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Background: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge
is differentiating aggressive from indolent disease.
Purpose: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount
pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms.
Study Type: Prospective.
Population: Thirty-three patients prospectively imaged prior to prostatectomy.
Field Strength/Sequence: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence.
Assessment: Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally
implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kur-
tosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting
parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI
parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC).
Statistical Test: Levene’s test, P < 0.05 corrected for multiple comparisons was considered statistically significant.
Results: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and
MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72–0.76, 0.76–0.81, and 0.76–0.80
respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site vari-
ation (AUC range = 0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively). Post-processing parameters also affected the
resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size.
Data Conclusion: We found that conventional diffusion models had consistent performance at differentiating prostate can-
cer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and
specificity when applied to radiological–pathological studies in prostate cancer.
Level of Evidence: 1
Technical Efficacy: Stage 3

J. MAGN. RESON. IMAGING 2022;55:1745–1758.

Prostate cancer accounts for one in five new cancer diagno-
ses in men, with an estimated 193,000 new cases in

2020,1 although not all cases are high risk. Ongoing imaging
evaluations are aimed at better differentiating aggressive from
indolent disease to avoid over-treatment of non-aggressive
prostate cancer and to accurately detect tumors that have high
metastatic potential.2 Advancements in multi-parametric
magnetic resonance imaging (MP-MRI) such as T2-weighted
and diffusion-weighted imaging (DWI) have yielded substan-
tial improvement for prostate cancer detection and MP-MRI
is increasingly used for justifying and guiding biopsy.3

DWI is commonly used for diagnosing prostate cancer
and is weighted heavily as a deciding factor in the Prostate
Imaging Reporting and Data System (PIRADSv2.1) grading
scale for radiographic diagnosis.2,4,5 Tissue micro-structure
strongly influences diffusion properties and abnormalities
such as dense cellularity or atrophic glands can result in dis-
tinct imaging signatures.6 However, the calculation of quanti-
tative diffusion values varies by fitting algorithms and recent
collaborative studies have looked to quantify differences
between sites.7

There are three common fitting schemes for deriving
quantitative maps from DWI. The apparent diffusion coefficient
(ADC) is calculated from a mono-exponential fit of the different
b-values from the DWI data and is the most common metric
used for evaluation of prostate cancer.2,4,5 More complex diffu-
sion models have been developed to separate tissue diffusivity
from capillary microperfusion.8,9 By assuming a bi-exponential
relationship between both diffusion and perfusion effects, the
intra-voxel incoherent motion (IVIM) computes both pseudo-
diffusion (BID*) and perfusion fraction (F).8,9 Kurtosis (K) and

diffusion kurtosis (DK) models measure deviations of diffusion
from a Gaussian distribution10 due to cellular restriction.

The aim of this study, by a collaborative group11–14

organized by the National Cancer Institute (NCI), was to
undertake a multi-institutional study to quantify whether
prostate cancer detection varies due to differences in DWI
fitting algorithms. In addition, we also measure changes in
perceived cancer differentiation due to varying post-
processing parameters were investigated as were changed due
to varying the pathologist performing the ground truth
annotations.

Methods
This study was proposed and organized through an NCI work-
ing group. Investigators from the central organizing institution
and 14 other institutions participated. Data were collected at
the central site and distributed to each satellite institution for
processing. Fourteen implementations were included in this
project from investigators at MCW (Team 2), University of
Washington, Johns Hopkins University, University of Michi-
gan, University of Texas at Austin, University of Texas South-
western Medical Center, Oregon Health and Science
University, Memorial Sloan Kettering Cancer Center, Mount
Sinai, Brigham and Women’s Hospital, and Barrows Neuro-
logical Institute, in no particular order. Resulting maps were
then sent back to the central site for analysis. A diagram show-
ing the design in this study can be seen in Fig. 1.

Patient Population and Data Acquisition
This study was IRB-approved at the central site. All patients
provided written informed consent. Inclusion criteria required
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patients to undergo MRI prior to prostatectomy and have
high-quality images. Thirty-nine consecutive patients met the
first inclusion criterion, scanned between December 2014
and August 2016. Six patients were subsequently excluded
due to excessive motion on their MRI. Imaging from the
remaining 33 patients (demographics and cancer stage indi-
cated in Table 1) was acquired on a 3-T MRI scanner
(General Electric, Waukesha, WI) using an endorectal coil
and phased-array torso coil. The MP-MRI sequences com-
prised of field-of-view optimized and constrained undistorted
single shot (FOCUS) DWI19 with 10 b-values (b = 0, 10,
25, 50, 80, 100, 200, 500, 1000, and 2000 seconds/mm2),
NEX: 1, 2, 1, 1, 1, 2, 2, 4, 8, 12 respectively, repetition
time/echo time (TR/TE) = 4/69–99 msec; interpolated
resolution = 0.625 mm � 0.625 mm � 4 mm voxels, acqui-
sition matrix 80 � 80, FOV 160 mm � 160 mm, echo train
length 1 (80 echos). Additionally, an anatomical T2-weighted
multi-slice dataset was acquired (acquisition matrix 384 � 256,
TR = 5000 msec, TE = 0.125 s, FA = 111 echo train length
24, interpolated 0.234 mm � 0.234 mm � 3 mm, FOV
120 mm � 120 mm). Robotic prostatectomy was performed
approximately 2 weeks later and the extracted prostate was sec-
tioned using patient-specific custom three-dimensional-printed
slicing jigs to match orientation and 3 mm slice thickness of
the T2-weighted image.6,15,20

Histo-Pathological Analysis
Prostate samples were cut at 4 μm thickness, and whole-mount
sections were hematoxylin and eosin (H&E) stained, digitized,
and annotated by a urological fellowship-trained pathologist

(K.I., 23 years of experience) (Fig. 1). A total of 169 slides were
included. Each slice was manually aligned to the T2-weighted
image using control points and a non-linear transform. Regions
with tears and histology artifacts were excluded with manually
placed ROIs applied after the spatial transform. Annotations of
different Gleason patterns were brought into MRI space using
the same non-linear transform.6,19 Pathologist-annotated (K.I.)
regions that consisted of at least 200 contiguous voxels axially
(11 mm2 in plane, 33 mm3) were included, which resulted in
231 cancer (CA) regions of interest (ROIs), and 564 ROIs not
associated with cancer (benign atrophy, BA). These ROIs were
used to extract the quantitative parametric diffusion values. A
subset of slides was annotated by five pathologists from four uni-
versities with 23 (K.I.), 15 (W.H.), 13 (G.P.), 11 (T.A.), and
1 (W.P.) year of experience. This subset included 33 slides from
28 patients.15

Diffusion Signal Fitting
DICOM datasets obtained with FOCUS DWI were de-
identified to meet HIPPA compliance and distributed to the
collaborating sites for analysis. Each site was asked to calculate
diffusion parameter maps using publicly available or locally
developed software, implemented to fit DWI signals. The
individual methods used for each site implementation are
detailed in the supplement, and in Table 2.7–9,16–18,21–31

These methods included a mono-exponential fit (parameter:
MEADC), diffusion kurtosis (parameters: kurtosis [K] and
diffusion [DK]),10 and a bi-exponential fit (parameters: diffu-
sion (BID), BID*, and F).8 Each site submitted the calcu-
lated maps back to the central site for comparative analysis.

FIGURE 1: Schematic representation of the experimental design. Top: Raw diffusion data distributed to partner institutions in
DICOM format, partner institutions return fits to MCW where they were manually aligned to the T2-weighted image. Bottom: Post-
surgery, tissue was sliced to match the T2-weighted image using patient-specific slicing jigs. Whole-mount samples were stained and
annotated by a pathologist. Annotations were then aligned to the T2-weighted image.15–18 Right: Pathologist annotations and fits
from multiple institutions were combined for analysis to determine variability in prostate cancer sensitivity and specificity.
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Sites were not required to fit each model in order to maxi-
mize participation in this collaborative research project. The
site-specific parametric maps were aligned and resampled to
the T2-weighted image at the coordinating site to ensure the
same resampling code was used.

Digital Reference Object Design
Two separate digital reference objects (DROs) were created
for the IVIM and Kurtosis models.32 Methods for the DRO
analysis are detailed in the supplement.

Correlation Analysis
To determine concordance of the quantitative parametric
maps submitted, median values were calculated from
pathologist-defined region, and a percent difference calcula-
tion and a Pearson correlation coefficient were calculated.
This was done in both cancerous regions (G3+) and benign
atrophy.

In Vivo Data Extraction and Cancer Differentiation
For each parametric map submitted by the sites, median
values were calculated from each pathologist-defined region.
An empirical receiver operating characteristic (ROC) curve
was calculated for each fit to determine the ability of each
contrast to differentiate regions of cancer. Two classification
tasks were considered: cancer (G3+) vs. benign atrophy, and
low-grade (LG = G3) vs. high-grade (HG = G4+). The area
under the curve (AUC) served as the metric of interest to
assess concordance between site implementations.

Clustergram Analysis
To visually measure group concordance and similarity,
clustergrams were created comparing the value within each
lesion across all sites who submitted a given fit. Median
values were extracted from all lesions greater than 200 voxels
in-plane. For each lesion, a SD was calculated quantifying
variability across implementations for a given fit. SDs were
then sorted and displayed using Matlab (Mathworks Inc,
Natick, MA).

Zonal Anatomy
ROIs defining prostate peripheral zone (PZ) and transition
zone (TZ) were manually drawn on the T2-weighted image
and verified by a radiologist. Zone masks were used to deter-
mine the location of each pathologist annotation. In cases
where a lesion crossed the zone boundary, the mode was used
to determine the predominant zone. The ROC analysis was
repeated within each contrast, plotting cancer vs. benign atro-
phy stratified by zone.

Index Lesion
The ROC analysis was repeated including only the index
lesion to mirror the experimental setup of biopsy-confirmedTA
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FIGURE 2: A summary of submitted site diffusion-weighted imaging (DWI) fit parameter maps aligned to a pathologist-annotated
whole-mount histology slide. Left: The corresponding T2-weighted slice, pathologist annotations in histology space containing a
dominant G4 fused gland (G4FG) tumor (yellow) with a secondary G3 region (green) and two small G4 cribriform gland (G4CG)
tumors (Pink).6 Left bottom shows the pathologist annotations aligned in MRI space and overlaid on the T2. Right: Site
implementations included mono-exponential apparent diffusion coefficient (MEADC), bi-exponential diffusion (BID), pseudo-diffusion
(BID* [�10�3 mm2/second]), and perfusion fraction (BID [�10�3 mm2/second], BID* [�10�3 mm2/second], and F), and kurtosis and
kurtosis diffusion (K and DK). Some sites submitted multiple sets of fits, each implementation is separated and treated separately.
Relative contrast differences between sites are notable in the MEADC images, but independent of implementation the tumor has
decreased diffusion compared to surrounding tissue. Bi-exponential fits showed notable contrast differences between site
implementation while kurtosis fits were notably similar.
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radiology studies. The index lesion was defined as the largest
in-plane pathologically confirmed cancerous region. A
matching number of benign atrophy regions were included in
the analysis.

Annotation Extraction Metric
The metric for extracting values from the region of interest
was varied and the receiver operating characteristic analysis
was repeated. Mean, median, and 10th percentile values were
tested (90th percentile for kurtosis fits). A cluster limit of
200 was used for this analysis.

Cluster Limit
The ROC analysis was repeated varying the minimum lesion
size required to be included in the analysis. Cluster limits of
100, 200, 300, 400, and 500 voxels were tested. With
T2-weighted voxels being 0.234 mm � 0.234 mm � 3 mm,
this corresponded to within slice areas of 5.5, 11.00, 16.5,

22, and 27.5 mm2 (16.5, 33, 49.5, 66, and 82.5 mm3). In
DWI image space, this was approximately 10, 20, 30, 40,
and 50 voxels. Both conditions, cancer vs. benign, and low-
grade vs. high-grade were evaluated.

Multi-Pathologist Analysis
The ROC analysis was repeated varying the pathologist anno-
tating the ground truth. This analysis was performed on a
subset of 33 slides annotated by five pathologists. A cluster
limit of 200 was used and median values were taken from the
ROIs. Cancer vs. regions left unlabeled by all five pathologists
(unlabeled consensus)15 was tested in addition to HG vs. LG.

Statistical Comparisons
Basic descriptive statistics of mean and SD values of ROC
AUC analysis for each contrast, site implementation, and
condition were calculated. To measure differences between
implementations, we used a Levene’s test applied to the

FIGURE 3: Percent difference matrix comparing DWI parameters between site implementation (SI) and between classes of cancer
and normal (Top). Pearson correlation coefficient matrices comparing DWI parameters between SI and classes of cancer and non-
cancer (Bottom). MEADC, K, and DK show the least percent difference across sites and the highest correlation. Data are shown in
Tables S2 and S3 in the Supplemental Material. DWI = diffusion-weighted imaging; MEADC = mono-exponential apparent diffusion
coefficient; K = kurtosis; DK = diffusion kurtosis.
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SD. To quantify differences in the ROC AUC between con-
trasts and implantations, we used a linear model with contrast
as a covariate, with MEADC as the baseline category, with
the sandwich standard error estimates being used to account
for lack of homoscedasticity between groups.33 Pairwise

comparisons were performed (consistency and contrast com-
parisons), with the Tukey’s honestly significant difference
procedure used to correct P-values for multiple comparisons.
P < 0.05 was considered significant (R-software, v3.6.3;
www.r-project.org).

Results
Sample images from each site and software implementation
applied to the same slide can be seen in Fig. 2. Sites were not
required to fit each model to maximize participation. Submit-
ted maps varied in noise levels and visual interpretability,
which was most evident in BID* and F. Universally, regions
of cancer showed a decrease in ADC, BID, and DK com-
pared to benign atrophy, and an increase in K.

Correlation Analysis
The correlation analysis revealed similar patterns in percent differ-
ence and correlation coefficient in both normal and cancerous
ROIs. Mono-exponential ADC, K, and DK were more similar
between sites than the IVIM fits (Fig. 3). Value ranges are shown
in Tables S1 and S2 in the Supplemental Material. Larger vari-
ability of bi-exponential model parameters was also consistent
with observations for noise-free DRO (Fig. S1 in the Supplemen-
tal Material), although with smaller absolute percent-deviations.

FIGURE 4: Boxplot showing area under the curve receiver
operating characteristic (ROC AUC) variability by site
implemented fits. Left: Cancer (G3+) vs. benign atrophy. Right:
Gleason 3 vs. Gleason 4+. ROC AUC was calculated lesion-wise
using the median value in each pathologist annotated region
larger than 200 voxels. A tighter boxplot indicates less cancer
differentiation variability between site implementations.

TABLE 3. Statistical Results Comparing Site Implementation ROC AUC Values Between Contrasts and Conditions
Cancer vs. Benign Atrophy (CAvBA), and Low-Grade vs. High-Grade Cancer (LGvHG)

CAvBA BID BIDS BIPF DK K MEADC

BID 0.988 0.982 0.054 0.040* 0.011*

BIDS 1.000 0.203 0.162 0.060

BIPF 0.204 0.162 0.058

DK 1.000 0.998

K 1.000

MEADC

LGvHG BID BIDS BIPF DK K MEADC

BID 0.999 0.898 0.094 0.017 0.005*

BIDS 0.983 0.196 0.044* 0.014*

BIPF 0.512 0.169 0.069

DK 0.988 0.942

K 1.000

MEADC

ROC AUC = receiver operating characteristic area under the curve; BID = bi-exponential diffusion; DK = diffusion kurtosis;
K = kurtosis; MEADC = mono-exponential apparent diffusion coefficient.
*P < 0.05.
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Variation in Cancer Differentiation
The ROC analysis calculated using a cluster limit of 200 and
a median value from each ROI is shown in Fig. 4. Compar-
ing cancer to benign atrophy, MEADC had a median AUC
of 0.78, range 0.76–0.80, while BID, BID*, and F had
median values of 0.71, 0.56, 0.61 respectively, and ranges of
0.53–0.80, 0.51–0.81, and 0.52–0.80 respectively. Kurtosis
models resulted in median AUC of 0.78 and 0.75 for DK
and K respectively with ranges of 0.76–0.81 and 0.72–0.76
respectively. Comparing G3 to G4+, MEADC had a median
AUC of 0.67, range 0.66–0.68, while BID, BID*, and F had
median values of 0.60, 0.54, 0.59 respectively, and ranges of
0.52–0.68, 0.50–0.69, and 0.51–0.69 respectively. Kurtosis
models resulted in median AUC of 0.67 and 0.64 for DK
and K respectively with ranges of 0.65–0.70 and 0.63–0.65
respectively. Values are summarized in Table S3 in the Sup-
plemental Material. Across all contrasts cancer vs. benign
atrophy resulted in a higher AUC than low-grade vs. high-
grade.

Statistical Comparisons
Comparing the ROC AUCs between contrasts and condi-
tions (BA vs. CA, and HG vs. LG), MEADC significantly
outperformed all other contrasts with the exception of DK
and K. DK outperformed all bi-exponential parameters across
conditions. Statistical results are detailed in Table 3.

Comparing contrast-specific ROC AUC variance between
conditions, we found that MEADC and K had significantly
less variance between site-specific ROC AUC compared to
BID, for both conditions, and trended towards significance
for the other bi-exponential parameters, consistent with what
can visually be seen in Fig. 4 (Levene’s test P < 0.05 corrected
for multiple comparisons). Statistical results from each com-
parison are detailed in Table 4.

Zonal Anatomy
The results from the zone analysis are shown in Fig. S3, with
data shown in Table S4 in the Supplemental Material. The
median AUCs for PZ were 0.81, 0.77, 0.77, 0.73, 0.58, and
0.63 for MEADC, DK, K, BID, BID*, and F respectively. For
TZ, median AUCs were 0.84, 0.74, 0.86, 0.72, 0.60, and 0.62
respectively. Summary values with ranges are shown in Table S4
in the Supplemental Material, where in general, the IVIM
parameters showed greater variability in range and overall lower
performance compared to the kurtosis and mono-exponential
parameter maps. Across site implementations, kurtosis per-
formed better in the TZ than the PZ; however, all other param-
eter maps were roughly equivalent independent of zone.

Index Lesion
The results of the index lesion analysis are shown in Table S5
and Fig. S4 in the Supplemental Material. The median AUCs

TABLE 4. Statistical Results Comparing the Contrast-Specific Variances Between ROC AUC Across Conditions CvBA
and LGvHG

CvBA BID BIDS BIPF DK K MEADC

BID 0.177 0.538 0.029 0.505 0.032*

BIDS 0.955 <0.001* <0.001* <0.001*

BIPF <0.001* <0.001* <0.001*

DK <0.001* 0.998

K <0.001*

MEADC

LGvHG BID BIDS BIPF DK K MEADC

BID 0.260 0.696 0.015* 0.710 0.012*

BIDS 0.939 <0.001* <0.001* <0.001*

BIPF <0.001* 0.006* <0.001*

DK <0.001* 1.000

K <0.001*

MEADC

ROC AUC = receiver operating characteristic area under the curve; BID = bi-exponential diffusion; DK = diffusion kurtosis;
K = kurtosis; MEADC = mono-exponential apparent diffusion coefficient.
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were 0.82, 0.75, 0.58, 0.62, 0.79, and 0.77 for MEADC,
DK, K, BID, BID*, and F respectively. While MEADC
remains similar to the other experiments, the BID and BID*
parameter maps become less variable under this condition,
while the DK and K maps become more variable between site
implementations.

Clustergram Analysis
The results of the clustergram analysis are shown in Fig. S2
in the Supplemental Material for each of the contrasts. The
heat maps shown indicate SD from the mean for each value.
More consistency and grouping were seen in the
MEADC, K, DK, and BID, with less consistency seen in
BID* and F. For MEADC, K, and DK, results indicated that
four site implementations were virtually identical in values.

Cluster Limit
The results of the cluster limit analysis are detailed in Fig. 5,
with values shown in Table S4 in the Supplemental Material.
Across both conditions (high-grade vs. low-grade and cancer
vs. benign atrophy) parameter maps AUC increased as mini-
mum cluster to be included was increased from 100 to
500 T2-resolution voxels in 100 increments. Increases in
median AUC went from 0.74 to 0.87, 0.69 to 0.80, 0.71 to

0.85, 0.68 to 0.77, 0.51 to 0.60, and 0.59 to 0.65 for
MEADC, DK, K, BID, BID*, and F respectively. Indepen-
dent of cluster limit, mono-exponential ADC and the kurtosis
fit parameters showed smaller ranges of variability between
sites. Additionally, the variability between sites in the IVIM
parameter maps tended to increase as cluster limit was
increased (Fig. 5). Figure S5 in the Supplemental Material
shows the number of lesions included in the analysis at each
step, indicating that the number of lesions across all condi-
tions decreased by more than half as the cluster limit
increased from 100 to 500.

Extraction Metric
The results of varying the extraction metric (median, mean,
or 10th percentile) are shown in Table S7 and Fig. S6 in the
Supplemental Material. While the median value across all
sites is relatively consistent independent of which metric is
chosen, the variability between sites is highly dependent on
the metric used to extract a value from an ROI.

Multi Pathologist
The results of the multi pathologist experiment are shown in
Fig. 6. Varying the ground truth had a substantial effect on
both the median AUC as well as the extent of the inter-site-

FIGURE 5: Receiver operator characteristic area under the curve (ROC AUC) for all institutions grouped by fit and repeated varying
the minimum lesion size included in the analysis. Lesion size limit was varied from 100 voxels to 500 voxels stratifying G3+ vs.
benign atrophy (Left) and stratifying G3 from high-grade tumors (Right). There is a trend towards increasing AUC as the cluster limit
for inclusion becomes more selective in both cancer vs. benign and low-grade vs. high-grade. Fits that are highly variable between
sites remain highly variable independent of cluster limit.
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variability. MEADC, DK, and K values calculated from
observer 5’s annotations had the greatest AUC and tightest
range of AUC between sites at differentiating cancer from
regions left unlabeled by all pathologists (unlabeled consen-
sus). Numeric results are shown in Table S8 in the Supple-
mental Material. The AUCs from BID varied by observer
showed consistency between site implementation with the
exception of a few outliers, while BID* and F both showed
large ranges of AUC regardless of the observer defining gro-
und truth.

Discussion
This study tested inter-site concordance of diffusion-derived
parametric maps on the same pathologically validated prostate
cancer dataset under a variety of post-processing conditions.
In addition to measuring the consistency of values between
sites, inter-site variability in performing a diagnostic task was
measured. We found that mono-exponential and kurtosis dif-
fusion models were reliably calculated independent of imple-
mentation (high correlation between site implementations)
and performed well at differentiating prostate cancer (consis-
tently high ROC AUC between implementations). Values

calculated from IVIM algorithms varied more between sites
(low correlation between site implementations, large range of
ROC AUC between sites), although those that applied physi-
cal constraints performed better at differentiating prostate
cancer (high ROC AUC). In addition, we found that post-
processing decisions made at the central analysis site such as
ROI sizes and varying the observer defining ground truth,
affected the diagnostic potential of all DWI parametric maps,
as measured by ROC AUC.

The correlation analysis demonstrated the stability of each
fit across sites. The mono-exponential and kurtosis fits had a
low percent difference and high correlation coefficient indepen-
dent of which pair of sites was analyzed. Of the diffusion fits
included in this study, six MEADC fit implementations
resulted in almost identical maps and values. Kurtosis was like-
wise consistent across institutions and provided as good or bet-
ter contrast than ADC with respect to identifying high-grade
tumors. The IVIM contrasts were much less similar between
implementations, both in normal and cancerous regions.

A number of post-processing parameters were tested.
Varying the minimum lesion size included in the analysis cau-
sed approximately 0.1 increase in AUC independent of con-
trast and site implementation. With the exception of this

FIGURE 6: Area under the curve receiver operator characteristic (ROC AUC) for cancer vs. regions left unlabeled by all pathologists
(unlabeled consensus) annotations varying the pathologist annotating the slides. Left: Sample annotations from all five observers on
a representative whole-mount prostate slide. Right: Boxplots showing AUCs varying the image contrast and observer annotating the
slides. Median values were extracted from regions of interest (ROIs) greater than 200 voxels in plane.
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analysis explicitly testing size, an ROI cluster limit of
200 voxels (11 mm2) was selected to capture all clinically sig-
nificant tumors as outlined in PI-RADSV2. For DWI acqui-
sition, typical cluster sizes are only 2–15 acquired voxels,
highly susceptible to partial volume at lesion boundaries.6

However, anatomical boundaries are more clearly seen in T2

imaging, and thus aligning the annotations with the T2

images results in a more accurate alignment. This limitation
partially explains cluster-size sensitivity of the corresponding
lesion AUC analysis for DWI-derived parameters.

Prior work measuring inter-pathologist variability anno-
tating Gleason patterns has been done on tissue
microarrays,34,35 and in whole-mount prostate samples.15

Interestingly, varying the pathologist performing the gold-
standard annotations changed the resulting ROC AUC in the
contrasts that varied minimally between site implementations
(MEADC, K, and DK). While in most cases observers mar-
ked similar areas overall, the size and boundaries of the
lesions varied between observers as expected. Partial volume
and lesion size limitations resulted in different numbers of
ROIs included from each pathologist, which may partially
explain the differences in ROC AUC.

The b-values used to calculate the IVIM fits varied
between implementations. Additionally, some sites chose to
apply post-calculation filters such as upper and lower bounds,
non-negativity constraints, or other error reduction techniques
on their parameter maps to ensure physical values. Those that
included physical constraints and other post-fitting filters had
the highest ROC AUC (sites 2, 3, 5, 7, and 10). The b-values
used in the DWI fitting also varied in the implementations
of K, DK, and MEADC at different sites. This variability in
implementation may explain why some sites MEADC values
were consistently higher than others, though the ability to dif-
ferentiate cancer was not adversely affected with MEADC.

The top performing site implementations for MEADC
varied only slightly, so no general recommendations can be
made by our conclusions. For the IVIM submissions, in gen-
eral, the sites that chose to implement constraints on the values
calculated performed better due to having less outlier values.
The choice of b-values included in the fitting did not appear to
affect the top performing implementations, as there was a mix
of submissions that used all provided b-values, and those that
limited the b-values included in fitting. Regarding kurtosis, the
top performing implementations used all b-values provided, but
generally all performed similarly so no consensus recommenda-
tions can be offered beyond constraining values.

Limitations
One major limitation to this study is the relatively small
cohort of 33 patients. We felt there was a balance between
including a larger cohort and increasing the analysis burden
on the external sites. Future studies should increase the
N and reduce the scope to less fitting models. Regarding the

patient cohort, there were wide ranges in the PIRADS scores,
Gleason scores, and PSA levels, and there may be potential
bias as all the subjects included had a prostatectomy. While
this was essential for the pathological validation, our conclu-
sions may not generalize to patients that, for example,
undergo radiation treatment rather than surgery. Future stud-
ies should determine whether DWI performance between
sites varies dependent on PIRADS score, Gleason score at
diagnosis, and National Comprehensive Cancer Network risk
stratification, as these analyses were beyond the scope of this
study. Unfortunately, with our small cohort, we were statisti-
cally under powered to split it into smaller subgroups. Addi-
tional future studies should determine whether cancer
detection varies between repeated pre-surgical quantitative
DWI, both in the same scanner, and between vendors.

Anatomical landmarks are more readily apparent on the
higher resolution T2-weighted images and thus using T2 space
for an analysis using aligned pathology is the best practice for
creating a reliable ground truth. However, efforts to convert,
align, scale, and resample the diffusion maps to the T2 resolu-
tion for comparison to the ground truth pathologist annotations
may have introduced minor alignment differences between sub-
missions. These potential sources of error should be mitigated
in the future with a consensus on data format and orientation
standards for large multicenter research studies.

Conclusion
This study tested inter-site concordance of diffusion-derived para-
metric maps on the same pathologically validated prostate cancer
dataset under a variety of post-processing conditions. We found
that conventional diffusion models (mono-exponential and kur-
tosis fits) had less variability between algorithms in differentiating
prostate cancer and performed significantly better overall. More
complex IVIM models, in some implementations, also per-
formed well at differentiating prostate cancer, although were
more inconsistent between algorithms due to varying constraints
and resulted in non-diagnostic AUCs of less than 0.70. We also
found that post-processing decisions made at the central analysis
site affected the diagnostic potential of all DWI parametric maps,
as measured by ROC AUC. These results indicate that a careful
selection, explanation of methods, understanding of their effects
on the ROC AUC, and code sharing will ease the adoption of
advanced quantitative imaging into the clinical setting.
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