
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Distributed control of protein crystallography beamline 5.0 using
CORBA

Permalink
https://escholarship.org/uc/item/7vh4z2qc

Author
Timossi, Chris

Publication Date
1999-09-24

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vh4z2qc
https://escholarship.org
http://www.cdlib.org/

Distributed Control of Protein Crystallography Beamline 5.0 Using CORBA*

C. Timossi, C. Cork, Advanced Light Source, Berkeley Lab, USA

* This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Material Sciences Division,
U. S. Department of Energy, under Contract No. DE-AC03-76SF00098

Abstract
The Protein Crystallography Beamline at Berkeley

Lab’s Advanced Light Source is a facility that is being
used to solve the structure of proteins. The software that is
being used to control this beamline uses Java for user
interface applications that communicate via CORBA with
workstations that control the beamline hardware. We
describe the software architecture for the beamline and
our experiences after two years of operation.

1 MACROMOLECULAR
CRYSTALLOGRAPHY FACILITY

1.1 Background
The Macromolecular Crystallography Facility (MCF) at

Berkeley Lab's Advanced Light Source was established in
1995 in order to develop a full-service facility for protein
and large molecule crystallography. Its mission, over an
extended lifecycle of 10-15 years, is to develop and
maintain a number of x-ray beamlines and experimental
stations. The first MCF beamline, BL05.0.2, was put into
production for experimenters in September 1997. This
beamline collects multiwavelength datasets for as many as
30 samples in one week, producing approximately 100
GByte of image data. Two additional branchlines
(BL05.0.1 and BL05.0.3) are currently under construction
and more are in the design phase. These stations are
expected to be in constant use and will require very high
reliability and minimum time to repair. In particular,
software upgrades must be incremental and provide for
rapid installation and testing.

1.2 Beamline BL05.0.2 Instrumentation
The x-rays from the accelerator are initially collimated

by a vertically-focusing pre-mirror which has both tilt and
focus controls. The proper energy is then selected by a
double crystal monochrometer that adjusts the Bragg
angle and crystal spacing. Tilt and roll of the second
crystal are also adjustable. The next optical element is a
re-focusing mirror, which is supported by a six strut
parallel actuator (hexapod) giving complete control of tilt,
roll and yaw as well as 3 degrees of translation. The final
main component is the sample goniometer with 3 degrees

of rotation. In addition to these main components are
control and monitoring of diagnostics such as beam
position monitors, multiplexors and TV screens.

2 CONTROL SYSTEM

2.1 Performance
The two main categories of computer control at the

MCF are motion control (mirrors, monochrometer, and
sample goniostat) and detector control and data
acquisition. The performance requirements for the control
system are not severe. Performance is limited by the times
for the mechanical motion of the mirrors and
monochrometer and by the rate of data collection, which
is dominated, by the readout rate of the CCD detector.
The data rate between the control computers and the
operator console is easily handled by the ~1ms/call
measured for our current Common Object Request Broker
(CORBA[1]) implementation from Sun Microsystems,
NEO[2]. More severe were the requirements for high
reliability, little availability of the production system for
testing, and minimal programming and engineering
personnel.

2.2 Architecture
The control system architecture is illustrated in figure

1. This architecture reflects the distributed design that was
necessary to accommodate both the extended nature of the
facility and the parallel processing requirements for optics
control and data acquisition. Since there are relatively few
people to work on the control system (2), predictably we
were drawn towards off-the-shelf hardware, such as
workstations for both control and development, and off-
the-shelf software, such as Sun’s Solaris and NEO and
high level object-oriented languages like C++ and Java.
We decided to distribute the control across standard
Ethernet (switched 10baseT) to small instrumentation
servers (Sun SPARCstation-5 computers) that were bus-
coupled to VME crates that house the motion control and
beam monitoring modules. The detector control and data
acquisition is distributed across fast Ethernet (switched
100BaseT and future 1000BaseT) using high performance
servers (Sun Ultra-2 and Enterprise-3000) and
workstations (Sun Ultra-10). This decision gave us a good

distributed control environment with soft real-time
capabilities. Fast feedback and coordinated sequencing
are performed either in hardware or at the local control
level. Closed-loop motion control is performed within the
motion control modules.

 Figure 1: Architecture

2.3 Software

2.3.1 NEO (CORBA)
The software follows a client/server model with server

modules, written in C++, running on the instrumentation
workstations handling the individual instruments. The
services provided by these modules are available to
clients, such as operator display screens, which are
primarily written in Java. Services are located using NEO
name services. NEO also handles the tricky problems of
object life cycle and initialization, server object locking
when multiple clients are requesting services, object error
logging and general distributed server and object
management. We have found these tools to be extremely
reliable and robust.

2.3.2 Instrument Server Software
As mentioned previously, server modules were

developed to run on the instrument server machines to
control the various instruments. The servant skeleton C++
code is auto-generated by the NEO IDL compiler. This
skeleton basically handles the communication with the
clients and calls the custom modules that we develop to
talk to the hardware. Last year we started using the
ACE[3] development tools to develop these custom
modules with the objective of making the handler code
platform independent.

2.3.3 Data Acquisition Software
The data acquisition software presented a special

challenge since it is a large vendor supplied application
based on socket level communication to coordinate

distributed processes handling the Detector interface,
DAQ sequencer, goniostat & monochrometer control,
data reduction, and data monitoring. For the application to
communicate with the goniostat and monochrometer, we
installed hooks enabling CORBA communication to these
services.

2.3.4 Operator Interface Software
Java Applets were developed to allow operator control

of individual instruments and to scan the monochrometer
to display energy versus intensity plots. Skeleton Java
code is produced by a Java IDL compiler for
communication with the instrument servers while the GUI
portion was developed using the Symantec Visual Café
Java development software. Although the development
software runs on Microsoft Windows, the resultant classes
run on the operator console’s Solaris platform without
modification.

The data collection application is a third party product
that was modified to operate with our detector.

3 SUMMARY
After two years of operational experience with this

control system design, we are pleased with the robustness
and ease of development. The hardware, the Solaris OS,
the use of workstations to run and develop the
instrumentation code and the Sun’s implementation of
CORBA (NEO) have all proven to be good choices in
these regards.

 The main limitation that we’ve seen using workstations
bus-coupled to VME is the slow response for handling
board level interrupts. For harder real-time applications
this issue would need to be addressed.

 Unfortunately, Sun no longer supports its NEO product
so we are now investigating other CORBA
implementations looking for similar functionality and
performance.

REFERENCES
[1] Object Management Group, “The Common Object

Request Broker Architecture and Specification”, 2.2
ed., Feb. 1998.

[2] SunSoft, “NEO Programming Guide”, 1995, Sun
Microsystems .

[3] D. C. Schmidt, “ACE: An Object-Oriented
Framework for Developing Distributed
Applications”, Proceedings of the Sixth USENIX
C++ Technical Conference, USENIX Association,
April 1994.

Instrument
control

Instrument
control

Branchline
VME

CCD
Detector

File
Server

Operator
Console

D i s k
A r r a y

Display

Sbus /VMESbus/VME
Fiber Channel

Catalyst 5000 Switch

100Mbit x4 100Mbit100Mbit10Mbit10Mbit

Beamline 5.0.2
Control System

End Station
VME

Detector
control

