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ABSTRACT

Tritrichomonas foetus, an anaerobic, flagellated protozoan parasite, is the

causative agent of one of the major reproductive diseases of cattle.

Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase) is an

enzyme essential in the nucleic acid metabolism of T. foetus because the parasite

is unable to synthesize purine nucleotides de novo and relies on the HGXPRTase

activities for its purine requirements. As a result of its critical role in the purine

salvage pathway of T. foetus, this enzyme has been proposed as a potential target

for structure-based inhibitor design.

Initially, a cDNA clone encoding part of the HGXPRTase was isolated by

complementation of an Escherichia coli mutant, Sø609, with a cDNA library of

T. foetus. The full-length genomic clone was then isolated and identified to have

an open reading frame of 549 bp encoding an 183-amino acid sequence with an

estimated size of 21.1 kDa. Northern blot analysis identified a single mRNA

band of approximately 700-800 bases, and Southern blot analysis indicated that

this is a single copy gene. The amino acid sequence is only 27.3% identical to that

of the human HGPRTase but is 35-40% identical with prokaryotic HGPRTases.

The T. foetus HGXPRTase was subsequently cloned into the pBAce vector for

expression in E. coli. This construct yields approximately 50% of the total cellular

protein of the transformed E. coli. The enzyme has been purified to homogeneity

and was found to have the same molecular weight as the native enzyme, a pi of

4.8 and specific activities of 2856 nmol IMP/min-mg protein, 2496 nmol

GMP/min-mg protein and 1567 nmol XMP/min-mg protein.

Initial velocity studies of the T. foetus HGXPRTase show that the enzyme

follows a sequential kinetic mechanism. The simplest mechanistic model

supported by the product inhibition studies is an ordered bi-bi mechanism where
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INTRODUCTION

Of the parasitic trichomonads only a few, such as Trichomonas vaginalis,

Trichomonas gallinae and Tritrichomonas foetus, are pathogenic in mammals and

birds (Levine, 1961). Most trichomonads inhabit the digestive tracts of the host

organism, and those found in the large intestine are commensal and

nonpathogenic. Of the pathogenic species, both T. vaginalis and T. foetus are

found in the urogenital tract of their hosts, and T. gallinae is found in the upper

digestive tract (esophagus and crop) of its host. T. foetus, the causative agent of

bovine urogenital trichomoniasis, is an anaerobic protozoan parasite. The

taxonomic classification of T. foetus is given below:

kingdom: Protista

phylum: Parabasala

subphylum: Sarcomastigophora

superclass: Mastigophora

class: Zoomastigophorea
order: Trichomomadida

family: Trichomonadidae
subfamily: Tritrichomonadidae

Trichomonads are believed to have branched very early from the eukaryotic

tree, just after Giardia lamblia (Sogin, et al., 1989) but before the Euglenozoa.

Comparison of the small subunit rRNA (SSU rRNA) sequences agrees with this

theory (Sogin, 1989; Sogin, 1991). The early divergence of the trichomonads is

upheld by the molecular lengths of Tritrichomonas foetus rDNA repeating unit

and SSU rRNA (Champney, et al., 1992).



MORPHOLOGY

The morphology of T. foetus has been studied extensively by Wenrich and

Emmerson (Weinrich and Emmerson, 1933) and by Kirby (Kirby, 1951) (see Fig.

I.1). The body of the parasite is spindle- to pear-shaped, approximately 9-25 pum

long and 3-15 pm wide in fixed and stained preparations. The dimensions are

larger for live specimens, 15-22.5 mm long and 4.5-10 pm wide, since the

trichomonad cell shrinks significantly when treated with fixatives (Abraham and

Honigberg, 1964). It has three anterior flagella of nearly equal length (11-17 pm),

and a posterior flagellum about as long as the anterior flagella (16 pum).

Members of the Trichomonadidae family possess a unique cytoskeletal structure,

the costa, which supports the undulating membrane. Reports (Lemoine, et al.,

1983; Sledge, et al., 1978) have suggested that the costa is composed of

carbohydrates, but cytochemical and costa fraction enrichment techniques

indicate that the costa contains mainly proteins (Benchimol, et al., 1982; Monteiro

Leal, et al., 1993). The "accessory filament" and the attached part of the recurrent

flagellum form the external margin of the undulating membrane. The

undulating membrane of T. foetus differs from that found in other

Trichomonadinae because it consists of two distinct physical structures: a

proximal part, containing the proximal marginal lamella, and a distal part

enclosing the distal marginal lamella in its ventral area and the microtubules of

the recurrent flagellum in its dorsal area. Other structures observed by light

microscopy include the axostyle, pelta and kinetosomes, which are all structures

composed of a network of microtubules (Benchimol, 1994). Weinrich and

Emmerson (Weinrich and Emmerson, 1933) found the ellipsoidal or ovoid

nucleus located slightly posterior to the anterior end of the cell. With

cryotechniques, Benchimol (Benchimol, 1994), found the nucleus at different

locations in frozen T. foetus cells and proposed that the nucleus is in transient



motion prior to freeze fixation. Examination of T. foetus with cryotechniques also

reveals that the surface of the parasite has hair-like structures projecting out from

the plasma membrane (Benchimol, 1994).

T. foetus also possess lysosomes and Golgi bodies, and instead of

mitochondria, they possess hydrogenosomes. The paracostal and paraaxostylar

granules observed with light microscopy (Honigberg, et al., 1971) correspond to

the hydrogenosomes. Benchimol and de Souza (Benchimol and de Souza, 1983)

found that the hydrogenosomal envelope consists of two membranes, and a

peripheral vesicle is often found associated with this organelle. The

hydrogenosome contains enzymes responsible for the production of acetate, CO2

and H2 from pyruvate and malate under anaerobic conditions (Müller, 1993), and

the peripheral vesicle is believed to function in the regulation of intracellular

calcium (Chapman, et al., 1985). Glycogen granules are found throughout the

cytoplasm and are especially abundant within the axostyle.
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Figure L1. Line diagram of fixed and stained Tritrichomonas foetus (Kirby, 1951).
Key to symbols in Fig. I.1: a, anterior flagella; b, kinetosomal complex; c, recurrent flagellum at
the margin of the undulating membrane; d, undulating membrane; e, "accessory filament;"f, free
posterio flagellum; g, costa; h, parabasal body; i, capitulum of the axostyle; i, ventral extension of
the axostylar capitulum: j, trunk of the axostyle: k, periaxostylar ring, l, terminal filamentous
extension of the axostyle; m, nucleus; n, nucleolus; o; undifferentiated cytoplasm.



CARBOHYDRATE METABOLISM

Carbohydrate and energy metabolism in T. foetus occurs in two

compartments, the cytoplasm and the hydrogenosome. Energy metabolism in

trichomonads is based on the degradation of glycogen (endogenous

carbohydrate) and exogenous carbohydrates, which include glucose, galactose,

mannose, maltose and sucrose (Shorb, 1964). Under aerobic and anaerobic

conditions, metabolism is fermentative. T. foetus consumes carbohydrates and

produces acetate, succinate, glycerol and CO2, and under anaerobic conditions it

also produces H2 (Ryley, 1955; Steinbuchel and Müller, 1986; Steinbuchel and

Müller, 1986).

Carbohydrate metabolism in T. foetus follows the typical glycolytic pathway

(Lindblom, 1961; Ryley, 1955). The presence of most enzymes of the Embden

Meyerhof pathway have been demonstrated. However, phosphofructokinase

instead of being ATP-dependent, is pyrophosphate-dependent (Mertens, et al.,

1989). Inorganic pyrophosphate has been considered the high energy compound

equivalent of ATP in early branching eukaryotes (Müller, 1992). In addition to

the trichomonads other protozoan parasites, such as Giardia and Entamoeba, also

use inorganic pyrophosphate instead of ATP in several reactions (Müller, 1992).

In most organisms, an inorganic pyrophosphatase hydrolyzes any PPigenerated

in the cytosol; however, this enzyme has not been detected in Entamoeba

(McLaughlin, et al., 1978) or Trichomonas (Searle and Müller, 1991), and it is likely

that this cytosolic pyrophosphatase is also lacking in T. foetus. Thus, the lack of

pyrophosphatase provides inorganic pyrophosphate for glycolysis in these

protozoan parasites. Mertens (Mertens, 1991) believes that the overall ATP yield

of glycolysis is increased when inorganic pyrophosphate is used in these

reactions. In both the glycolytic pathway and in further metabolism of pyruvate,
ATP is generated by substrate-level phosphorylation only. Conversion of



phosphoenol pyruvate (PEP) to succinate is accomplished by the actions of the

following cytosolic enzymes: PEP carboxykinase, malate dehydrogenase,

fumarate hydratase and fumarate reductase (Müller and Lindmark, 1974).

Succinate dehydrogenase activity has not been detected. Glycerol is converted

from dihydroxyacetone phosphate by cytosolic glycerol-3-phosphate

dehydrogenase and glycerol-3-phosphatase (Steinbuchel and Müller, 1986).

Pyruvate is converted to acetate in the hydrogenosome through the actions of

pyruvate:ferrodoxin oxidoreductase, acetate:succinate CoA-transferase and

succinate thiokinase (Steinbuchel and Müller, 1986). Electrons produced by the

consumption of carbohydrates are used to reduce protons and several glycolytic

intermediates. Under aerobic conditions, electrons can also be transferred to O2.

Since cytochromes and cytochrome oxidase are not found in trichomonads,

compounds which may function as electron carriers include Fe-S proteins,

pyridine nucleotides and flavins (Lloyd, et al., 1979).

Trichomonads also lack an active tricarboxylic acid cycle (Shorb, 1964), and

instead of mitochondria they have hydrogenosomes—organelles in which the

conversion of pyruvate to acetate and the production of H2 and ATP occurs

(Müller, 1993). Steinbuchel and Müller (Steinbuchel and Müller, 1986) postulate

that metabolism of cytosolic malate and glycerol-3-phosphate may occur in the

hydrogenosome. The following enzyme activities have also been found

associated with the hydrogenosome: glycerol-3-phosphate dehydrogenase,

superoxide dismutase, adenylate kinase, NADH oxidase, ferredoxins and

NAD:ferredoxin oxidoreductase (Gutteridge and Coombs, 1977; Lindmark and

Müller, 1974; Linstead and Bradley, 1988; McLaughlin, et al., 1978; Ryley, 1955).

Hydrogenosomeless trichomonads have been cultured (Steinbuchel and Müller,

1986), and metabolism in these mutants is cytosolic with production of ethanol,



but no H2, acetate or succinate. Carbohydrate metabolism in T. foetus is shown

schematically below in Figure I.2.
glucose

PPi
(1) GTP

GDP
(2)

ADP phosphoenolpyruvate oxaloacetate

ATP CO2 (3 NADH
(6) AD

pyruvat malate —s-- fumarate/ H2O XH2(5)
CO2 X

W (7) lat Succinate======= malate

NADH NAD+-:
H2

~~~5–H–
CO2 Sucinate Succinyl-CoA

CoA

Figure I.2. Hypothetical scheme of carbohydrate metabolism of Tritrichomonas
foetus (Lindmark and Müller, 1976; Mertens, et al., 1989; Müller, 1993).

Only glycolytic steps differing from the usual glycolytic path are indicated. (1) PPi
phosphofructokinase; (2) phosphoenolpyruvate carboxykinase (GDP); (3) malate dehydrogenase
(NAD); (4) fumarate hydratase; (5) fumarate reductase; (6) pyruvate kinase; (7) malate
dehydrogenase (decarboxylating) (NAD); (8) pyruvate:ferredoxin oxidoreductase; (9)
NAD:ferredoxin oxidoreductase; (10) H2:ferredoxin oxidoreductase; (11) acetate:succinate CoA
transferase; (12) succinate thiokinase; Fd, ferredoxin; XH2, unknown reducing agent. The box
represents the hydrogenosome.



PURINE AND PYRIMIDINE METABOLISM

Many protozoan parasites have been discovered to be incapable of de novo

purine nucleotide biosynthesis (Fish, et al., 1982; Gutteridge and Gaborak, 1979;

Krug, et al., 1989; Marr, et al., 1978; Schwartzman and Pfefferkorn, 1982; Wang

and Aldritt, 1983; Wang and Simashkevich, 1981). Studies by Wang et al. (Wang,

et al., 1983) found that T. foetus is unable to incorporate radiolabeled glycine or

formate into nucleotides. Instead, this trichomonad incorporates purine bases

and purine nucleosides into the nucleotide pool. Adenine and inosine are first

converted to hypoxanthine which then enters the nucleotide pool as IMP. Unlike

T. vaginalis, which include only adenosine kinase and guanosine kinase in its

purine salvage networks, the following enzyme activities have been noted in the

purine salvage pathway of T. foetus: adenine deaminase, inosine phosphorylase,

hypoxanthine phosphoribosyltransferase, adenosine kinase, xanthine

phosphoribosyltransferase, guanine phosphoribosyltransferase, guanosine

phosphorylase, guanosine phosphotransferase, guanine deaminase, adenosine

deaminase and adenosine phosphorylase (see Fig. I.3). Work by Beck and Wang

(Beck and Wang, 1993) has demonstrated that the hypoxanthine

phosphoribosyltransferase, guanine phosphoribosyltransferase and xanthine

phosphoribosyltransferase activities resides on a single protein.

Pyrimidine metabolism in anaerobic flagellates differs from most parasitic

protozoa. Although most parasitic protozoa are capable of de novo pyrimidine

biosynthesis, the anaerobic flagellates, Giardia lamblia (Lindmark and Jarroll,

1982) and T. vaginalis (Hill, et al., 1981) were found to be pyrimidine auxotrophs.

Studies by Wang et al. (Wang, et al., 1983) found that T. foetus failed to

incorporate bicarbonate, aspartate or orotate into pyrimidine nucleotides or

nucleic acids; thus, it is also a pyrimidine auxotroph. In T. foetus, uracil, uridine

and cytidine are salvaged by uracil phosphoribosyltransferase, with uridine and



cytidine converted by uridine phosphorylase and cytidine deaminase to uracil,

which enters the nucleotide pool as UMP. Uridine phosphotransferase activity
has also been detected. Uracil and uridine cannot be converted to TMP since

radiolabeled uracil and uridine are not found in T. foetus DNA, and extracts of

T. foetus lack dihydrofolate reductase and thymidylate synthetase activities.

Thymidine salvage is accomplished with thymidine phosphotransferase and is

not associated with salvage of other pyrimidines. The pyrimidine salvage

pathway is shown in Fig. I.4.
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TRICHOMONIASIS

Bovine urogenital trichomoniasis is a venereal disease of worldwide

distribution (Fitzgerald, 1986; Morgan, 1946). Reports show that 26% of beef

herds in the western United States were infected (Johnson, 1964), and the

incidence of within-herd infection in the western United States ranges from 5.8 to

38.5% (Kimsey, et al., 1980; Skirrow, et al., 1985). Estimates of as high as 51% of

old bulls in Australia (Clark, et al., 1974) and 71% of all cattle examined at a

Nigeria abattoir were infected with T. foetus (Akinboade, 1980). Estimates of the

dollar loss in the United States due to bovine trichomoniasis have ranged from

$2.5 million to $62.4 million dollars per year (Fitzgerald, 1986; Wilson, et al.,

1979).

Transmission of T. foetus from bulls to cows occurs during coitus. Bulls are

the active carriers of the disease. Bulls younger than 4 years are less susceptible

to becoming infected; however, older bulls appear to be more susceptible to

infection and once infected they remain infected for life if left untreated

(Christensen, et al., 1977). In infected bulls, the parasite is found throughout the

preputial cavity and on the surface of the penis (Parsonson, et al., 1974). Bulls are

typically asymptomatic, but acute infection occurs with mucopurulent discharge

and swelling of the prepuce which subsides about two weeks after infection

(Honigberg, 1978).

Clinical signs of trichomoniasis in cows may include vaginal discharges,

irregularities in the estrous cycle and delayed conceptions (Honigberg, 1978).
Fourteen to 18 days after infection the trichomonads are found in large numbers
in the vagina (Hammond and Bartlett, 1945). The parasites invade the uterus by
migrating through the cervix. Morgan (Morgan, 1946) states that the primary site
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of infection is the uterus, but parasites may remain in the vagina causing low

grade endometritis, in addition to uterine, cervical and vaginal catarrh.

Fertilization may be prevented by endometritis and uterine catarrh; however,

abortion usually occurs if an infected cow conceives. Honigberg (Honigberg,

1978) describes the abortions as being either complete or incomplete. The former

occurs when both the fetus and placental membranes are expelled, and the latter

occurs if the fetus is expelled, but the placental membranes are retained in the

uterus. In cases of complete abortion, cows recover and can conceive later on. If

the membranes are not removed in cases of incomplete abortions, chronic catarrh

and purulent endometrosis develop and cause destruction of the uterine mucosa,

leading to permanent sterility.

PATHOGENESIS

The pathology of T. foetus infection in heifers was studied by Parsonson et al.

(Parsonson, et al., 1976), and hemorrhagic placentomes and partial placental

detachment were observed as evidence of impending abortion in two of 11

pregnant animals. Invasion of placental and fetal tissues was not observed.

Histopathological studies of fetal and placental tissues by Rhyan et al. (Rhyan, et

al., 1988) and by Burgess and Knoblock (Burgess and Knoblock, 1989) found that

T. foetus can invade the placenta and cause placentitis, and the parasite was also
found in the fetal tissue.

The pathogenicity of T. foetus has also been studied in tissue culture (Burgess,

et al., 1990; Corbeil, et al., 1989; Filho and de Souza, 1988; Florent, 1947; Hogue,

1938; Kulda and Honigberg, 1969). Three hypotheses have been proposed to

explain the cytotoxic effect of trichomonads. Hogue (Hogue, 1938) suggested

that cell damage was caused by parasitic toxins. However, Florent (Florent, 1947)

thought that the pathological changes observed were due to depletion of
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nutrients by trichomonads. Work by Kulda and Honigberg (Kulda and

Honigberg, 1969) agrees with the hypothesis of Hogue (Hogue, 1938). T. foetus

was found to have neuraminidase (Romanowska and Watkins, 1963),

hyaluronidase (Timofeev, 1962) as well as the following hydrolases

(glycosidases): O- and 3-glucosidases, O- and 3-galactosidases, O- and 3-N-

acetylglucosaminidases, 0- and 3-fucosidases, and O-rhamnosidases (Harrap and

Watkins, 1970; Stealey and Watkins, 1972; Watkins, 1959; Watkins and Morgan,

1954). The biological significance of these hydrolases has yet to be determined.

Both neuraminidase and hyaluronidase have been postulated to be involved in

events leading to abortion and sterility (Müller and Saathoff, 1972), but more

research is needed to verify this hypothesis. Work by Lockwood et al. has found

that T. foetus contains multiple forms of cysteine proteinases (Lockwood, et al.,

1987). Preliminary results indicate that the cysteine proteinases found in the

media differ from the intracellular cysteine proteinases of the trichomonads.

These intracellular and extracellular proteinases may play a role in fulfilling the

amino acid requirements of these urogenital parasites, or they may be involved

in the pathogenicity of the trichomonads.

Adhesion to epithelial cells is another mechanism of tissue damage that was

proposed by Filho et al. (Filho and de Souza, 1988) and by Corbeil et al. (Corbeil,

et al., 1989). Both groups of researchers noted that T. foetus adhered to epithelial

monolayers. Adherence is accomplished initially by the posterior flagellum

which is followed by the cell body of the trichomonad. Both Filho et al. (Filho

and de Souza, 1988) and Burgess et al. (Burgess, et al., 1990) propose that the

pathogenic effects exerted by the trichomonads could be caused by secretion of

proteases and release of lytic factors, in addition to adhesion. Therefore, a

combination of factors may be responsible for the tissue damage caused by
trichomonads.
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DRUG THERAPY

Most of the early treatment for bovine trichomoniasis focused on treating the

bull, and little research focused on the treatment of heifers/cows since the

infection in females is self-limiting (Fitzgerald, 1986). Earlier treatment of bulls

included ointment and salves. Bartlett (Bartlett, 1948) reported that Bovoflavin

Salbe, an ointment containing trypaflavine and surfen, cured seven out of eight

infected bulls. Salves of acriflavine or berenil (Fitzgerald, et al., 1963) were also

used in treating infected animals. Because all of the topical treatments are

expensive, time-consuming and tedious, another mode of therapy would be

more practical.

Many systemic agents have been tested in vitro and in vivo (in experimental

animals) against T. foetus, and they include the following: metronidazole;

dimetridazole; iponidazole; tinidazole; 1-propargyl-5-nitroimidazole; 2

nitroimidazoles; 1■ (2,4-dinitropyrryl)-ethyl]-2-methylimidazole; 1,2-,4-alkyl

substituted 5-nitroimidazoles; aminitrozole, 1-substituted 2,4-dinitropyrroles;

various 2-(nitro-heterocyclic-benzimidazoles, benzoxazoles, and benzothiazoles;

nitrofurans, bis(thiosemicarbazones) and bis(methylthiosemicarbazones); and

substituted dithiocarbamates and bis-(thiocarbamoyl)aisulfides (Michaels, 1968).

Dimetridazole has been found to be effective when used orally or intravenously

to treat T. foetus infected cattle (McLoughlin, 1965; McLoughlin, 1968;

McLoughlin, 1970); however, oral administration requires larger doses and

repeated handling of the animal, and some animals developed respiratory

difficulty and ataxia with intravenous administration of dimetridazole.

Strains of T. foetus which are resistant to dimetridazole have developed

(McLoughlin, 1967). The dimetridazole resistant strain was also cross-resistant to

metronidazole and amintrozole. Nitroimidazole compounds enter the cell by
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diffusion, and the nitro group of the compounds is reduced inside the anaerobic

cells (Ings, et al., 1974; Moreno, et al., 1983; Müller, 1983), forming the following
proposed intermediates: nitro-free radical, nitroso, nitroso-free radical and

hydroxylamine derivative (see scheme below).

R—NO, *-* No-º- R—NO —iº-r–Nºon-jº- R—NH2

Intact T. foetus cells, anaerobic homogenates of T. foetus or anaerobic T. foetus

hydrogenosomes are all capable of forming the nitro-free radical of

metronidazole (DoCampo, et al., 1984; Moreno, et al., 1983). The electron donors

are proposed to be ferredoxin proteins of low redox potential, and Lindmark and

Müller (Lindmark and Müller, 1976) hypothesize that the reduction occurs by a

nonenzymatic chemical reaction of the reduced ferredoxin with the

nitroimidazole. The toxic effects of nitroimidazole compounds are believed to be
due to the interaction of a reactive metabolite of the nitroimidazoles with DNA

or protein (Moreno, et al., 1983; Müller, 1983). Ings et al. (Ings, et al., 1974)

hypothesizes that the DNA-drug complex can no longer be used as a primer for

DNA and RNA polymerases; therefore, all nucleic acid synthesis is inhibited.

Work by Cerkasovová et al. has demonstrated that anaerobic metronidazole

resistance in T. foetus develops with loss of pyruvate:ferredoxin oxidoreductase

and hydrogenase (Cerkasovová, et al., 1984). Therefore, the parasite is resistant

to metronidazole because it lacks the enzyme machinery to form the reactive

drug species. Cerkasovová and coworkers also noted that the metronidazole

resistant cells were smaller in size and contained less protein than the
metronidazole-sensitive cells. Thus, these mutant cells can survive without the

principle metabolic pathway of the hydrogenasomes. However, the mutant

trichomonads appear to grow at a slower rate than the drug-sensitive strain
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(Kulda, et al., 1984). Resistance of an organism to a drug can be reversed by

simultaneously administering a second drug. For example, resistance to

streptomycin in bacteria was prevented with concurrent administration of

quinacrine (De Courcy and Sevag, 1967). However, use of quinacrine in

conjunction with dimetridazole in trichomonad infected hamsters did not

prevent resistance to dimetridazole from occurring (McLoughlin and Chute,

1969). Acriflavine had been used with some success in reversing drug resistance

in bacteria (Mitsuhashi, et al., 1961; Watanabe and Fukasawa, 1961) and Eimeria

tenella (McLoughlin and Chute, 1968). Nevertheless, acriflavine did not cause a
reversion of the dimetridazole-resistant strain to a dimetridazole-sensitive strain

of T. foetus (McLoughlin and Chute, 1969).

Ipronidazole was another nitroimidazole compound used to treat bovine

trichomoniasis, and it lacked the side effects associated with dimetridazole

(Fitzgerald, 1986; Skirrow and BonDurant, 1988; Skirrow, et al., 1985; Williams, et

al., 1987). However, both dimetridazole and ipronidazole were removed from

use in the United States by the Food and Drug Administration because of

suspected carcinogenic effects (Ames, et al., 1973; Herrick, 1990; Rustia and

Shubik, 1972). Presently there are no systemic medications available in the

United States to treat bovine urogenital trichomoniasis.

HGPRTASES

Phosphoribosyltransferases (PRTases) are enzymes which catalyze purine,

pyrimidine and pyridine nucleotide biosynthesis, in addition to histidine and

tryptophan biosynthesis. These enzymes require a divalent metal ion, share o-D-

5-phosphoribosyl-1-pyrophosphate (PRPP) as a substrate and release

pyrophosphate from ribose with inversion of the anomeric carbon (Musick,

1981). Musick (Musick, 1981) also reports that PRTases are acidic proteins with
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pH optima that are generally alkaline, and amino acid residues involved in

catalysis and binding appear to be cysteine and lysine, respectively. Since all

PRTases utilize PRPP, it has been proposed that these enzymes may share a

common structure which may resemble a nucleotide-binding domain (Musick,

1981).

Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase E.C.2.4.2.8) is

one member of the PRTase family (Musick, 1981). This enzyme catalyzes the

Mg2+-dependent transfer of phosphoribose from PRPP to the purine bases
hypoxanthine, guanine and xanthine, forming pyrophosphate, IMP, GMP and

XMP, respectively. In mammals HGPRTase is important in purine metabolism

even though mammals can obtain purine nucleotides by de novo synthesis.

However, mutations which affect expression of HGPRTase or alter the ability of

the enzyme to bind substrates, result in hyperuricemia which is clinically

expressed as gout (Chinault and Caskey, 1984). When HGPRTase activity is

lacking, the metabolic disease is called Lesch-Nyhan syndrome (Rosenbloom, et

al., 1967; Seegmiller, et al., 1967). This disorder is characterized by

hyperuricemia, uric acid nephrolithiasis, growth and mental retardation,

choreoathetosis, spasticity, hyperreflexia and self-mutilation. Lesch-Nyhan

syndrome is an X-linked disorder (Lesch and Nyhan, 1964). Hyperuricemia
results because the lack of HGPRTase causes PRPP to accumulate which activates

glutamine amidotransferase. This in turn increases de novo purine biosynthesis,

and without HGPRTase, the purine bases can only be oxidized to uric acid

(Kelley and Wyngaarden, 1983; Seegmiller, 1980). The CNS defects manifested in

Lesch-Nyhan syndrome may be caused by loss of central dopaminergic neurons

(Lloyd, et al., 1981; Breese, et al., 1990). HGPRTaser mice do not exhibit any of the

neurobehavioral abnormalities associated with Lesch-Nyhan syndrome (Jinnah,
et al., 1992); nevertheless, the lack of HGPRTase in these mutants is still
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associated with a specific deficit in basal ganglia dopamine systems (Jinnah, et al.,

1994). Several hypotheses have been proposed to explain how the HGPRTase

deficiency may lead to the decrease in brain dopamine levels, such as depletion

of some purine essential during development or accumulation of a toxic purine

metabolite which may destroy dopaminergic fibers (Jinnah, et al., 1994),

reduction in the number of branches of striatal dopamine terminals (Lloyd, et al.,

1981), reduction in GTP levels which may decrease the availability of the cofactor

tetrahydrobiopterin for tyrosine hydroxylase (Goldstein, et al., 1986; Watts, 1985)

and misregulation of dopamine receptors (Goldstein, et al., 1985; Goldstein, et al.,

1986; Watts, 1985). Jinnah et al. have not found any evidence of purine depletion

or accumulation of a toxic purine metabolite in the HGPRTaser mice (Jinnah, et

al., 1993), and there is very little experimental evidence which proves or

disproves any of the other hypotheses.

Unlike mammalian cells, parasitic protozoa are unable to synthesize purine

nucleotides from PRPP, amino acids and formate. All parasitic protozoa studied

to date, including Plasmodium lophurae (Walsh and Sherman, 1968), Leishmania

donovani (Marr, et al., 1978), Leishmania braziliensis (Marr, et al., 1978), Entamoeba

histolytica (Berens, et al., 1981), Eimeria tenella (Wang and Simashkevich, 1981),

Toxoplasma gondii (Krug, et al., 1989; Schwartzman and Pfefferkorn, 1982),

Trypanosoma cruzi (Berens, et al., 1981), Trypanosoma brucei (Fish, et al., 1982),

Giardia lamblia (Wang and Aldritt, 1983), Trichomonas vaginalis (Miller and

Linstead, 1983) and Tritrichomonas foetus (Wang, et al., 1983), must fulfill their

need for purine nucleotides through purine salvage pathways. Although all

organisms possess purine salvage networks, the combination of salvage enzymes

which make up the pathways used by parasites varies from parasite to parasite.

For example, T. vaginalis and E. histolytica rely on purine nucleoside
phosphorylases/kinases for purine salvage (Lo and Wang, 1985; Miller and
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Linstead, 1983). P. lophurae, L. donovani, L. braziliensis, E. tenella, T. gondi, T. cruzi,

T. brucei, G. lamblia and T. foetus rely on purine phosphoribosyltransferases

(Berens, et al., 1981; Fish, et al., 1982; Krug, et al., 1989; Marr, et al., 1978;

Schwartzman and Pfefferkorn, 1982; Walsh and Sherman, 1968; Wang and

Aldritt, 1983; Wang and Simashkevich, 1981; Wang, et al., 1983), and these

parasites, with the exception of G. lamblia, are able to convert IMP to AMP and

GMP. G. lamblia uses a guanine phosphoribosyltransferase to salvage guanine

and adenine phosphoribosyltransferase to salvage adenine (Wang and Aldritt,

1983), and interconversion of GMP and AMP does not occur in G. lamblia,

T. vaginalis or E. histolytica (Lo and Wang, 1985; Miller and Linstead, 1983). Since

purine salvage pathways are crucial for the survival of these protozoan parasites,

enzymes in this pathway, such as purine phosphoribosyltransferases, may be

useful as targets for the design of structure-based inhibitors for parasitic

chemotherapy.

If HGPRTase is a potential target for inhibitor design, detailed kinetic and

structural analyses of both host and parasitic HGPRTases are essential since

defects in the mammalian enzyme are responsible for metabolic disorders. These

studies may reveal differences in the active sites and catalytic mechanisms which

can be used to selectively inhibit the parasitic enzymes. Kinetic analyses of the

human (Giacomello and Salerno, 1978) and schistosomal (Yuan, et al., 1992)

enzymes have revealed differences in their kinetic mechanisms. Both enzymes

follow a sequential kinetic mechanism with Mg2PRPP as the first substrate to

bind to the enzyme. However, the release of products differ in these two

enzymes, with products released randomly by the human enzyme and products

released in an ordered fashion (MgFPi first and Mg-complexed purine nucleotide

last) by the schistosomal enzyme.
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Three PRTases, glutamine-5-phosphoribosyl-1-pyrophosphate amido

transferase (amido-PRTase), orotate phosphoribosyltransferase (OPRTase) and

HGPRTase, have been examined crystallographically (Eads, et al., 1994; Scapin, et

al., 1994; Smith, et al., 1994). Even though the similarity of the amino acid

sequences is low between these three enzymes, the three dimensional structures

are similar. All three enzymes have a core o/5 structure that resembles the

nucleotide-binding fold of dehydrogenases, except that the B-sheet is composed

of five fl-strands instead of six. Both HGPRTase and amido-PRTase have four o

helices that surround these five fl-strands, whereas OPRTase has three ot-helices.

These three PRTases also lack the Gly-X-X-Gly-X-Gly sequence motif associated

with the mononucleotide binding sites (Schulz, 1992). The sequence motif

proposed as the PRPP binding site (Hershey and Taylor, 1986) is found in a

strand and loop region of the core structure in these three PRTases. For both the

OPRTase and HGPRTase, the electron density of the loop is poor. Both Eads et

al. (Eads, et al., 1994) and Scapin et al. (Scapin, et al., 1994) propose that this loop

may move during catalysis. Specificity for the nitrogenous base is determined by

amino acid residues located at the carboxyl end of HGPRTase, the amino

terminal "hood" region of OPRTase, and a separate domain (NH2 domain) in

amido-PRTase. Thus, the crystallographic studies of these three PRTases have

revealed common structural features of this family of enzymes (o:/ß core) and

residues involved in substrate binding.
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RESEARCH GOALS

Since T. foetus is an auxotroph for purine nucleotides, HGXPRTase is essential

to the survival of this trichomonad and can serve as a target for inhibitor design.

Characterization of the T. foetus HGXPRTase by kinetic and structural studies is

necessary prior to designing inhibitors specific for the trichomonad enzyme. The

goal of my research was to clone the gene encoding the T. foetus HGXPRTase,

and to characterize the enzyme by steady-state kinetic analyses. We anticipated
that the results of these studies would reveal differences between the

trichomonad and mammalian enzymes which would be useful for inhibitor

design. Characterization of the enzyme using conventional protein purification

techniques would be difficult since the yield of HGXPRTase from T. foetus is 0.8

mg per two liters of mid-logrithmic parasites (Beck and Wang, 1993). Cloning

the T. foetus HGXPRTase gene for expression in E. coli would supply sufficient

quantities for enzyme characterization. After assessing the feasibility of many

different techniques to identify the T. foetus HGXPRTase gene, I was able to clone

this gene using functional complementation. Chapter 1 describes the cloning and

characterization of the T. foetus HGXPRTase gene. Chapter 2 describes the
successful expression of the T. foetus HGXPRTase gene in E. coli. The

recombinant protein was purified to apparent homongeneity and characterized.
There were no differences in the measured characteristics between the native and

recombinant T. foetus enzymes. Chapter 3 presents the results of initial velocity

studies and product inhibition studies of the recombinant enzyme.



CHAPTER 1: CLONING AND SEQUENCING OF THE
HYPOXANTHINE-GUANINE-XANTHINE
PHOSPHORIBOSYLTRANSFERASE GENE FROM
TRITRICHOMONAS FOETUIS

INTRODUCTION

Early attempts to isolate a DNA clone encoding Tritrichomonas foetus

HGXPRTase using heterologous probes, the polymerase chain reaction and

screening a cDNA expression library were unsuccessful. We finally resorted to

the method of complementation which has been used successfully to clone genes

encoding enzymes in metabolic pathways, such as the gene encoding glucose

phosphate isomerase from Plasmodium falciparum (Kaslow and Hill, 1990)and the

LIRA5 gene from Cryptococcus neoformans (Edman and Kwon-Chong, 1990). In

Escherichia coli purine nucleotides can be either synthesized de novo or salvaged

from the environment (see Fig. 1.1) (Neuhard and Nygaard, 1987). When purine

de novo synthesis or salvage are blocked by mutations, E. coli is unable to survive

on minimal media supplemented with a particular purine base. For instance, the

E. coli mutant, Sø609 (Jochimsen, et al., 1975), has a mutation in the de novo

purine synthetic pathway (pur H.J) and 3 mutations in the purine salvage

pathway (Agpt, hpt and pup), which makes it incapable of growing on minimal

medium supplemented with hypoxanthine, guanine or xanthine, but it will be

able to grow on minimal medium supplemented with adenine. If Sø609 is

transformed with cDNA encoding the T. foetus HGXPRTase and expresses the

active enzyme, the bacterium should be able to survive on minimal media

supplemented with either hypoxanthine, guanine or xanthine.

23
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Figure 1.1. The Purine Salvage Pathway of E. coli (Neuhard and Nygaard, 1987).

Enzymes missing in the mutants Sø609 and Sø606 are underlined.

MATERIALS AND METHODS

Materials: Tritrichomonas foetus strain KV1, ATCC30924, were cultured in

Diamond's TYM media (Diamond, 1957) (see Appendix A). The cDNA library,

genomic DNA and poly(A*) RNA blot from T. foetus strain KV1, were obtained

from Dr. Joanne Beck. The Escherichia coli strain used for complementation,
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Sø609 (F" ara, Apro-gpt-lac, thi, hpt, pup, purh,J, stra), was obtained from Dr. Per

Nygaard (University Institute of Biological Chemistry B, Copenhagen, Denmark).

The E. coli strains used to rescue the phagemid and plasmid forms of the cDNA

library were: XL1-Blue (enda1, hsdR17(rk", mk”), supe44, thi-1, A-, recA1, gyraS6,

relal, (lac") [F, proAB, lac1q2DM15, Tn.10(tetR)] (Stratagene, La Jolla, CA) and
DH50.F (F 280dlaczDM15, D(laczYA-argF)U169, end A1, recA1, hsdR17(rk,mk"),

thi-1, supB44, A., gyraS6, relA1)(Gibco/BRL, Gaithersburg, MD). The DH50.F

strain was also used as a host for subcloning procedures. All restriction

endonucleases were purchased from New England Biolabs (Beverly, MA) or

Gibco/BRL (Gaithersburg, MD). [8-14C]hypoxanthine (57.0 mCi/mmole),
[8-14Clguanine (55.0 mCi/mmole) and (8-14C]xanthine (59.0 mCi/mmole) were
obtained from ICN (Costa Mesa, CA). [o.32P]dCTP and [Y22P)ATP were

purchased from NEN (Burbank, CA). Bacto-tryptone and vitamin-free Casamino

acids were purchased from Difco (Detroit, MI). Bacto-yeast extract was

purchased from Becton Dickinson and Co. (Cockeysville, MD). All other

reagents were from Sigma Chemical Co. (St Louis, MO), and of the highest purity
available.

Library construction, phagemid rescue and plasmid generation

A phagemid library of T. foetus cDNA was obtained by coinfecting E. coli XL1

Blue cells with 108 PFU of the lambda phage library and 1010 PFU of the R408
helper phage in 45 ml of LB media (Short, et al., 1988). After 6 hrs at 37°C the

culture was heated at 70°C for 20 min and centrifuged to remove cellular debris.

The supernatant containing rescued phagemids gave a titer of 1.5x105 CFU/ul on
ampicillin containing plates.

A plasmid library was generated by transforming E. coli DH5aF competent

cells with the rescued phagemids (Short, et al., 1988). LB media was inoculated
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with the phagemid transformed bacteria by overlaying the bacterial lawn with

3 ml of LB media/plate for 5 min at room temperature, transferring the LB media

to a 50 ml centrifuge tube, adding ampicillin to 50-75 mg/L and incubating

overnight at 37°C. Plasmids were recovered by alkaline lysis (Sambrook, et al.,

1989).

A genomic library of T. foetus was constructed with 16-20Kb fragments

generated by partial digestion of genomic DNA from T. foetus strain KV1 with

MboI and ligated into the phage vector MEMBL3 (Stratagene, La Jolla, CA)

following the manufacturer's instructions.

Construction of the positive control plasmid, pSmc.2"

pSmc2, the plasmid containing the full-length cDNA encoding the Schistosoma

mansoni HGPRTase (Craig, et al., 1988), was first digested with Xbal and Bcll, and

the overhanging ends were filled in using the Klenow large fragment DNA

polymerase and deoxynucleotides to create blunt ends for religation. The

plasmid was then cut with EcoRI, the overhanging ends were filled in (as

described above) and the ends religated. The resulting plasmid was designated

pBSmc2" (see Fig. 1.2).

Complementation

E. coli strain Sø609 were made competent following the method of Hanahan

(Hanahan, 1983). Forty-five micrograms of the plasmid library were mixed with

100 pil suspension of Sø609 competent cells, incubated on ice for 30 min,

followed by a heat shock at 42°C for 45 sec, and incubated on ice for 2 min. After

growth in 0.5 ml SOC medium (bacto-tryptone 20 g/L, bacto-yeast extract 5g/L,

NaCl 0.5g/L, 2.5 mM KCl, 10 mM MgCl2, and 20 mM glucose) for 1 hr, the cells

were washed with M9CA medium (Na2HPO46 g/L, KH2PO4 3 g/L, NaCl

0.5g/L, NH4Cl 1 g/L, 2 mM MgSO4, 0.1 mM CaCl2, 0.2% glucose and

****

1.

■
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0.2% vitamin-free casamino acids) and spread onto selective media plates (M9CA

agar plates supplemented with 1.5 puM thiamine, 20 mg/L guanine, 50 mg/L

ampicillin and isopropyl-B-D-thiogalactopyranoside (IPTG)). Plates were

incubated at 37°C. Colonies appearing on these plates were restreaked onto fresh

selective media plates. Sø609 cells containing pHSmc2", were used as a positive

control, and Sø609 cells containing pHluescript (Stratagene, La Jolla, CA) with

no insert were used as a negative control.

Southern and Northern Hybridizations

Approximately 6 pig of T. foetus genomic DNA were digested with

appropriate restriction endonucleases, separated on a 0.8% agarose/Tris-borate

buffered gel and transferred to Nytran membrane (Schleicher & Schuell, Keene,

N.H.) by the method of Southern (Southern, 1975). T. foetus genomic DNA was

also digested with decreasing concentrations of the restriction enzyme, EcoRI,

separated on a 0.8% agarose/Tris-borate-buffered gel and transferred to Nytran

membrane as described above. A cDNA fragment was labeled with digoxigenin

duTP by random priming using the Genius kit (Boehringer Mannheim,

Indianapolis, IN) and hybridized to the blot in 5xSSC (750 mM NaCl, 75 mM

sodium citrate), 50% formamide at 50°C. The blot was washed twice at room

temperature in 1xSSC + 0.1% sodium dodecyl sulfate (SDS), followed by a 30
min. wash in 1xSSC + 0.1% SDS at 50°C and a 30 min. wash in 0.1xSSC + 0.1%

SDS at 50°C. The blot was developed following the manufacturer's

recommendations (see Appendix B) and exposed to X-ray film.

T. foetus poly(A*) RNA was resolved on a MOPS-formaldehyde-agarose

gel and transferred onto nitrocellulose (Micron Separations Inc., Westborough,

MA) (Sambrook, et al., 1989). The poly(A*) RNA blot was probed with a 32P
random prime labeled cDNA fragment under stringent conditions in 5xSSC, 50%
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formamide at 55°C. The blot was washed three times at room temperature and

once for a 20 min. wash in 5xSSC + 0.1% SDS at 65°C and exposed to X-ray film.

Cloning the full-length gene

The T. foetus-AEMBL3 library was screened using the 32P random prime
labeled cDNA fragment under the same hybridization conditions used for the

Southern. The DNA of one purified phage clone was digested with restriction

endonucleases, fractionated on an agarose gel, transferred to nitrocellulose and

probed with the random prime labeled cDNA fragment under the same

stringency used to screen the library. The fragment that hybridized to the probe

was subcloned into Bluescript KS+ and Bluescript KS- plasmids (Stratagene, La

Jolla, CA).

DNA Sequencing

Single-stranded template was generated from cloned DNA following the

protocol recommended by Stratagene (La Jolla, CA) (see Appendix C). Both

single-stranded and double-stranded DNA were sequenced using the Sequenase

2.0 kit (U. S. Biochemical Corp., Cleveland, OH). Sequencing primers were

synthesized by the Biomolecular Resource Center at the University of California,

San Francisco. Programs designed by the Biocomputational laboratory at

University of California, San Francisco were used for sequence analysis.

Primer Extension

Total RNA from T. foetus strain KV1 was isolated as described by Wang and

Wang (Wang and Wang, 1985) (see Appendix A), and poly(A*) RNA was

purified on oligo(dT) cellulose columns. The primer,

5'-GTTATAGAGAACTCTCTCAAGGT-CGTCCAT-3', was designed to hybridize

to nucleotides 19-48 (Fig. 1.8). Primer extension was carried out as described

(Sambrook, et al., 1989). The primer was labeled using [Y32P)ATP and

:
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polynucleotide kinase, mixed with poly(A*) RNA and allowed to anneal at 42°C

overnight. Reverse transcriptase and deoxynucleotides were added for the
extension reaction.

Enzyme Assay

M9CA supplemented with 1.5 mM thiamine, 20 mg/L guanine, 75 mg/L

ampicillin and 10 mM IPTG was inoculated with bacteria cells containing the

plasmid of interest and incubated at 37°C with aeration. Bacteria cells from 3 ml

of the culture were pelleted, resuspended in 100 pil TE buffer, 0.9 mM PRPP and

3 mg/ml lysozyme, incubated at 37°C for 15 min. and freeze-thawed three times

to lyse cells. Cell debris was removed by microcentrifugation, and the

supernatant was assayed for enzyme activity. Five microliters of the supernatant

were added to 20 pil of a reaction mixture of 0.3 M Tris-HCl pH 7.8, 18 mM
MgCl2, 0.5 mM PRPP containing either 17.5 mM 14C-hypoxanthine, 18.2 pm

14C-guanine, or 17 pm 14C-xanthine, incubated at 37°C for 5 min and stopped
with 1 mM hypoxanthine and 1 mM IMP. Twenty microliters of the reaction

mixture was spotted on a PEI cellulose sheet which was developed with 5 mM

NH4Ac pH4.5, dried and exposed to X-ray film (Yuan, et al., 1990).
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`" Digest with Xbaland Bcli.&
Clal Fill in overhanging ends

d religate.

Digest with EcoRI.
Fill in overhanging ends
and religate.

Figure 1.2. Construction of pDSmc2" from pSmc2.

:
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RESULTS

Cloning T. foetus HGXPRTase by complementation

A cDNA library of T. foetus was constructed in the lambda vector ZAP II.

Double stranded plasmids were generated from the library by rescuing

phagemids and transforming E. coli DH5O.F cells with the phagemids. Plasmids

were isolated from the transformed E. coli DH5O.F, used to transform competent

E. coli Sø609, and the transformed bacteria were plated onto a M9CA-thiamine

ampicillin agar plate supplemented with guanine as the only source of purine

base. The plate with T. foetus cDNA transformed Sø609 produced two colonies

after 3 days, while the negative control (Bluescript alone) produced none, and the

positive control (full-length S. mansoni HGPRTase cDNA in pBluescript,

pBSmc2") produced five colonies. The two colonies resulting from the

transformation with the T. foetus cDNA library contained an insert of

approximately 500 bp. One colony, containing the plasmid designated p■ fc1,
was selected for further characterization.

Characterization of p1 fe1

To generate cell extracts for enzyme assays, M9CA-thiamine-guanine

ampicillin media was inoculated with Sø609/pTfc1, the positive control cells

(Sø609/pBSmc2") the negative control cells (Sø609/pBluescript). The cell

extract from bacteria containing p"Tfc1 demonstrated PRTase activities for

hypoxanthine, guanine and xanthine (see Fig.1.3). The negative control cells

showed no PRTase activitites for the three purines, whereas the Sø609 cells

transformed with the pBSmc2" demonstrated HPRTase and GPRTase activities

but not XPRTase activity.

Under stringent conditions the 496 bp EcoRI fragment from p■ fc1 hybridized

to specific DNA fragments on a blot of restriction endonuclease digests of
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T. foetus genomic DNA (Fig. 1.4). Each digest produces only one fragment which

hybridizes to the probe. The double digests suggest that HindIII, Pst■ and Xbal

flank the genomic DNA encoding the HGXPRTase (see Fig. 1.5 for restriction

map). The Southern blot of partially digested genomic DNA using various

dilutions of EcoRI shows only two species, 23 kb or 0.8 kb, which hybridize to the

probe (Fig.1.6). This indicates that the gene encoding the HGXPRTase is most

likely a single copy gene. Hybridization of a Northern blot of T. foetus poly (A*)

RNA with the same probe (Fig.1.7) indicates that the mRNA encoding the

T. foetus HGXPRTase exists as a single species. The size of the mRNA is

estimated to be 700-800 bp.

The sequence of the 536 bpTfc1 has been determined and is shown in Fig. 1.8

(nucleotides no. 14-550). The coding region of this cDNA predicts a protein with

a molecular weight of 20.5 kD, which is smaller than what is reported for the

purified HGXPRTase of T. foetus, 24 kD (Beck and Wang, 1993) suggesting that

pTfc1 is not a full-length clone, even though its translational product has
HGXPRTase activities.

Isolation and characterization of the full-length T. foetus genomic clone

The 496 bp EcoRI fragment of p■ fc.1 was used to screen a genomic library of

T. foetus constructed in AEMBL3 phage. Purification of the AEMBL phage clone

was carried through three successive screenings with the probe. The phage DNA

was digested with HindIII/Pst■ , producing a 1.4 Kb fragment, which was cloned

into Bluescript, and designated as pTfg1. The DNA sequence was determined

for both strands of p'■ fg1. As shown in Fig. 1.8, p■ fg1 encodes an open reading

frame of 549bp which were identical with the 536 bp of p■ fc1 plus 13 bp at the 5'

end not found in the cDNA clone. The coding region of p'■ fg1 has an AT content

of 58.5%, and predicts a protein with a molecular weight of 21.1 kDa, which is
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still lower than the 24 kDa estimated from SDS-PAGE (Beck and Wang, 1993).

Primer extension with a synthetic primer, hybriziding to nucleotides no. 19-48 in

Fig. 1.8, generated a cDNA fragment with an estimated size of 114 bp (Fig. 1.9).

The results suggest that the poly (A*) transcript of the cloned gene should begin

66 nucleotides upstream from the proposed start ATG shown in Fig. 1.8. This

upstream region contains nonsense codons at positions -32, -37, -46 and -51 and

no other initiation codon in the proposed reading frame (Fig. 1.8), thus

suggesting that the proposed start ATG is correct. The simple banding pattern of

the genomic Southern blot, and comparison of the cDNA sequence with the

genomic sequence also indicates that the cloned gene does not contain any
introns.

Sequence Alignment

The amino acid sequence deduced from the full-length genomic clone is

aligned with the sequences of human HGPRTase (Jolly, et al., 1983), S. mansoni

HGPRTase (Craig, et al., 1988), Plasmodium falciparum HGXPRTase (King and

Melton, 1987), Toxoplasma gondii (Roos, 1994; Vasanthakumar, et al., 1994),

Trypanosoma brucei (Allen and Ullman, 1993), Trypanosoma cruzi (Allen and

Ullman, 1994), Leishmania donovani (Allen, et al., 1993), Crithidia fasciculata

(Ullman, 1994) and Vibrio harveyi HGPRTase (Showalter and Silverman, 1990),

and shown in Fig. 1.10. The degree of amino acid sequence identity relative to

the T. foetus sequence is 25.1%, 23.5%, 21.3%, 23.0%, 25.1%, 27.3%, 25.1%, 26.2%

and 36.1%, respectively. The degree of amino acid sequence similarity relative to

the T. foetus sequence when chemically similar amino acid substitutions are taken

into account is 48.6%, 45.9%, 44.3%, 46.4%, 46.4%, 50.3%, 50.8%, 50.8% and 60.1%,

respectively. The T. foetus sequence is the smallest of the published eukaryotic

sequences encoding an HGPRTase, and it is only two amino acids longer than the
sequence encoding the V. harveyi HGPRTase (Showalter and Silverman, 1990).
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Alignment of the amino acid sequence deduced from the full-length genomic

clone with the sequences of E. coli XGPRTase (Pratt and Subramani, 1983),

V. harveyi HGPRTase and Lactococcus lactis HGPRTase (Nilsson and Lauridsen,

1992) is shown in Fig. 1.11. The degree of amino acid sequence identity is 19.1%,

35% and 40.4%, respectively, and the degree of amino acid sequence similarity

relative to the T. foetus sequence when chemically similar amino acid substitution

are taken into account are 36.1%, 54.6% and 64.5%, respectively.

DISCUSSION

Using functional complementation, we have isolated and sequenced a cDNA

clone, p■ fc1, coding for a major portion of the HGXPRTase of T. foetus.

Subsequently, using p■ fc.1 as a probe, we have isolated the full-length, intronless

gene encoding the enzyme. This is the first phosphoribosyltranferase gene to be

cloned by complementation. Since our attempts to isolate this gene with other

methods have failed, this successful approach demonstrates that

complementation may be useful for isolating genes encoding enzymes of

metabolic pathways that may not be well conserved at the nucleic acid level.

As an artifact of the library construction, the partial cDNA clone, p■ fc1,

expressed HGXPRTase activities in Sø609 in the form of a fusion protein with

the 41 amino acids from 3-galactosidase and the EcoRI/Not■ adaptor at the

amino terminus. This fusion protein is apparently an active HGXPRTase,

suggesting that the N-terminal portion of the molecule is not important for

activity. Three pieces of evidence support our assertion that we have cloned the

cDNA encoding the T. foetus HGXPRTase. First, the plasmid p■ fc1 encodes a

protein which exhibits PRTase activities for hypoxanthine, guanine and xanthine,

and when used to transform the E. coli mutant, Sø609, it allows Sø609 to grow

on minimal medium supplemented with guanine. Second, under stringent



35

conditions a fragment of p■ fc1 hybridizes to T. foetus DNA and not to A phage

DNA, indicating that the cDNA is from T. foetus. Finally, although the overall

similarity of the deduced T. foetus HGXPRTase sequence to those of the other

PRTases is low, the 15 amino acid region located at positions 138-152 (Fig. 1.10)

demonstrates a 60-80% identity and 87-100% similarity with the putative PRPP

binding sites in the other HGPRTases (Hershey and Taylor, 1986). These are to

be expected since all the enzymes recognize PRPP as a substrate.

Comparison of residues corresponding to 129-VLIVEDIIDTGK-140 of the

human HGPRTase, which are involved in PRPP-binding (Eads, et al., 1994), show

41.7-91.7% identity and 91.7-100% similarity (Fig. 1.10 and Fig. 1.11). This agrees

with the region hypothesized by Hershey and Taylor (Hershey and Taylor, 1986)

to play a role in PRPP-binding. Residues in other HGPRTases corresponding to

the flexible loop of the human HGPRTase, which is hypothesized to be important

for PRPP and PP binding and to move during catalysis (Eads, et al., 1994), have

10-70% identity and 20-80% similarity with the T. foetus sequence (Fig.1.10 and

Fig. 1.11). Hershey and Tayler (Hershey and Taylor, 1986) predicted that the

putative purine binding site was located between residues 65-104 (numbering for

the human sequence); however, crystallographic studies of the human

HGPRTase (Eads, et al., 1994) indicate that structural elements found at the

carboxy-terminus, such as Lys-165, Val-187 and Asp 193, give rise to purine base

binding and specificity. Lys-165 in the human HGPRTase which hydrogen

bonds with the exocyclic guanine oxygen at C6 is conserved in all HGPRTases,

HGXPRTases and XGPRTases. Val-187 in the human enzyme which hydrogen

bonds with the exocyclic guanine oxygen at C6 and the exocyclic amine group at

C2 is conserved in all species except for T. foetus, T. gondii, and E. coli. Asp-193

in the human HGPRTase also forms hydrogen bonds to the exocyclic amine
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group at C2, and like Lys-165, the corresponding residue appears to be conserved

in all species.

Eads et al. (Eads, et al., 1994) hypothesize that the human enzyme may have a

greater affinity for hypoxanthine over xanthine because xanthine has an exocyclic

oxygen at C2 which may prevent formation of hydrogen bonds with the main

chain oxygens of Val-187 and Asp-193; whereas, hypoxanthine having no

substituent at the C2 position may be less sterically hindered and even allow a

water molecule to occupy the O2 pocket. However, alignment of HGPRTases,

HGXPRTases and XGPRTase show that an aspartic acid occupies the analogous

position to the human Asp-193 in all these enzymes; thus, this residue may be

involved in purine binding but it may not have a role in determining purine

specificity. In all HGPRTases a valine occupies the equivalent position of Val-187

in the human enzyme; however, the enzymes from T. gondii and T. foetus, which

are HGXPRTases, have an isoleucine in the equivalent position, and the E. coli

enzyme, which is an XGPRTase, has a tryptophan in the equivalent position. The

P. falciparum enzyme, also an HGXPRTase, has a valine at the position analogous

to Val-187 in the human enzyme, but the malarial enzyme has a 100-fold higher

Km value for xanthine than for hypoxanthine and guanine (Queen, et al., 1988)

which may make it more similar to the HGPRTases than to the T. gondii and

T. foetus HGXPRTases, which have Km values two- and ten-fold higher than

those for hypoxanthine and guanine, respectively (Beck and Wang, 1993; Maion

and Chamberland, 1992). Site-directed mutational studies may aid in

determining whether these residues do play a role in determining purine base

specificity.

The high degree of amino acid sequence identity and similarity between the

T. foetus sequence and the prokaryote enzyme sequences (Fig. 1.11) is not

surprising since T. foetus is one of the earlier eukaryotes (Viscogliosi, et al., 1993).
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Again there is a high degree of conservation in the residues involved in PRPP

binding, the flexible, catalytic loop and the three residues mentioned above that

play a role in purine base binding.

The open reading frame in the full-length genomic clone, p■ fg1, for the

HGXPRTase of T. foetus predicts a protein with a molecular mass of 21.1 kDa.

This is smaller than the 24 kDa reported for the purified HGXPRTase of T. foetus

(Beck and Wang, 1993). But there are several indications that the origin of

translation of the HGXPRTase is the one predicted in Fig. 1.8. First, there is no

other ATG codon present in the same translation frame for at least 300 bp

upstream from the proposed translation initiation site. Second, there are three

in-frame termination codons within 160 bp upstream from the predicted ATG

translation start site. Third, there is only one ATG within the 66 nucleotide

region of the poly(A*) transcript preceding the proposed initiation codon, and it

is followed immediately by an in-frame termination codon. Finally, the C, A and

A at positions -4, -3 and +4 conform to the consensus sequence for eukaryotic

initiation sites described by Kozak (Kozak, 1984).

Comparison of the T. foetus HGXPRTase and inosine monophosphate

dehydrogenase (IMPDH) (Beck, et al., 1994) genes reveals that 5' and 3'

untranslated regions of these two genes are AT-rich. Examination of the 5'

untranslated region revealed sequences which resemble TATA-like boxes located

84 (TCTAA) and 161 (TATAA) nucleotides upstream from the start methionine.

Both of these TATA-like motifs are preceded by CAAT motifs at positions -110

and -186, respectively. Hexanucleotide sequences which may act as

polyadenylation signals in several eukaryotic mRNAs (Birnstiel, et al., 1985)

were not found in the 3' untranslated region of the T. foetus HGXPRTase gene.

Among the trichomonads, only the genes in Trichomonas vaginalis have had their

regulatory sequences examined (Johnson, et al., 1990). Johnson and co-workers
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(Johnson, et al., 1990) identified possible regulatory sequences for the T. vaginalis

ferrodoxin gene. At the 5' end, there is a TATA-like motif (TATAAA) at -97, and

at the 3' end, the sequences AATAAA and YGTGTTYY could function as

polyadenylation signals (Johnson, et al., 1990). The T. vaginalis succinyl-CoA

synthetase beta subunit gene (Lahti, et al., 1992) has the AATAAA sequence but

not the YGTGTTYY sequence at its 3' end. Examination of the sequences of the 5’

and 3' untranslated regions of the T. foetus HGXPRTase and IMPDH (Beck, et al.,

1994) genes and the T. vaginalis ferredoxin, succinyl-CoA synthetase beta subunit

(Lahti, et al., 1992) and beta-tubulin (GenBank accession number L05468) genes

does not reveal any consensus sequences governing transcription. More genes

from the Trichomonadidae family will have to be analyzed before any conclusions

can be made regarding transcription regulatory sequences in these organisms.

The availability of the gene encoding the T. foetus HGXPRTase will allow us

to express the T. foetus HGXPRTase in its apparent native form. Having a ready

supply of the recombinant enzyme will enable us to carry out 1) detailed kinetic

analyses of the enzyme, 2) crystallographic studies, allowing the elucidation of its

3-dimensional structure and 3) studies of the active site of the enzyme, leading to

the discovery of the residues involved in catalysis and purine base specificity.
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Figure 1.3. Assay for enzyme activity in Sø609/pTfc1.

LaneA, Sø609/pBSmc2" with [**Clguanine as substrate.
Lane B, Sø609/pBluescript with [*Clguanine as substrate.
Lane C, Sø609/pT■ c1 with [14CIhypoxanthine as substrate.
Lane D, Sø609/pT■ c1 with [*Clguanine as substrate.
Lane E, Sø609/pT■ c1 with [**CJXanthine as substrate.
Products [14CIGMP, [14CIIMP and [14CIXMP remain at the origin, and purine bases migrate
away from the origin.
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Figure 1.4. Genomic southern blot analysis of T. foetus DNA

Genomic DNA prepared from T. foetus strain KV1 was digested to completion with various
restriction endonucleases (as labeled in the figure), fractionated on a 0.8% agarose gel, transferred
to a Nytran filter and probed with the 496-bp EcoRI cDNA fragment of p■ fc1.
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Figure 1.5. Restriction map and sequencing strategy for p■ fg1.

The solid black line represents the genomic clone, p■ fg1 (1427 bp), obtained by screening a
genomic library with p■ fc.1. The box represents the region encoding the putative T. foetus
HGXPRTase gene. The arrows below the map show length and direction of sequences read.
Distances are not drawn to scale.
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Figure 1.6. Genomic southern blot analysis of T. foetus DNA digested with
various dilutions of EcoRI.

Genomic DNA prepared from T. foetus strain KV1 was digested for 10 min with various
concentrations of EcoRI (as labeled above each lane), fractionated on a 0.8% agarose gel,
transferred to a Nytran filter and probed with a 419-bp fragment (see Fig. 18).
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Figure 1.7. Northern blot analysis of T. foetus poly(A*) RNA.

Poly (A*) RNA prepared from T. foetus strain KV1 was fractionated on a MOPS-formaldehyde
agarose gel, transferred to a nitrocellulose filter and probed with the 496-bp EcoRI cDNA
fragment from p'Tfc1.
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Figure 1.8. Nucleotide sequence of the HGXPRTase gene of T. foetus and
deduced amino acid sequence of the coding region.

Underlined sequence represents the 496-bp cDNA fragment used to screen a genomic library of
T. foetus. Boxed sequence represents the 536-bp cDNA clone, p■ fc1. Single underline marks the
stop codons upstream from the assumed initating ATG codon at position 1. J shows where the
transcript starts. Bold letters indicate potential TATA boxes, and double underline marks
possible CAT boxes.
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Figure 1.9. Primer extension of T. foetus poly(A*) RNA with a 30-mer designed
within the T. foetus HGXPRTase gene.

Panel A shows the dideoxy sequencing reaction of the genomic clone using the 30-mer used for
the primer extension reaction. Panel B shows the primer extension reaction which was carried
out at 37°C for two hours using the MMLV reverse transcriptase.
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Figure 1.10. Alignment of the deduced amino acid sequence of HGXPRTase of
T. foetus with the amino acid sequences for HS: human (Jolly, et al., 1983), SM;
S. mansoni (Craig, et al., 1988), PF; P. falciparum (King and Melton, 1987), TG;
T. gondii (Roos, 1994; Vasanthakumar, et al., 1994), TB; T. brucei (Allen and
Ullman, 1993), TC; T. cruzi (Allen and Ullman, 1994), LD; L. donovani (Allen, et al.,
1993), CF; C. fasciculata (Ullman, 1994) and VH; V. harveyi (Showalter and
Silverman, 1990).

Shading in red represents amino acids identical to the deduced T. foetus sequence, and light red
represents chemically similar amino acids to the deduced Tfoetus sequence. Regions in blue
represent the residues involved in PRPP-binding and the flexible catalytic loop (dark
blue=identical and light blue=similar). Residues shaded in yellow represent amino acids
involved in purine base binding and specificity (dark yellow-identical and light yellow-similar).
Numbering in the text used for sequence comparisons refers to the P. falciparum sequence, unless
otherwise noted in the text.
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Figure 1.11. Alignment of the deduced amino acid sequence of HGXPRTase of
T. foetus with the amino acid sequences for EC; E. coli (Pratt and Subramani,
1983), VH; V. harveyi (Showalter and Silverman, 1990) and LL; L. lactis (Nilsson
and Lauridsen, 1992).

Shading in red represents amino acids identical to the deduced T. foetus sequence, and light red
represents chemically similar amino acids to the deduced Tfoetus sequence. Regions in blue
represent the residues involved in PRPP-binding and the flexible catalytic loop (dark
blue=identical and light blue=similar). Residues shaded in yellow represent amino acids
involved in purine base binding and specificity (dark yellow-identical and light yellow-similar).
Residues shaded in dark purple represent identical residues and light purple represent
chemically similar residues between the prokaryotic sequences.
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CHAPTER 2: EXPRESSION, PURIFICATION AND
CHARACTERIZATION OF THE RECOMBINANT
TRITRICHOMONAS FOETUIS HYPOXANTHINE-GUANINE
XANTHINE PHOSPHORIBOSYLTRANSFERASE

INTRODUCTION

Earlier work from this laboratory (Beck and Wang, 1993) has demonstrated

that purification of the native T. foetus HGXPRTase yields approximately 0.8 mg

of active enzyme from 2 liters of mid-logarithmic culture of the parasite. In order

to obtain enough enzyme to start kinetic and structural studies, about 40 liters of

the cultured parasite would be needed. It would be more cost and labor effective

to clone the gene encoding the enzyme into an expression system which could

produce the recombinant enzyme in native form at much higher levels.

Many prokaryotic systems have been explored for expression of HGPRTases;

for example, the HGXPRTase of Plasmodium falciparum has been expressed in

both E. coli and Salmonella typhimurium using the temperature-inducible A

bacteriophage PL-PR promoter (Shahabuddin and Scaife, 1990), and the human

HGPRTase has been expressed in E. coli using the IPTG inducible bacteriophage

TZ promoter (Free, et al., 1990; Eads, et al., 1994). These systems have expressed

the recombinant enzymes, but in some instances the majority of the enzyme was

inactive (Shahabuddin and Scaife, 1990), or insoluble (Free, et al., 1990). The most

successful method used to express HGPRTases has been with the pbAce vector

and an E. coli mutant, Sø606, which is unable to salvage purine bases other than

adenine (Craig, et al., 1991; Craig, et al., 1992; Allen and Ullman, 1993; Allen and

Ullman, 1994; Eakin, et al., 1995). With p3Ace, expression of the recombinant

protein is regulated by an E. coli alkaline phosphatase promoter on the

expression plasmid.

-
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While the native T. foetus HGXPRTase has been estimated to have a molecular

mass of 24 kDa from both SDS-PAGE and gel filtration chromatography (Beck

and Wang, 1993), the size of the protein is 21.1 kDa based on the predicted amino

acid sequence translated from the cloned full-length gene (Chin and Wang, 1994).

This difference in the estimated and calculated molecular mass may be due to the

inherent inaccuracies in determining protein sizes from polyacrylamide gel

electrophoresis and gel filtration (Laue and Rhodes, 1990). Expression of the

recombinant T. foetus HGXPRTase from the full-length gene will help resolve this

discrepancy.

MATERIAL AND METHODS

Materials

The E. coli strain used for gene expression, Sø606 (Fara, Apro-gpt-lac, thi, hpt,

recA1), was obtained from Dr. P. Nygaard (University Institute of Biological

Chemistry B, Copenhagen, Denmark). The pbAce expression vector was

obtained from Dr. Sydney Craig (University of California, San Francisco, CA)

(Craig, et al., 1991). The partially purified native T. foetus HGXPRTase was

obtained from Dr. Joanne Beck (University of California, San Francisco, CA). [8-

3H]GMP (20 mCi/mmole) was purchased from ICN (Costa Mesa, CA). All

restriction endonucleases were obtained from New England Biolabs (Beverly,

MA) or Gibco/BRL (Gaithersburg, MD). Bacto-tryptone, bacto-agar and vitamin

free Casamino acids were from Difco (Detroit, MI), and Bacto-yeast extract from

Becton Dickinson and Co. (Cockeysville, MD). All the other chemicals were

purchased from Sigma Chemical Co. (St Louis, MO), and were of the highest

purity available.

■
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Expression plasmid construction and gene expression

Polymerase chain reactions (PCR) were used with a pair of designed primers

to generate a fragment of DNA from the genomic clone with an added 5' Ndel

site and a 3' Pst■ site. The product was first subcloned into the plasmid, pCR1000

(In Vitrogen, San Diego, CA), and then digested with Pst■ , partially digested with

Ndel and ligated into the NdeI/PstI cleaved expression plasmid, p5Ace (Craig,

et al., 1991). The resulting construct was named pbTfprt (see Fig. 2.1).

E. coli strain Sø606 was made competent (Hanahan, 1983), transformed with

the expression plasmid, and plated onto LB-ampicillin agar plates. Colonies

from the LB-ampicillin plates were each used to inoculate the induction medium

(MOPS salt supplemented with 11 mM glucose, 1.5 mM thiamine, 148 mM

adenine, 75 pg/ml ampicillin, 0.2% vitamin free Casamino acids and 0.1 mM

equimolar mixture of Na2HPO4 and NaH2PO4)(Craig, et al., 1991) and incubated

at 37°C with aeration for approximately 16 h. Dimethyl sulfoxide was added to a

final concentration of 8% in 1 ml aliquots of the Sø606 possessing pHTfprt

culture, which were then stored at -70°C as frozen stocks. Cell extracts used for

12% SDS-PAGE analysis (Laemmli, 1970) (see Appendix D) and enzyme assays

were prepared by pelleting the bacteria cells from 3 ml of the culture,

resuspending in 100 pil TE buffer containing 0.9 mM PRPP and 3 mg/ml

lysozyme, incubating at 37°C for 15 min and freeze-thawing three times to lyse

the cells. Cell debris was removed by microcentrifugation. The intensities of

protein bands in the stained gel were determined using a LKB 2202 Ultroscan
Laser Densitometer.

Purification of the enzyme

Fifty microliters of a mid-logarithmic culture of Sø606/pBT■ prt was used to

inoculate 500 ml of the induction medium in a 2 L flask. The resulting culture
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was incubated at 37°C with aeration for approximately 16 h. The cells were

pelleted and resuspended in 10 ml of lysis buffer (25 mM Tris-HCl, pH 7.2, 10

mM MgCl2, 1 mM DTT, 1 mM PRPP, 1 mM PMSF, 1 pg/ml leupeptin and 1

pg/ml pepstatin) and lysed by sonication. Nucleic acids were precipitated with

protamine sulfate at a ratio of 1:20 (w/w, protamine sulfate/total protein), and

the pellets were removed by centrifugation at 5000g for 10 min. As described by

Beck and Wang (Beck and Wang, 1993), ammonium sulfate was added to the

supernatant to 45% saturation, incubated on ice for one hour and centrifuged at

10,000xg for 20 min. More ammonium sulfate was then added to the

supernatant, to 75% saturation. The suspension was incubated on ice for 1 h and

then centrifuged at 10,000xg for 20 min. The protein pellet was resuspended in

Buffer A (50 mM Bis-Tris, pH 6.8, 6 mM MgCl2 and 1 mM DTT) and desalted

over a 9.1 ml Sephadex G-25 M column (Pharmacia LKB, Uppsala, Sweden).

Twenty milliliters of the desalted sample were loaded onto a Mono Q column

(Pharmacia LKB, Uppsala, Sweden), equilibrated with Buffer A, and eluted with

a non-linear gradient of 0-0.5 M KCl at a rate of 3 ml/min. PRPP was added to

each of the collected fractions to a final concentration of 1 mM, and the fractions

were assayed for HPRTase activity. Those fractions containing the activity were

pooled, dialyzed overnight at 4°C in 100 volumes of Buffer A, and applied to a

Mono P column (Pharmacia LKB, Uppsala, Sweden), equilibrated with Buffer A,

and eluted with 7.5% Polybuffer 74-HCl, pH 4.0 containing 6 mM MgCl2 and 1

mM DTT at a flow rate of 0.8 ml/min. The pH of each fraction was adjusted to

approximately 7 using 1 M Tris-HCl, pH 8.5. Fractions were assayed for

HPRTase activity and analyzed by SDS-PAGE. To determine the pl of the

purified enzyme, the pH of each fraction collected from the mono P column was

measured directly with a Fisher Accumet pH meter.
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Enzyme assay

Five microliters of the sample of purified enzyme were added to 20 pil of a

reaction mixture of 0.3 M Tris-HCl pH 7.8, 18 mM MgCl2, 0.5 mM PRPP

containing either 17.5 mM 14C-hypoxanthine (57.0 mCi/mmole), 18.2 pm
14C-guanine (55.0 mCi/mmole), or 17 pm 14C-xanthine (59.0 mCi/mmole). The

reaction mixture was incubated at 37°C for 5 min, and the reaction stopped with

1 mM hypoxanthine and 1 mM IMP. Twenty microliters of the reaction mixture

was spotted on a PEI cellulose sheet, and the chromatogram was developed with

5 mM NH4Ac pH 4.5, dried and exposed to X-ray film (Yuan, et al., 1990).

Determination of the pH optimum for the enzyme employed the same assay

method with the following changes: 0.3 M sodium acetate was used as the buffer

system for pH 4, 4.5, 5 and 5.5, 0.3 M Bis-Tris was used as the buffer system for

pH 6, 6.4 and 6.8 and 0.3 M Tris-HCl was used as the buffer system for pH 7, 7.2,

7.4, 7.6, 7.8, 8, 8.5 and 9.

Gel filtration

A Superose 6 FPLC column (Pharmacia LKB, Uppsala, Sweden) was

equilibrated with Buffer A (50 mM Bis-Tris, pH 6.8, 6 mM MgCl2 and 1 mM

DTT), and 100 pig each of blue dextran (2000 kDa), bovine serum albumin (67

kDa), ovalbumin (44 kDa), chymotrypsinogen (25.66 kDa) and RNase A (13.7

kDa) were applied to the column as molecular weight calibration standards

along with approximately 100 pig of the purified enzyme. The proteins were

eluted at a flow rate of 0.4 ml/min and 1 ml fractions were collected and assayed

for HPRTase activity.

Preparation of samples for mass spectrometry

The purified enzyme was dialyzed against double deionized water and dried

on a Savant or lyophilyzer. The samples were then submitted to mass

is il
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spectrometry analysis which was provided by the Mass Spectrometry Facility at

the University of California, San Francisco, and by David King at HHMI,

Department of Molecular and Cell Biology at the University of California,

Berkeley.

Enzyme labeling by [8-3H]-GMP dialdehyde

[8-3H]-GMP dialdehyde was synthesized from (8-3H] GMP (20 mCi/mmole)
as follows (Gutensohn and Huber, 1975, Yuan, et al., 1992): 10 pil of 0.5 nM (8-3H]

GMP were mixed with 2 pil of 1 mM NaIO4 in 100 mM of phosphate buffer, pH 7

and incubated at room temperature for 1 h. The excess periodate was depleted

by addition of 1 pil of 10 mM ethylene glycol. The oxidized (8-3H] GMP was

allowed to react with the protein at 4°C for 16 h. The reaction mixtures were

then each mixed with SDS-sample buffer, boiled for 5 min and loaded on a 12%

polyacrylamide gel. After electrophoresis, the gel was soaked in Fluoro-Hance

(RPI, Mount Prospect, Ill) for 30 min, dried and exposed to X-ray film.

RESULTS

Expression of the T. foetus HGXPRTase in E. coli

The expression of p3Tfprt in the soluble fraction of transformed Sø606 is

demonstrated by a prominent protein band at approximately 24 kDa on a

Coomassie blue-stained SDS-PAGE gel (Fig. 2.2). Whereas, cell lysates of the

negative control, Sø606/pbAce, lacked a prominent band of the same size. The

recombinant HGXPRTase appears to constitute at least 50% of the total cellular

protein of the transformed E. coli by densitometer scanning of the total proteins

on an SDS-PAGE gel. Partially purified cell extracts of Sø606/pBTfprt

demonstrated specific activities for HPRTase, GPRTase and XPRTase at 965 nmol

min-1 (mg protein)-1,952 nmol min-1 (mg protein)-1 and 909 nmol min-1 (mg
protein)-1, respectively.
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Purification of the recombinant T. foetus HGXPRTase

HGXPRTase was purified to at least 95% homogeneity from bacterial cells

expressing the product of the pbTfprt construct following a modified version of

the protocol used by Beck and Wang (Beck and Wang, 1993). The elution profile

from the mono Q column is shown in Figure 2.4, and the enzyme activity is

associated with the largest eluted protein peak (data not shown). A typical

protocol of enzyme purification is summarized in Table 2.1, and the SDS-PAGE

analysis of the purification is shown in Fig. 2.3. The yield from this enzyme

preparation was 7.6 mg of purified recombinant HGXPRTase per liter of E. coli

culture, the specific activity for HPRTase was 3685 nmol min-1 (mg protein)-1, the

fold of purification was 4.3, and 66.2% of the enzyme was recovered. Later

enzyme preparations yielded between 20 to 60 mg of purified recombinant

HGXPRTase per liter of E. coli culture (data not shown). This difference in yield

is affected by the efficiency of bacterial cell breakage. The mono P column was

added to the original protocol to provide an additional purification step and to

concentrate the sample.

Characterization of the recombinant T. foetus HGXPRTase

The isoelectric point of the recombinant enzyme was determined by

measuring the pH of the fractions collected from the mono P column with a pH

meter. The plot of pH versus fraction number is shown in Fig. 2.5, and the pi

was determined to be 4.8. This is the average of the values determined for

fractions 30 and 31 which both demonstrated HGXPRTase activity. This value is

identical to the pl calculated from the amino acid sequence. The pH optimum of

the recombinant enzyme is 6.6 for HPRTase activity, 6.8 for GPRTase activity and

6.6 for XPRTase activity (data not shown). The recombinant enzyme retains 50%

of its activity over a pH range of 5.5 to 8.0.

* if
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The apparent molecular weight of the recombinant HGXPRTase was

measured by gel filtration on a Superose 6 column and found to be 24 kDa

(Fig. 2.6). Like the native enzyme, the recombinant enzyme, also elutes from the

gel filtration column as a monomer while fully retaining its activity. The

molecular mass of the recombinant enzyme was determined on three separate

occasions using mass spectrometry. The first determination was carried out on a

laser desorption mass spectrometer and gave a broad, weak signal at a molecular

mass of 21519 (data not shown). The second and third determinations were

carried out using electrospray ionization mass spectrometry and gave molecular

masses for two species in the sample; the first species had a molecular mass of

21093.91 and 21091.04 and the second species had a molecular mass of 20963.77

and 20960.5 (data not shown). This second species is most likely the recombinant

T. foetus HGXPRTase without the formylmethionine residue at the amino

terminus. Thus, the data from mass spectrometry agree with the molecular mass

calculated from the protein sequence, whereas the same protein exhibited a

higher mass of 24 kDa in SDS-PAGE and gel filtration.

SDS-PAGE analysis of an extract of Sø606/pbTfprt and a partially purified

native enzyme both labeled with oxidized (8-3H] GMP showed that this method
has labeled only one protein species in each sample. The two radiolabeled bands

have a similar molecular massof 24 kDa (Fig. 2.7).

DISCUSSION

The pBAce vector (Craig, et al., 1991) has been used successfully to express

high levels of HGPRTasesfrom many origins; such as the human (Craig, et al.,

1992), S. mansoni (Craig, et al., 1991), P. falciparum (Eakin, et al., 1995), T. brucei

(Allen and Ullman, 1993) and T. cruzi (Allen and Ullman, 1994) HGPRTases.

Levels of 30–45 mg of the recombinant S. mansoni HGPRTase/liter of culture

g i■
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(Craig, et al., 1991), 100 mg of the recombinant T. brucei HGPRTase/liter of

culture (Allen and Ullman, 1993) have been obtained. The recombinant T. cruzi

HGPRTase makes up approximately 70% of the total cellular protein (Allen and

Ullman, 1994). The recombinant T. foetus HGXPRTase makes up at least 50% of

the total cellular protein when it is expressed in transformed E. coli. This is 500

fold over the native enzyme, from its original source, which composes

approximately less than 0.1% of the parasite's total cellular protein (Beck and

Wang, 1993). The average yield from one liter of bacterial cells is approximately

20 mg of purified recombinant T. foetus HGXPRTase. Higher yields are obtained

with higher percentages of bacterial cell breakage.

In addition to providing large amounts of purified T. foetus HGXPRTase, this

expression system also produces an active enzyme with no apparent differences

from the native enzyme. Some properties of the recombinant T. foetus

HGXPRTase are compared to those of the native enzyme in Table 2.2. The

molecular weight (24 kDa), as determined by SDS-PAGE and gel filtration, for

both the native and recombinant enzyme is identical. The specific activities of
the two enzymes for hypoxanthine, guanine and xanthine are similar, and the pH

range for maximal enzyme activity is similar suggesting that the catalytic

function of the two proteins are similar. The pi values for the two proteins are

similar, though not identical, with the pi of the recombinant enzyme being more

acidic than the pi of the native enzyme. The difference in the pl values may be

due to experimental errors in determining the pl. or it may indicate that the

native enzyme purified from the parasite may undergo post-translational

modification, such as glycosylation.

It is interesting to note that the pi values of two forms of HGPRTase purified

from bovine brain are 7.85 and 8.10 (Paulus, et al., 1980). These values are very
unusual because all the pi values of HGPRTases from mammalian sources have
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been in the acidic range (Olsen and Milman, 1977; Gutensohn, et al., 1976; Olsen

and Milman, 1974). The enzymes isolated from bovine brain are also more basic

proteins than the parasitic enzyme. The difference in substrate specificity and

isoelectric characteristics of the bovine and tritrichomonal enzyme may aid in

design of a specific inhibitor for the parasitic enzyme.

Periodate-oxidized GMP specifically labels the active site (Gutensohn and

Huber, 1975; Kanaaneh, et al., 1994). The guanosine 2',3'-dialdehyde-5'-

phosphate forms a covalent bond with an amino acid residue near the nucleotide

binding site of the HGPRTases (Kanaaneh, et al., 1994). Labeling an extract of

Sø606/pbTfprt and partially purified native T. foetus HGXPRTase with

periodate-oxidized (8-3H] GMP demonstrate that the label is specific since a

single species, each approximately 24 kDa, is labeled in each sample.

There appears to be no difference in the calculated and experimentally

determined molecular mass of the recombinant enzyme, since the calculated

mass is 21089.699 and the experimentally determined values are 21093.91 and

21091.04. The second species seen on mass spectrometry with values of 20963.77

and 20960.5 could be the enzyme without the formylmethionine residue at the

amino terminus, since the N-formylmethionine residue is normally removed

from proteins expressed in prokaryotes by the successive action of a deformylase

(Adams, 1968) and a methionyl-aminopeptidase (Takeda and Webster, 1968; Ben

Bassat, et al., 1987; Miller, et al., 1987). The high level of expression of

HGXPRTase could saturate one or both of these enzymes, and the recombinant

HGXPRTase expressed in E. coli would be isolated as a mixture, with and

without the N-formylmethionine. Results from protein sequencing the N

terminus (data not shown) also agree with the mass spectrometry results. The

first molecular mass determination by laser desorption mass spectrometer may

have a large error associated it since the signal was broad and weak. The
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accuracy of the apparent molecular weight determined by SDS-PAGE and gel

filtration chromatography both depend on the assumption that the unknown

protein resembles the protein standards (Laue and Rhodes, 1990). The protein

standards used were compact spherical proteins. The shape of the human

HGPRTase is not spherical, since the regions of the enzyme which make-up the

nucleotide (GMP) binding cleft form a concave surface. Based on the HGPRTase

alignments in Chapter 1, the shape of the T. foetus enzyme should be similar to

that of the human enzyme. Thus, the difference between the true molecular mass

and the apparent molecular weight as determined by SDS-PAGE or gel filtration

could be postulated to occur because the shape of the folded enzyme causes it to

behave as if it was a larger protein.

The high expression of recombinant T. foetus HGXPRTase in its apparent

native form will allow the purification of large quantities of active enzyme. This

will enable us to further characterize the enzyme with both kinetic and structural

studies. Information gleaned from these studies could be used for the structure

based drug design of inhibitors for the treatment of bovine urogenital
trichomoniasis.
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Figure 2.1. Construction of the expression plasmid pbTfprt.

Using the polymerase chain reaction (PCR) a 608bp fragment of p'■ fg1 encoding the T. foetus
HGXPRTase was amplified. The oligonucleotide primers used added a 5' Ndel site and a 3' Pst■
site. The PCR-amplified product was first subcloned into the plasmid pCR1000 (In Vitrogen, San
Diego, CA), and the resulting plasmid, pCRTfprt, was digested with Pst■ and partially digested
with Ndel. This Ndel/Pstl fragment was then ligated into pbace which had been digested with
Pst■ and Ndel to generate pHT■ prt.
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Figure 2.2. SDS-PAGE of whole cell extracts of (A) Sø606/pBTfpri and (B)
Sø606/pBAce.

The gel was stained with Coomaisie blue. Sizes of molecular weight markers (in kDa) are
indicated to the left of the gel.
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Figure 2.3. SDS-PAGE gel of the Purification of Recombinant T. foetus
HGXPRTase.

Lane A. Cell lysate of Sø606/pbTfpri
Lane B. Supernatant after protamine sulfate precipitation.
Lane C. Supernatant after a 45% ammonium sulfate precipitation.
Lane D. Pellet after a 75% ammonium sulfate precipitation.
Lane E. Fraction with HGXPRTase activity after elution from an HPLC mono Q column.
Lane F. Fraction with HGXPRTase activity after elution from an HPLC mono P column.
Sizes of molecular weight markers in kilodaltons are indicated to the left of the gel.
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Figure 2.4. Chromatogram of protein eluted from an HPLC mono Q column.
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Figure 2.5. Determination of the pi for recombinant T. foetus HGXPRTase.

Recombinant T. foetus HGXPRTase was applied to a Mono P isoelectric chromatofocusing column
at a flow rate of 0.8 ml/min. Fractions collected every minute were assayed for HPRTase activity,
and the pH of each fraction was measured directly on a Fisher Accumet pH meter.
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2 + | | |
+

1.8 –H BSA (67kDa)
--

Ovalbumin (44 kDa)
1.6 –H

--

log MW
-

1.4 I Chymotrypsinogen l
-

(25.66 kDa)
-

HGXPRTase

1.2 —H (~24 kDa) Myoglobin
-- | (17 kDa) T

T
1 | } | |

30 35 40 45 50 55

Retention Time (min)

Figure 2.6. Molecular weight determination of the recombinant T. foetus
HGXPRTase.

Purified HGXPRTase was mixed with molecular weight standards and applied to a Superose 6
gel filtration column at a flow rate of 0.4 ml/min. Fractions collected every minute were assayed
for HPRTase activity. The elution time of the molecular weight standards was plotted versus the
molecular weight of the standards, and the elution time of the peak HPRTase activity was
compared to that of the protein standards.
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Figure 2.7. SDS-PAGE of native T. foetus HGXPRTase and whole cell extract of
Sø606 with pBT■ prt labeled with oxidized (8-3H] GMP.
Oxidized (8-3H] GMP was synthesized, and samples were labeled as described in Materials and
Methods.

Lane A. Sø606 with pPT■ prt.
Lane B. Native T. foetus HGXPRTase.
Sizes of molecular weight markers are indicated to the left of the gel.
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Table2.1.Purification
ofthe
recombinantHGXPRTase. StepsVolume[Protein]TotalproteinTotalactivitySpecificactivityPurificationYield

HPRTHPRTHPRTHPRT

mlmg/mlmgnmol/minnmol/min-mgFold%

Celllysate303.3510085,1008511100 Protaminesulfate302.7482.2141,7951725
2167

precipitation 45%(NH4)2SO4
400.41611,2327020.8213.2 75%(NH4)2SO417.52.955182,31416141.996.7 MonoQ271.1932.1112,60735084.1132 Mono

P101.5315.356,38036854.366.2
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Table 2.2. Comparison of Recombinant and Native T. foetus HGXPRTase
Recombinant Native

Molecular weight (kDa) 24 24

Isoelectric point 4.8 5.5

Specific activity 2856 2294

nmol IMP/min-mg
Specific activity 2496 2179

nmol GMP/min-mg
Specific activity 1567 1399

nmol XMP/min-mg
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CHAPTER 3: STEADY-STATE KINETICS OF THE
RECOMBINANT HYPOXANTHINE-GUANINE-XANTHINE
PHOSPHORIBOSYLTRANSFERASE OF TRITRICHOMONAS
FOETUIS

INTRODUCTION

Hypoxanthine-guanine phosphoribosyltransferase (HGPRTase; EC 2.4.2.8)

catalyzes the transfer of the phosphoribosyl moiety from O-D-5-phosphoribosyl

1-pyrophosphate to the imidazole N-9 of a purine base (either hypoxanthine,

guanine or xanthine) to form a purine nucleotide (either IMP, GMP or XMP) and

pyrophosphate (Fig. 3.1). This reaction occurs with an anomeric inversion of the

ribosyl C1.
O

N

O
& Cº.

P O. H P R

& | 2.
+

YY
HGXPRTase

YY
Nº R1

PP, == º

N ~ 1. Mg” H

+ PP;

§ -N’ R, HO OH HO OH

Figure 3.1. Reaction catalyzed by the HGXPRTase of Tritrichomonas foetus.

hypoxanthine: R1 = -H, guanine: R1 = -NH2, xanthine: R1 = =O

HGPRTase plays a role in purine metabolism and belongs to a class of

approximately ten phosphoribosyltransferases (PRTases) which catalyze similar

reactions involving a nitrogenous base, a divalent metal ion and PRPP (Musick,

1981). The mechanism of a few of the PRTase-catalyzed reactions have been

studied, but the mechanism for a majority of these reactions remains unknown.

No single kinetic mechanism can be used to define PRTase-catalyzed reactions,
but two mechanisms have been observed. Studies of the human APRTase

(Srivastava and Beutler, 1971; Thomas, et al., 1973), E. coli APRTase (Hochstadt,

79
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1978), yeast OPRTase (Victor, et al., 1979) and the yeast UPRTase (Natalini, et al.,

1979) indicate that these enzymes follow a ping-pong kinetic mechanism, which

involves an enzyme-ribosylphosphate intermediate. However, a sequential

mechanism, which requires both substrates to bind to the enzyme prior to the

release of any product, appears to be favored by many PRTases (Ali and Sloan,

1982; Bhatia, et al., 1990; Giacomello and Salerno, 1978; Musick, 1981; Yuan, et al.,

1992) with ordered and random binding of substrates or release of products

being observed.

The HGXPRTase of T. foetus has been proposed as a possible target for the

design of chemotherapeutic agents against this parasite (Beck and Wang, 1993;

Chin and Wang, 1994; Wang, et al., 1983). Kinetic analyses of both the parasitic

HGXPRTase and the host HGPRTase are necessary to elucidate any differences

in the catalytic mechanism that may exist and may be exploited to design specific

inhibitors to the parasitic enzyme. The cDNA encoding the HGXPRTase of

T. foetus has been expressed in Escherichia coli (Chin and Wang, 1994), allowing

large quantities of the enzyme to be available for kinetic studies with

hypoxanthine, guanine and xanthine and also product inhibition studies in both

the forward and reverse reactions. The model postulated from these studies is an

ordered bi-bi mechanism where the first substrate bound is Mg2PRPP and the

last product released is the purine nucleotide.

MATERIALS AND METHODS

Materials

All reagents, including hypoxanthine, guanine, xanthine, IMP, GMP, XMP,

pyrophosphate and the tetrasodium salt of PRPP, were purchased from Sigma

Chemical Co. (St. Louis, MO), and of the highest purity available. Xanthine
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oxidase (20 U/ml) was from Boehringer Mannheim (Indianapolis, IN), and the

guanase (0.85 U/ml) was from Sigma Chemical Co. (St. Louis, MO).

Enzyme purification

T. foetus HGXPRTase was purified as described in Chapter 2. After elution

from the Mono P column, the HGXPRTase-containing fractions were pooled,

dialyzed against storage buffer (50 mM Bis-Tris, pH 6.8, 6 mM MgCl2 and 1 mM

DTT) and stored in small aliquots at -80°C.

Enzyme assay

Kinetic data were collected using a Gilford Response 2 spectrophotometer

(Ciba-Corning Geigy, Medfield, MA) equipped with a kinetics accessory. The

formation of IMP and GMP were followed spectrophotometrically at 245 and

257.5 nm, respectively (Hill, 1970). The formation of XMP was followed

spectrophotometrically at 247 nm, which is the wavelength where the difference

in absorbance between XMP and xanthine is the largest. All measurements were

carried out in 100 mM Tris-HCl, pH 7.0 and 12 mM MgCl2 at 37°C. Under these

conditions, the change in extinction coefficient for the formation of IMP from

hypoxanthine, GMP from guanine and XMP from xanthine were 1250,6410 and

5440 M−1 cm−1, respectively. The final volume of the assay mixture, containing
various amounts of substrates, was 350 pil.

IMP pyrophosphorolysis was monitored spectrophotometrically as described

by Giacomello and Salerno (Giacomello and Salerno, 1978) and Yuan et al. (Yuan,

et al., 1992). The formation of hypoxanthine was monitored indirectly by the

continuous spectrophotometric assay of uric acid production in the presence of

0.02 U/ml xanthine oxidase. The reaction was initiated by the addition of the

purified HGXPRTase, and the formation of uric acid was monitored at 293 mm.

A molar extinction coefficient of 12,000 M−1 cm-1 was used for uric acid at 293 mm
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(Kalckar, 1947). XMP pyrophosphorolysis was also followed by the continuous

spectrophotometric assay of uric acid formation from xanthine in the presence of

0.02 U/ml xanthine oxidase. The formation of guanine from GMP was

determined by observing uric acid formation in the presence of both guanase

(0.01 U/ml) and xanthine oxidase (0.02 U/ml). Again, all measurements were

carried out in 100 mM Tris-HCl, pH 7.0, and 12 mM MgCl2 at 37°C. Data are

averaged from five independent determinations.

In determining the initial velocities for the forward reaction, the concentration

of hypoxanthine varied between 2-30 HM; the concentration of guanine varied

between 1-30 HM; the concentration of xanthine varied between 5-200 puM; and

the concentration of Mg2PRPP ranged between 20-1000 p.m. In the reverse

reactions, the concentration of Mg|MP varied from 1-100 puM; the concentration

of MgCMP varied from 75-1000 p.M; the concentration of MgxMP varied from 5

150 p.m.; and the concentration of MgPPiranged from 100-2000 p.M.

Work by Salerno and Giacomello (Salerno and Giacomello, 1981) have

demonstrated that the actual substrates of HGPRTase are the dimagnesium salt

of PRPP (Mg2PRPP) and monomagnesium complexes of IMP, GMP, XMP and

PPi (MgTMP, MgCMP, MgxMP, and MgPPi, respectively). Assuming that

hypoxanthine, guanine and xanthine do not form Mg2+ complexes, the

concentrations of Mg2PRPP, Mg|MP, MgCMP, MgxMP, and MgPPi used in data

analysis were calculated as described previously (Giacomello and Salerno, 1978;

Salerno and Giacomello, 1981; Yuan, et al., 1992).

Data analysis

Initial rate data were fitted to equations 1-3 using kinetics software from

BioMetallics, Inc. (K-CAT) and IntelliKinetics (KinetAsyst) with Gauss-Newton

analysis.

i
;
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For competitive inhibition

v = VmaxS / [Km (1 + I/Kis) + S ] (1)

For noncompetitive inhibition

v = VmaxS / [Km (1 + I/Kis) + S(1 + I/Kii)] (2)

For uncompetitive inhibition

v = VmaxS / [Km + S(1 + I/Kii)] (3)

The best fits were determined by the relative fit error and errors in the

constants. The nomenclature is that of Cleland (Cleland, 1963): v, initial velocity;

Vmax, maximum velocity; S, substrate concentration; Km, apparent Michaelis

constant; Kis and Kii, slope and intercept inhibition constants, respectively; I,
inhibitor concentration.

RESULTS AND DISCUSSION

Purification of the recombinant T. foetus HGXPRTase has been reported in

Chapter 2. The purified enzyme appears to be stable at -80°C for at least six
months.

The steady-state kinetics of synthesis and pyrophosphorolysis of IMP, GMP

and XMP and the product inhibitions of these reactions were analyzed to

determine the order of substrate binding and product release. Initial rates of

these reactions were proportional to enzyme concentration, and substrate

inhibition was not observed under these conditions (data not shown).

Steady-state kinetics

The first step in elucidating the mechanism of a multiple substrate enzyme

catalyzed reaction is the use of initial.velocity experiments to determine if the

reaction proceeds by a ping pong or a sequential mechanism. An enzyme

follows a ping pong mechanism if a product is released between the addition of

i
;
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two substrates (Segel, 1975), and the scheme is shown below using Cleland's
notation.

PRPP º purine E-purine nucleotide

E (E-PRPP= F-PRPP) F (F-purine= E-purine nucleotide) E

Scheme 1

In this mechanism the enzyme exists in two stable forms unassociated with

substrates or products, E, F. Double-reciprocal plots obtained for an enzyme

catalyzed reaction which follows a ping pong mechanism are characterized by

the patterns of parallel lines. Examples of PRTases following a ping pong

mechanism include the human APRTase (Srivastava and Beutler, 1971; Thomas,

et al., 1973), yeast OPRTase (Victor, et al., 1979) and yeast UPRTase (Natalini, et

al., 1979). If, instead, an enzyme follows a sequential mechanism, all substrates

must bind to the enzyme, forming a ternary complex, prior to any product

release (Segel, 1975) (see schemes 2 and 3).
E-purine

PRPP rt. f ~f~,
E E-PRPP (E-PRPP-purine E. E. purine nucleotide-PP,) E-purine E

nucleotide

Scheme 2

PRPP Orotate OMP PP,

E (E-PRPP-orotate= E-OMP-PP) E

Orotate PRPP PP, OMP
Scheme 3

In these mechanisms the enzyme exists in only one stable form, E. Characteristic

double-reciprocal plots observed for an enzyme-catalyzed reaction following a

i
;
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sequential mechanism are the pattern of lines converging to the left of the 1/V

axis. Examples of PRTases following a sequential mechanism include the

schistosomal HGPRTase (Yuan, et al., 1992), the yeast HGPRTase (Ali and Sloan,

1982), the human HGPRTase (Giacomello and Salerno, 1978) and the Salmonella

typhimurium OPRTase (Bhatia, et al., 1990).

Double-reciprocal plots of initial velocity versus the concentration of one

substrate at a series of fixed concentration of the other, for both forward (Figs.

3.2-3.4) and reverse reactions (Figs. 3.5-3.7) of the T. foetus HGXPRTase, give a

family of converging straight lines (Figs. 3.2-3.13). Plots of the data for the

forward reactions show lines intersecting below the 1/[S] axis, which would be

characteristic of either a ping-pong or a sequential mechanism (Figs. 3.2–3.4).

However, the plots of the data for the reverse reactions clearly indicate a

sequential mechanism since these plots also show intersecting lines, with the

point of intersection occurring above the 1/[S] axis for most of the plots (Figs.

3.5–3.7).

Using the method of Ainsworth (Ainsworth, 1977), the Michaelis constant

(Km) and dissociation constant (Ks) for the substrates and products were

calculated from secondary plots of the initial velocity experiments and are listed

in Table 3.1. The results indicate that the T. foetus HGXPRTase favors

hypoxanthine and guanine over xanthine, with the former two equally favored

as substrates. This is consistent with earlier results of Beck and Wang (Beck and

Wang, 1993). The enzyme may not bind xanthine as well as hypoxanthine and

guanine as indicated by the Km values for hypoxanthine, guanine and xanthine,

which are 1.0 + 0.3 pm, 1.8 + 0.1 p.M and 31.2 + 4.9 p.m., respectively. The Vmax

values are 22.2, 6.9 and 20.5 pmol/min-mg protein for hypoxanthine, guanine

and xanthine, respectively.

i
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Comparison of the Km values obtained for the T. foetus enzyme with the Km

values of other HGPRTases is shown in Table 3.2. The values for the Km of

MgPPi for the schistosomal and human enzymes are of the same order of

magnitude as their Km values for Mg2PRPP (Giacomello and Salerno, 1978; Yuan,

et al., 1992). However, the values of the Km of MgPP for the T. foetus

HGXPRTase (500 puM,422.5 mM and 5070 HM) are at least ten-fold larger than the

Km values for Mg2PRPP (43.5 puM, 55.6 puM and 111.1 piM). Thus, it appears that

MgPPi may not bind as well to the T. foetus enzyme as compared to the purine

bases or to Mg2PRPP. Since PPi serves as a high energy compound in T. foetus,

the weak binding of MgPPi to HGXPRTase would allow PPi to be available for

reactions that are coupled to the consumption of a high energy compound, such

as the glycolytic reaction, mediated by PPi—dependent phosphofructokinase

(Mertens, et al., 1989; Müller, 1992). One can speculate that this preference for

binding substrates of the forward reaction is necessary to ensure that the purine

salvaging activities of the enzyme are optimal, since HGXPRTase is the only

purine salvaging enzyme in T. foetus (Wang, et al., 1983). Consistent with this

finding is the observation that the Km value of MgCMP, is approximately 100

fold larger than the Km value of guanine. Again, one could speculate that this

would ensure that the forward reaction of the enzyme to be favorable. However,

since the value of the Km for Mg|MP is of the same magnitude as the Km for

hypoxanthine, the Km value for MgCMP needs to be reconfirmed before any
conclusions can be made.

Product inhibition

Cleland has formulated a set of rules for predicting the type of inhibition a

compound exerts on an enzymatic reaction as a function of a given substrate

(Cleland, 1977). The rules are as follows: An inhibitor is competitive if it binds

reversibly to the same enzyme form (or different forms connected by a series of

i
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reversible steps) that binds the variable substrate. In this case, the inhibitor only

affects the slope of a double reciprocal plot. An inhibitor is uncompetitive, if it

binds to an enzyme that is different from the form that binds the variable

substrate. In this case, the inhibitor only affects the 1/V axis intercept of a

double reciprocal plot. An inhibitor is noncompetitive if its binding affects the

binding of the variable substrate, but it does not necessarily bind the same site in

the enzyme as the substrate. In this case, the inhibitor affects both the slope and

the 1/V axis intercept of a double reciprocal plot.

In order to identify whether the sequential mechanism is ordered or random,

product inhibition was analyzed for the phosphoribosyltransferase and the

pyrophosphorolysis reactions. MgFPi was noncompetitive with respect to both

hypoxanthine (Fig. 3.8a) and Mg2PRPP (Fig. 3.8b), while Mg|MP, the second

product, is noncompetitive with respect to hypoxanthine (Fig. 3.9a) but

competitive with respect to Mg2PRPP (Fig. 3.9b). Likewise, MgFPi is

noncompetitive with respect to both guanine (Fig. 3.11a) and Mg2PRPP (Fig.

3.11b), while MgCMP, the second product is, noncompetitive with respect to

guanine (Fig. 3.12a) but competitive with respect to Mg2PRPP (Fig. 3.12b).

Product inhibition studies of XMP synthesis and XMP pyrophosphorolysis were

not measurable due to the insolubility of MgPPi at high concentrations.

However, in agreement with the previous results, MgxMP is noncompetitive

with respect to xanthine (Fig. 3.13a), but competitive with respect to Mg2PRPP

(Fig. 3.13b). Results of product inhibition studies of the pyrophosphorolysis

reaction agree with the product inhibition studies of the

phosphoribosyltransferase reaction. Mg2PRPP is competitive with respect to

Mg|MP (Fig. 3.10a) and Mg2(MP (Fig. 3.14a), but noncompetitive with respect to

MgPPi (Fig. 3.10b and Fig. 3.14b). The product inhibition patterns, Kii and Kis
values are listed in Table 3.3. Product inhibition studies of the GMP

.
;
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pyrophosphorolysis reaction could not be measured due to a contamination of

the guanase with 5'-nucleotidase and purine nucleotide phosphorylase (data not

shown). Product inhibition studies of the pyrophosphorolysis reaction using

hypoxanthine, guanine and xanthine could not be examined due to the presence

of xanthine oxidase and guanase activities. Product inhibition studies with

saturating concentrations of the substrates were hampered by the insolubilities of

the bases and the high UV absorbance of these compounds at the wavelengths
used to monitor the reactions.

The results of the product inhibition studies of the T. foetus HGXPRTase

indicate that the Mg-complexed purine nucleotides are competitive with respect

to Mg2PRPP, and when the reaction is reversed, Mg2PRPP is competitive with

respect to the Mg-complexed purine nucleotides. All other product inhibition

patterns were noncompetitive. Thus, Mg2PRPP and the Mg-complexed purine

nucleotides bind to the same enzyme form; consequently, the minimum kinetic

model that describes the experimental data is an ordered bi-bi mechanism. Since

the only times that the same form of the enzyme exists is prior to binding the first

substrate and after release of the last product, Mg2PRPP must bind the enzyme

first and the Mg-complexed purine nucleotides must be released last. Scheme 4

shows the proposed mechanism for the T. foetus HGXPRTase.
E-purine

PRPP rt. f nucleotide

E E-PRPP (E-PRPP-purine Fe E-purine nucleotide-PP) E-purine E
nucleotide

Scheme 4

The kinetic mechanism of a few PRTases have been presented (see scheme 1, 2

and 3). The product inhibition patterns of a few of them are presented in Table

3.4. Both the yeast and S. mansoni HGPRTase appear to follow an ordered bi-bi

mechanism (Ali and Sloan, 1982; Yuan, et al., 1992). Flow dialysis experiments of

.
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the yeast HGPRTase identified the E-PRPP complex, but no enzyme complexes

with the purine bases were detected (Ali and Sloan, 1982) which supports the

ordered bi-bi model. The only mammalian HGPRTase that has undergone

extensive kinetic analyses is the human enzyme which has an ordered bi rapid

equilibrium random bi mechanism (scheme 5). This model is supported by the

initial rate measurements of the forward and reverse reactions (Giacomello and

Salerno, 1978), product inhibition and isotope exchange studies (Henderson, et

al., 1968).
purine

PP, nucleotide

PRPP purine

E E-PRPP (E-PRPP-purine = E-purine nucleotide-PP) E

purine
-

nucleotide 1

Scheme 5

Thus, the difference between the T. foetus HGXPRTase and the human

HGPRTase kinetic mechanisms lies in the release of the products. Discrete

binary complexes of the T. foetus HGXPRTase with PRPP or purine nucleotides

must exist, and it should be possible to design inhibitors which bind specifically

to either of these forms. Inhibitors which only bind to the E-purine nucleotide

forms should have higher specificity for the T. foetus HGXPRTase than for an

enzyme which follows a mechanism of random product release, such as the

human enzyme. Substrate recognition is also a factor which can aid in inhibitor

design, since the T. foetus HGXPRTase uses xanthine, as well as hypoxanthine

and guanine. Inhibitors based on the structure of xanthine or XMP would

selectively bind to the T. foetus enzyme rather than to the mammalian enzymes.

Further work will be needed to confirm the results for the T. foetus HGXPRTase,
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Table 3.1: Kinetic Constants for the T. foetus HGXPRTase
Km (IIM) Ks (HM)

(A) HPRTase
Mg2PRPP 43.5 + 15.1 59.9 + 29.2

hypoxanthine 1.0 + 0.3 5.8 + 1.6

MgPPi 500.0 + 33.0 2500 + 400

Mg|MP 1.1 + 0.4 5.4 + 0.9

(B) GPRTase
Mg2PRPP 55.6+ 6.2 22.3 + 4.1

guanine 1.8 + 0.1 1.5 + 0.2

MgPPi 303.9 + 62.5 1700 + 1300

MgCMP 199 + 352 624 + 147

(C) XPRTase
Mg2PRPP 111.1 + 25 23.5 + 9.9

xanthine 31.2 + 4.9 9.8 + 2.4

MgPPi 5070 + 190 5100 + 200

MgxMP 52.6 ± 16.6 30.9 + 2.1

:

i
:
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Table 3.2. Comparison of Km values for HGPRTases

Forward Reaction

Km(hypoxanthine) Km (guanine) Km (xanthine) Km (Mg2PRPP)

T. foetus 1.0+0.3 plM 1.8 + 0.1 puM 31.2+4.9 mM (H)435+15.1 HM
(G) 55.6+ 6.2 puM
(X) 111.1 + 24.7 plM

Human 7.7+0.4 plM
- -

(H)66+ 2.0 puM
(Giacomello and
Salerno, 1978)

S. mansoni (Yuan, 5.4 + 0.2 puM 3.0+ 0.2 plM
--

(H) 9.3 + 1.1 HM
et al., 1992) (G) 18.2 + 1.3 puM
*P. falciparum 0.46+ 0.007 HM 0.3 + 0.07 puM 29 + 7.7 plM (H) 20.7+ 63 plM
(Queen, et al.,
1988) (G) 21.4 + 8.1 puM

(X) 13.3 + 6.1 puM

*T. gondi (Maion 8.8 puM 19.1 puM 21.2 plM --------
and
Chamberland,
1992)

*T. brucei (Allen 2.3 puM 4.8 puM
- - -

and Ullman,
1993)

*T. cruzi (Allen 6.4 + 0.3 puM 9.9 + 0.29 puM
-- ---

and Ullman,
1994)

Reverse Reaction

Km (Mg|MP) Km (MgCMP) Km (MgxMP) Km (MgFPi)

T. foetus 1.1 + 0.4 plM 1994:352 plM 52.6+ 16.6 plM (Mg(MP) 500+ 33 puM
(MgCMP)303.9 + 62.5 mM
(MgxMP) 5070+ 190 HM

Human 5.8+ 0.2 plM
- -

(Mg|MP) 39-E 6 puM
(Giacomello and
Salerno, 1978)

S. mansoni (Yuan, 5.7+ 0.4 plM 8.4 + 0.8 puM — (Mg(MP) 22:7: 0.5 puM

et al., 1992) (MgCMP) 25.6+ 1.3 pm

* = Km, apparent not true Km values.

:
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Table3.3.ProductInhibition
ofT.foetusHGXPRTase inhibitorvariedsubstratefixedsubstrate(uN■ )patterntypeKiiKis

(A)HPRTase MgFPiMg2PRPPhypoxanthine(20)NC13.2+26.9mM1.7+0.3mm. MgPPihypoxanthineMg2PRPP(1000)NC89.3+70pm22.5+84puM Mg|MPMg2PRPPhypoxanthine(20)C------7.6+0.8puM Mg|MPhypoxanthineMg2PRPP(1000)NC149.8+46.5puM232+1.5puM Mg2PRPPMgFPiMg|MP(10)NC171.5
+
121.8plM165.6+71.1HM Mg2PRPPMg|MPMgPPi(1500)C------3.3+0.4puM

hypoxanthineMgFPiMg|MP------------------- hypoxanthineMg|MPMgPPi------------------- MgFPiMg2PRPPxanthine(250)------------------- MgFPixanthineMg2PRPP(1000)------------------- MgxMPMg2PRPPxanthine(250)C------39.2+2.8puM MgxMPxanthineMg2PRPP(1000)NC162.6+61.1puM571.4+8282puM Mg2PRPPMgFPiMgxMP(600)NC125.6+23.8puM294.5+1183HM Mg2PRPPMgxMPMgFPi
C------9.4+0.8puM xanthineMgFPiMgxMP------------------- xanthineMgxMPMgPPi------------------- (C)GPRTase MgPPiMg2PRPPguanine(50)NC1.2+0.2mM0.9+0.5mM MgPPiguanineMg2PRPP(1000)NC2.0+0.3mM6.2+9.0mM MgCMPMg2PRPPguanine(50)C------4.53+0.5mM MgCMPguanineMg2PRPP(1000)NC40.9+14.3plM283.2+701HM

***********g\.
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Table 3.4. Product Inhibition Patterns.

Inhibi Substr Inhibition T

S. typhimurium OPRTase
(Bhatia, et al., 1990)

OMP PRPP C

OMP Orotate C

PP, PRPP C

PP; Orotate NC

Orotate PPi NC

Orotate OMP C

PRPP PP; C

PRPP OMP C

Human HGPRTase
(Giacomello and Salerno,
1978)

Mg|MP Mg2PRPP C

Mg|MP hypoxanthine NC

MgPP, Mg2PRPP C

MgPP, hypoxanthine NC

Mg2PRPP MgFP, C

Mg2PRPP Mg|MP C

hypoxanthine MgFP,
---------

hypoxanthine MgPPi —
S. mansoni HGPRTase
(Yuan, et al., 1992)

Mg|MP Mg2PRPP C

Mg|MP hypoxanthine NC

MgPP, Mg2PRPP NC

MgFP, hypoxanthine NC

Mg2PRPP MgPP, NC

Mg2PRPP Mg|MP C

hypoxanthine MgPP,
--------

hypoxanthine MgFPi --—-
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Figure 3.2a. Initial velocity pattern for the forward reaction with hypoxanthine
as the variable substrate (2-30 puM) at different fixed concentrations of Mg2PRPP
(50-1000 puM). All conditions were as described under Materials and Methods.
(Inset) Replot of 1/Vmax, app (or y-intercept) with respect to 1/[Mg2PRPP).
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Figure 3.2b. Initial velocity pattern for the forward reaction with Mg2PRPP as
the variable substrate (30-500 puM) at different fixed concentrations of
hypoxanthine (3-30 HM). All conditions were as described under Materials and
Methods. (Inset) Replot of 1/Vmax, app (or y-intercept) with respect to
1/[hypoxanthine).
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Figure 3.3a. Initial velocity pattern for the forward reaction with guanine as the
variable substrate (1-30 HM) at different fixed concentrations of Mg2PRPP (20-500
HM). All conditions were as described under Materials and Methods. (Inset)
Replot of 1/Vmax, app (or y-intercept) with respect to 1/[Mg2PRPP).
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Figure 3.3b. Initial velocity pattern for the forward reaction with Mg2PRPP as
the variable substrate (20-500 piM) at different fixed concentrations of guanine (1-
30 pum). All conditions were as described under Materials and Methods. (Inset)
Replot of 1/Vmax, app (or y-intercept) with respect to 1/[guanine).
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Figure 3.4b. Initial velocity pattern for the forward reaction with Mg2PRPP as
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200 puM). All conditions were as described under Materials and Methods. (Inset)
Replot of 1/Vmax, app (or y-intercept) with respect to 1/(xanthinel.
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Figure 3.5a. Initial velocity pattern for the reverse reaction with Mg|MP as the
variable substrate (1-100 p.M) at different fixed concentrations of MgPPi (200-1000
puM). All conditions were as described under Materials and Methods. (Inset)
Replot of 1/Vmax, app (or y-intercept) with respect to 1/[MgPPil.
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Figure 3.5b. Initial velocity pattern for the reverse reaction with MgFPi as the
variable substrate (100-1000 HM) at different fixed concentrations of Mg|MP (2-
100 puM). All conditions were as described under Materials and Methods. (Inset)
Replot of 1/Vmax, app (or y-intercept) with respect to 1/[Mg|MP).
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were as described under Materials and Methods.
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Figure 3.9a. Product inhibition by Mg|MP on the reaction: hypoxanthine +
Mg2PRPP → Mg|MP + MgPPi, with hypoxanthine as the variable substrate and
with the concentration of Mg2PRPP held constant at 1000 puM. All conditions
were as described under Materials and Methods.

0.5 -r-

3- 0.4 +
-

|
9 I

-

■ º 0.3 –- -

#
|- - ,”.

r - ,” —E–[Mg|MP) = 0 }IM
.E

- ,”
E 02+ —x—[Mg|MP) = 5 HM

#
- - a- -[Mg|MP) = 10 um

< 0.1 -H.
£

|-

3
g
> 0

-014– H-H-H

–0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06

1/[Mg, PRPPlum■ "

Figure 3.9b. Product inhibition by Mg|MP on the reaction: hypoxanthine +
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as described under Materials and Methods.



109

10 —-

3- 8 ––
.E
º

§
Q- 6 —H
bo -

_5 —B– [Mg2PRPP) = 0 um
s zº

E 4+ ~ —x. — [Mg2PRPP) = 10 um
- - ,”

©

■ § - A.- . [Mg2PRPP) = 20 nM
> 2 + #3 ºf

g |- __*:
*~ 0 -H--—w
*- |-

2 } { H
-0.5 0 0.5 1 1.5

1/[Mg|MPlu M'

Figure 3.10a. Product inhibition by Mg2PRPP on the reaction: Mg|MP + MgPPi
— hypoxanthine + Mg2PRPP, with Mg|MP as the variable substrate and with the
concentration of MgPPi held constant at 1.5 mM. All conditions were as
described under Materials and Methods.

12 T

+ 10 —-
-->

.E
9
9 8 ––
CA.

"e 6–4– —s—[Mg,FRPP]= 0, M
E —x—[Mg,PRPP=50 iM

75 4 ––

§ - A -[Mg,FRPP= 100um
£,
-

2 +3
q) |-

§ 04.

2 } { | } + |
-0.002 0 0.002 0.004 0.006 0.008 0.01 0.012

1/[MgPPil, uM"

Figure 3.10b. Product inhibition by Mg2PRPP on the reaction: Mg|MP + MgPPi
— hypoxanthine + Mg2PRPP, with MgFPi as the variable substrate and with the
concentration of Mg|MP held constant at 10 H.M. All conditions were as
described under Materials and Methods.

- *

sº
>

* *º
-P.

T

A.

2–
º

o»
*
*

scl º,

■ ºc.
A Rºy



110

0.6-T

- 0.5 +

04 +
I —B–[MgPPi]=0

+ 03 + —x— [MgPPil=500pm

º- • A- - [MgPPi] = 1000 pm
0.2+

0.1 -|
–0.1 | # } H

-0.4 -0.2 0 0.2 0.4 0.6

1/(guanine), uM"

Figure 3.11a. Product inhibition by MgFPi on the reaction: guanine + Mg2PRPP
— MgCMP + MgPPi, with guanine as the variable substrate and with the
concentration of Mg2PRPP held constant at 1000 p.M. All conditions were as
described under Materials and Methods.
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CONCLUSIONS

The goals outlined in the introduction have been achieved. We were able to

identify, clone and sequence the T. foetus HGXPRTase gene, which allowed us to

characterize it at the genomic level and compare the predicted primary sequence

with the primary sequence of other HGPRTases. The protocol utilized to isolate

the T. foetus HGXPRTase gene will be useful in isolating genes encoding

HGPRTases of other organisms (isolation of the gene encoding the GPRTase of

G. lamblia is in progress now). We were also able to express the T. foetus

HGXPRTase gene in E. coli, purify the recombinant enzyme to apparent

homogeneity and show that it appears identical to the native T. foetus

HGXPRTase. Finally, we were able to characterize the recombinant enzyme

using both initial velocity and product inhibition studies.

The gene encoding the T. foetus HGXPRTase is a single copy gene and is the

smallest eukaryotic gene encoding an HGPRTase. Alignment of the predicted

amino acid sequence of the T. foetus enzyme with the amino acid sequence of

other HGPRTases reveal that the overall similarity to to other HGPRTases is low,

and as expected, the regions associated with higher homology are those regions

of the enzyme which interact with PRPP. The size and amino acid alignment

with the enzymes from E. coli, V. harveyi and L. lactis indicate that the T. foetus

HGXPRTase is more closely related to the prokaryotic rather than eukaryotic

enzyme. This is not unexpected since T. foetus is believed to be one of the earlier

branches of the eukaryotic tree. Comparison of amino acid residues analogous to

the residues of the human enzyme which interact with the purine base reveal

that most residues are conserved and any differences are conservative

substitutions. Thus, determination of the residues involved in purine base

ºJºs

.ºº&,o
J º

*
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specificity will have to rely on X-ray crystallographic studies of the T. foetus

enzyme and HGPRTases of other organisms, such as the human (HGPRTase) and

G. lamblia (GPRTase) enzymes. Once specific residues have been determined to

be responsible for purine specificity, mutagenesis experiments can be used to

complement the crystallographic results. X-ray crystallographic studies of the

recombinant T. foetus enzyme are currently in progress.

The enzyme kinetic studies of the recombinant T. foetus enzyme have enabled

us to propose a kinetic mechanism for this enzyme. The simplest model,

supported by our data, is an ordered bi-bi mechanism with Mg2PRPP binding

first and the Mg-complexed purine nucleotide released last. This model is

identical to the one proposed for the schistosomal HGPRTase (Yuan, et al., 1992),

and it would be interesting to discover whether the HGPRTase of other parasites

would also follow an ordered bi-bi mechanism. An unexpected result from the

kinetic studies is the large Km values for MgFPi, which are five to ten times

larger than the Km values for Mg2PRPP. Residues proposed to interact with
Mg2PRPP are highly conserved in all HGPRTases studied to date; nevertheless,

the Mg2PRPP binding pocket of the T. foetus HGXPRTase may have subtle

differences in its three-dimensional structure that can be observed with X-ray

crystallography. The large Km values could indicate that MgFPi may not bind

very well to the T. foetus HGXPRTase and ensure that the transfer of the

phosphoribosyl group to the purine base is favored over purine nucleotide

pyrophosphorolysis. Since T. foetus has no other means of meeting its purine

base requirements, it would be essential that the purine salvaging activities of its

HGXPRTase be favored. The pyrophosphate generated by the

phosphoribosyltransferase reaction would be available for other purposes, such

as being used a high energy compound for glycolysis. The human HGXPRTase

is the only mammalian HGPRTase that has been studied extensively, and the
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kinetic mechanism of this enzyme is an ordered bi rapid equilibrium random bi

mechanism with the enzyme binding Mg2PRPP first and releasing products in a
random order. If all mammalian HGPRTases follow the same kinetic mechanism

as the human enzyme then the key differences between the trichomonad and

mammalian enzymes could be the order of product release, the ability of the

T. foetus enzyme to use xanthine and the poor ability that the T. foetus enzyme has

for binding MgPPi. Similarities and diferences of the T. foetus HGXPRTase, the

human and the bovine HGPRTases are presented in Table C.1.

The work described here has been fundamental to the continued examination

of the T. foetus HGXPRTase as a model for structure-based drug design. The

availability of large quantities of purified T. foetus HGXPRTase through the E. coli

gene expression system will be essential to X-ray crystallographic studies and

chemical labeling of active site residues of the enzyme. The information obtained

from the kinetic studies will be used in conjunction with the results of the

structural studies of the enzyme to design inhibitors with antitrichomonal
activities.
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Table C.1. Comparison of the T. foetus HGXPRTase with the human HGPRTase
(Olsen and Milman, 1977; Eads, et al., 1994; Giacomello and Salerno, 1978) and
the bovine HGPRTase (Paulus, 1980).

T. foetus Human Bovine

MW 21.1 kDa 26 kDa (subunit) 26 kDa (subunit)
pI 4.8 5.6, 5.7, 5.9 7.85, 8.10

substrate hypoxanthine hypoxanthine hypoxanthine
specificity guanine guanine guanine

xanthine

amino acid Lys-134 Lys-165 —
residues involved Ile-157 (Tyr-156) val-187 (Phe-186)

-----in purine binding
Asp-163 Asp-193 —-

Km (hypoxanthine) 1 HM 7.7 plM 0.99 puM
Km (guanine) 1.8 puM —- 0.42 puM
Km (xanthine) 31.2 puM

-- ---

Km (Mg2PRPP)) (H)43.5 puM (H)66 HM (H) 18.6 puM
(G) 55.6 puM (G) 2.9 puM

(X) 111.1 HM
Km (Mg|MP) 1.1 puM 5.8 puM —
Km (MgCMP) 199 HM —-

-------

Km (MgxMP) 52.6 puM
------- --------

Km (MgFP) (Mg|MP)500pm (Mg|MP) 39 pm —
(MgCMP)303.9 pm
(MGXMP) 5070 HM

kinetic mechanism ordered bi-bi ordered birapid
-------

equilibrium
random bi
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APPENDIX A: PREPARATION OF NUCLEIC ACIDS FROM
TRITRICHOMONAS FOETUIS

T. foetus strain KV1 was axenically cultured in Diamond's TYM medium pH

7.2, supplemented with 10% heat inactivated horse serum and 1%

antibiotic/antimycotic mixture at 37°C (Diamond, 1957; Verham, 1985). The

composition of one liter of TYM media is as follows:

g/liter H2O

Tryptose 20.0

Yeast extract 10.0

Maltose 5.0

Cysteine HCl 1.0

Ascorbic Acid 0.2

K2HPO4 0.8

KH2PO4 0.8

The pH of the media was adjusted to 7.2 with KOH, and the media was

sterilized either by filtration through a sterile 0.22 pm filter or by autoclaving for
20 min at 121°C. 10% heat inactivated horse serum and 1%

antibiotic/antimycotic mix is added to the media prior to use. The stock

antibiotic/antimycotic solution (100X) consists of 10,000 U/ml penicillin,

10,000 pg/ml streptomycin and 25 pig fungizone.

The parasites are passaged in fresh media in a 1:10 ratio after 16-24 hours

growth. Stabilates of T. foetus were achieved using dimethylsulfoxide as the

cryoprotectant (Diamond, 1964).
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The method used to prepare DNA and RNA from T. foetus was that used by

Wang and Wang (Wang and Wang, 1985) and is described here briefly. Cultures

were grown to early stationary phase, and the cells were harvested by

centrifugation. The cell pellet was washed with ice-cold PBS and resuspended in

10 volumes of 4 M guanidinium thiocyanate. Cesium chloride was added to the

lysate to a final concentration of 0.4 g/ml. 2.5 ml of 5.7 MCsCl and 0.1 M EDTA,

pH 8.0 was placed at the bottom of ultracentrifuge tubes for the Beckman SW41

rotor as a cushion, and 10 ml of the CsCl-cell lysate mixture was carefully layered

on top of the cushion. The tube was centrifuged in a Beckman SW41 rotor at

34,000 rpm at 20°C for 16 h. DNA was located in the lower third of the tube, and

RNA was the clear gelatinous pellet found at the bottom of the tube. After the

DNA containing fraction was transferred to another tube, it was precipitated

with 2.5 volumes of ice-cold ethanol, purified with chloroform:isoamyl alcohol

(49:1) extractions, and reprecipitated with one-tenth volume of 3 M NaOAc and

2.5 volumes of ice-cold ethanol. The RNA was resuspended with 0.3 M NaOAc,

pH 6.0, extracted with phenol:chloroform, precipitated with 2.5 volumes of ice

cold ethanol, and stored in ethanol at -80°C.
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APPENDIX B: VISUALIZATION OF DNA BLOTS BY
CHEMILUMINESCENCE

Reagents:

Buffer 1: 100 mM Tris-HCl pH 8.0 + 150 mMNaCl

Tropix buffer: 2.1 g NaHCO3 dissolved in 500 ml H20. The pH of the solution is

adjusted to 9.5 with NaOH prior to adding MgCl2 to a final
concentration of 1 mM.

Blocking solution: 0.5% blocking reagent (provided by manufacturer) in buffer 1.

Detection solution: 20 pil of AMPPD (reagent is purchased from Tropix, Bedford,

MA) in 10 ml of the Tropix buffer.

After the DNA blot has been washed, following hybridization to the probe, it

was rinsed with buffer 1 and incubated in the blocking solution at room

temperature for 30 min. The blot was again rinsed with buffer 1, incubated with

a 1:4000 dilution of the rabbit antidigoxigenin antibody in buffer 1 at room

temperature for 30 min. and washed twice at room temperature in buffer 1.

Finally, the blot was washed twice in tropix buffer at room temperature and then

developed using the detection solution. The blot was drained, wrapped in Saran

wrap, incubated at 37°C for 30 min, and exposed to X-ray film.
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APPENDIX C: PREPARATION OF SINGLE-STRANDED
PHAGEMID DNA TEMPLATE FOR SEQUENCING

Cells transformed with phagemid were grown in LB media (Sambrook, et al.,

1989), with ampicillin at a final concentration of 50 pg/ml, to OD600 = 0.6 in .

Two milliliters of this culture were infected with M13K07 helper phage (at a

multiplicity of infection of at least 10). The phage infected culture was incubated

at 37°C with aeration for 1 h. Twenty milliliters of 2YT broth (Sambrook, et al.,

1989), containing 25 pig/ml ampicillin and 35 pig/ml kanamycin, were inoculated

with 500 pil of the phage infected culture, and incubated at 37°C with aeration for
6-12 hs.

The first step in harvesting the phagemid DNA was to pellet the cells, and

transfer the supernatant to another tube. Next the phagemid was precipitated by

the addition of 125 pil of 5 M ammonium acetate and 125 pil of 40% PEG 8000 to

each ml of supernatant. The resulting mixture was incubated on ice for at least

15 min (overnight is fine), and followed by centrifugation at 11,000 rpm at 4°C for

30 min. All of the supernatant was removed, and the pellet was resuspended in

1 ml of TE. The phagemid was precipitated a second time following the above

mentioned procedure.

The phagemid DNA was liberated from the protein coat by extraction with

phenol, pH 8:chloroform, which was followed by a chloroform extraction. The

phagemid DNA was precipitated by addition of one-tenth a volume of 5 M
ammonium acetate and 2-2.5 volumes of ice-cold ethanol.
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APPENDIX D: PROTOCOL FOR PROTEIN GELS

Solutions:

Resolving buffer (1.5 M Tris pH 8.8): 18.21 g Trizma base/100 ml H2O. Adjust

pH to 8.8 with HCl.

Stacking buffer (0.5 M Tris pH 6.8): 6.07 g Trizma base/100 ml H2O. Adjust

pH to 6.8 with HCl.

30% Acrylamide/bis-acrylamide: 29 g acrylamide and 1 g bis

acrylamide/100 ml H2O.

8X Running buffer (25 mM Tris, 191 mM glycine and 0.1% SDS:

12.1 g Trizma base, 57.4 g glycine and 4g SDS/500 ml H2O.

PAGE stain solution: 0.08% Coomassie Blue, 25% ethanol and 8% acetic acid.

PAGE destain solution: 25% ethanol and 8% acetic acid.

The recipe for a 12% acrylamide gel is as follows:

H2O 5 ml

1.5 M Tris, pH 8.8 3.75 ml

30% Acryl/bis-acryl. 6 ml

10% SDS 150 pil

10% AP 75 pil

TEMED 10 pil

This is enough for 3–4 minigels. If the solution is degassed, it will polymerize

rapidly.
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The recipe for a 4% acrylamide gel (stacker) is as follows:

H2O 3 ml

0.5 M Tris, pH 6.8 1.25 ml

30% Acryl/bis-acryl. 665 pil

10% SDS 50 pil

10% AP 25 pil

TEMED 5 pil

Electrophoresis with the mini-gels is usually performed at a constant current

of 20–30 mA/gel. º,
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