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Simple Summary: Although rare, hemophagocytic lymphohistiocytosis (HLH), a syndrome of
severe, dysregulated inflammation, is associated with poor survival when it occurs in conjunction
with malignancy. This review discusses how published methods for diagnosing HLH can be applied
in the setting of adult patients presenting with malignancy-associated HLH (mHLH) and offers
evidence-based recommendations for the management of this clinically challenging scenario.

Abstract: Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of severe, dysregulated in-
flammation driven by the inability of T cells to clear an antigenic target. When associated with
malignancy (mHLH), the HLH syndrome is typically associated with extremely poor survival. Here,
we review the diagnosis of secondary HLH (sHLH) syndromes in adults, with emphasis on the
appropriate workup and treatment of mHLH. At present, the management of HLH in adults, in-
cluding most forms of mHLH, is based on the use of corticosteroids and etoposide following the
HLH-94 regimen. In some cases, this therapeutic approach may be cohesively incorporated into
malignancy-directed therapy, while in other cases, the decision about whether to treat HLH prior to
initiating other therapies may be more complicated. Recent studies exploring the efficacy of other
agents in HLH, in particular ruxolitinib, offer hope for better outcomes in the management of mHLH.
Considerations for the management of lymphoma-associated mHLH, as well as other forms of mHLH
and immunotherapy treatment-related HLH, are discussed.

Keywords: hemophagocytic lymphohistiocytosis; hemophagocytosis; HLH; mHLH; LAHS;
ruxolitinib

1. Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome of ex-
cessive, dysregulated inflammation in response to a provoking trigger [1,2]. Defective
termination of this immune response, driven by dysregulated positive feedback loops
between CD8+ T lymphocytes and macrophages, results in hypercytokinemia that leads to
cytolysis, tissue infiltration of immune cells, and end-organ injury. Frequently, HLH can
cause death due to hemodynamic collapse and end-organ dysfunction.

The current understanding of HLH pathogenesis is derived from murine models
and primary patient samples. In these studies, CD8+ T cells have been shown to be
activated in response to an immunologic trigger, leading to the production of type 2 inter-
feron (IFN), which primes macrophages to secrete additional proinflammatory cytokines
(Figure 1) [3–7]. Deficiencies in this cytolytic pathway result in an inability to proceed with
normal activation-induced cell death, generating uncontrolled accumulation and activation
of CD8+ T cells, natural killer (NK) cells, macrophages, and proinflammatory cytokines [8].
When HLH occurs as the result of congenital deficiencies of key cytolytic pathway proteins,
this is called primary HLH (pHLH), which mainly occurs in children [9,10]. In adults, HLH
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is usually driven by a highly immunogenic trigger (i.e., secondary HLH, sHLH) rather
than primary cytotoxicity defects [11], though in some cases, a relevant, often hypomorphic
genetic mutation affecting cell-mediated immunity may be identified [12–15].
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Figure 1. Pathophysiology of HLH [16]. Primary HLH is driven by genetic defects in T or NK cell
cytotoxicity, while sHLH is driven by immune hyperactivation against an antigenic trigger. Clinical
manifestations arise from a common pathway, resulting in persistent accumulation and activation
of CD8+ T cells, NK cells, macrophages, and proinflammatory cytokines, resulting in end-organ
damage. Adapted with modifications from Paolino et al. [16], with use, distribution, and reproduction
permitted under the terms of the Creative Commons Attribution License (CC BY).

Triggers for sHLH vary greatly by geographic location. Common triggers are diseases
associated with immune activation, such as autoimmune disorders, infections, and ma-
lignancies (Table 1). In North America and Europe, around 50% of adult HLH is due to
an underlying malignancy, with the remaining 50% associated with rheumatologic dis-
eases (also known as macrophage activation syndrome, or MAS, in this setting), infections
(especially chronic viral infections, such as Epstein–Barr virus (EBV), cytomegalovirus
(CMV), varicella zoster virus (VZV), herpes simplex virus (HSV), or human immunodefi-
ciency virus (HIV), and under less frequent circumstances, infections with other non-viral
pathogens), or treatment, usually from cell therapy (hematopoietic cell transplantation
(HCT) or chimeric antigen receptor (CAR) T cells) [17–20]. A minority of adult HLH cases
are late presentations of primary HLH or are idiopathic, in which no discernable cause
is found.

Based on retrospective data, outcomes in adults with sHLH differ widely between
those in whom the syndrome is non-malignant (nmHLH) or malignancy-associated (mHLH).
Long-term survival for adult nmHLH is comparable to pediatric HLH, whereas mHLH out-
comes are particularly poor, with <20% survival at one year (median survival ~2 months)
based on retrospective studies from the Mayo Clinic, MD Anderson Cancer Center, and the
Harvard-affiliated hospitals [21–23]. mHLH therefore represents an area of much-needed
investigation since many studies (for adult and pediatric HLH) exclude mHLH. Current
management practices advise treating acute hypercytokinemia, followed by cancer-directed
therapy [24–27]. It is unknown, however, whether treatment of mHLH confers a survival
benefit over treatment of the underlying malignancy. It is also unknown whether the
diagnostic criteria for mHLH should be the same as with nmHLH. This review provides
an updated summary of the existing literature on the diagnosis and management of adult
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malignancy-associated HLH, especially in the setting of emerging research on effective
treatment strategies in the age of engineered cellular and immunotherapies.

Table 1. Representative Etiologies of Adult sHLH [17].

Category Specific Causes

Infection

Viral Human Herpesviridae (e.g., EBV, HSV, CMV, VZV), HIV, viral hepatitis,
influenza, parvovirus B19, dengue

Bacterial Mycobacterium tuberculosis, Staphylococcus aureus, Rickettsia, Mycoplasma
Parasitic Leishmania, Plasmodium, Toxoplasma
Fungal Histoplasma, Candida, Cryptococcus, Aspergillus

Malignancy

Hematologic T/NK-cell lymphomas, aggressive B-cell lymphomas, leukemia, Hodgkin
lymphoma, Castleman disease

Solid Metastatic carcinomas, sarcomas

Autoimmune Systemic lupus erythematosus, adult-onset Still’s disease, rheumatoid
arthritis, vasculitis, inflammatory bowel disease

Treatment-Related
Transplantation Allogeneic hematopoietic cell transplantation, solid organ transplantation
T Cell Therapy CAR T cell therapy, bispecific T cell engagers

Other Therapy Immune checkpoint inhibitors, chemotherapy-induced, drug-induced
hypersensitivity, surgery, vaccination, hemodialysis

Other Pregnancy, trauma, idiopathic, unknown, multifactorial

2. Diagnosis of Malignancy-Associated HLH
2.1. HLH-2004 Diagnostic Guidelines

Since HLH represents a spectrum of hyperinflammatory disorders with heterogeneous
inciting conditions, often with both genetic and environmental components, diagnosis
can be challenging. Traditionally, diagnosis is based on the HLH-2004 revised diagnostic
guidelines from the Histiocyte Society, which do not distinguish between nmHLH and
mHLH and rely on a combination of clinical, laboratory, and pathological data [28]. In
patients without an HLH-predisposing genetic variant, five of eight diagnostic criteria are
required (Table 2), some of which denote macrophage activation such as ferritin elevation
and hemophagocytosis, and some of which denote T cell proliferation such as soluble IL2
receptor (sIL2R) [29,30].

Table 2. HLH-2004 Diagnostic Guidelines for Hemophagocytic Lymphohistiocytosis [28].

Either:

- A molecular diagnosis consistent with HLH, or

- Five of the following eight criteria:

1. Fever *

2. Splenomegaly

3. Cytopenias affecting at least two lineages: neutrophils < 1.0 × 109/L;
hemoglobin < 10 g/dL *; platelets < 100 × 109/L

4. Fasting triglycerides ≥ 3.0 mmol/L (265 mg/dL) or fibrinogen ≤ 1.5 g/L (150 mg/dL)

5. Hemophagocytosis in bone marrow, spleen, or lymph nodes *

6. Low or absent NK cell activity
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Table 2. Cont.

Either:

7. Ferritin ≥ 500 ng/mL (reported by some labs in µg/L)

8. Soluble IL2 receptor (sIL2R, aka sCD25) ≥ 2400 U/mL *

Supporting evidence: liver biopsy showing chronic/persistent hepatitis; spinal fluid pleocytosis (mononuclear
cells) and/or elevated spinal fluid protein; cerebromeningeal symptoms; liver enzyme abnormalities; lym-
phadenopathy; hypoproteinemia; hyponatremia; high VLDL; low HDL; skin rash; edema. * Subsequent proposed
modifications/specifications to the diagnostic guidelines include fever ≥ 38.5 ◦C; hemoglobin < 9 g/dL except
in infants; hemophagocytosis in the marrow, spleen, lymph nodes, or liver; and elevated sIL2R > 2 standard
deviations from the laboratory age-adjusted mean [31].

These diagnostic guidelines were based on data from pediatric HLH, and differences
between pediatric and adult HLH raise questions about their utility in adults. For instance,
malignancy accounts for nearly 50% of adult triggers, as opposed to 8% in children [32,33].
There is a higher prevalence of hepatomegaly (95%) and neurological symptoms (33%) in
pediatric cases compared with adults (18–67% and 9–25%, respectively) [34]. A ferritin
of >2000 achieves a sensitivity of 70% and specificity of 68% in children [35], which rises
to 90% sensitivity with 96% specificity if the ferritin is >10,000 ng/mL [36]. In adults, on
the other hand, higher ferritin cutoffs have poorer test characteristics (at 3000 ng/mL,
~67% sensitivity/specificity [37]; at 10,000 ng/mL, 43% sensitivity [21]; at 50,000 ng/mL,
<20% sensitivity/specificity [38]). This is due to a more heterogeneous range of conditions
associated with hyperferritinemia in older individuals.

2.2. Alternatives to HLH-2004 Diagnostic Guidelines

Several attempts have been made to improve the HLH-2004 diagnostic guidelines.
In addition to modifying ferritin cutoffs (or mandating hyperferritinemia as a required
criterion due to its high negative predictive value), other suggestions have been made to
redefine HLH around clinicopathologic features. In this view, the diagnosis of HLH is made
based on parameters fulfilling categories representing predisposing immunodeficiency,
significant immune activation, and/or abnormal immunopathology—an approach that
may better reflect the current understanding of HLH pathophysiology [31]. A modified
HLH-2004 strategy has been proposed to assist with earlier diagnosis, which requires three
of four clinical findings (fever, splenomegaly, cytopenias, and hepatitis), plus at least one of
four immunologic test abnormalities (hyperferritinemia, elevated serum soluble IL-2Rα
(sIL2R), absent/markedly decreased natural killer (NK) cell function, or the presence of
hemophagocytosis) [39]. In a 2012 survey of HLH experts, an iterative questionnaire was
utilized to determine the clinical features thought most important in adult HLH, which
were the presence of a predisposing disease, fever, organomegaly, cytopenias, elevated
ferritin, elevated LDH, and hemophagocytosis [40]. A scoring system (“HScore”) was
developed to define and predict the likelihood of adult HLH based on HLH-2004 weighted
parameters, for which the optimal cutoff HScore value was 169 (sensitivity 93%, specificity
86%) [41]; notably, the study cohort included 137 cancer patients out of a total of 312 adults.
A subsequent study compared the accuracy of HScore against HLH-2004 and found that
although the HScore achieved a sensitivity and specificity of 90% and 79% for adults at
initial presentation, performance dropped to 73% sensitivity and specificity (similar to
HLH-2004) when clinical status worsened [42].

The additional diagnostic challenges posed by mHLH are the many alternative ex-
planations for abnormal laboratory parameters. Most mHLH is driven by hematologic
malignancies, particularly lymphoma [43], where marrow and/or spleen neoplastic infil-
tration can explain cytopenias and splenomegaly; fever often occurs from concomitant
infections in immunocompromised hosts or from tumor fever; hypofibrinogenemia can be
secondary to malignancy-related disseminated intravascular coagulation (DIC); and hyper-
ferritinemia can result from tumor-related inflammation or transfusional iron overload. As
such, there has been no accepted definition for mHLH, and consensus recommendations
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have advocated for using HLH-2004 as a diagnostic tool in conjunction with physician
judgement as to whether the clinical phenotype observed is out of proportion to the ma-
lignancy alone [25,27]. A high sIL2R/ferritin ratio has been proposed as a marker for
lymphoma-associated HLH (LAHS). In a retrospective analysis of 21 patients comparing
nmHLH and LAHS, the mean sIL2R/ferritin ratio was 0.66 amongst nmHLH patients
and 8.56 in LAHS, hypothesized to reflect excessive T cell activation out of proportion
to macrophage stimulation [44]. LAHS also have comparatively higher mean levels of
microRNA-133 [45], IFN-inducible protein 10 (IP-10)/CXCL10, and monokine-induced
by IFNγ (MIG)/CXCL9 [46], which have been proposed but not yet validated as diagnos-
tic biomarkers.

In another retrospective analysis performed using the MD Anderson Cancer Center
database, only 21% of patients with suspected HLH met HLH-2004 diagnostic criteria [22].
As such, the authors suggested expanding the diagnostic criteria to 18 variables, for which
any five would be diagnostic. In this schema, 35 of 61 patients with pathologic hemophago-
cytosis or lymphohistiocytosis were thought to have true mHLH, with no differences in
outcomes compared to those who met the standard HLH-2004 criteria, but with inferior
outcomes compared to the remaining 26 patients with pathologic hemophagocytosis or
lymphohistiocytosis but who did not meet the extended criteria.

Finally, a recent multicenter retrospective study using a cohort of 225 patients with
hematologic malignancies for which sIL2R was available identified an optimal cutoff of
sIL2R > 3601 U/mL and ferritin > 920 ng/mL, achieving a sensitivity of 88% and specificity
of 76% for identifying the presence of HLH [47]. Comparatively, the cutoffs used in HLH-
2004 (sIL2R > 2400 U/mL and ferritin > 500 ng/mL) demonstrate a sensitivity of 92% and
a specificity of 72%. The authors suggest that the optimized HLH inflammatory (OHI)
index, using sIL2R > 3900 U/mL and ferritin > 1000 ng/mL for simplicity, provides both
diagnostic and prognostic value in hematologic malignancies with HLH.

These diagnostic modifications were proposed to enhance the expediency, simplicity,
and generalizability to community practices. However, whether they are intended to raise
suspicion index, increase accuracy, or reflect biological pathogenesis, any formal definition
of adult mHLH will ultimately require prospective validation and international consensus.

3. Initial Workup of Adult HLH

Key to the diagnosis and management of HLH in adults is maintaining a high index
of suspicion among patients with an unexpected hyperinflammatory clinical presentation—
particularly patients with fever/sepsis, hyperferritinemia, and bi/pancytopenia [34]. Given
the nontrivial turnaround time for several laboratory tests specified in HLH-2004, early
suspicion and diagnosis are critical to allow for therapeutic intervention prior to the organ
failure and death that commonly occur rapidly in adults with mHLH. Based on a review of
the HLH management literature combined with our experience, we recommend a stepwise
evaluation, starting with commonly available assessments that provide results quickly,
followed by specialty testing (Figure 2).

As expected, there is an increased likelihood of an underlying malignancy with ad-
vanced age. A single center in Sweden estimated 1% of all adult hematologic malignancy
patients developed HLH [48]. In Japan, a large survey of nearly 800 HLH patients demon-
strated an underlying lymphoma in 68% of patients over age 60, compared to 38% between
the ages of 30–59 and 10% between ages 15–29 [18]. Therefore, the possibility of underlying
malignancy should be thoroughly evaluated and even expected, particularly for older
adults presenting with HLH. Because the window between safely pursuing a tissue biopsy
and clinical deterioration can be very short, earlier imaging and biopsy may be warranted.
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Figure 2. Schematic for Recommended Evaluation of Adult HLH. 1 Though uncommon in adults,
central nervous system (CNS) manifestations of HLH are possible and should be evaluated with
cerebrospinal fluid (CSF) analysis, as well as magnetic resonance imaging (MRI). 2 Given likelihood
of malignancy in adults with HLH and its poor prognosis, mHLH must be evaluated promptly. If
mHLH is diagnosed, complete cancer workup remains a priority. Biopsy confirmation of malignancy
may not be possible in patients critically ill due to HLH; in these cases, we recommend proceeding
with HLH-directed therapy, followed by pathologic confirmation when clinically stable. 3 Consider
workup of other endemic causes/mimics of HLH (e.g., visceral leishmaniasis, Rickettsia), where
appropriate, based on exposures. 4 Genetic testing is recommended for suspected primary HLH
(young patients or family history) or patients with HLH recurrence, as HLH variants are increasingly
recognized with late HLH phenotype emergence [13]. Note: treatment-associated HLH (such as with
CAR-T cells or HCT) is considered a separate diagnostic entity and does not require an extensive
workup as above due to the temporal proximity of HLH clinical manifestations to the cell therapy
administration [49], for which the underlying cause is more obvious.

4. Treatment of mHLH
4.1. HLH-94 Protocol

Since HLH is a common immunological pathway induced by a diverse spectrum of
proinflammatory diseases, adequate control of HLH depends on the reversal of the under-
lying disease. The identification of this underlying disease is paramount to appropriate
diagnostic evaluation and treatment. The challenge in mHLH, however, is several-fold.
Often, the specific neoplasm causing HLH cannot be determined during acute cytokine
storm, and delays in tissue diagnosis result in delays in adequate cancer-directed treatment.
Additionally, HLH in this setting is often triggered by a combination of malignancy, infec-
tion, and/or predisposing immune dysregulation, requiring multifactorial and stepwise
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approaches to management. Standard treatment for HLH may also limit options for con-
current chemotherapy if high-dose steroids and etoposide cause severe myelosuppression,
hepatic injury, infections, or impaired performance status. Finally, treatment of malignancy
itself can cause HLH, as in the case of immunotherapy or cellular therapy.

There have not yet been any large prospective or randomized clinical trials published
for adults with HLH. Current treatment strategies for adult HLH are based on pediatric
trials. Primary HLH without treatment is uniformly fatal [50], and prior to the advent
of etoposide-based therapy, outcomes were dismal, with 5-year overall survival (OS) of
~20% [51]. An effort led by the Histiocyte Society substantially improved mortality with
the HLH-94 protocol by focusing on decreasing inflammation with a corticosteroid- and
etoposide-based regimen, as well as reversing underlying triggers [31,52–55]. Over the past
30 years, improvements in this regimen have been attempted but have been incremental or
inconclusive. The HLH-2004 protocol, which integrated cyclosporine into HLH-94, did not
improve 5-year survival, which remained ~50–60% [28,54,56,57]. Allogeneic hematopoietic
cell transplantation has been used to potentially cure primary or relapsed secondary HLH,
but 20–30% of patients die before transplant, primarily in the first 8 weeks of therapy,
from disease progression, infection, or bleeding—complications which, in some cases, may
represent the consequences of treatment.

Given the relative effectiveness of HLH treatment in children, the conventional ap-
proach to treating sHLH (including, at least initially, mHLH) has been to suppress immune
overactivation with HLH-94 therapy, with concurrent or subsequent treatment of the
immune trigger, including cancer-directed therapy. HLH-94 consists of 8 weeks of dexam-
ethasone, starting at 10 mg/m2/day, tapered by 50% every two weeks, with etoposide at
150 mg/m2 twice weekly for 2 weeks, then weekly for 6 weeks (Figure 3) [53]. If there is
CNS involvement, intrathecal methotrexate at 12 mg/dose and intrathecal hydrocortisone
at 15 mg/dose are given weekly until at least 1 week after resolution of CNS involvement,
based on clinical and CSF indices.
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Figure 3. Treatment schematic of the HLH-94 protocol. * After an 8-week induction, continuation
therapy is recommended for all pHLH and persistent or reactivated non-pHLH, which consists of
alternating etoposide 150 mg/m2 every other week with dexamethasone 10 mg/m2/d for 3 days
until HCT. Daily oral cyclosporine A was given in the original HLH-94 protocol during continua-
tion, targeting trough levels of 200 µg/L, though this is often omitted in contemporary regimens.
Reproduced with modifications from Henter et al. [53].

4.2. Strategies to Treat mHLH

There is an ongoing debate over the role of HLH-94 in mHLH, primarily driven by the
lack of prospective trials to guide management and in part due to the apprehension that
dexamethasone and etoposide may interfere with further treatment of the underlying malig-
nancy. Published treatment strategies suggest treating the underlying malignancy as soon
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as possible, with consideration of early steroid initiation to abrogate HLH-induced hypercy-
tokinemia, followed by cancer-directed therapy (typically, cytotoxic chemotherapy) [25,26].
Some practitioners recommend against etoposide in this setting due to concerns for addi-
tive toxicities (particularly myelosuppression) and instead use steroids and well-tolerated
adjunctive treatments only; some incorporate etoposide in chemotherapy regimens where
possible (e.g., R-EPOCH for aggressive B cell lymphomas [58], SMILE for NK/T cell lym-
phomas [59]); others pursue a two-step approach with an HLH-94-based regimen, followed
by chemotherapy at the time of organ recovery, which could be several weeks later. These
decisions are made on a case-by-case basis, weighing whether the patient requires immedi-
ate inflammation-directed therapy or is sufficiently stable to receive chemotherapy directly.
Importantly, adjunctive therapies during induction should also be considered, such as rit-
uximab for concomitant active EBV infection [60] or intravenous immunoglobulin to treat
hypogammaglobulinemia. Antimicrobial prophylaxis (for VZV/HSV, fungal, Pneumocystis)
should be strongly considered.

If additional anti-cytokine treatment is required, but etoposide is not preferred, anti-
IL1 and -IL6 agents have been utilized. The recombinant IL1 receptor antagonist (IL1Ra),
anakinra, is approved by the US Food and Drug Administration (FDA) in autoimmune
conditions such as rheumatoid arthritis and cryopyrin-associated periodic syndromes
and by the European Medicines Agency (EMA) for systemic juvenile arthritis and adult-
onset Still’s disease. Given the experience in rheumatologic disorders, anakinra has been
used effectively in MAS [61,62], though its efficacy in MAS is markedly higher than in
mHLH [63–65]. Naymagon, for instance, noted in a retrospective study of outcomes asso-
ciated with anakinra treatment that those with rheumatologic condition-associated MAS
experienced 75% OS, versus only 17% survival in patients with other underlying causes
of sHLH [63]. Publications describing the use of anakinra for mHLH have been varied,
ranging from frontline monotherapy use in Hodgkin lymphoma to relapsed/refractory
HLH in myelodysplastic syndrome (MDS) and T cell lymphoma (TCL) [66–68]. The use of
anti-IL6 therapy for adult HLH (with tocilizumab; no published data using siltuximab) has
been extrapolated from its use in cytokine release syndrome (CRS) and COVID-19. Only
a few publications have reported the efficacy of tocilizumab treatment in mHLH, with a
recent retrospective review suggesting that the use of tocilizumab could increase infectious
complications compared to conventional therapy [69,70].

4.3. Role of Allogeneic Transplantation

In adults with sHLH, idiopathic HLH, or mHLH responding to effective cancer therapy,
patients who can be weaned off dexamethasone and etoposide without recurrence, have
recovered normal immune function, and have reversed or controlled their underlying
HLH trigger, can typically be monitored with serial assessments for markers of HLH
activity, including ferritin, sIL2R, and chemistries [31]. Patients who do not meet these
criteria, who developed CNS HLH, or who have predisposing gene mutations should
undergo human leukocyte antigen (HLA) typing for consideration of allogeneic HCT.
This includes those with mHLH with independent indications for allogeneic HCT based
on the underlying malignancy, as well as those with mHLH not resolving with cancer
therapy. If HLH continues to be active, dexamethasone/etoposide and/or adjunctive
therapies may be continued as bridging therapy to the time of transplant. Myeloablative
(MAC) and reduced-intensity conditioning (RIC) regimens have been directly compared
in pediatric HLH; 14 patients at Cincinnati Children’s achieved a 3-year survival of 43%
with MAC, and 26 patients achieved a 92% survival with RIC [71]. More recent studies
in adult HLH have shown modest successes, achieving an overall survival of ~50% using
the RIC regimen fludarabine and melphalan 100 mg/m2 [72] and 75% using alemtuzumab
“pre-conditioning” prior to RIC [73]. Based on the limited available data, we favor the use
of RIC approaches in adult patients with sHLH/mHLH proceeding to allogeneic HCT,
and we include alemtuzumab if HLH is active proximal to the initiation of transplant
conditioning following the approach of Gooptu et al. [73].
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4.4. Biologic Therapy

For relapsed/refractory mHLH not responding to cancer therapy, consideration can
be given to the use of agents shown effective in salvage management of pHLH/sHLH,
and selection may be directed by what may be most compatible or synergistic with the
selected cancer-directed therapy [74]. The anti-CD52 antibody alemtuzumab yielded a 64%
response rate in the salvage setting, with 77% of pediatric patients proceeding to HCT,
though notably with a high incidence of infections, a known complication from anti-CD52
therapy [75]. In China, adult refractory HLH has been treated with alemtuzumab along
with the DEP regimen, consisting of liposomal doxorubicin, etoposide, and methylpred-
nisolone, achieving complete responses in 27% and partial responses in 49% of patients [76].
Encouraged by these findings, a phase 2 clinical trial (NCT02385110) of adults with newly
diagnosed or relapsed/refractory HLH (including mHLH) is currently underway, which
uses alemtuzumab or tocilizumab combined with etoposide and dexamethasone.

Given the critical role of IFNγ in the pathogenesis of HLH, a prospective trial evaluated
the IFNγ inhibitor emapalumab in 27 relapsed/refractory and 7 newly diagnosed pediatric
patients with primary HLH and found an overall response rate of 65%, with 70% proceeding
to HCT [77]. This led to FDA approval as salvage therapy for primary HLH without age
restrictions, though notably, no adults were enrolled in this study, and the median age
was 1 year old, limiting the generalizability of results to adult patients. A phase 2/3 study
using emapalumab in adults (NCT03985423) was stopped due to sponsor withdrawal, and
all 7 enrolled patients did not complete the study. Recently, a case series from Memorial
Sloan Kettering was presented using emapalumab in 10 patients with heavily pretreated
relapsed/refractory lymphoma and HLH; only 5 patients survived for more than 3 days [78].
All patients died within 1 month, suggesting IFNγ blockade is not an effective strategy in
adults with refractory HLH. We do not currently employ emapalumab in adults with sHLH
(including mHLH), though we have found it to be beneficial in adults with late-onset pHLH.

4.5. Ruxolitinib

Arguably the most promising agent currently under investigation in HLH is the Janus
kinase (JAK) inhibitor ruxolitinib, which is a potent and selective inhibitor of JAK1 and
JAK2 and a more modest antagonist of TYK2 (tyrosine kinase 2) and JAK3. Because many
cytokines elevated in HLH signal via the JAK-STAT pathway [3,4,79–81], there are sev-
eral preclinical and early clinical studies that indicate JAK-STAT inhibition may decrease
immune hyperactivation and improve patient outcomes, including evidence that ruxoli-
tinib may restore the sensitivity of CD8+ T cells to steroid-induced apoptosis [82]. Many
case reports and pilot studies have now been published regarding the treatment of newly
diagnosed or relapsed/refractory adult HLH [83], including those with mHLH, using rux-
olitinib (Table 3). In these published reports with available data, clinical manifestations tend
to resolve rapidly, with many patients showing improvements in platelet count, ferritin,
soluble IL-2 receptor, AST, ALT, and fibrinogen levels within 7–14 days. These data are chal-
lenging to interpret, however, in the setting of methodological and disease heterogeneity,
differing timepoints for which ORR and OS are assessed, and publication bias.

In several studies, the incorporation of ruxolitinib in the frontline setting was paired
with dose reductions of etoposide and/or dexamethasone. Stalder et al. tested the use
of ruxolitinib as an HLH-94 sparing strategy, allowing patients to receive between 50
and 150 mg/m2 etoposide initially and 10 mg/day of dexamethasone [86]. Wang et al.
used etoposide at 100 mg/m2 once weekly with liposomal doxorubicin [91]. Indeed, this
etoposide-sparing approach has been studied in the pediatric setting, in which newly diag-
nosed patients receive ruxolitinib with or without methylprednisolone and only receive an
HLH-94-based regimen if there was an unfavorable response within a four-week induction
period [92]. A similar trial in the United States for frontline and relapsed/refractory pedi-
atric HLH is currently enrolling (NCT04551131). These approaches suggest that cytokine-
directed therapy using minimally myelosuppressive medications such as ruxolitinib could
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be used in mHLH to temper the HLH cytokine storm, thus relieving the need for intensive
etoposide-based regimens and bridge patients to cancer-directed therapy.

Table 3. Publications on Ruxolitinib for the Treatment of Adults with mHLH.

Reference N Mean Age
(Range) HLH Type New or R/R

HLH
Target Rux
Dose (BID)

Rux
Duration HLH Therapy Response OS * (f/u if

Known)

Boonstra
2021 [84] 1 70

R/R
Hodgkin;

EBV viremia
New 15 mg 1.5 m Rux PR 100%

Hansen 2021
[85] 1 33 SPTL R/R 15 mg 11 m

Dex/Etop −> Cy,
Doxo, Vin, Pred

−>Rux, Etop, IVIG
+Alem

CR 100% (1 y)

Stalder 2023
[86] 6 52 y

(34–72 y) AML New 10 mg 31–122 d Dex, Etop, Rux,
induction chemo

CR (83%),
PR (17%) 33% (120 d)

Trantham
2020 [87] 2 66 y, 24 y

Suspected
Hodgkin
DLBCL

R/R 10 mg
15 mg

~6 m
~25 d

Dex/Etop −>
Benda/Brentux −>

Rux −>
Alem/Anakinra
R-EPOCH x3 −>
R-CHOP x3 −>
Rux, HD MTX,

AraC, IT −>
R-GCD −> R-ICE
−> Alem/Dex

CR (100%) 0% (1 y,
14.5 m)

J Wang 2021
[88] 3 27 y, 28 y,

66 y
B cell

lymphoma R/R 10 mg NR

HLH94 −> Rux,
Doxo (lipo), Etop,
Methylpred −>
chemo −> HCT

NR NR

H Wang
2020 [89] 2 24 y, 45 y

EBV+ NK
cell

leukemia
Relapsed

PTL

New 5 mg ~5 w

Dex/Etop, PLEX,
Rux, Gem/Ox/Peg

−> Pred
Dex/Etop/Rux −>

Gem/Ox/Peg

?CR (100%) 0% (~2 m?)

Zhou 2020
[90] 36 44.7 y

(31–58 y) Lymphoma New 0.3 mg/kg
daily 14 d Dex/Etop/Rux/Doxo

−> chemo
CR (28%),
PR (56%) 39% (5 m)

Abbreviations: Alem, alemtuzumab; AraC, cytarabine; Benda, bendamustine; BID, twice daily; Brentux, bren-
tuximab; CR, complete response; Cy, cyclophosphamide; Dex, dexamethasone; DLBCL, diffuse large B-cell
lymphoma; Doxo, doxorubicin; EBV, Epstein–Barr virus; Etop, etoposide; Gem, gemcitabine; HD MTX, high-dose
methotrexate; IT, intrathecal chemotherapy; IVIG, intravenous immunoglobulin; Lipo, liposomal; Methylpred,
methylprednisolone; NR, not reported; OS, overall survival; Ox, oxaliplatin; Peg, pegaspargase; PLEX, plasma-
pheresis; PR, partial response; Pred, prednisone; PTL, peripheral T cell lymphoma; Rux, ruxolitinib; SPTL,
subcutaneous panniculitis-like T cell lymphoma; Vin, vincristine. R/R, relapsed/refractory; f/u, follow-up; mg,
milligram; kg, kilogram; d, day; w, week; m, month; y, year. * Overall survival defined as the percentage of patients
alive at the time of publication with the time from initiation of ruxolitinib to the end point (last known median
follow-up or death) in parentheses when available. ? Indicates uncertainty from the referenced publication.

4.6. Investigational Agents

Other early-phase clinical trials for adult mHLH include investigating existing agents
with known efficacy in hematologic malignancies with broad activity, such as veneto-
clax (NCT05546060) or zanubrutinib (NCT05320575). For EBV-associated HLH such as
post-transplant lymphoproliferative diseases (PTLD) and EBV+ sarcomas, a phase 2 trial
of the investigational agent tabelecleucel, an allogeneic, off-the-shelf EBV-specific T cell
immunotherapy, is currently active (NCT04554914) based on efficacy demonstrated in
immunochemotherapy-refractory EBV+ PTLD [93]. Another investigational agent under
evaluation is ELA026, a human monoclonal immunoglobulin G1 signal regulatory protein
(SIRP)-directed antibody (NCT05416307). SIRPα has long been implicated in the patho-
genesis of HLH due to hematopoietic stem cell (HSC) surface downregulation of CD47,
which normally interact with SIRPα to prevent autophagy [94]. In this case, ELA026 is
thought to rapidly induce the phagocytosis of myeloid-derived antigen-presenting cells and
pathogenic CD8+ T cells in sHLH and is currently being tested in a phase 1b dose-escalation
study using monocyte depletion as a biomarker. Finally, in a preclinical study, inhibition
of type II protein arginine methyltransferase (PRMT5) has shown significant potential in
murine models of sHLH, consistent with its known role as an important mediator of inflam-
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matory T cell subsets in similar disease contexts of autoimmunity and graft-versus-host
disease (GVHD) [88].

5. Special Populations and Treatment-Related HLH
5.1. Lymphoma-Associated HLH (LAHS)

Lymphoma is the most well-characterized and common underlying cause of mHLH,
as HLH can occur in up to 20% of patients with certain lymphoma histologies (e.g., intravas-
cular B cell or nasal NK/T lymphomas) [48]. In fact, lymphoma may account for a third of
all adult HLH [17], which increases up to two-thirds in patients older than 65 years [18,95].
HLH in lymphoproliferative disorders is often multifactorial, given their association with
chronic immunomodulating viruses such as EBV, HIV, or HHV-8 (also known as KSHV or
Kaposi sarcoma [KS]-associated herpesvirus), which are independently proinflammatory
and cause other cytokine storm syndromes such as chronic active EBV, Castleman disease,
and KSHV inflammatory cytokine syndrome (KICS). In lymphoma, clonally transformed
neoplastic cells can exhibit direct cytokine secretion (particularly T cells) [96], resulting in
HLH, while B cell neoplasms also tend to increase IFN-γ secretion either by association
with mature T cells or responses to viral infections/reactivations. While HLH is more likely
to occur in poor prognosis lymphomas, particularly high-grade or intravascular B cell and
NK/T cell lymphomas, it is unknown whether HLH in this setting is purely indicative
of cancer severity or whether it independently worsens mortality. If the latter is true,
this implies that initial HLH-directed therapy may be more effective than cancer-directed
therapy alone.

One of the first publications on LAHS reviewed nine peripheral T cell lymphomas
(PTCL)-associated with hemophagocytic syndrome and compared them to known cases
diagnosed by Scott and Robb-Smith, who first described “hemophagocytic medullary
reticulosis” in 1939 [97]. In their clinicopathological review, the authors determined that T
cell lymphoma-associated HLH shared many similarities to those described earlier by Scott
and Robb-Smith—many of which have been retrospectively diagnosed with lymphoma [98].
Since the recognition that HLH and lymphoma do not infrequently occur together, several
retrospective studies of LAHS have been published. In a cohort of 159 PTCL patients
with and without HLH, 23% had LAHS, which was associated with a median survival
of 3 months compared to 16 months in those without HLH [99]. Comparing LAHS to
other adult HLH syndromes, a study from China demonstrated concordance with most
features of the HLH-2004 diagnostic criteria, but the percentage of patients with severe
hypofibrinogenemia, thrombocytopenia, and elevations in LDH were higher in LAHS [100].
Differences between T/NK cell LAHS and B cell LAHS have also been reported, with T/NK
cell LAHS being younger and more likely to have DIC, bone marrow involvement, end-
organ dysfunction, and worse survival [101,102]. Indeed, T/NK cell lymphomas associated
with HLH have among the worst prognosis, with survival estimates approximately 1 month
from presentation [103]. In this cohort of patients, those treated with pegaspargase were
found retrospectively to have a longer median survival >100 days [104]; however, this
likely reflects selection bias, as patients able to receive pegaspargase are likely less ill
at presentation.

Certain B cell lymphomas are more prone to develop HLH. In fact, B cell HLH was
originally proposed as an Asian variant of intravascular lymphoma, given its higher preva-
lence in East Asian countries [105–108], but B-LAHS is neither restricted to certain types of
lymphoma nor to Asia. In a retrospective review of LAHS cases from France, roughly half
of the cases were non-Hodgkin lymphoma (NHL), a quarter were Hodgkin lymphoma, and
the remaining quarter were T cell lymphomas [109], which reflects differences in lymphoma
epidemiology between the West and Asia. Among the 71 cases reported, 9% were not
able to receive lymphoma treatment prior to death, and 27% died within 30 days. Nearly
20% did not receive treatment for HLH. Of those who were treated, ~50% achieved a CR
after the first-line regimen. The median OS was ~6 months, with the best outcomes for
HHV-8+ NHL; receipt of etoposide was associated with improved overall survival [109].
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Indeed, several publications have suggested that LAHS should be treated with etoposide-
containing chemotherapy regimens, but there are no large prospective studies confirming
this approach [110,111]; other studies have demonstrated improved outcomes with autolo-
gous transplant or ruxolitinib [90,112]. Since etoposide has activity in lymphoma and in
HLH, we advise incorporating etoposide when possible (such as dose-adjusted R-EPOCH
or R-CHOEP regimens [113–115]), acknowledging there is no clear evidence supporting
this practice.

5.2. Leukemia, Myelodysplastic Syndromes, and Allogeneic Transplantation

HLH occurring in association with acute and chronic leukemias, myelodysplastic
syndrome (MDS), and myeloproliferative neoplasia is a rare occurrence, which has proven
largely prohibitive for prospective studies in these patient populations. The identification
of HLH in the setting of these disorders may be particularly complicated given the high
prevalence of multilineage cytopenias, consumptive coagulopathy, and elevation of acute
phase reactants at diagnosis, thus limiting the specificity of HLH-2004 diagnostic criteria
in this setting. Most of the published literature available to provide treatment guidance
derives from case reports and small case series. Stalder and colleagues recently reported
a small single-center study in which patients with acute myelogenous leukemia (AML)-
associated HLH received dose-adjusted ruxolitinib, etoposide, and dexamethasone (adRED)
combined with induction chemotherapy [86]. Six patients (two with HLH at diagnosis
of AML, four with HLH at relapse) who met HLH-2004 criteria for HLH diagnosis and
had an HScore >169 were treated with adRED and exhibited a 100% overall response rate
within one week. In the absence of other evidence, we endorse this approach in patients
presenting with acute leukemia- or MDS-associated HLH.

Secondary HLH has also been reported in a small number of patients following allo-
geneic HCT [19,116–118], with an estimated incidence of 1% post-allogeneic HCT (0.15%
for autologous HCT) [119]. Gower et al. reported findings consistent with HLH in 6.8%
of recipients of 9/10 HLA-mismatched unrelated donors, with all HLH cases in recipi-
ents of low CD34+ count bone marrow grafts and none with peripheral blood stem cell
grafts [120]. HLH was also previously reported to occur with relatively high incidence in
adults receiving umbilical cord blood grafts, again with a finding that low CD34+ stem
cell dose was a significant risk factor [121]. While the use of umbilical cord blood grafts is
currently low in Europe and the United States (<5% of allografts) and is expected to decline
further [122,123], the use of increasingly mismatched unrelated donors is anticipated with
the use of post-transplant cyclophosphamide graft-versus-host disease (GVHD) prophy-
laxis [124]. The differential incidence of HLH with different GVHD prophylaxis approaches
is unknown. Optimal treatment for HLH occurring after allogeneic HCT, regardless of the
donor, remains uncertain, as there are essentially no published data to provide guidance.
The diagnosis of sHLH after HCT can also be challenging to distinguish from allogeneic
engraftment syndrome, CRS after haploidentical transplantation (“haplostorm”), acute
GVHD, and severe sepsis [125–127]. Given the potential overlap with GVHD phenom-
ena [128], the diagnosis may be challenging, and we currently favor treatment incorporating
corticosteroids and ruxolitinib, which has been approved in the United States for use in
acute and chronic GVHD on the basis of the REACH2 and REACH3 trials [129,130].

5.3. Solid Cancers and Immune Checkpoint Inhibitors (ICI)

HLH occurring in solid tumors is not common. A review of 2197 published cases of
adult HLH only determined 32 cases (1.4%) to be due to solid cancers [17]. In this setting,
HLH occurs in widely metastatic disease, often with marrow infiltration and underlying
aggressive histologies, such as germ cell tumors or melanoma [131–133]. It is worth noting
this incidence rate was reported prior to the broad use of immune checkpoint inhibitors
(ICIs) for solid tumors, and since then, there have been many case reports of HLH occurring
as an immune-related adverse event (irAE) in a variety of tumor types. The most well-
studied has been in melanoma due to the widespread use of ICIs. In these early descriptions,
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HLH as an irAE appears to respond quickly to high-dose corticosteroids and withdrawal of
the associated agent, similarly to other irAEs. It has been reported with every anti-CTLA4,
-PD-1, and -PD-L1 therapy when used as monotherapy or in combinations [134–136]. In
addition to melanoma, HLH has been reported in nearly all settings in which ICIs are
approved, including Merkel cell, cutaneous squamous cell carcinoma, non-small cell lung
cancer, bladder cancer, breast carcinoma, and experimentally in thymic carcinoma and
glioblastoma multiforme [136–144].

The proposed pathophysiology of ICI-induced HLH is generally congruent with
our understanding of HLH. Immune checkpoints maintain immunologic homeostasis by
attenuating T cell responses to immunologic triggers; removal of these checkpoints with
ICIs results in the absence of normal inhibitory control over T cell activation, causing HLH-
like toxicities [145]. HLH as an irAE appears to be similar to MAS, in which high-dose
methylprednisolone (1 g/day for 3–5 days) may be sufficient (with adjunctive tocilizumab
or anakinra depending on the clinical context), rarely requiring etoposide unless there is an
insufficient response after 48 h [24]. As anti-IL6 therapies become more commonly used for
CRS, tocilizumab combined with a steroid taper may be the most effective treatment for
ICI-related HLH [146]. Recent summaries on hematologic toxicities of ICIs have not shown
a clear correlation between the initiation of ICI and the onset of HLH (which has been
reported to occur less than one week and greater than one year after ICI initiation) [147–149].
A query into the World Health Organization pharmacovigilance database retrieved 38
cases of HLH and demonstrated low co-occurrence with other irAEs and infections, a
median onset of 6.7 weeks after ICI initiation, with 7 cases in which HLH is the primary
or contributing cause of death [150]. Notably, the recently approved LAG-3 antibody,
relatlimab, was associated with one HLH death when combined with nivolumab [151].
Re-challenge with ICIs has generally not been pursued, but a small number of studies
report ICI re-challenge without recurrent HLH [147,152].

5.4. Bispecific T Cell Engagers, CAR T Therapy, and Cytokine Release Syndrome (CRS)

Treatment-emergent cytokine storm has been repeatedly described with novel im-
munotherapies. These novel therapies include the bispecific antibodies (bsAbs), namely
bispecific T cell engagers, which redirect CD3+ T cells to a target cancer antigen, and CAR
T cells, which utilize autologous T cells engineered with a chimeric T cell receptor (TCR)
against a target antigen. FDA/EMA-approved bsAbs with CD3 activity include blinatu-
momab, targeting CD19 in relapsed/refractory acute lymphoblastic leukemia (ALL); the
BCMA-directed T cell engager teclistamab-cqyv for relapsed multiple myeloma; and the
newly approved anti-CD20 bsAb mosunetuzumab-axgb in relapsed/refractory follicular
lymphoma. Many bsAbs are in development and expected to be approved in the near future.
Glofitamab and epcoritamab, both CD20/CD3 bsAbs, were shown to be effective for heav-
ily pretreated large B cell lymphomas [153,154], and talquetamab, directed against GPRC5D
in myeloma, has demonstrated efficacy in relapsed multiple myeloma [155]. There are also
six CAR T therapies currently approved for clinical use, including four anti-CD19 CAR T
(tisagenlecleucel, axicabtagene ciloleucel, brexucabtagene autoleucel, and lisocabtagene
maraleucel) therapies to treat B cell malignancies, and two anti-BCMA CAR T (idecabta-
gene vicleucel and ciltacabtagene autoleucel) therapies for relapsed/refractory multiple
myeloma, as well as many others being tested against new targets and in other cancers.

Cytokine release syndrome (CRS) is a well-described, treatment-emergent phenomenon
with both bsAbs and CAR T therapies, in which profound cytokine elevations and HLH-like
symptomatology occur from T cell activation [156–158]. The American Society of Trans-
plantation and Cellular Therapy (ASTCT) has established consensus grading systems for
the unique adverse effects arising from immune effector cell (IEC) therapy, namely CRS and
IEC-associated neurotoxicity syndrome (ICANS) [159]. It is now increasingly recognized
that HLH from IEC therapy may or may not evolve in association with CRS/ICANS but is
a separate hyperinflammatory insult independent from severe CRS with HLH-like features
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and is usually characterized as a second inflammatory wave after an initial improvement
in CRS [160–162].

Several groups have proposed diagnostic criteria to distinguish severe CRS from
this emerging entity, called immune effector cell-associated HLH-like syndrome (IEC-HS).
Neepalu et al. reported CAR-related HLH occurring in ~1% of cases, distinct from CRS
in its high mortality and refractoriness to standard CRS therapy, and proposed a ferritin
cutoff of >10,000 ng/mL and any two of grade >3 organ toxicities of the liver, kidney, lung,
or the presence of hemophagocytosis to diagnose CAR-related HLH [49]. In a phase 1
CD22 CAR T trial, Shah et al. observed higher rates of HLH-like manifestations (33%)
based on modified Neepalu criteria despite comparable rates of CRS and found these HLH
manifestations occurred outside the temporal context of CRS and responded to anakinra
monotherapy [163]. Lichtenstein et al. described these patients in additional detail and
found HLH in 36% of patients who received CD22 CAR T, all among those who previ-
ously developed CRS; notably, coagulopathy was included as an additional diagnostic
criterion [161]. The median time to CRS onset was 8 days after CAR T, and the time to HLH
onset was 14 days; peak ferritin was ~10-fold higher with HLH. Kennedy et al. studied the
emergence of post-BCMA CAR T MAS, defined as a ferritin increase ≥100 µg/L/h within a
24-h period and a minimum fibrinogen <150 mg/dL or maximum LDH >2 times the upper
limit of normal within 14 days following CAR T and found a 22% incidence rate [164].
Several publications have confirmed these findings with other CAR T products in ALL,
NHL, and multiple myeloma, with an estimated median onset of around 2 weeks after CAR
T infusion but with generally poorer outcomes, including up to 67% mortality [165–168].
An ASTCT working group is expected to publish consensus criteria for IEC-HS soon, which
may rely on a combination of elevated or rapidly rising ferritin; worsening inflammation
after resolving, resolved, or treatment-refractory CRS; transaminase elevations; hypofib-
rinogenemia; hemophagocytosis; and worsening cytopenias, in addition to minor criteria
assessing fever, neurotoxicity, pulmonary injury, renal insufficiency, hypertriglyceridemia,
splenomegaly, hyperbilirubinemia, coagulopathy, and LDH elevations. Based on limited
evidence, our front-line approach to IEC-HS is to use anakinra with or without tocilizumab
and/or corticosteroids as appropriate for concurrent features of CRS/ICANS.

6. Conclusions

Adult HLH is a heterogenous condition with a wide range of underlying environmen-
tal triggers and/or genetic predispositions and has traditionally been reliant on pediatric
studies to inform its pathophysiology and treatment outcomes. Malignancy-associated
HLH has been especially poorly studied, as mHLH is uncommon in children; as such,
mHLH has essentially only been described in case series and small pilot trials without
definitive prospective studies, and optimal diagnostic and management strategies remain
unknown. Many questions remain: do the HLH-2004 diagnostic criteria apply to mHLH or
treatment-related HLH? Are the same pathophysiologic mechanisms uncovered in murine
models and children the same for adults? What should be the standard of care to treat
mHLH in different settings? Given these unresolved questions, it is important to emphasize
that published diagnostic and treatment algorithms should only be tools and should not
replace clinical reasoning, as our current approaches have substantial limitations in our
ability to favorably intervene in these often quickly-decompensating patients. We advise
a low threshold to screen patients suspected of having HLH with inflammatory labs as
described, using a multi-step approach for the work-up of HLH, as well as adjunctive
diagnostic techniques such as the HScore and OHI index.

In the end, the most prudent approach may be the simplest until stronger evidence is
developed to guide clinical decision-making: does this patient have a hyperinflammatory
syndrome, and if so, would this patient benefit from steroids and/or etoposide, with or
without other adjunctive therapies such as ruxolitinib? Despite the unclear role of HLH-
94 in mHLH, initial, aggressive strategies to dampen cytokine storm with steroids and
etoposide (with ruxolitinib possibly replacing or reducing etoposide exposure) may serve
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to bridge patients to chemotherapy. Treatment-related HLH, such as after HCT, ICI, or
IEC, does not appear to require etoposide and may be treated with corticosteroids and anti-
cytokine therapies only; however, consensus diagnostic criteria will need to be established
in each of these settings to distinguish between engraftment syndrome, haplostorm, GVHD,
sepsis, irAEs, and CRS/ICANS, especially as cellular and immunotherapies become stan-
dard of care. Several targeted inhibitors and cellular therapies are under investigation for
the treatment of HLH and associated pathologies. As data with these and other emerging
approaches develop, it will be important to evaluate their integration into the management
of mHLH.
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