, 
comparisons between models and experimental structures focus on 
the RNA architectures. In the Aptamer and Riboswitch groups, beyond 
the RNA fold, the interest shifts to the RNA regions binding the ligand. 
In the present series of Puzzles, the RNAs are bound to their respec-
tive ligands; however, the riboswitches comprise three comparisons 
between experimental and modeled structures, PZ26, PZ27 and PZ28, 
where first the RNA T-box or tRNA ligand alone can be compared and, 
second, where the complexation between the RNAs is compared. This 
adds six further comparisons and leads to an overall number of 29 
comparisons between experimental and modeled structures. For the 
successful predictions in the Ribozyme group, the catalytic residues 
are expected to be nearby. In short, the RNA element and Viral element 
categories allow the assessments of isolated RNAs, while the three other 
categories allow the assessments of the predictions of the RNA–Ligand 
interactions. The list of all Puzzles with short descriptions of the RNA 
molecule, the best-predicting group and the best root mean squared 
deviation (r.m.s.d.) reached, Protein Database (PDB) ID, resolution and 
references are summarized in Supplementary Table 1. RNA-Puzzles 
contests run on a rolling basis and, thus, the period spanning the vari-
ous Puzzles is variable. Supplementary Table 1 gives the dates of the 
Puzzles (19 of 23 were carried out in the last 6 years).

In RNA-Puzzles1–4, 3D RNA submissions are assessed within the con-
text of the reference structure using the commonly used r.m.s.d.5 and 
other RNA-specific scores, such as interaction network fidelity (INF)6, 
deformation index (DI)6 and an RNA-specific TM-score7. TM-score spe-
cific to RNA7 is another global measure that can quantify the similarity 
of 3D RNA structures. Two further metrics were considered: the local 
Distance Difference Test (lDDT)8 score and Atomic Rotationally Equiv-
ariant Scorer (ARES)9. The lDDT score emphasizes the local over the 
global accuracy. ARES is a score that should reflect the RNA-like nature 
of the folded RNAs. These various metrics were compared between 
each other. See Methods for full descriptions of the assessment metrics.

Prediction assessments
A superimposition between the experimental structure and the 
best-predicted model is shown for each Puzzle in Fig. 1 (the three com-
parisons between the tRNA ligands in Puzzles 26, 27 and 28 are not 
shown). Figure 1 shows that in several cases the overall fold is attained 
with the proper arrangement of helices with respect to each other; 
however, large deviations can be noticed for some Puzzles, especially 
in the Aptamers, Ribozymes or large Riboswitches, as analyzed below.

The distributions of the assessment metrics for the 29 com-
parisons between experimental structures and models are shown in 
Fig. 2. They display a large spread in assessment metrics, especially in 
r.m.s.d. and DI6 (which reflects the spread in some INF6 parameters). 
The spreads for the Clash score10 and the INFall6 are more limited with 
Clash scores <20 and the INFall >0.6 for most models. In the automatic 
web-based predictions (Supplementary Fig. 1) the spreads are less 
pronounced, but this could reflect the fact that the number of such 
predictions is much less than those that involve human expertise. 
The Spearman’s correlation coefficients are poor between ARES9 and 
r.m.s.d. or TM-score7 but better between lDDT8 (or INFall) and r.m.s.d. 
or TM-score. As noticed before11, INFall and lDDT correlate well. The 
advantage of INFall6 is that one can identify the contributions of its com-
ponents (stacking, Watson–Crick pairs and non-Watson–Crick pairs).

The plots in Fig. 3 (top) show the distribution of the r.m.s.d. as a 
function of the RNA length (number of nucleotides) for experimental 
and model structures predicted with human expertise (Supplementary 
Fig. 2 for web-based predictions). The spread in r.m.s.d. has no clear 
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this arrangement (Supplementary Fig. 5i). All the groups assumed a 
typical parallel orientation with three propeller loops and all guanines in 
anti. This led to the selection of inappropriate guanosines for individual 
tetrads and, in effect, resulted in the improper fold of the quadruplex, 
as depicted in Extended Data Fig. 2b. This error propagated across resi-
dues 21–25 (Supplementary Fig. 5f). Only Bujnicki/SimRNA and Xiao 

models do not contain a quadruplex structure. In the case of PZ32, the 
overall fold is well reproduced, but the internal loops (6–10 and 29–32) 
display larger deviations in the DI (Supplementary Fig. 5f). Unexpect-
edly, rather large deviations are also seen at the UNCG apical tetraloop. 
For PZ23: seven groups made submissions (Bujnicki, Chen, Das, Ding, 
Dokholyan, Szachniuk and Xiao) with a fluorophore, but for PZ32,  

Puzzle 28

Best predicted model
Experimental structures

Puzzle 16a Puzzle 16b Puzzle 18

Puzzle 23

Puzzle 24

Puzzle 25

Puzzle 29

Puzzle 30

Puzzle 32Puzzle 34 Puzzle 35

Puzzle 37

Puzzle 38

Puzzle 22 Puzzle 22dimer

Puzzle 39
RNA element

Aptamer

Viral element

Ribozyme

Riboswitch

Puzzle 26 T-box Puzzle 27 T-box Puzzle 28 T-box

Puzzle 11
r.m.s.d. 5.0 Å r.m.s.d. 1.2 Å r.m.s.d. 1.3 Å r.m.s.d. 5.0 Å

r.m.s.d. 8.1 Å r.m.s.d. 5.0 Å
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r.m.s.d. 10.7 Å r.m.s.d. 20.2 Å r.m.s.d. 8.7 Å r.m.s.d. 6.0 Å r.m.s.d. 21.2 Å

r.m.s.d. 2.6 År.m.s.d. 12.5 Å
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r.m.s.d. 14.5 Å
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r.m.s.d. 5.4 Å

r.m.s.d. 8.0 Å

Puzzle 31

Puzzle 26 Puzzle 27

Puzzle 36

Puzzle 33

Fig. 1 | The best-predicted models superimposed on the experimental 
structures. Visualization of 26 targets (green) with the highest ranked model 
(blue) superimposed on each other (comparisons of the tRNAs in the T-box 
complexes are not shown). The selection of the best model was based on 
comparing the r.m.s.d. values of all five predicted models from all predictor 

groups to the available experimental structures. The best r.m.s.d. value is given 
beneath the corresponding Puzzle number. The five categories are: RNA element, 
Viral element, Aptamer, Ribozyme and Riboswitch. To simplify the visualization 
of RNA folding, the small molecule ligands are not displayed in this figure.
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Fig. 2 | General analysis of the overall prediction results for all Puzzles 
with human expert predictions. a–l, The plots display the distribution of 
structure assessment metrics for all predicted groups for all Puzzles Round 
V. For comparison purposes, at the right are shown the data for the targets of 
CASP15 published previously. Each prediction model is represented by a dot, 
with each group having the same color. The assessment metrics include r.m.s.d. 
(Å) (a,b), DI (c,d), lDDT (e,f), TM-score (g,h), INF (i,j), where INFall includes all 
parameters (INFwc considers only the Watson–Crick pairs; INFnwc includes only 
the non-Watson–Crick pairs; and INFstack counts the stacked bases) and Clash 
score (k,l) where the black lozenge box indicates the solution structure. The 
legend below the plots indicates the best-performing group among all Puzzles. 
m–v, A correlation analysis between all models from Puzzles Round V across 

different metrics is presented. This analysis shows the interrelationships among 
the various evaluation metrics and helps to determine those that are positively 
correlated with the overall performance assessment of prediction models. 
Correlation plots between the metrics used for all Round V Puzzles with the 
Spearman’s rank correlation coefficients (Spearman’s ρ) indicated. ARES versus 
r.m.s.d. (Å) (P = 0.37) (m), ARES versus TM-score (P = 0.00) (n), ARES versus 
lDDT (P = 0.00) (o), ARES versus INFall (P = 0.00) (p), TM-score versus r.m.s.d. 
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(P = 0.00) (s), INFall versus r.m.s.d. (Å) (P = 0.00) (t), INFall versus TM-score 
(P = 0.00) (u) and INFall versus lDDT (P = 0.00) (v). The r.m.s.d. was multiplied 
by −1 for calculating the correlations so that higher scores correspond to better 
accuracy for all metrics.
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Fig. 3 | Correlation analysis between sequence length and r.m.s.d. for all 
Puzzles with human expert predictions. a–e, Scatter-plots are used to visualize 
the relations between r.m.s.d. and length within the prediction models classified 
into five groups: RNA element (a), Viral element (b), Aptamer (c), Ribozyme (d) 
and Riboswitch (e). f, All Puzzles are aggregated together. Each prediction model 
is depicted as a point on the scatter-plot. A similar plot for automatic webserver-
based predictions is shown in Supplementary Fig. 2. g,h, Ranking of the modeling 
groups for human expert predictions (g) and for web-based predictions (h). For 
the left drawings of g and h, the color scheme (from dark to light blue) is such 
that 5 means that the group obtained the best r.m.s.d., 4 the second best and 1, 
the fifth best-predicted model, with 0 attributed when none of the submitted 

models was among the first five of the ranked models, when the group did not 
submit models for that Puzzle or the group was the only one to submit a model 
(shown in light gray). The last column of the right diagram is the total number 
of valid submissions to RNA-Puzzles (maximum 29) for each group. In the right 
drawings of g and h, the total sum reached by each group is given. The final score 
on the diagrams at the left of g and h is the total sum normalized by the ratio of 
valid submissions divided by the total number of Puzzles (29). The Das group 
submitted models coming from different methods and they are all gathered 
in a single group (Supplementary Table 5). The web-based predictions include 
RNAComposer (Szachniuk), SimRNA (Bujnicki), iFoldRNA (Dokholyan), RW3D 
(Das), YangServer (Yang) and 3dRNA (Xiao).
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no prediction group submitted models with the fluorophore. Extended 
Data Fig. 2 shows the environments around the fluorophore in the 
experimental and in the best-predicted model (DAS_7, r.m.s.d. 8.1 Å). 
The sandwiching of the fluorophore between a G-quadruplex and U14 
is predicted, despite the wrong choice of G24 within the quadruplex 
(instead of G22). Besides, U26 is contacting the fluorophore instead 
of U16. Fewer than half of the non-Watson–Crick pairs were correctly 
assigned in this complex fold.

The Viral elements
This group gathers four Puzzles, each from a different virus: Zika virus23, 
adenovirus-associated RNA24, SARS-CoV-2 (ref. 25) and the coxsackievi-
rus B3 replication element26 (Supplementary Table 1). The best r.m.s.d. 
reached are between 3.2 and 4.8 Å. Only the RNA element from the Zika 
virus, PZ18, had a homologous structure published before, and unsur-
prisingly, the best r.m.s.d. is the lowest, 3.2 Å; however, the spread of 
the r.m.s.d. distribution is important and extends from <5 Å to >25 Å. 
These Puzzles do not contain non-Watson–Crick pairs (except for PZ18) 
and the proper fold depends highly on the Watson–Crick pairs for 
which there is a large spread in the INFwc. Also, three Puzzles contain 
one pseudoknot (PZ18, PZ24 and PZ31) that was not always predicted. 
For PZ18, the DI map is clean and only two bulging nucleotides display 
deviations (U30 and A53) (Supplementary Fig. 6a–d). PZ24 is a complex 
RNA with two junctions separated by single-stranded regions, one 
three-way junction and a pseudoknot. The major deviations in the 
DI map occur in the apical loop of stem V and in the single-stranded 
regions of the three-way junction (Supplementary Fig. 6e–h). PZ31 is the 
programmed-1 ribosomal frameshifting RNA element of SARS-CoV-2. 
The sequence in the PDB (7mlx) is not exactly the one sent to the mod-
eling groups (Supplementary Note). The modified nucleotides are not 
used in the comparisons. The discrepancies in the DI map occur at the 
ends of the three RNA helices and in single-stranded regions around S2. 
The region around the G13/G20 Hoogsteen/Watson–Crick in trans is 
shown in Extended Data Fig. 3a–f. Although residues 13, 20 and 21 are 
roughly in the same neighborhood, the non-Watson–Crick and stack-
ing with U21 are not reproduced. It should be noted that independent 
structures of this element solved as a free RNA and on the mammalian 
ribosome by cryoelectron microscopy have a different global arrange-
ment of the three helices27,28 and a crystal structure of a slightly different 
sequence shows different details in non-Watson–Crick interactions29.

PZ39 is an interesting four-way junction framed by C=G pairs with 
long-range non-Watson–Crick contacts between the apical loop L3 
and a helical stack of three unusual pairs between pyrimidines (Sup-
plementary Fig. 6m–p). The two coaxially stacked helical stems are 
parallel to each other without forming the pronounced X configuration 
in four-way junctions of RNA helices. A key long-range contact between 
L3 and the internal loop linking P4 and P4b locks in the four-way junc-
tion. The best r.m.s.d. reached is 3.4 Å with the inclusion of unpublished 
knowledge of the long-range contact and shows main deviations in the 
apical loops and in the internal loop between P4 and P4b. The contact 
between L3 and the internal loop consisting of three consecutive pyrim-
idine–pyrimidine pairs was well reproduced. The next best model has 
an r.m.s.d. of 4.0 Å, very close, with L3 folded and not pointing toward 
the internal loop P4/P4b. Notably, the best model submitted by an auto-
matic webserver (from SimRNA, not shown) has an r.m.s.d. of 4.8 Å with 
the proper choice of coaxial stacks but without the long-range contact 
between L3 and the internal loop before P4. Figure 4 illustrates the 
large effects of wrong coaxial stacking choices on the r.m.s.d. Four-way 
junctions between blunt helices may adopt several arrangements of 
helices. Besides the choice of coaxial stackings (1–2 and 3–4 versus 
1–4 and 2–3), the coaxial stacks can rotate about the crossing region 
leading to uncrossed and crossed helical arrangements. An illustrative 
comparison between human-based models shows that five out seven 
picked the correct coaxial stacking with crossed strands in two of them 
and the correct uncrossed choice in the best three models. The model 

with the largest r.m.s.d. does not have the proper coaxial stacking with 
the strands crossing at the central junction and an entanglement of two 
helical strands. From the table in Fig. 4, beyond an r.m.s.d. of around 
11 Å, wrong choices in coaxial stacking and strand arrangements are 
very probable. Two groups also submitted webserver-based models for 
PZ39, SimRNA and RNAComposer. The same threshold was observed 
(not shown); <11 Å, the models had the correct arrangement of helices 
and, beyond that, wrong angles between helices or crossed strands as 
well as highly distorted models were observed.

The Ribozymes
Three different types of ribozymes, all products from the catalytic 
action, form this group: the nucleolytic hatchet ribozyme30 (PZ22), the 
in vitro selected methyltransferase ribozyme31 (PZ34) and the hepatitis 
delta virus (HDV)-like ribozyme, PZ35 for the human and PZ36 for the 
chimpanzee (CPEB3 HDV-like ribozyme)32 (Supplementary Table 1). Two 
of them form dimers in the crystalline asymmetric unit, PZ22dimer and 
PZ36. PZ35 forms a dimer by crystallographic symmetry.

The hatchet ribozyme was predicted both as a monomer (PZ22) 
and a dimer (PZ22dimer). The formation of the PZ22 leads to complex 
intermolecular and intramolecular interactions and, unsurprisingly, 
the predictions for either the monomer or the dimer are difficult. We 
discuss one intramolecular contact (between L1 residues U7 to A11 
and residues of the internal loop L3) (Extended Data Fig. 4f). The L1 
loop is closed by a trans W/H U7/A11 pair as in T-like loops. U39 from L3 
forms a cis W/S pair with G8. This specific contact locks in the relative 
orientation between L1 and the coaxial stack formed by P3 and P4. In 
Extended Data Fig. 4g, the same residues are represented and although 
they are in proximity, none of the exquisite contacts formed in the 
solution structure is present. There are three intermolecular helices 
formed between self-complementary segments in the 3′-end strands 
of L2/P2 of the monomers with the middle segment forming a single 
intermolecular helix and the segment ends forming two intermolecular 
helices (Extended Data Fig. 4a–c). In the best model, the central helix 
is formed, however, with a rotation of about 90° about the helical axis 
(Extended Data Fig. 4d,e), while the two other helices are not formed 
at all (Extended Data Fig. 4e), leading to large differences in the relative 
orientations of the monomers (Extended Data Fig. 4f,g).

PZ35 and PZ36 were already discussed in the joint assessment 
between CASP and RNA-Puzzles11,32,33 where they had identifiers R1107 
and R1108 (ref. 11). Here we will only discuss PZ36 where the chimpanzee 
CPEB3 HDV-like ribozyme forms an unexpected dimer in the crystal 
asymmetric unit (the same dimer is formed in the human HDV-like 
structure but with a crystallographic twofold axis). The single differ-
ence between the human and chimpanzee sequences is the A30G point 
mutation leading to the replacement of a Watson–Crick sugar-edge A–A 
base pair by a Watson–Crick G–C pair at the end of P1 in the chimpanzee 
ribozyme. Dimerization occurs by the formation of a four-stranded 
helix between palindromic self-complementary nucleotides of two 
antiparallel L3 loops (-ACGU-) (Extended Data Fig. 5a–b). In the best 
model structure, these two strands approach each other with a paral-
lel orientation of the strands preventing the formation of base pairs 
(Extended Data Fig. 5c,d). The relative orientations of the two mol-
ecules in the dimer are therefore poorly predicted (Supplementary 
Fig. 7r). Those Puzzles were all very challenging and, again, the best 
r.m.s.d. (6.0 Å) was achieved for the HDV-like PZ35, as the structure 
of HDV was solved several years ago32. PZ34 is the methyltransferase 
ribozyme that transfers a methyl group between a G and AMP; it is a 
three-way junction with long single-stranded regions at the junction. 
The best-predicted model reached an r.m.s.d. of 8.7 Å with the largest 
deviations in the DI map in the UNCG tetraloop L2 of P2 and the 3′-end 
strand of P2 joining to P3 with large deviations for the relative orienta-
tions between L2 and P3. A single group (Dokholyan group) submitted 
a model with the ligand; unfortunately, that prediction is at an r.m.s.d. 
of 21.3 Å, a value too far away for meaningful comparisons.
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In the Ribozyme category, the relative organization of the active 
site residues is key for understanding the catalytic mechanism. Func-
tional and structural studies34 have shown that, following catalysis, the 
active site residues stay close to each other in the nucleolytic and the 
methyltransferase35 ribozymes. The predicted models were accordingly 
evaluated. In Extended Data Fig. 6, the core catalytic regions in PZ22 
and PZ34 are compared by monitoring the distances between selected 
atoms of residues (Extended Data Fig. 6a,b) involved in catalysis30,31. In 
Extended Data Fig. 6c–f, the absolute values of the differences between 
these selected distances in the experimental and predicted structures 
are plotted as a function of the r.m.s.d. of the selected atoms (Extended 
Data Fig. 6c,d) or of the global r.m.s.d. (Extended Data Fig. 6e,f). For 
PZ22, three groups have low differences (less than 40 Å), Chen, Das 
and Szachniuk, and those three groups also reached the lowest r.m.s.d. 
For PZ34, two groups have models with the lowest distances (Das and 
Chen) with global r.m.s.d. around 9 Å. Extended Data Fig. 7 displays the 

predicted catalytic environments in the best models for PZ22 and PZ34. 
In the experimental structure (Extended Data Fig. 6a), A74 and A75 are 
splayed apart as well as G30 and G31. In none of the models is this pat-
tern respected; they all show A74 and A75 stacked or in close proximity. 
For PZ34 (Extended Data Fig. 6b), the comparisons (Extended Data 
Fig. 7) show that, although the three key residues are in proximity, the 
orientations of the bases are far from optimal for catalysis.

The Riboswitches
This class gathers the largest number of Puzzles (eight), with three of 
them allowing multiple comparisons (the tRNA–Gly T-boxes) (Sup-
plementary Figs. 8–10). All structures contain their bound ligands.

Three Puzzles, for which homologous structures or sequences 
were available, led to predictions <5 Å (PZ25, PZ29 and PZ33). The 
results for the T-box complexes are less satisfying (see below). 
PZ25 (ref. 36) is the best-modeled structure as it is the only one with 
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Fig. 4 | Detailed analysis of PZ39, a four-way junction. a, Diagram of the 
secondary structure with the non-Watson–Crick pairs of the experimental 
structure (PDB ID: 8DP3) of Puzzle PZ39. In the experimental structure, P1 
coaxially stacks with P4, and P2 with P3. The linking strands do not cross at the 
junction. The coaxial stacking is monitored by the stacking between G10 (blue 
square) and G47 (pink square), where the red rectangles indicate the critical 
coaxial regions. b–e, Predicted structures for PZ39. f, A table containing the 

modeling group with some metrics on the predicted model for the drawings 
represented in b–e, where ‘Name’ indicates the name of the prediction group and 
‘Model’ indicates the number of the model submitted by the prediction group 
(ten models per group could be submitted for PZ39). Short descriptions about 
the stacking and arrangement of helices are also given. Note that in e, two strands 
intertwine and form an entanglement in which two closed loops intertwine.
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a homologous 3D structure. The ligand, 2′-deoxyguanosine (dG), 
binds to C51 and C78 (Extended Data Fig. 8). The ligand binding for 
the best-modeled structure is not perfect but it is very close in the 
second- and third-best-modeled structures (the base pair between 
the dG ligand and C62 is reproduced but not the contact between 
dG and C35). Of note, the third-ranked model is from the same group 
but web-based and the binding site region is not properly modeled. 
An additional point concerning PZ25 is that C43 is in the syn confor-
mation in the crystal structure36 (with short contact with O5′) and 
those best models all had C43 in the usual anti conformation. The syn 
conformation of C43 is likely the result of a modeling error during the 
structure determination. PZ29 is the NAD+ binding riboswitch37; it 
contains three regular helices interrupted by two asymmetric internal 
regions that form a two base-paired pseudoknot. The ligand binds in 
the minor groove of a C=G pair below an AA platform (Extended Data 
Fig. 8). The deviations in the DI map occur at the bulging A11 and the 
3′-end strand of the pseudoknot. In contrast to the results obtained 
with PZ25, in none of the five highest best models is the ADP ligand 
close to the C6=G47, to which it binds via the sugar-edges in PZ29 
(Extended Data Fig. 8).

The three Puzzles PZ26, PZ27 and PZ28 involve complexes 
between tRNA–Gly and part of or the complete T-box riboswitch 
(Supplementary Figs. 8 and 9). The outcomes of the predictions are 
mediocre, except for the T-box in PZ28. PZ26 is the complex between 
the tRNA bound to the T-box domain pairing to the -CCA end of the 
tRNA–Gly. The DI (Supplementary Fig. 9b) map shows clearly that 
stem III, which does not directly contact the tRNA, was observed to 
be located far away from where it was predicted to be. It should be 
noted that, in the experimental structure, nucleotide U131 is in the 
syn conformation and makes a cis H/W pair with C166. It is quite prob-
able that U131 is in the anti conformation and forms a cis W/W with 
C166, as in most predicted models. PZ27 contains the domains of the 
T-box interacting with both the -CCA end and the anticodon loop of 
the tRNA. Surprisingly the T-box by itself was better predicted than 
the complex. The DI map of Supplementary Fig. 9j shows clearly that 
the tRNA is well predicted, except for the orientation of the T-loop 
(top right corner of the map) and, that in the T-box itself (bottom left 
corner), the regions not well positioned with respect to each other are 
in helices A1, A2 and stem III.

PZ33 is a riboswitch that binds xanthine38. Like PZ29, it is made of 
three regular helices interrupted by two asymmetric internal regions 
that form a single long-range Watson–Crick pair G35=C11 with G35 
forming a sugar-edge/Watson–Crick pair with A39; xanthine binds to 
G10 and U40 located below those tertiary contacts. The best r.m.s.d. is 
3.4 Å and the largest deviations in the DI map occur around those two 
critical regions, especially with respect to their relative orientations 
with P2b. The binding sites of the reacting ligands were not part of this 
Puzzle. PZ37 (ref. 39) and PZ38 (ref. 40) are two riboswitches binding 
NAD+ with PZ37 containing a single binding site and PZ38 containing 
two. It is a long hairpin with a large internal loop, the 5′-strand of which 
forms a pseudoknot with the single-stranded 3′-end that follows 
the hairpin. The common binding site is between two non-Watson–
Crick pairs G41/C54 and U7/A55 (Supplementary Fig. 10o–s). The L1 
loop was replaced by the U1A binding site in PZ37 and by AAAC in 
PZ38. Despite the sequence similarities, the prediction results differ. 
Figure 5 shows the different overall fold superimpositions and, in 
most cases, the lack of correct predictions for the non-Watson–Crick 
pairs (except in one case, Fig. 5b). PZ37 was modeled slightly better 
than PZ38, maybe because of the presence of the U1A loop and U1A 
protein. Most of the deviations are in the bulging residues (Supple-
mentary Fig. 10n).

Discussion
We start with a discussion on several factors affecting the overall 
methodology. First, the RNA molecules must have a stable fold to 

form crystals or to be observed with cryo-EM technologies. For any 
ensemble of homologous RNA sequences, only a subset of them may 
have this property. Thus, we miss many aspects of the molecular 
dynamics of RNA molecules, either at the local (bulging or loop resi-
dues) or at the global level (alternative folds). On the other hand, 
analysis of such folded structures allows us to characterize the criti-
cal RNA elements participating in the construction and stability of 
the RNA fold common to homologous structures. Second, there is 
a contingent dependence on the availability of solved and unpub-
lished structures. This is minimized to some extent in RNA-Puzzles 
by accepting new Puzzles on a rolling basis and then later gathering 
several Puzzles for publication. A possible drawback of this approach 
is that the methodologies used by the prediction groups evolve during 
the time span between Puzzle submission and publication. However, 
in the Methods the authors are careful to distinguish the various 
Puzzles and the methodologies they used. Third, the range in diffi-
culty varies: there are Puzzles for which a homologous structure or 
a template can be found and others without any previously solved 
homologous structure. It is still valuable to assess structural models 
even when a published template is available. Besides, depending on 
the length of the single-strands connecting the helical elements, the 
prediction difficulty and the resulting accuracy can vary essentially 
because of the bulkiness of the right-handed RNA helices11 coupled 
with the 5′ to 3′ polarity of the strands. Finally, the resolution of the 
experimental data is critical as it is generally related to the quality 
of the final experimental model (as evaluated for example by Mol-
Probity10) and to the precision of the fit between the experimental 
model and the data.

We now consider RNA architecture, which is the global RNA 
fold and the key underlying local contacts. Here also, one can con-
sider different levels of difficulty in the evaluation of accuracy. The 
first level, incorporated in the RNA-Puzzles assessment metrics, 
is the correct prediction of the Watson–Crick base pairs that form 
the helical scaffold. The resulting helices join at junctions of vari-
ous complexity (two-way, three-way, four-way junctions, etc.) and 
the correct placement of helices at each of these junctions is neces-
sary to reach some accuracy in the global fold. As discussed above, 
depending on the lengths of the single-stranded segments between 
helices, the number of choices for placing the helices varies con-
siderably. In stably folded structures, one observes regularly that 
residues not involved in the formation of helices (within internal or 
apical loops) participate in the specific arrangement of the coaxial 
stacks of helices by forming non-Watson–Crick pairs, typical of the 
3D architectures, which allow precise interaction contacts between 
long-range elements. Such non-Watson–Crick pairs, together with 
the stacking partners, constitute a second level of complexity. The 
recognition of such RNA–RNA interaction modules is key for reaching 
the observed 3D architecture. Here, several examples show that miss-
ing such architectural elements lead not only to local but especially 
global misfolded models. This was the case in PZ22 (Extended Data 
Fig. 4f,g). Many points involving analysis of the global fold and the 
local molecular contacts are valid for all categories of Puzzles. This 
is illustrated in Figs. 2 and 6 where the variations of most metrics do 
not depend much on the Puzzle categories (the better values come 
from homologous structures); however, the precise molecular con-
tacts within the global fold (stacking and non-Watson–Crick pairs) 
are necessary to understand the specificity of ligand recognition 
and the roles of key residues for catalysis. A major conclusion is that 
good metrics in neither the secondary structure nor the global fold 
are sufficient to guarantee the correct identification of the residues 
involved in ligand recognition or catalysis.

The latter point is highlighted in the three categories, Aptamer, 
Ribozyme and Riboswitch, where the interest focuses on the residues 
contacting the ligand specifically or surrounding the active site. In 
the Aptamer category, Extended Data Fig. 2 shows a case where only a 
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fragment of the binding site was predicted. For ligand binding in the 
Riboswitch category, Fig. 5 and Extended Data Fig. 8 show that r.m.s.d. 
values between experimental and predicted models should be <2.7 Å 
(PZ25) to achieve meaningful results and that r.m.s.d. values >4.0 Å 
but still <5.0 Å (PZ29) do not lead to useful ligand-binding predictions. 
Because PZ25 is a purine riboswitch with available templates, more 
examples like these are needed to assess ligand-binding prediction 
accuracy. In the Ribozyme category, the relative organization and 
positions of the active site residues are not as close by as expected for 
understanding catalysis (Extended Data Fig. 7).

As discussed above, local contacts and global architecture are 
highly interconnected. Thus, the accuracy in the local contacts depends 
strongly on the achieved global fold as evaluated by standard r.m.s.d. 
Next, we compare r.m.s.d. values and their ranges. Some standard 
distances should be kept in mind: the distance between successive 
phosphate groups is of the order of 6–7 Å while the diameter of an RNA 

helix is 23 Å. r.m.s.d. values <5 Å imply a good accuracy. In the present 
paper, the analysis of PZ39 shows that >12 Å, some wrong choice in 
coaxial stacking is present, and >20 Å, the relative arrangement of 
helices (with potential formation of knots or helical entanglement) is 
incorrect compared to the experimental structure. In those cases, even 
strand mispairing and thus departure from secondary structure may 
be observed. Similar values relating r.m.s.d. values to architectures 
were reached following an analysis of PZ35 and PZ36 during CASP15 
(ref. 41). It is recommended to check for the presence of such unusual 
strand interlockings using available tools14.

We now consider precision of the modeled structures, as measured 
by the Clash score from MolProbity10. In the experimental structures 
considered here, only three had Clash scores >8 but <14 (PZ26, PZ29 
and PZ33). Clash scores commonly observed experimentally at high 
resolution are below 5. Thus, one can consider three ranges, <5, 5–9 and 
>9. Values >15 indicate unusual atomic clashes or poor stereochemistry. 
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Fig. 5 | The detailed comparison analysis between experimental and  
best-predicted structures of the NAD+ II riboswitches PZ37/PZ38.  
a, Superimposition of the sugar-phosphate backbones of the experimental 
structure (resolution 2.5 Å) of PZ37 and of the best-predicted model (Chen_6, 
r.m.s.d. 5.4 Å). b–g, The drawings show specific base pair interactions in both 
experimental (with atomic bond distances in green) and predicted (with atomic 
bond distances in blue) structures. i, Superimposition of the sugar-phosphate 
backbones of the experimental structure (resolution 2.3 Å) of PZ38 and of the 

best-predicted model (Chen_3, r.m.s.d. 8.0 Å). j–o, The drawings show specific 
base pair interactions in both experimental (with atomic bond distances in green) 
and predicted (with atomic bond distances in blue) structures. The drawings of h 
and p represent unique base pair interactions found in PZ37 (h) or PZ38 (p). The 
experimental structures are shown with carbon atoms colored yellow and the 
predicted structures with carbon atoms colored cyan. The distances between 
atoms experimentally forming an H-bond are color-coded as a function of length 
<3.4 Å in red, 3.4–7 Å in green and >7 Å in dark blue.
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Although the Clash scores are in most cases <20, there are still models 
with much larger values in the present analysis, as well as in previ-
ous Puzzles42. Structures with high Clash scores tend also to contain 
entanglements15. Plots of the r.m.s.d. values and Clash scores of the 23 
Puzzles with both human and webserver predictions are shown in Fig. 6 
with the ranges discussed above marked. Good geometry and stereo-
chemistry can be considered as a prerequisite for precision modeling, 
but they do not guarantee for accurate modeling as is exemplified in 
Supplementary Fig. 11.

Finally, we discuss the achievements of the modeling groups and 
comment on comparisons between human-based and automatic web-
server predictions. Four groups were regularly present among the 
five best r.m.s.d. values (Bujnicki, Chen, Das and Szachniuk). Three of 
these groups (Bujnicki, Chen and Szachniuk) were also present in the 
top group of modelers in CASP15 (ref. 11) (the Das group participated 
in CASP15 as organizers and assessors, not as predictors).

These four modeling groups exploit the available database of 
RNA structures43 to assemble and refine models under constraints 
based on specific force fields (Methods). VfoldRNA (Chen) inte-
grates knowledge of RNA folds with a statistical model to calculate 
the free energy of folding and predict likely 3D formations. SimRNA 
(Bujnicki) uses coarse-grained (CG) molecular dynamics approaches 
to evaluate different conformations by scoring RNA interactions and 
identify stable, low-energy configurations. FARFAR2 (Das) refines 
initial fragment-based RNA assemblies by incorporating sophisti-
cated sampling techniques and refined scoring functions for pre-
dicting RNA features and interactions. RNAcomposer (Szachniuk) 
uses a knowledge-based approach to assemble 3D structures guided 
by secondary structure constraints. These current methods encode 
certain RNA structure folding rules in various ways and allow for the 
intervention of human experts. Artificial intelligence tools, however, 
are powerful for abstracting and generalizing folding rules extracted 
from large datasets44. A combination of both approaches could be part 
of future directions in this field. Further, a strong advantage in RNA pre-
dictions is the frequent availability of many functionally homologous 
sequences that are expected to fold in similar architectures45,46. Thus, 
a systematic use of multiple sequence alignments would lead to more 
evolution-based modeling47.

As in previous rounds of RNA-Puzzles, no single prediction 
method dominated Round V. The Chen and Das groups achieved a 

similar performance. For 14 of the 23 of the submitted comparisons, 
the best human-based model by r.m.s.d. came from Rosetta-based 
approaches by the Das group (Fig. 3g). Even within this set, a vari-
ety of 3D modeling approaches produced the model: one was from 
fragment assembly of RNA with full-atom refinement (FARFAR) with 
human selection, four from FARFAR2 with ARES selection and three 
from Stepwise Monte Carlo (SWM) with human selection. Given this 
variety of successful approaches, it is difficult to attribute better or 
worse performance to any particular 3D modeling method. Likely more 
important, as described in the Methods by the Das group, was the role 
of human expertise in inspecting the targets and previous literature, 
setting up appropriate modeling runs that might reflect information 
beyond just the target sequence and updating or developing new 
algorithms concomitantly with modeling. For all targets across all 
predictor groups, more automated workflows, such as RNAWorks3D 
or the ROSIE FARFAR2 server from the Das group, did not lead to bet-
ter models than approaches where at least the setup of the modeling 
runs was informed by human expertise. In the automatic web-based 
predictions, RNAComposer (Szachniuk group) and SimRNA (Bujnicki 
group) performed well (Fig. 3h). While RNAComposer uses templates, 
SimRNA does not, and these different approaches might explain the 
slight difference in performance.

In Round IV, both human-based and automatic webserver predic-
tions were available for only a small subset of Puzzles. In Extended 
Data Fig. 9, we show a similar analysis for Round IV (ref. 4) and the 
comparative values combining results on identical Puzzles from both 
Round IV and Round V. With this larger number of Puzzles, again both 
RNAComposer (Szachniuk group) and SimRNA (Bujnicki group) stand 
out (Extended Data Fig. 9b,d). As comparative analysis between auto-
mated methods and human expert groups is critical for evaluating 
current automated 3D structure prediction methods, RNA-Puzzles 
will continue to promote the systematic submission of both types 
of models.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02543-9.
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Fig. 6 | r.m.s.d. and Clash score for the 29 comparisons between experimental 
and all submitted predicted structures. a, For the r.m.s.d. plot, ranges delimited 
by analysis of the coaxial arrangement of helices are given. Below 4–5 Å, good 
accuracy can be achieved, but r.m.s.d. values <2.6–3.0 Å seem necessary for 
good ligand prediction. Between 4–5 and 11–12 Å, arrangements of helices can 

be correctly predicted; however, between 11–12 Å and 20 Å, wrong arrangements 
of helices are observed. Above 20 Å, wrong helical arrangements and even 
formation of entanglements or knots can be observed. b, Clash scores >10–15 are 
still commonly detected. Good experimental structures at high resolution have 
Clash scores between 3 and 5.
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Methods
Assessment metrics
The automatic workflow for structural comparisons follows that of the 
previous rounds of RNA-Puzzles1–4. So far, no single or universal metric 
exists as the primary determinant of the overall accuracy of predictive 
models. We use a set of metrics to evaluate all models. The r.m.s.d. is 
used to rank the models. r.m.s.d. is a measure of global topological 
comparison, but it distributes errors across the entire structure. The 
r.m.s.d. values are especially useful when they are low. Large values 
indicate that the prediction is inadequate. We assess the prediction 
accuracy by comparing each prediction model with the reference 
structure (when more than one reference structure is present in the 
experimental dataset, we use the one yielding the lowest r.m.s.d.). 
Here, we identify meaningful ranges of the r.m.s.d. values for compar-
ing RNA architectures (Fig. 6 and Discussion). Different metrics are 
used to evaluate the various aspects of the structural predictions as 
described below.

Procedures to compute r.m.s.d., INF and the DI are provided on the 
RNA-Puzzles website (www.rnapuzzles.org) and by the RNA-Puzzles 
toolkit48,49. r.m.s.d. is a standard distance measure in comparing 3D 
structures of biological molecules from a global perspective; however, 
r.m.s.d., by design, does not consider specific structural features of 
RNA. Two RNA-based measures have been introduced, INF and DI6. 
To compute the INF, base-pairing and base-stacking interactions are 
derived from atomic coordinates of both the predicted (p) and the 
reference (r) RNA structures using either RNAView50, MC-Annotate51 
or FR3D52. Although checks are carried out with the other tools, the 
RNA-Puzzles automatic pipeline uses MC-Annotate51. Only base pairs 
with at least two H-bonds between N and O atoms have been consid-
ered. These were visually validated and constituted the reference set 
(Supplementary Table 4). In diagrams, the Leontis–Westhof nomen-
clature53 is used for annotating the non-Watson–Crick pairs. Single 
H-bonded contacts between bases or between bases and phosphate 
groups have not been considered. Given two sets (S) of interactions, 
Sr and Sp, obtained for the reference and predicted structure, respec-
tively, one can compare and assess the prediction quality by applying 
the score originating from binary classification, namely Matthews cor-
relation coefficient (MCC)6. Its calculation requires the identification 
of true positives (TPs; correctly predicted interactions present in Sr 
and Sp), false positives (FPs; hallucinated interactions, present only in 
Sp) and false negatives (FNs; interactions missed in prediction, present 
only in Sr). The INF is calculated as the square root of the multiplication 
of specificity (PPV) and sensitivity (STY), where PPV = |TP|/(|TP| + |FP|) 
and STY =|TP|/(|TP| + |FN|). INF is a normalized similarity measure taking 
values in the range [0,1]. INF = 1 means a perfectly preserved interaction 
network in the predicted model. If there are no common base pairs in 
Sr and Sp, then INF = 0. The INF score may be either computed for all 
base pairs (INFall), or for canonical (INFWC), noncanonical (INFnWC) and 
stacking (INFstacking) interactions independently. The DI is defined as a 
ratio of r.m.s.d. and INFall. When the interaction network observed in 
the reference structure is perfectly reproduced in the corresponding 
predicted model, the DI score is equal to r.m.s.d. Otherwise, the r.m.s.d. 
value is multiplied by the inverse of the INFall value. The Clash score 
shows the credibility of the structure in terms of bond distances, angles 
and stereochemistry (best models have Clash scores close to null)10.

Modeling methods
Each group can submit up to ten (five after 2018) models per 
RNA-Puzzle using a single method. The submitted models are named 
PI-Name_Model-Number. A group can submit models using different 
approaches or tools to compare their efficacy and accuracy (Supple-
mentary Table 5). Each group is named after the principal investiga-
tor (PI) for human-based predictions or after the modeling tool used  
for automatic web-based predictions. Below the modeling methods 
used by 15 groups are described (organized by alphabetical order 

of the PI name). For three groups, the DiMiao group (University of 
Washington) and two anonymous groups, we could not retrieve more 
precise methodological information.

Boniecki group
The predictions submitted by M. Boniecki (International Institute 
of Molecular and Cell Biology in Warsaw) were obtained as a result 
of simulations using unpublished versions of SimRNA13,54. Neither 
secondary structure predictions nor explicit evolutionary informa-
tion were considered. Versions of the energy function were obtained 
based on different decompositions of the total energy. The overall 
prediction pipeline was similar to a typical prediction scheme using 
SimRNA: Monte Carlo simulation using the replica-exchange Monte 
Carlo method and clustering of the results. No method was used to 
refine the structures. Predictions were essentially obtained without 
human intervention; no human-assisted modeling stage.

Bujnicki group
The Bujnicki group (International Institute of Molecular and Cell Biology  
in Warsaw) participated in all the RNA-Puzzles, submitting up to five 
models both for the webserver and human expert competitions. The 
webserver models were prepared with SimRNAweb55, whereas for the 
human expert models, we employed an array of methods along with 
human interventions involving research into target RNA sequences 
and deliberations within the group.

In a typical workflow, the first step was to run literature and 
sequence similarity searches to find RNA sequences obviously related 
to the RNA-Puzzle target sequence. If no obvious relative is found, we 
looked for remotely related (or evolutionarily unrelated, but struc-
turally similar) RNAs using the in-house method PARNASSUS. This 
facilitates remote homology searches by encoding RNA sequence 
and secondary structure information in a 20-letter alphabet, which 
enables the discovery of remotely related RNAs with conserved secon
dary structures, missed by conventional sequence-based searches. 
We predicted the secondary structure using in-house meta-predictor 
MeSSPredRNA (unpublished), and combined it with any information on 
secondary structure found by literature searches or mapped from the 
identified RNAs with known structures that could be used as templates. 
When chemical probing data were available, we used the RNAProbe 
webserver56 for secondary structure predictions. If any potentially 
structurally similar RNA 3D structures were identified, we used them 
as templates for generating initial 3D models using ModeRNA. For 
predictions of local 3D structural motifs, we used building blocks 
from the RNA Bricks database57. RNA–ligand complex models were 
generated with rDock58 and RNA–protein complexes were modeled 
with the NPDock workflow59.

If the initial models of targets were based on templates with very 
high sequence similarity, we did not modify them extensively, with the 
exception of a limited final refinement (see below). In all other cases, 
that is, if the initial models were considered insufficiently reliable or if 
no comparative models could be generated, we modeled the RNA 3D 
structures with SimRNA13,54, using all restraints that could be inferred 
from the gathered data. For some targets, we experimented with vari-
ants of SimRNA with different options, parameters, and extensions, 
enabling for example, modeling of RNA–small molecule and RNA–
protein complexes. Models for submission were selected based on 
several criteria, including (1) the results of clustering of best-scored 
conformations (depending on the specific case 1–10% of all conforma-
tions generated); typically we considered up to ten largest clusters; 
(2) the score calculated by SimRNA, comprising RNA energy and the 
assessment of spatial restraint satisfaction; (3) optionally the score cal-
culated with our in-house tool mqapRNA (unpublished); and (4) visual 
inspection of the models. We strived to select models that exhibited 
substantial conformational diversity for the final submission, except 
in cases of very obvious RNA structures, when the global 3D fold was 
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predicted accurately beyond any reasonable doubt. If time permitted, 
we optimized the models for submission using QRNAS60, to improve 
the local geometry and remove the clashes.

Chen group
The methodology employed by the Chen group (University of Missouri) 
encompasses a combination of hierarchical and hybrid approaches 
to predict RNA 3D structures. For a given RNA sequence, the initial 
step involves the prediction of two-dimensional (2D) structures. Sub-
sequently, these predicted 2D structures are used for the modeling 
of the corresponding 3D structures. The Chen group employed two 
distinct models for 2D structure prediction: Vfold2D61–64 and Vfold-
MCPX65–67. Vfold2D is a physics-based model able to account for mis-
matched base pairs while calculating thermodynamic parameters for 
a variety of loop motifs. VfoldMCPX extends its predictive capacity to  
RNA complexes consisting of multiple strands. Both Vfold2D and 
VfoldMCPX demonstrate the ability to predict pseudoknots and to 
generate suboptimal structures based on base-pairing probabilities; 
however, both Vfold2D and VfoldMCPX encounter limitations due 
to the lack of reliable thermodynamic parameters for higher-order 
structural elements, including loop-kissing motifs and long-range 
tertiary interactions. To enhance the accuracy of the predictions, we 
use sequence analysis, based on the PDB68, Rfam45 and RNAcentral45,69 
databases and published experimental data. This structural informa-
tion, like evolutionary and consensus structural data, is employed as 
folding constraints for the prediction of 2D structures.

Our methodology entails a multistep approach to predict the 3D 
structures. Starting from the predicted 2D structures, we utilize our 
template-based 3D structure prediction models, namely Vfold3D64,70 
and VfoldLA71. Further refinement of the 3D structures is accomplished 
through the application of the CG molecular dynamics IsRNA72,73 and 
RNAJP74, which are also guided by the predicted 2D structures. The CG 
approach is particularly efficient for conformational sampling of large 
RNAs74,75. The final predicted structures are obtained by clustering the 
low-energy conformations. Our 3D structure prediction modeling 
programs have several unique features. The CG force field integrated 
within the IsRNA model takes into consideration both local and non-
local correlations between various structural degrees of freedom 
and accounts for the distribution of native and non-native conforma-
tions across the energy landscape. In contrast, RNAJP74 is specifically 
designed to predict 3D structures for RNAs featuring junctions, with a 
focus on enhancing global topology sampling. Notably, RNAJP74 excels 
in the prediction of RNA junction structures, enabling us to precisely 
model complex RNA systems that include such junction structures.

The Chen group participated in all the 23 Puzzles. To illustrate our 
prediction methods, we have chosen four targets that fall into distinct 
categories: an Aptamer (PZ32), a Viral element (PZ39), a Ribozyme 
(PZ35) and a Riboswitch (PZ37).

Puzzle 32. The RNA 2D structure of PZ32 was predicted using Vfold2D. 
The average base-pairing probability for the base pairs in this minimum 
free energy 2D structure exceeds 88%, indicating thermodynamic sta-
bility. Comparison between our prediction and the native 2D structure 
indicates that our model accurately identified approximately 94% 
(15 out of 16) of the base pairs, missing only one isolated base pair. 
The 3D structures were predicted using IsRNA, with the predicted 2D 
structures serving as constraints. In the fourth model we submitted, 
we observed coaxially stacked helices flanking the large bulge loop, 
mirroring the native structure, resulting in the smallest r.m.s.d. of 
4.989 Å among all the structures submitted; however, our model failed 
to capture the base-pairing interactions between the bulge loop and 
the internal loop.

Puzzle 39. The native 2D structure of PZ39 was predicted by Vfold2D, 
showing a four-way junction structure with calculated free energy of 

−42.92 kcal mol−1. Additionally, by conducting sequence analysis76, we 
identified a homologous structure (PDB code 1RFR) in the PDB data-
base, which was used to model the fourth helix in this junction struc-
ture. The 3D structures were predicted using both IsRNA and RNAJP 
with the predicted 2D structure as constraints. The primary challenge 
in predicting the 3D structure of this Puzzle lies in determining the 
junction topology. Our methods predicted the junction topology and 
the first model we submitted yields a small r.m.s.d. of 3.959 Å, whereas 
the best model among all groups achieves a lower r.m.s.d. of 3.383 Å.

Puzzle 35. Sequence analysis suggested the presence of two pseu-
doknots in the RNA. The incorporation of the structure constraints 
resulted in an accurate prediction of the whole 2D structure76,77. The 
3D structures were predicted using IsRNA based on the predicted 2D 
structure. Our best model exhibits a global resemblance to the native 
structure, albeit with a slightly higher r.m.s.d. of 6.498 Å compared to 
the best model among all the groups, which has an r.m.s.d. of 5.982 Å. 
An incorrectly predicted pseudoknot constraint in the 2D structure 
led to the local structural deviation.

Puzzle 37. We employed Vfold2D to predict both the pseudoknotted 
and pseudoknot-free 2D structures for PZ37. Our calculations revealed 
that the optimal pseudoknotted 2D structure, which includes a pseu-
doknot formed through base pairing between the large internal loop 
and the three tail nucleotides at the 3′-end, exhibits significantly lower 
free energy compared to the most stable pseudoknot-free 2D struc-
ture. The predicted pseudoknotted 2D structure closely resembles 
the native one, with 13 out of 14 base pairs correctly predicted. For the 
prediction of 3D structures, we utilized IsRNA, taking the 2D structure 
constraints into account. Our best model displays a global resemblance 
to the native structure, with the lowest r.m.s.d. of 5.42 Å among all the 
participating groups. The local structural deviation is attributed to the 
absence of the G6–C40 base pair.

We acknowledge the limitations of our methods when treating 
RNA complexes, as seen in PZ26, PZ27 and PZ28, which involve a T-box 
riboswitch–tRNA complex. Due to the lack of thermodynamic param-
eters, our 2D models cannot accurately model certain RNA–RNA (ter-
tiary) interactions.

Das group (Rosetta-based approaches FARFAR and SWM, and 
ARES, co-developed with Dror laboratory)
The Das laboratory (Stanford University) submitted models for the 
majority of Puzzles Round V. The exceptions are two Puzzles in which 
the Das laboratory members were involved in experimental structure 
determination of the target or a near-identical molecule (PZ30, human 
telomerase; and PZ31, the SARS-CoV-2 frameshift stimulation element) 
and two Puzzles that were also targets in the CASP15 competition11 
(Puzzles 35 and 36, CPEB ribozymes), for which Das laboratory mem-
bers served as assessors. For the remaining 17 of 21 Puzzles, the Das 
laboratory made use of tools developed in the Rosetta3 codebase78.

FARFAR79 has been the laboratory’s primary RNA modeling method 
since the beginning of RNA-Puzzles, with some automation piloted in 
the RNAWorks3D server4 and several further improvements collected 
in the FARFAR2 method80, used in RNA PZ22 and later. For most of the 
present Puzzles, more than one set of models was submitted, with one 
set selected manually (typically by R.D. in collaboration with laboratory 
members, tagged as Das), another selected based on the Rosetta energy 
(typically tagged as FARFAR2) and other sets selected by scoring from 
a tensor field network developed by the Dror group, tagged as ‘TFN’ or 
by the eventual name of the network, ARES9). FARFAR(2) was used to 
submit at least one set of models for 16 of the 17 RNA-Puzzles for which 
any models were submitted by the Das laboratory. In addition to the 
FARFAR-based models, for 8 of the 17 RNA-Puzzles, the Das laboratory 
submitted models from a different Rosetta-based approach, SWM. This 
method carries out high-resolution conformational search of loops 
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or junctions without use of fragments of previous RNA structures, 
guided by the all-atom Rosetta energy function81, but its application 
is restricted to targets where only one such unknown loop or junction 
needs to be built. For Puzzle 11, our laboratory acquired chemical map-
ping data and released these data with anonymized sequences to the 
community in the following entries in the RNA Mapping DataBase81: 
RNAPZ11_STD_0001, DMS, CMCT and the SHAPE modifier 1M7 (ref. 82);  
RNAPZ11_1M7_0001, RNAPZ11_1M7_0002, RNAPZ11_1M7_0003, for 
mutate-and-map data with three sets of mutations per nucleotide83,84. 
De-anonymized versions of these datasets are now available at 
RNAPZ11_STD_0002, RNAPZ11_1M7_0004, RNAPZ11_1M7_0005, 
RNAPZ11_1M7_0006.

For all RNA-Puzzles to date, including targets for which the most 
accurate overall model was submitted, the Das laboratory has been 
able to identify background literature describing the function and, 
typically, candidate secondary structures or other constraints use-
ful for modeling. For PZ18 (Zika xrRNA), a domain-swapped crystal 
structure of a different xrRNA served as a template, but expert input 
was required to inform which regions could be used as templates and 
which needed to be built de novo with SWM, which was being developed 
concomitantly with PZ18. For PZ22 (Hatchet ribozyme), secondary 
structures from RNAfold85 were refined based on manual inspection of 
covariance in published sequence alignments. For PZ23 (iMango-III), 
potential G-quadruplexes as well as the binding site of the ligand were 
hypothesized after inspection of previously solved Mango aptamers, 
and these hypotheses were used to seed distinct SWM runs that led 
to each of the submissions. For PZ24 (VA-I), a pseudoknotted second-
ary structure had been proposed in the literature and was used to 
seed FARFAR2 modeling, followed by ARES scoring, which was being 
developed concomitantly through PZ24–PZ28 in close collaboration 
with the Dror laboratory. For Puzzles 26–28 (T-box–tRNA complexes), 
secondary structures, including the set of intermolecular base pairs 
between the tRNA CAA tail and the T-box, and templates from previ-
ously solved fragments of tRNA–T-box complexes were identified 
manually and used in FARFAR2 modeling, followed by ARES scoring. For 
PZ34 (methyltransferase ribozyme), special SWM runs were carried out 
that modeled the RNA with the enzymatic product m1A at the methyla-
tion site, and manual model selection took into consideration the steric 
accessibility for an exogenous O6-methylguanine as the methyl donor.

Ding group
The Ding group (Clemson University) participated in all rounds, except 
for PZ27, PZ29 and PZ34. Structures were derived using a multiscale 
discrete molecular dynamics (DMD) approach86. Secondary struc-
tures were acquired from consensus results, incorporating homology 
models from the Rfam database87 and prediction algorithms such as 
RNAstructure88 and mFold89,90. CG RNA simulations with temperature 
replica-exchange DMD were executed using secondary structures as 
input constraints. Centroid nodes of the ten largest clusters were gener-
ated from 10,000 snapshots with the lowest energies in the ensemble 
produced from CG simulations followed by all-atom DMD simulations 
for structure refinement.

The Ding group observed that explicitly adding magnesium ions in 
all-atom simulations improves prediction results by generating more 
native-like compact conformations. We proposed that optimizing 
CG simulations might efficiently yield enlarged native-like structure 
popularities compared to the time-consuming all-atom simulations 
starting with noncompact RNA molecules. Here, we implemented 
magnesium ion modeling in CG simulations. The force field between 
phosphate atoms and magnesium ions was established using the 
iterative Boltzmann inversion method91, based on the probability 
of density as the function of pair distances from all high-resolution 
RNA molecules in the PDB bank. The addition of 20 mM magnesium 
ions in the simulation boxes mimicking physiological concentrations 
successfully created crosslinks between phosphate atoms via binding 

with RNA molecules, resulting in compact structures. We continu-
ously updated force fields for CG models starting with PZ26. Centroid 
nodes from several significant clusters from CG simulations followed 
by rapid all-atom reconstruction led to competitive predictions that 
performed well in several Puzzles (PZ30, PZ31 and PZ32); however, 
crosslinks between phosphate beads in CG models could also result in 
some unphysical over-compact structures dominated as observed in 
PZ33. To address this, all-atom replica-exchange DMD simulations with 
explicit magnesium ions modeling were performed, using the most 
populated structures from CG simulations as initial conformations. 
Up to ten representative models were generated based on the all-atom 
simulation structures with the lowest energies for the submitted pre-
dictions. Detailed sampling methods can be found in earlier work4. 
For single-chain target PZ39, the lowest backbone r.m.s.d. decreased 
from 9.0 Å to 6.5 Å after all-atom simulations were performed with the 
updated workflow. Incorrect secondary structures for several targets, 
including PZ35, PZ37 and PZ38, suggested that more references of sec-
ondary structures should be considered. Although the group ranked 
third for the multichain target PZ36, large r.m.s.d. values were found, 
indicating that more efforts should be made to improve predictions of 
interchain interactions for complex systems. In conclusion, to capture 
native-like structures, compact conformations need to be generated 
with correct input constraints of secondary structures as the prereq-
uisite, followed by structure refinement from all-atom simulations for 
the final submissions.

Dokholyan group
The Dokholyan group (Penn State College of Medicine, Hershey) par-
ticipated in all Puzzles, submitting five models for each target in the 
human category. All predictions were carried out using the iFoldRNA 
program92–94 and a neural network-based method, epRNA95,96. In iFol-
dRNA, the conformational space of RNA molecules is sampled using 
CG DMD86,97 simulations. Representative structures are selected based 
on energies and, where applicable, additional filters such as the radius 
of gyration and other experimentally known parameters. RNA nucleo-
tides are represented by three pseudo-atoms corresponding to the 
base, sugar and phosphate groups in these simulations. Constraints 
are applied to neighboring beads along the sequence to maintain RNA 
chain connectivity and local geometry, including covalent bonds, bond 
angles and dihedral angles. The parameters for bonded interactions 
are derived from high-resolution RNA structures. Starting from an 
initial CG RNA model, an all-atom model is reconstructed and further 
optimized with all-atom DMD simulations. epRNA relies on a convolu-
tional neural network to predict pairwise distances between residues 
within an RNA molecule. This prediction was accomplished using a 
recently described smooth parametrization of Euclidean distance 
matrices. High-accuracy predictions were achieved for RNAs of up to 
100 nucleotides in length, in a fraction of a second, marking a 107-fold 
increase in speed compared to existing molecular dynamics-based 
methods. The conversion from a CG machine-learning output to an 
all-atom model was executed through DMD with constraints. Second-
ary structure predictions were obtained using the mFold89,90 and pKiss 
webservers. These predictions were subsequently subjected to the 
iFoldRNA and epRNA programs, resulting in the generation of three 
models by iFoldRNA and two models by epRNA for each target.

Kollmann group
Dfold (from Kollmann group; Heinrich Heine University of Düsseldorf) 
is a deep-learning approach to predict 3D folding structures of RNAs 
from their nucleic acid sequence. It combines a Vector Quantised 
Variational Autoencoder (VQ-VAE), an autoregressive Deep Generative 
Model, Monte Carlo Tree Search (MCTS) and a score model to find and 
rank the most likely folding structures for a given RNA sequence. Train-
ing is executed on all available RNAs from the protein database as well 
as a large corpus of drifted structures augmented from that base set.  
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To encode 3D RNA structures, Dfold uses a rotational invariant repre-
sentation that was given by the Euclidean distances between nucleo
tides followed by a VQ-VAE to compress the Euclidean distances 
between the selected atoms into three distance classes for each pos-
sible nucleotide pair. Hence, the prediction problem is now greatly 
reduced to the prediction of a distance class map of shape L × L × 3. 
The autoregressive network learns via the masked pixel objective to 
map from sequence to distance classes and consists of a deep residual 
architecture as well as attention layers to further extract information 
from SHAPE data as well as homologous sequences. For inference Dfold 
uses MCTS to pixel-wise sample a map of distance classes with the 
probability values of the autoregressive network. A sampled distance 
map is ranked by a score network that is based on structures and drifted 
structures learn to rank them toward minimal energy. The ranked 
output of distance class maps is calculated back to Euclidean space 
via the VQ-VA. Thus, Dfold computes an ensemble of ranked tertiary 
candidate structures.

LCBio group
The Laboratory of Computational Biology (LCBio) group (Nithin group, 
University of Warsaw) participated in Puzzles P30–P36, and submitted 
31 models in the human category. For all the Puzzles in the initial step, 
we queried Rfam45 and RNAcentral69 databases to check for homolo-
gous RNA sequences. Simultaneously, the RCSB PDB was searched for 
3D structures of homologous RNA molecules. We used ViennaRNA98, 
RNAStructure88, ProbKnot99, CentroidFold100, ContraFold101 and 
IPknot102 to predict the secondary structure of the RNA. Additionally, 
if RNAcentral provided a pre-annotated secondary structure, it was 
included to enrich the ensemble. We generated a consensus secondary 
structure using a majority-rule approach. This consensus served as a 
guide for setting up restraints in 3D structural prediction. For Puzzles 
PZ35 and PZ36, we additionally used the bifold program from RNAS-
tructure package to predict the secondary structures.

We used the SimRNA program54,102 for 3D structure modeling. 
SimRNA was executed with and without secondary structure restraints, 
using eight independent replica-exchange Monte Carlo simulations, 
each with ten replicas and 16 million iterations13. The lowest-energy 
structures from the top three clusters were selected for further analysis. 
 In the next step, we refined the models using the QRNAs program60  
to mitigate errors stemming from the initial CG modeling. In the case  
of Puzzle PZ30, we generated the 3D structure through homology  
modeling, followed by optimization using QRNAs and ultimately sub-
mitted only a single model.

Finally, we conducted molecular dynamics simulation to refine 
the models, with the exception of PZ30. Molecular dynamics simula-
tions were performed using the Amber 18 package60,103. The initial 
structural configuration for the simulations was established using 
tleap and housed in a truncated octahedral box with a 10 Å clearance, 
and solvated using the TIP3P water model104. The χOL3 force field105,106 
tailored for RNA was applied throughout the simulations. A two-phase 
energy minimization was implemented: the first phase involved 10,000 
cycles with restraints and was followed by a second phase of 10,000 
cycles without restraints. This was followed by heating, density equi-
libration and short runs of equilibration. The heating was carried out 
from 100 K to 300 K for 500 ps with restraints on the entire structure 
and the density equilibration was performed for 500 ps, also with 
restraints on the entire structure. Equilibration was performed in four 
distinct steps: three initial steps each lasting 200 ps with restraints on 
main chain atoms, and a final 2 ns step to ensure full convergence. The 
production run was initiated with constant pressure boundary condi-
tions (ntb = 2), isotropic position scaling (ntp = 1), and a pressure relaxa-
tion time of taup = 2.0 ps. The production simulations were run for 3.7, 
0.4, 0.8, 2.4, 0.2 and 0.5 μs for Puzzles PZ31, PZ32, PZ33, PZ34, PZ35 and 
PZ36, respectively. Particle-mesh Ewald techniques107 were employed 
to compute electrostatic interactions, utilizing a 12 Å cutoff for both 

electrostatic and Lennard–Jones interactions. The NVT ensemble was 
used during the equilibration steps (ntb = 1), while the production 
run operated under the NPT ensemble. Sander was utilized for the 
minimization processes, while the CUDA-enabled PMEMD was used for 
all subsequent simulation steps108–110. Next, the resulting trajectories 
were clustered via the NMRCLUST algorithm111 as implemented in UCSF 
Chimera112. The representative frames from the top five clusters were 
selected as the final models for the submission.

Perez group
The Perez group (University of Florida) uses the MELD integra-
tive approach113,114 combining Hamiltonian and Temperature 
replica-exchange molecular dynamics115 simulations with noisy infor-
mation coming from server predictions. We used RNAfold for secondary  
structure prediction85 and RNAComposer to predict a starting 3D 
model116. Secondary structure predictions were enforced as possible 
base pairing between bases, with the caveat that only 70% need to 
be satisfied at any given time. Along the simulation, the subsets of 
enforced data can change113 in coherence with detailed balance. MELD 
uses Bayesian inference to identify the most likely structures and the 
best interpretation of the original information. The contacts were 
enforced as flat-bottom harmonic restraints with a force constant of 
350 N m−1 and a distance of 2.9 Å between heavy atoms of H-bond, as 
well as a 15 Å between C4s. At high replica indexes, the temperature 
is high and information is not enforced, favoring unfolded states and 
broad sampling of the energy landscape. As the replica index decreases 
the restraints are enforced more strongly, guiding toward folded or 
misfolded states while the temperature also decreases. Finally, at the 
lowest temperature replica, the information is enforced strongly and 
sampled at the lowest temperature; this is the region where we sample 
conformations with satisfied base pairing. We use hierarchical cluster-
ing (ε = 2 Å) to analyze the lowest five replicas to identify structures with 
higher population. Top clusters were inspected visually, and several 
models were selected for submission. Contrary to our experience 
in protein folding117, the cluster populations for RNA were very low, 
which will require future work to identify novel clustering algorithms 
to classify RNA structures from our ensembles. Meld is a plugin to the 
OpenMM molecular dynamics software and is freely available at https://
github.com/maccallumlab/meld. We used the parmBSC1 for nucleic 
acids118–120 and the GBNeckNu2 implicit solvent121,122. Each simulation 
was 1.5 μs using 30 replicas and a 4.5-fs timestep. The replicas expand 
a temperature range between 300 K and 500 K.

SoutheRNA group
The SoutheRNA group (Université Libre de Bruxelles) participated in 
Puzzles PZ38 and PZ39, submitting five and ten models, respectively, 
in the human category. The group developed a computational pipeline 
that performs three steps: collection of RNA data, modeling of the 3D 
RNA structure and selection/refinement of the obtained 3D structures.

In the first step we predict the RNA secondary structure given the 
RNA sequences using RNAfold85. If the target RNA sequence has a suffi-
cient number of homologs in the RFAM database87, we align them using 
Infernal123. The resulting multiple sequence alignment (MSA) is used as 
input of pydca124, a coevolutionary-based method that identifies pairs 
of nucleotides that coevolve in the MSA. As these nucleotide pairs are 
likely to be in spatial proximity in the 3D RNA structure they are used 
as constrained in the 3D modeling step. When there is an homologous 
RNA sequence with a known 3D structure deposited in the PDB125, we 
extract nucleotide–nucleotide distance constraints from the template 
to use in the 3D modeling. All the previously collected information (2D 
structure and spatial constraints) is then used as constraints in the 
SimRNA modeling algorithm54, a Monte Carlo-based approach that 
we employ to explore the RNA conformational space, to cluster the 
low-energy structures and to select a final set of few hundreds all-atom 
structures. For each RNA target we run ten simulations of ten replicas 
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each with 50-M time steps. In the refinement step, we first rescore the 
few hundred collected SimRNA structures using SPQR126, which is a 
nucleotide-level CG model of RNA. As the final predicted structures, 
we select either the most populated SimRNA cluster representatives 
and the representatives with the lowest SPQR energy.

Szachniuk group (formerly Adamiak)
The Szachniuk (formerly Adamiak) group (Poznan University of  
Technology and Institute of Bioorganic Chemistry PAS) participated 
in all Puzzles, submitting 120 models in the webserver and 122 in the 
human category. All predictions were made with RNAComposer, which 
employs a fragment-based assembly approach12,116.

For webserver predictions, the group developed a fully automated 
service that runs on several RNAComposer engines. The system can 
generate the 3D fold(s) from an RNA sequence alone or accompanied 
by their secondary structures. It is structured as a four-tier application 
with a workflow consisting of preliminary data processing, prediction 
of the 3D structure, assessment and prioritization of the resultant 3D 
models and preparation of submission files dispatched to the task 
requester. Procedures of the first stage sift through noncanonical base 
pairs in the input RNA 2D structure, handle multistranded RNAs and 
interpret pseudoknot data127. In the next stage, the system runs several 
RNA secondary structure predictors to generate a diverse set of unique 
structures. They are fragmented into structural elements (loops and 
double- and single-stranded fragments), each of which serves as a 
search pattern for exploring a database of 3D RNA structures. Up to 
ten models are assembled from elements that match the patterns. 
Next-stage procedures evaluate predictions for total energy, gyration 
radius, INF and Clash score48,128,129. Scores are amalgamated to rank 
models and select the most promising ones for submission.

In the human category, we used additional data sources, includ-
ing literature and databases such as Rfam45, RNAloops45,130 and 
ONQUADRO131 to learn from consensus secondary structure or find 
specific structure motifs to be sewn into the model using the Insert own 
structure element option132. We implemented an algorithm to identify 
3D elements that resemble the secondary structure pattern, although 
not exactly match it. It increased the number of identified 3D structure 
elements and the diversity of assembled RNA models. The latter were 
grouped by the OC cluster analysis software. User-defined 3D structure 
elements, such as cluster centroids, were considered in the updated 
version of RNAComposer. In the case of multichain targets (PZ22, 
PZ22dimer, PZ26, PZ27 and PZ28), we experimented with various con-
figurations of chains connected through different linkers. The linkers 
encompassed elements such as GAAA loop and single-stranded adenine 
fragments of varying lengths. For PZ31, PZ32, PZ34, PZ38 and PZ39, we 
employed 100 ns molecular dynamics simulations in explicit solvent, 
initiating from the RNAComposer-generated models. From these 
simulations, we judiciously selected cluster centroids representing 
stable conformations. The ligands were docked in a potentially prom-
ising binding place utilizing semi-automatic procedures in AutoDock 
Vina. In specific instances, manual docking was performed, guided by 
experimentally resolved structures, as exemplified by our approach 
in PZ25, wherein the RNA-2′-deoxyguanosine structure (PDB ID 3DS7) 
was used as a template. In all Puzzles, final models were validated for 
close atom contacts, bond lengths, angles, planarity, chirality, oligo-
ribonucleotide linkage and entanglements15,42.

Xiao group
Xiao group (Huazhong University of Science and Technology) applied 
first traditional methods based on energy minimization such as 
RNAfold98 and RNAstructure88 and deep-learning methods such as 
SPOT-RNA133 and our 2dRNA134 were used to predict candidate secon
dary structures of the given sequence. Because the 2D structure 
predicted by deep-learning methods is usually different from that 
predicted by traditional methods, the prediction results of traditional 

methods and deep-learning methods were compared respectively, 
and each centroid structure was selected. On these two structures, 
3dRNA/DNA135,136 was used to predict the tertiary structure. In 3dRNA/
DNA, the most suitable template was searched from our RNA tertiary 
structure templates library136 for each secondary structure element 
(SSE), which was decomposed from the secondary structure135. If no 
template was found, the bi-residue method135,137 was used to build a 
tertiary template. These templates were then assembled together 
and optimized by a Monte Carlo simulation-based program138 with 
further energy minimization using Amber ff99OL3 force field106. For 
each secondary structure, 10 structures were predicted and the top1 
structure of each with the 3 best structures in the other 18 structures 
selected by 3dRNAscore139 were chosen as the final prediction. Despite 
an improved template library and an optimized program to predict 
constraints, including pseudoknots, the predictions of 3dRNA/DNA in 
these Puzzles did not rank well. It was discovered that the inadequate 
prediction ability was caused by the poor handling of multiple loops. 
Using r.m.s.d. as the standard, the prediction of PZ11 and PZ33 were 
much better than others, because these two RNA (5LYS and 7ELP) have 
no multiple loops. The worst prediction of the SSE in each Puzzle is also 
the multiple loop, especially in PZ34, PZ38 and PZ39.

Xiong group
The Xiong group (University of Science and Technology) participated 
in Puzzle 39. The predictions were carried out using the BRiQ program 
with the strategy of motif prediction, assembly and full structure refine-
ment. The secondary structure of PZ39 came from the bpRNA database. 
According to the secondary structure, this RNA was split into five struc-
ture motifs, including three hairpin loops, one interior loop and one 
four-way junction. These structure motifs were predicted separately 
using BRiQ prediction program140, and then assembled into complete 
structures and finally optimized by BRiQ refinement program. We 
perform Monte Carlo modeling with a CG potential, named BRIQX_CG 
to obtain the topology of the RNA structure. And finally, we run full 
atomic refinement with statistical potential BRIQX_FA. BRIQX poten-
tial is derived from statistics of RNA structure database and quantum 
mechanics calculation. Different from dividing the total energy of 
the system into the sum of single-variable functions, like bond angle 
terms, bond length terms, dihedral angle terms, van der Waals terms 
and electrostatic terms in a molecular force field, BRIQX potential uses 
multivariable functions to replace single-variable functions to increase 
accuracy. The CG version of BRIQX potential is more tolerant to bond 
breaks and steric clashes to make it easier to move across energy bar-
riers. During the sampling in both CG modeling and full atomic refine-
ment stages, the RNA structure is represented by a graph, in which the 
node is the local frame of a base and the edge is SE(3) transformation 
of two bases. In a single Monte Carlo move, one edge is changed into 
a random SE(3) transformation in predefined space. Usually, we need 
to generate 1,000 models and select the best one.

Yagoub Ali group
The prediction methodology of the Yagoub Ali group (University of 
São Paulo) is based on the use of Fragment Assembly of RNA (FARNA), 
which is in the Rosetta software suite. This algorithm assembles pieces 
of nucleotides, which can vary in length from 1–3 nucleotides, to predict 
the tertiary structure of RNA. FARNA uses information from existing 
RNA structures to improve its predictions. This method is referred to 
as de novo RNA tertiary structure prediction in the Rosetta software 
suite. The algorithm is based on a Monte Carlo sampling process to 
minimize energy using Rosetta’s low-resolution knowledge-based 
energy function. Starting from a low-resolution structure, FARFAR 
produces a high-resolution structure with atomic accuracy and mini-
mizes hydrogen atom clashes. In addition to the canonical RNA base 
pairing, FARNA can predict noncanonical structures. Users can provide 
the secondary structure in dot parentheses notation to predict RNA 
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tertiary structures more accurately. Please note that users must pro-
vide the secondary structure for multistranded molecules. Besides the 
secondary structure, users can optionally give the native structure to 
accurately predict RNA structure for all types of RNA molecules, that 
is, single-stranded RNA molecules and multistranded RNA molecules. 
The current channeling of the FARNA method is limited in its ability 
 to predict the structure of long RNA molecules. For more details  
about the FARNA method, refer to Alam et al.141, Watkins et al.80 and 
Watkins et al.142.

Yang group
The Yang group (Shandong University) participated in three Puzzles 
(PZ37, PZ38 and PZ39). For PZ38 and PZ39, they submitted five models 
each in the webserver category, while for PZ37, they submitted ten mod-
els in the human group category. In general, the Yang group employed 
an automated deep-learning-based approach, trRosettaRNA143, to 
predict the 3D structures. The inputs of trRosettaRNA include the 
MSA and predicted secondary structure. The MSA is generated using 
the rMSA tool144, which iteratively searches against three sequence 
databases: NCBI nt145, Rfam87 and RNAcentral146. The secondary struc-
ture is predicted by SPOT-RNA133 from the nucleotide sequence. With 
these inputs, trRosettaRNA employs a transformer network named 
RNAformer to predict one-dimensional and 2D geometries, which 
are then transformed into energy potentials. The folding of the 3D 
structure is powered by energy minimization, implemented using 
pyRosetta147. For each target, the L-BFGS algorithm is applied to refine 
20 randomly initial structures by minimizing the total energy, result-
ing in 20 refined full-atom decoys. For each RNA-Puzzles target, the 
five decoys (ten decoys for PZ37) with the lowest total energy were 
selected as the final submitted predictions. PZ37 and PZ38 were both 
ligand-binding targets. The predictions made by the Yang group were 
solely derived from nucleotide sequences, without any considera-
tion of the ligand information or human intervention; however, the 
automated predictions from the Yang group were competitive to the 
predictions from leading human expert groups. For these two tar-
gets, the Yang group ranked third out of >15 participating groups in 
terms of the best-submitted models, achieving r.m.s.d. values of 10.3 Å  
and 8.7 Å for PZ37 and PZ38, respectively. For PZ39, the predictions 
from Yang group were not accurate, with r.m.s.d. values > 15 Å. 
The absence of similar sequences or structures from the known  
RNAs makes it challenging to model this target using a deep-learning- 
based method. One of the promising directions is to combine deep 
learning with traditional techniques like fragment assembly and 
template-based modeling.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All the prediction results and codes used are publicly available at www.
rnapuzzles.org. Source data are provided with this paper.

Code availability
All metrics used in RNA-Puzzles for the assessments and comparisons 
of RNA 3D structures are available at https://github.com/RNA-Puzzles/
RNA_assessment. Codes to reproduce all figures are available at https://
github.com/RNA-Puzzles/RoundV_reproducibility.
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Extended Data Fig. 1 | Comparisons of key non-Watson–Crick pairs between 
the experimental and best-predicted structures in PZ16a and PZ16b.  
(a–e) Non-Watson–Crick pairs in the experimental structure of PZ16a 
(PDB id: 6y0y). (b–f) Best-predicted non-Watson–Crick pairs for PZ16a 

(RNAComposerAS1_3, r.m.s.d. = 1.2 Å). (g) Non-Watson–Crick pairs in the 
experimental structure of PZ16b (PDB id: 6y0t). (h) Best-predicted non-Watson–
Crick pairs for PZ16b (RNAComposerAS2_1, r.m.s.d. = 1.3 Å).
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Extended Data Fig. 2 | Detailed analysis of PZ23, the Mango Aptamer.  
(a) Diagrams of the interaction contacts for the experimental structure  
(PDB ID: 6e8u) and (b) for the best-predicted structure (DAS_7, r.m.s.d. = 8.1 Å). 
The position of the ligand, thiazole orange linked to Biotin (H2D), is shown in a 
red rectangle. See Supplementary Fig. 5(i) for more detailed descriptions of the 

unusual quadruplex structure of PZ23. (c) Global overlay of the target (in green) 
with the best-predicted model (in blue: Das_7)(global r.m.s.d. without the ligand: 
8.1 Å; INFnwc: 0.45). The region within the dashed box is highlighted in (d) and 
(e) where are shown respectively the structural environment around the bound 
ligand (in red) within the target (in green) and the best-predicted model (in blue).
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Extended Data Fig. 3 | Detailed analysis of predictive models for Viral 
elements. (a–f) The results of the 12–21 base pair in the crystal structure 
(PDB id:7mlx) and the top 5 predicted structures of PZ31 (b) Dokholyan_2, 
r.m.s.d. = 4.80 Å, (c) Dokholyan_1, r.m.s.d. = 4.96 Å, (d) Chen_7, r.m.s.d. = 5.17 Å, 

(e) Chen_5, r.m.s.d. = 5.42 Å, (f) Bujnicki_2, r.m.s.d. = 5.45 Å). The H-bonds are 
color-coded as a function of length: < 4.0 Å in red and beyond 5 Å in green. Two 
residues are missing at the 5′-end of the modeled sequences.
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Extended Data Fig. 4 | Detailed analysis of predictive models for Ribozymes. 
(a) Experimental structure of PZ22dimer (PDB ID: 6jq5). (b) Experimental 
dimer region. (c) Simplified secondary structure diagram focusing on the 
intermolecular helices formed in the dimer. (d,e) Predicted PZ22dimer structure 

(Adamiak_5, r.m.s.d. = 20.2 Å), (d) Tertiary structure, (e) Dimer region, and (f,g) 
Comparison of key regions between the experimental and predicted structures 
(Das_5, r.m.s.d. = 10.7 Å) of PZ22 (5′-U7GAGA11-3′ + U39).
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Extended Data Fig. 5 | Detailed analysis of PZ36, the dimer region of the 
Chimpanzee CPEB3 HDV-like ribozyme. The figures illustrate differences in 
the dimer region between the crystal structure (PDB ID: 7qr3) and the predicted 
structures (Szachniuk_4, r.m.s.d. = 21.2 Å). (a) the crystal structure of the dimer. 

(b) the helical region key to the formation of the dimer. (c,d) the same for the 
best-predicted model (Szachniuk_4, r.m.s.d. = 21.2 Å) where the two strands that 
should pair are far away from each other.
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Extended Data Fig. 6 | Comparisons of core catalytic regions in PZ22 and PZ34 
from the human group predictions in the Ribozyme category. (a) The structure 
shows key distances between selected atoms in the core catalytic regions of the 
experimental structure of PZ22. These selected atoms include G63-N2, C64-N4, 
G31-O6, A75-OP (minimum of A75-OP2 or A75-OP1), A74-O2′, G31-N7, G30-C8, 
A74-N3, and G30-N7. (b) The structure shows distances between selected atoms 
in the core ligand-binding region of the experimental structure of PZ34. The 
selected atoms include U45-C1′, A63-C1′, and C10-C1′. (c) The dot plot shows the 
correlation between the sum of distance differences (predicted vs. crystal model) 

of the selected atoms (as shown in panel a) in PZ22 and the r.m.s.d. of selected 
atoms of the selected nucleotides (G63, C64, G31, A75, A74, G30) (P = 0.00). 
 (d) The dot plot shows the correlation between the sum of distance differences 
of C1′ atoms (predicted vs. crystal model) in PZ34 and the r.m.s.d. of C1′ atoms 
of the selected nucleotides (U45, A63, C10) (P = 0.00). (e) The dot plot shows 
the correlation between the sum of distance differences of the selected atoms 
(predicted vs. crystal model) in PZ22 and the global r.m.s.d. (P = 0.19). (f) The dot 
plot shows the correlation between the sum of distance differences of C1′ atoms 
(predicted vs. crystal model) in PZ34 and the global r.m.s.d. (P = 0.02).
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Extended Data Fig. 7 | Comparisons of the Core Catalytic Regions between 
the experimental and predicted structures for PZ22 and PZ34 (Human Group 
Predictions). (a–c) For PZ22, the panels illustrate selected key interatomic 
distances (G63-N2, C64-N4, G31-O6, A75-OP (the minimum value of A75-OP2 or 
A75-OP1), A74-O2′, G31-N7, G30-C8, A74-N3, and G30-N7) within the core catalytic 
regions predicted by Chen (model: Chen_3, r.m.s.d.: 31.8 Å), Das (model: Das_7, 
r.m.s.d.: 21.2 Å), and Szachniuk (model: Adamiak_2; r.m.s.d.:19.7 Å) groups. The 
environment in the experimental structure is shown in Extended Data Fig. 6a.  
Notice that in the experimental structure (Extended Data Fig. 6a), A74 is close 
to G30 and A75 to G63. In none of the models, this pattern is respected; they all 

show A74 and A75 stacked or in close proximity. (d) For PZ34, the panel shows 
the global overlay between the target (in green) and Chen model (in blue, 
model: Chen_3) (global r.m.s.d.: 9.4 Å). (e) The panel shows selected interatomic 
distances (U45-C1′, A63-C1′, and C10-C1′) in the core catalytic region of Chen 
model (model: Chen_3). (f) The panel displays the global overlay between the 
target (in green) and Das model (in red, model: Das_2) (global r.m.s.d.: 9.0 Å).  
(g) The panel highlights the interatomic distances in the core catalytic region 
of Das model (model: Das_2), focusing on selected atoms U45-C1′, A63-C1′, and 
C10-C1′. The environment in the experimental structure is shown in Extended 
Data Fig. 6b.
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Extended Data Fig. 8 | Detailed analysis of the ligand-binding sites in Puzzle 
25 and Puzzle 29 in the Riboswitch category. (a) Diagram showing the contacts 
in the crystal structure (PDB ID:6p2h) corresponding to PZ25. The ligand, 
2′-deoxyguanosine (dG), is shown in a red rectangle. (b) The recognition mode 
of the ligand (in red and blue) in the crystal structure. (c) The recognition mode 
of the ligand in the best-predicted model (Chen_5, r.m.s.d. = 2.55 Å). (d) The 
recognition mode of the ligand in the next best-predicted model (Adamiak_1, 
r.m.s.d. = 2.68 Å). (e) The recognition mode of the ligand in the following 
predicted model (Adamiak_3, r.m.s.d. = 2.69 Å). (f) The recognition mode of 
the ligand in the following predicted model (Chen_8, r.m.s.d. = 2.71 Å). (g) The 
recognition mode of the ligand in the following predicted model (Chen_3, 
r.m.s.d. = 2.84 Å). (h) Diagram showing the contacts in the crystal structure  

(PDB ID:6tb7) corresponding to PZ29. The ligand, ADP, is shown in a red 
rectangle. The r.m.s.d. between 6tb7 (ligand AMP) and 6tf1 (ligand ADP) is 
0.2 Å; thus either one can be used for comparisons. The numbers inside the 
parentheses are the numbers of the bases in the predicted structure. (i) The 
recognition mode of the ligand (in red and blue) in the crystal structure. (j) The 
recognition mode of the ligand in the best-predicted model (RNAComposer_1, 
r.m.s.d. = 4.30 Å). (k) The recognition mode of the ligand in the next best-
predicted model (Chen_9, r.m.s.d. = 4.68 Å). (l) The recognition mode of 
the ligand in the next best-predicted model (Szachniuk_3, r.m.s.d. = 4.79 Å). 
(m) The recognition mode of the ligand in the following predicted model 
(RNAComposer_5, r.m.s.d. = 4.81 Å). (n) The recognition mode of the ligand in the 
following predicted model (RNAComposer_3, r.m.s.d. = 4.83 Å).

http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb6p2h/pdb
https://doi.org/10.2210/pdb6tb7/pdb


Nature Methods

Analysis https://doi.org/10.1038/s41592-024-02543-9

Extended Data Fig. 9 | Comparisons between the rankings of the human and 
web-based predictions in RNA Puzzles Round IV4 and Round V (this paper). 
Rankings from Puzzles Round IV4 are shown for human predictions in (a) and 
web-based predictions in (b). Rankings from the cumulated Puzzles Round IV and 
V, are shown for human predictions in (c) and web-based predictions in (d). The 
color scheme ranges from dark blue (5, best r.m.s.d.) to light gray (0, no models 
in the top five or no submissions). When a single group has submitted models for 
a Puzzle, the results are not counted. The right columns show the total number 
of valid RNA puzzles each group submitted. The final score on the left is the ratio 
of the sum to the total number of Puzzles (Round IV: 6, Round IV and V: 35). For 

the Das group, the models obtained by different methods are grouped together 
(see Supplementary Table 5). The web-based predictions include RNAComposer 
from the Szachniuk group (Polish Academy of Sciences), SimRNA from the 
Bujnicki group (International Institute of Molecular and Cell Biology in Warsaw), 
iFoldRNA from the Dokholyan group (Penn State College of Medicine, Hershey), 
RW3D from the Das group (Stanford University), YangServer from the Yang 
group (Shandong University), 3dRNA from the Xiao group (Huazhong University 
of Science and Technology), and LeeAS from the Lee group (Korea Institute for 
Advanced Study, Major from Francois Major (Université de Montréal)).
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