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THE ELECTRONIC STRUCTURE OF MOLECULES, SOLIDS AND SOLID SURFACES
James R. Chelikowéky
Inorganic Materials Research Division, Lawrence‘Bérkeley Laboratory
and Department of Physics; University of California :
Berkeley, California 94720
ABSTRACT

A detailed.study is undertaken to investigate the electronic

. structure of eleven diamond and zincblende semiconductors: Si, Ge,

ZnSe, 0-Sn, InSb, CdTe, GaP, GaSb, InP and InAs. By means of an

empiricalnon-ldcalpseudopotential scheme the oﬁtical spectrum,

electronic density of states, and valence charge density is calculated

for each compound. The theoretically reduired parameters are deter-

_mined by éomparisions with optical and photoemission experimental

measurements.
In particular, the effect of anon-local potential‘on the electronic

structure of each compound is investigated. It is found that the

local pseudopotential approach can yield incorrect band topologies;

- optical gabs,véharge densitiés and valence band widths. All of these

defects can be corrected by the addition of a non-local term to the

pseudopotential.

In additidn, to the calculations performed on these bulk materials,

a ﬁgthod f6r ca1cu1ating the electronic structure of non periodic systems
is developed.’ This very powerful technique allows the direct appli-
cation of the pseudopotential method to such systems as solid surfacés;
1o¢alizéd.im§urity and vacancy states, atomic and molecular states,
‘finite chains or layers, adsorbates, énd interfaceslbetween solids.

Here the method is_épplied to molecules and surfaces. Specifically
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the molecular ground state energy levels and orbitals are calculated
for diatomic silicon. With respect to surfaces, the technique is used
to calculate the electronic structure of semiconductor and metal
surfaces. The Si (111) surface is studied in detail. Calculations
are performed using ideal, relaxed and reconstrucfed'surface models
with the resﬁlts compared to experiment. The (110)_surfaces of GéAs
and ZnSe are also investigated. Finally, as an example of a metal

surfape the (111) surface of Al is considered.



I.. INTRODUCTION

éince its iﬁtroduction in the late i950'é 1 éhe pseudopoténtial
method haé evolved considerably. Through its'application via model
potentials2 and the embiricalfpseudopotentiai'methéd (EPM),2 a great
deal of information about solid state bropertiesxhas been obtained.
Band structures, §pticai response functions, elecﬁronic density of
- states and éﬁarge'densities have been calculated for a wide variety of
ﬁaterials.‘ dfvall these materials, one of the most éuccessful'classes
to ﬁhich the-pseudopotenfi;i method has been applied are diamond and
zincblende seﬁiconductors.

.Studies oﬁ these méterials, uﬂtil recéntiy, have relied upon a
simplified "local" pséudopoteﬂtial approach with reflectivity data
used to fix the theoretical,paramétefs. And it was observed that
éuch an approéch was_sufficient.to explain most of the 6ptica1 déta.?
However, on purely theoretical grounds the pseudopotential shéuld,
‘be'non'local and eneréy &epgﬁdent.3. Thus, it was péfhaps not |
'vsurprising_fhat'the advent of high resolution phofoemission spectro-

4, 5 ultraviolet

s¢opy, i.e. x-ray photoemission spectroscopy (XPS)
: photoemission_spectfoséopy (UPS),6 prbduced detailed information on
-fhe valence:bands which was in conflict with many.of.the existing
pseudopotential calculatiqns.v This result could be explained -on the
'Baﬁis that local approximations could Sufficé'for the reflectivity
'case.whére only a limited energy range was involved. In particular,

in reflectivity data only the highest valence bonds and lowest

‘conduction bands are involved.



In order to accurately obtain a correct band structure for the
‘valence band region, it was, therefore, speculated that non-locality
or energy dependence must be considered. This was particularly true
since other one-electron approaches, including such effects, tended
to yield more accurate valence bands than a local pseudopotential

7 .
approach.
In addition to yielding incorrect valence band edges, it has also

recently been determined that a local pseudopotential can yield
10

incorrect bond topolégies > 9 and valence charge densities.
Therefore, an attempt to recalculate the band structures of a
large number of diamond and zincblende semiconductors has been under-
taken. Using an empirical non-local pseudopotential scheme we have
calculated the electronic structure of Si, Ge, GaAs, ZnSe, 0-Sn,
InSb, CdTe, éaP,,GaSb,'InP and InAs. In Section II;lcalculations
are presented for eacﬁ compound yielding the optical'spectrum,
vaience band density of states, and pseudocharge density. The non
local appfoach has removed the discrepancies which are found to
oécuf for the local pseudopotential with respect to the valence
band widths, optical gaps, charge densities and band topologies. 1In
addition to these properties, specific discussions are included
concerning the temperature dependence of the valence chafge density
in Si and Ge, and the effects of local field corrections for the
macroscopic dielectric function in Si.

In all of the aforementioned cases, the systems considered are

infinite and periodic. This was one of the severe limitations on the

- pseudopotential method. While it may Be easily applied to bulk
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'préﬁefties,'there was no obvious procedure by which‘it could be
-applied tdva wide variéty of non periodic problems. In Sectiomn III

a newltechnique is introduced by which the pseudopotential method

may be easily extended to non periodic systems,_ The>method allows
pseudopotentials to be applied to localized combinations such as
molecules, surfaces, impurities, vacancies, finite chains, adsorbates

| aﬁd sqlid infeffaces. Specifically the techﬁique is applied to thé.”
‘casé of a molecule, and metél'and"semicoﬁductor surfééeé. The
ground—étate'pfoﬁerties_of the diatomic éilicon molecule is considered.
With respect to surfaces, a metal surface, Al (111); and seﬁiconductor
surfaces, Si (111), GaAs (110) and ZnSe (110) are discussed.

The Si (111) surface is covered in some detail. .An_ideal, relaxed,
and reconstructed model for the surface is calculated with the results‘
compared ﬁo experiment. Using a recbnstructed buckled (2vx 1)
5u;face model, all the salient experimental results can be accounted
for. Finally, with respect to GaAs and ZnSe surfaces, a local density .
rofvétates caléulation hés been performed allowing the decay of the
_sﬁrface featﬁres present to be directly observed. 1In the case of

’ GaAé, good agreement is achieved for the dangling bond energy spectrum.
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II. NON-LOCAL PSEUDOPOTENTIAL CALCULATIONS
FOR DIAMOND AND ZINCBLENDE SEMICONDUCTORS

A. Non-Local Pseudopotentials

The fundamental concept involved in an pseudopotential calcula-
tion is that the ion core can be omitted or "pseudized away."
Computatidnally this is crucial for it means that the deep ion
potentiai has.been removed aﬁd a simple plane wave basis will yield
- rapid convergence. There are many ways of arriving at this result,
ﬁut one of the most straightforward is due to Phillips and Kleinman.l

FSimply stated, we may rewrite the one-electron Hamiltonian as
2, . '
H=p"/2fm + Vp(r) 1)

where

v, (x) = v + ) (EE—Et)Ibt><btl ' (2)

V(r) is the true crystal potential and [bt> is a core state with
eigenvalue Et' This new potential has the same eigenvalues, E, , but

~

because the real potential has been cancelled in the core region by

1 the resulting eigenfunctions of (1) are

the second terﬁ in (2),
--smoothly varying in the core region in coﬂtrast to the true eigen-
functions. While this permits the pseudoeigenfunctions to be expressed
in térms of plane waves, the pseudopotential in (2) is dépendent not
only on the energy eigenvalues, Ek’ but on the Z2-angular momentum
components present in the core states.

In spite of the face that (2) is inherently non-local and energy

dependent many ' of the optical spectra for semiconductors can be
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explained by ignoring this fact.3 If we assume the pseudopotential

is a simple function of position, then we may take,

V. (r) =) V(G)exp(iG-r) : (3)
p~,G .~‘ ~o
where
V(G) =) 5,6V _(6)
~‘ d ~ -
. 1 o o :
'8 (6) == ) exp(-iG-R, ) BCON
&~ Nac%ll ~

and

V() = o erxp<-ig-g>vpa(g)d3r
-where the Q afe reciprocal lattice neetbrs and Va(§)~are the atomic.
form factors. In such an approximation we are.assuﬁing the crystalline -
po;enfialjis a sum of local atomic pseudopotentials, Vpa(E). Qa |
is the atomic &oiume and Na is the number of atomic species,va,v
present. These equations may be specialized in the case of the diamond -

~ or zincblende compounds, ANBB—N to

V() = Vs(g)cos(g-g) + iVA(g)sin(g-E)‘
ﬁhere
VS (©

vA(©)

v, (G + v (6)/2 : (5)

(V,(6) - Vg (6)/2

't = a/8 (1, 1, 1) where a is the lattice constant. VS and VA are the

symmetric and antisymmetric form factors respectively.



The local empirical pseudopotential method (EPM), in fact, is
based upon the above simplification. If we tﬁen take the above
pseudopotentials to be spherical so that Vpa(s) ='Vpa(|é|), this @eans
the form factors depend upon the magnitude of G, with a cerresponding
reduction in-the number of required form factors.  These form.factors
are the empirically determined parameters fit to experimental data
such as optical gaps.

The validity of this appfoach rests upon two arguments: 1)

" ~Et)_can be replaced by a mean energy in (2) such

~

k

~

E, >> Et so that (E
as EF (providing one is inperested in only a limited energy range) and
2) the cancellation is equal for all & (or at least the Q-componenfs
of the valence wavefunctions which are significant). Until recently

. as mentioned in the introduction (e.g._comﬁarisions with XPS and UPS
data), these assumptions have been found to be satisfactory.

1. Effective Mass Approkimation

If we wish to go beyond this local pseudopotential approach, the

simplest procedure is to replace the actual electronh mass, m, by

x 3
an adjustable mass, m . This can be illustrated by considering the
diagonal matrix elements of the secular equation which we would solve

for the eigenvalues and eigenvectors:

n2k?
5o+ V(K,E) - B, K= [k + g (6)

Following the pfocedure outline elsewhere,3 we expand our potential V

around the fermi-level, E_; we get to lowest order in wavevector K,

F

and energy E:
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'V(K,E) = v(lcF E.) + (K—KF) + (E-F ) ()
and v 9
2 2 2
IS T i -
5m KB = —57—+ — Ko (K-Kp) - Ep - (g—EF) + .

Rewriting the above and neglecting constant terms we have for the

diagonal elements:

2 .
2 1 oV
2 K [1+K ] - E[1 - aE]
F
Let us define the following
= 1 v '
M= 1+ g K ' (8)
F
and
\'j

Mg E

Il
L
1

Thus, rewriting our secular equation, by dividing everywhere by MEdb

we have, for our diagonal elements,

. .
2/om - E 9)

With o = MKME' In such an approach, the fit V(G), off diagonal elements,

: would actualiy'include a factor ME from the non-local and energy

dependent diagonal terms, V(E,K).
This approach, while simple and leading to improved agreement
for the valence band widths compared to XPS and UPS_data,12 is

deficient in several respects. First, we have considered only the '

diagonal elemehts.j The effect of:any non-local or energy dependence
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on the off—diagonal terms has been assumed small. While this may

bé the case for simple metals,_it‘is not'clear sucﬁ an approach is
applicable to semiconductors.3 Second, another dfawback is the
question of the relative importance of non-locality through the
Q—dependenée in (2) and the enérgy dependence in (2); The m* approach
does not alloﬁ'the relative impértance to be'seperated out. Third,

the optical gaps are not improved in such fits compared to experimental
data.

2. f-Dependent Potentials

One procedure to avoid the difficulty in determining the relative
importance of mnon-locality and energy dependence is to consider an
explicity f-dependent pofential. In fact, it was first shown by
Phillips énd'Pandey13.that an £ =2, or d-well, potential term could
lead to an iﬁproved pseudoptential for Ge.

Let us consider an f-dependent potential, to.simulate non-locality

in (2), for the form:
s A
Uy (D) = L ATD?, | (10)

where A2 is a'constant representing the well-depth, fg(r) is some
function simulating the "core" states, and PQ projeéts out the f-th
angular momentum component. If such an atomic potentia1 is used,
we must include a k dependence in our potential and require matrix .

elements of the form:

. . p—_ ' .
&Iy o] TETEE



Let us define K = k + G and K' = k + G' and
Ik> = Jexp(-i(k + )+ )>
Then by substitution of (10) into (11) we have

<[V, ?[R'> = TA <K|£(r)P, |K"> (12)
Klvg Ik = LA K[ £ Py X

Using the well known expansion .

=2; (22 + l)inQ(Kr)PQ(cosY) - (13)
=0 ,

iK-r
e ~ ~

with v being‘the angle between E and r, Pl’ the usual Legendre

~

_ polynomials,vji(Kr) spherical Bessel functions,3 we obtain,

[e2]

!

<K|V 2|R'> = 47
~ Ak~ 20

A IH1)P (cosBy ) <5y Ke) £y (03 K'r)>(14)

To obtain (14) we have made the additional assumption that fz(r) =

£,dzh.

Let us now éonsider some realistic forms for fz. We wish f2 to

| simulate the'properties of core states, that it should be well localized

at the atomic sites. Two appropriate choices might be a square-well

or gaussian-well. The square-well has the advantage in that it is -

~ simple, but a gaussian-well is probably more realistic and is, in

~fact, computétionally simpler.

For a square-well we require the integral,
_/ﬂzr r Jz(Kr)Jz(K'r) = FSQ(K,K') - (15)
o .

where we have taken
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| {1 IXR
£ (r) = .
. 0 TI>R
This integral is easily evaluatéd,3 the result is

1/2R%{ (5, (R 1°-3, | (RR)Fy,  (KR)} K=K

Fo(K,K') = ) (16)
R . . 1 [] b} . . L ’
| K_Z—;(TZ[KJQ«+1(KR)JQ,(K R) - K J2+1(K R)JQ(K_R)] K#K
The first few jz(x) are given by
i G0 = Oy
-1
jo(x) = sin(x)/x
jl(x) = sin(x)/x2 - cos(x)/x a7n
| jz(x) = (3/x3-l/x)sin(x)-3/x2cds(x)
ja(x) = (% - ;éz-)sin(X) ‘—' (i—g - %)COS(X)

If we take

£,(r) = exp(~(x/R)%)

then we require the integral,
X2 2y _ o G g
S oare? 5,0 3, Dew /0D = FEERK) (18)

which can easily be evaluated to yield,

2 2

exp (- %T ®24K'%)) 1 ®R*KK'/2)  (19)

FRG(K,K') - TR

4 /KK 9+ 1/2
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The IQ+1/2 are modified spherical Bessel functions, the first few are
given by
' ' 2x
Il/z(x) =v - sinh(x)/x

(x) = /%TE (- —u%(—x—l + cosh(x)/x) (20)

I
3/2 X

2

@ =/ Z 1A+ 1) sinn) - 2 cosh(x)]
X X

Is/2

In both the square-well and gaussian-well cases we have assumed
R to be independent of 4%, This is not necessary and the extension
of different R for different %-values is trivial.

- To simulatevthe.effects of f%-non-locality in (2) we can simply

-add an f-dependent term to our local potential. For example, if

-we wished fo'add a d—well correction to a local potential we could

choose,
V() = VR (1) + A £ ()P | (21
NL =7 77 LY 272 2

with fz’being given by a square-well or gaussian-well. This means,

of course, we have added two additional parameters, A2 and R which
must be fixed by experimental or theoretical considerations. We have
used just such a correction term in fitting our band structures;

. the results will be discussed in detail later in this section.

3. Energy Dependent Pseudopotentials

In order to understand some of the effects of energy dependence

in'pseudopotentials let us consider a model ion core potential

"devised by Heine and Abarenkov.14

In this model they assume that the positive ion pseudopotential
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may be written as

- <
., AQ(E) r Rm o .

V “(r) = (22)

—Zez/r r >R
m
and
a a
Vi _(xr) =) V “(r)P
N gl p v R

The Al are the well-depthes for the léanguiar momentum component.

We shall use the script AQ to indicate correctionsktovthe 1oca1>
pseudopoteﬁtial (which includes screening) and theIAl will be reserved
for the modelvigg core potential.’ PQ projects out tﬁe 2th ahgular
momentum component of the wavefunction, Rm is the model radius,

which is taken to be equal for all 2. For convenience, it is assumed
that A2(22=2) = AZ’ this can be done in most cases as the higher 2
values are negligible in the region of interest.

To determiqe AQ(E), after selecting a value.of Rm, the
spectroscopic term values are exaﬁined for an electron in.the atomic
ion core potential (e.g. Si+3). The well depths AQ are then adjusted
to reproducevthése spéctroscopic terms; the behavior for the first
three Al in Si is shown in Fig. 1. One can observe that the 2 = 0

~and £ = 2 well depths are quite dependent oﬁ the energy of the
spectroscopic’ term to which it is fit. This should be of particular .
importance if one wishes to use the potential over a large energy

range. To obtain the values of A,(E) for a particular energy not
2’ .

corresponding to a term value, an extrapolation of the-Ag to the



tions of a local potential may fail in silicon. While A

to A, and A

_ Indeed, if one extrapolates a rydberg away from E

o
&
Lo
L
o
L F8
c
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desired energy-is reﬁuired. For this purpose, as we have indicated

in the figure, a 1ineaf'interpolation is used, a procedure which

has been justified; at least for the £ = 0,1 cases by Shaw.15

An examination of Fig. 1 indicates quite clearly where the assump-

= A at

1 2

EF_so n—d non—locality might be ignored, the fact that A0 is not equal

1 o means that the s-non-locality probably cannot be ignored.

F asbmight'be the
case in attenpting-to fit photoemiséion data the relativé value_of-
A0 to Al (or Aé) increases by a factor of two or more.

To treat such energy dependence in a rigorous fashion is quite
difficult. For example, if we take an energy dependent Hamiltonian,
then we have a different Hamiltonian for each eigenvalné. This

means solving for as many Hamiltonians as energy bands, and also

since the eigenfunctions are for different Hamiltonians, they are

‘not orthogonal.

Tnis probiem can be circumvented by using the foilowing simple-

expression to simulate an energy dependence in the well-depthes.

‘We take,

A = A(E) + %y PP ®YIY2 - Py} @
o (B) = Ay (Bp) + 75 Kp :

- for matrix eléments involving K and K', E° is given E°(K) = h2K2/2m.

This approximation works quite well when compared to more rigorous

techniques16 (at least as far as the s-well corrections are concerned).
We will use such an approximation in (23) where an energy dependence

may be nécésSary to fit experimental data and where such a need is
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supported by model calculations.

4. The "On the Sphere" Approximation

Up until this point we have not made a connection between a non-
local and local potential. This is, given a non-local ionic potential
as in (22), is it possible to formulate éome sort of local approxima-
tion which QOuld reduce the non-local potential to.ablocal one?

- There is in fact just éuch a procedure.3 In order to reduce
a non-local potential to a local form, one can evaluate it at an
-éppropriate mean energy such as EF and use the '"on-the-sphere .

apprbximation".3 This well-known approximation converts the non-

local potential to a local one by means of the following
a a '
= < >
Vi(Q) kplV NL(E’E)IL‘F t.q
where

E=Ep, |kl = kp +al la] <2 (24)

- >
all - ka1 = 2k

We now have a lécal ionic potential; this potential must now be

screened appropriately before it can be used in calcdlating the

electronic properties of a solid such as an optical spectrum.
In such a fashion, i.e. using the non-local ionic potential

from (22), the approximation of (24), and an appropriate screening,

a number of local model potentials have been con_structed.1
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B. Methods of Calculation

1. Band Structure

_ Once the potential is determined, it is a straight forward calcula-
tion to solve for energy band spectrum. The eigenvalue and eigenvectors

are found by solving the secular equation,

det|Hé’G,(E) - E(k)$ (25)

c,6'] = °

where for the local approximation we have

: ) ) |
& -t 2
=—(k + G)“§ + V. (e -¢c'|)s( - a").
\J \] .
&E am~ T GE aty ~ T~ T (26a)
The form factors and structure factors are defined as in (5) for
diamond and zincblende semiconductors.
For non-local corrections we may take
J('NL(;, ' - J"LG, ¢t T
4n o - _a 1y Fpa
QIY‘Z A 2(21 + 1) PZ(coseKK,)F Q(K,K ) §7(G - G") (26b)

Lo

where the éuﬁ>over refers to the atomiC'species.preseﬂt. The
Fz(K,K') are.defined as in (16) or (19). An energy dependenge may be
included in the Az.as in (23).

To evaluate the_optical response functions or electronic density
of states it isAnecessary to perform a summation over wavevector 5.
" Thus (25) is‘éolved for a grid of 308 points in the irreducible

Brillouin zone.
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To achieve satisfactory convergence, typically 50 plane waves
are included in the wavefunction expansion with another 50 wave
treated in an approximate fashion using a scheme due to ngdin.3

2. Optical Response Functions

To optical spectrum can be calculated as follows. First the

imaginary part of the dielectric function is evaluated using the

~expression,
(k) ds
e,(w) =
2 (k)VE (k) |
ogte ~
where En n (g) = En (E) - En (E) and : | (27)
v C c v

(k) = a? l<n ,k|V|n k> |2/E (k)
nn '~ 2m B aXIVIng»X nn '~
v C . v C

is the interband oscillator strength. The sum is over the initial
vélence band index:nv and the final conduction band states, nc.

S is a surface in k-space of constant.;nterband ene;gy. Four

valence bands, and six conduction bands were included in the sum.

The Gilat-Raubheimer scheme18 was used to evaluate the integral.

The expressioﬁ for ez(w) is based upon several assumptions such as

. neglecting excitonic effects, but has been quite satisfactory for the
purpose of analyzing reflectivities., We shall discuss some corrections
to (27) such as the inclusion of "local-fields'", in the secﬁibn on

silicon. In that section we shall explicity calculate the 1b¢al-fie1d
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corrections for silicon.

Once ;he iﬁaginary part of the dielectric function has been
evaluated, the real part may be calculated from a Kfamers—Kronig
transformation, and a reflectivity‘calculated.3 To compare the

theoretical results to the experimental derivative spectra, the

‘1ogarithmic derivative of the reflectivity is.computed by humerical

- means. Since the calculated reflectivity'is susceptible to noise

arising from the discrete nature of the grid over which €y (w) is

calculated, some averaging is usually performed.

3. Electronic Density of States

The density of states is given by

N(E) =

ZIH

XZG(E—Ech)) @8
k n

where the sum is over wavevector and band index. N is the number of

_unit cells, so that if E(k) is in eV, then N(E) is in units of

(states/eV-atom). The.required sum in (28) was evaluated by a
technique due to Gilat and‘Raubenheimer.18 The energy gradients

required in this method were calculated from k-p perturbation theory.

© 4. Pseudocharge Density

The pseudocharge density was calculated by using the special

point scheme of Chadi and Cohen.19 Instead of evaluating the sum,20
pw=e] [y @ (29)
Y~ .k n NX
~ v : :

over a fine grid throughout the Brillouin zone as performed by Walter
and Cohen,21 only a few representative points need by considered.

The two point scheme of Chadi and Cohen, with k1 =‘(2ﬂ/a)(l/4, 1/4, 1/4)
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and k., = (2n/a)(3/4, 1/4, 1/4) (and appropriate weighting factors),

2

‘yields a valence'band pseudocharge density accurate to within 1—2%,22
as compared to a sum throughout the zone. Therefore, we have used
this two point scheme. Approximately 90 plane waves were used in

the calculation of the required pseudowavefunctions.

5. Spin-orbit Interactions

For the heavier elements the atomic‘spin—orbit splittings become
rather large. This is reflected in the solids such as CdTe where
the energy bands split by nearly leV at the valence.band maximum,
Since we are interested iﬂ obtaining precise band structures such
interactions must be considered.

We have included spin-orbit by extension of a method first
presented by Saravia and Brust23 for Ge. Following the work of -
Weisz24 as modified by Bloom and Bergstresser25 we may write the
spin—orbit‘matrix element contribution to thé pseudopotential

Hamiltonian as

#*°c,G" (k) = (K x K') g S.[-nscos((g-g')-c). + )\Asin(g—g')-t)] (30)

~ o~

‘where we define

as before with

A

s _ = _ e
2= Oy + A2 | Xt =y = A2
_ A A ery
Ay = HB" ,(K) BY | (K') _ (31)
_ B B '
XB = ouB nK(K) B q (K")

L
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0 are the pauli spin-states and AS,‘AA are ;he symmetric and anti-
symmet:ic ¢§ﬁtributions to.fhe spin—orbit Hamiltpnian. uAis an
adjustable:pérameter,.and o is constrained such that the ratio of the
spiﬁ—éribt éontributioﬁs for tﬁe atoms A and B aré_ﬁﬁé saﬁé‘as the
spin—érbit‘splitting ratié.for_free atoms.26

U is then fixed by the ekperimental value of the‘sﬁin—orbit split-
'tingé of the energy bands.

The an are defined by

* 2
BnQ,(K) = bejnl(Kr)Rng(r)r dr

where an-is the radial part of core wavefunction. The radial wave-

27 As in Ref. 26

 functions are taken from the Herman-Skillman tables.
we only include contributions from the outermost p-core states.
Contributions from inner core states.or d-core states may be

neglected.26’27

B is a normalization constant as in_Ref. 26.
f . 23 _ . N
In the Saravia-Brust method 3 spin-orbit interactions are

treated by pertubation theory. If at some wavevector k we have

bands n and m such that
- <
IEn(E) Em‘§)| E,

- then these bands are treated as "degenerate" and degenerate perturbation
theory is used to include the spin-orbit correction. ' Otherwise
non-degenerate pertubation theory is used.

In the degenerate perturbation technique we must solve

| =0 . (32)

detlﬁ? &) = EGRS__,8
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where
s' _ m n 0
1 (k) = GZG'a c®o 9,<g>ﬂ? 6,0t ® (33)
+ Em(lf)am,nass

Em(k) is the Band energy without spin-orbit, 35° is given by (30) and
our pseudowavefunctions by
v (@) = g ag" (k)exp (i (k+G) -x)
In the non-degenerate case the energy correction is simply given by
the first term in (33). E0 is chosen such that it is large compéred
to the Spin—érbit splitting. By a direct_comparison with calculations
which include spin-orbit exactly (rather than by pertubation theory), .
it is found Eo ~ 2eV is quite satisfactofy for the case at hand.
Even with rather large spin-orbit splittings (e.gf leV) the pertubation
technique is éccurate to within 5% and reduces the computational time
typically by almost an order of magnitude.
C. Results

In this section the results of our pseudopotential calculation :
are pfesented for ele?en diamond and zincblende crystals. We shall
discuss silicon and gallium arsenide in detail as brototypgs for
diamond and zincblende compounds respectively.

The potentials were fixed by detailed comparisons with experi-
mental reflectivity and photoemissioﬁ data. Unfortunately, the
addition of a non-local correction term to a local pseudopotential

increases the number of parameters rather dramatically. We have
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attempéedctb‘circumvent this costraining the 1oéai part éf the
pseudopotentiai to be close to the Cohen—Bergstresser28 values.

In addition the non-local radili are fixed a follows: for an's;well
 thevHeine-7Ani‘.ma1u17 model radii are used, for a d-well touching
sphereé aré_used.29 The radii are chosen as such because the model.
radii should reflect an s-p admixture énd thus are aébropriate for
an_s-correctioh. The d-well are rather,larg_e9 and  touching spheréé
provide the largest fadii which are physicallyvmeaningful;

Since the crystals we shall consider have wavefunctions whose

character obeys.

s+p+d=1

we need only‘éonsider s and d-wells. We consider s rather than p

because energy dependence can be large in s, thus it need be considered

explicity.
With the radii‘thus fixed, the only adjustable parameters we have
for the hqh-10cal correctioﬂs are the well—dépths. |
We govern our choice for the nop—local weil—dépthés by inspection

of non-locality in the ion core potential.2 It is expected that

screening could reduce the size of the non-locality bresent in the

core potential, but the trends are expected to be correct. Such an

inspection indiéates that d-well non-locality should increase from

- columns II to VI in the periodic table. Also s-well non-locality

should becoﬁe important for the heavier elements. We shall discuss

- this in more detail for each compouﬁd.'

Finally with respect to the non-local wells it should be noted



-22-

that a gaussian well was employed fof Ga, GaAs and ZnSe. ‘A square
weli was used elsewhere as an é—well correction was required. The
use of a square well allows us to directly apply model_;adii.

1. Silicon

a. Band Structure. The parameters for the potentials we used are

given in Table I. We consider both a local and non-local potential.
The non-local potential consists of an "energy" dependent s-well
using the approximation of (23). This choice was discussed briefly
with respect to Fig. 1. The s-well radius was chosen to be 1.06A.

The eigneﬁValues for the local aﬁd non-local calculation at the
symmetry points ', X and L are listed in Table II. The band structures
for both cases are given.in Fig. 2. The results for the local and
non-local cases are quite similar, except for the lower valence band
(which haveva good deal of s-character), and the band ordering ét
for the upper conduction bands(i.e. FlZ' aﬁd Pl).

b. Optical Spectrum. The optical spectrum can be calculated as

indicated in the introduction. This procedure has been criticized
in that it neglects the effects of microscopic fields (or local
fields). Therefore, we shall briefly discuss the effects of such

corrections with respect to silicon.

i. Local Fields. Within the 1inearvfesponse theory, a small
- perturbing electric field of frequency w‘énd wavevector S+§ in a
crystal will establish responses with frequency w and wavevectors
g+§', where 9 and g' are reciprocal lattice vectors. The microscopié
fields of wavevectors g+§' are generated from the applied perturbing

field through umklapp processes. In the case of cubic crystals, the
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the dielecﬁric responses of the solid for longitudinal fields may be

described by a matrix in G and G',30

 (@HG ) E(gHGTL0) = By (146,0), (34)

g'eg,g pert

ﬁhere E is the total field in the crystal and'Epé 'is the applied

rt
perturbing field. Micrbscopic—field effects (or local-field effects)

_are traditionally ignored by assuming the off—diagongl elements of the
dielectric response matrix to be zero. However the off-diagonal
elements can be important when considering local-field corrections

31-33 34,35

to optical sPectra, plasmon dispersion in metals, valence~

..electron denSity,36 andllattice dynamic337_41 in.semiéonductors and
in5ulators; |

In analyzipg the optical spectrum, thé incident 1ight of frequency_
W may be viewed as a perturbing field of vanishingiy small wave-
vectorf The mécroscopic dielectric function is given by3o
lim 1
0 ehgwlg

e(w) = ; - (35)

30

 where 8-1 is.the inverse of the matrix € Adier and Wiser

G,G'"
:have'derived, within the RPA, the following expression for the

dielectric response matrix.42



—24

€661 (W) =

s ___ d4me’ 5 £5[E_, (k+q) )£ [E_(K) ]
r < 7 ] —
6,¢'  Qlg+e[ far6" T L E_, (krq)-E_(k)+Huwriho

~

ei(q+G)-r -i(q+G')-r

|k,n><k,n|e |k+q,n'> , (36)

where ) is the crystal volume, f0 is the Fermi-Dirac distribution

function, and }k,n> and En(k) are eigenstates and eigenvalues

of the unperturbed Hamiltonian. w) is just the usual Cohen-

f0,0'%"
Ehrenreich43 dielectric‘function as given by (27).

To evaluate the required matrix elements and eigenvalues in
Eq. (36), we have calculated a band structure for silicon using the
local pseudépbtential in Table I. The resulting band structure is
in excellent agreement witﬁ the optical gaps and photoemission
experiments. Each eG’G,(q=0,w) was evaluated in engrgy'intervals of
0.125 eV up to 100 e;.~ T;e summation over wavevector wés performed
by evaluating the wavefunctions and eigenvalues on a grid of 308
E—points in the irfeducible zone. The matrix sizejqf the dielectric
response matrix involved in the inversion for Eq. (35) was chosen to
be 59 x 59, coﬁtaining G-vectors through the sef‘(222). Symmetry
can be invoiked to reduce the number of €G,G' elements.which need
be calculated to 72. Convergence of the ;a;roscopié dielectric'

function was confirmed by inversion of € including sets of

]
2,6

g-VectOrs through (111), (200), (220), (311) and (222) respectively.

In order to establish the accuracy of the calculated €s.g"?
) ’

-~

; . . 4
we have tested our results using the sum rules as derived by Johnson,



.considered should be very accurate.

3 Im eg,g
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” . i 2 [ P(C-E")
= = . —— e .8 Hell
[o] ~ o~
2 -2 .
where wp = 4me”/m is the plasma frequency, p(G) are the Fourier

transformsvof'the valence-elec¢tron density, and 8(3#9) is a unit
vector in the g+§ direction. In Table III we list our calculated
results for the specific cases 9 = g' and‘g = 0, QYH# 0; The
integral apﬁearing in Eq. (37) was evaluated over a 100 eV range
in intervals of 0.125 eV. dhr.fesults.demonétrété-good infernal
consistenéy'except for the diagonal elements fo:_the ﬁigher 9;

vectors. This arises from the fact that Im € (q=0,w) becomes more

G,G

extended in frequency as |G| increases and that the integrand in

Eq. (37) is‘lineérly weighteJFWith freqﬁency. Beﬁter(results can

be obtained if we extend our integrétions beyond the 100 eV range.

As far as the optical properties are concerned, this high energy

behavior is unimportant, and our values for ¢ G in the region
. c . . . L]

G

~ o~

, Ihé calculated imaginary part of the macrdséopichdielectric
function with‘(Adler—Wiser) and without local-field (Cohen-

Ehrenreich).corrections; ez(w) and Im € (w) respectively, is

0’0

" . given -in Fig;'3 together with the experimental measurement of
Philipp and Ehrenreich.as.gFrom Fig. 3 we see that local-field

'correcﬁions do not alter ﬁhe peak position, although they do alter

the strength.of the dieledtric function. Compared with the usual
(w),:eZ(w) has less strength at energies below the main
optical peak, thus increasing the discrepancy with experiment. At

energies higher than the main optical peak, the strength of Ez(w)
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is reduced from that of Im € (w) until approximately 7 eV. Beyond

0,0

this point ez(w) is larger than Im € (w): an event which must

9,0
transpire if tﬁe well known sum rules are to be satisfied. This
behavior fesﬁlts in an dverall improvement in Ez(w) at‘higher energies
as compared with experiment. Excitonic effects, pafticularly on the
1owér energy side of the main optical peak, which afe not included

in our calculations, should further improve the agreement bétween our
Ez(w) resﬁlt gnd experiment in the,lo% energy region. The'efféct

of these eléétfon—hole interactions tends to increase the oscillator
strength, hence the strength of €z(w), at the lower energies.

Thus, while the effects of local-field can alter the optical‘
spectrum they do not, for example, shift the critical points nor
greatly aiter the peak heights. Therefore, the Cohen-FEhrenreich
dielect;ig function should be satisfactory for our purpose of associat—
ing critical points in thé band structure with reflectivity strucﬁufe.

To remove the discrepancies remaining between experiment and
'theory will probably require inclusion of‘higher—order'corrections
such as éxchange32 or dynamic correlations31 in addition to local-
field effects._ Sﬁch a computation,(hbwever, would take us beyond
the range of material to be covered here.\

For completeness in Fig. (3b) we display the calculated and

experimentally determined real part of the dielectric function, El.

To calculate €y from 62 a tail function of the form

Bw

€y = ——5—=5

» hw>E -
(VO
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ﬁés use&.‘ Typically, Eo is chosen to be a few volts higher than any
significanﬁ'struqture in 82; B and Y are_constan£3av'8 is determined
by édntinuity and Y is fixéd such that Y is approximately the energy

of the mainﬁpeak in the reflecfivity (e.g. Y %.A.SIéV for Si). With

"this tail fungtion the_Kramers—Kfqnig relations may be used with

the integfal required extended to infinite frequency. |

The calculated 81

- is in quite‘godd agreement with the‘experimental
results. .iﬁ'particuiaf.the'staﬁic dielectric consfants for ﬁhe
caléulatedlﬁnd experimentél resuits égree to within 10%Z. This is very
suprisigg as for most compounds the discrepancy is larger.

| We have exfended our caicqlation to higher energiés and find a
plasma fredﬁency of approximately 18 eV in agreemént with experiment.

Although ﬁe display the €, results for our non-local potential, the

1

-local results are quite similar.

ii. Reflectivi;y, The calculated and_expérimehtal.reflectivity

spectrum is shown in Fig. 3c. The theoretical spéctfum is unusual in
that the caluélétéd feflectivity coefficient is smallef thah
exberimentbfor father high energies (i.e. 3-7 eV). This is not true
for most compounds.3 In fact, in most cases after the most prominent
reflectivity peak, the discrepancy between theory and experiment is
typically 507%. At present, the reason for‘this is unclear.3

In Table IV we have identified the theoreticaliy determined
structure in the reflectivity derivative spectrum, and as usual
assoéiate the structure with #an Hove singﬁlaritieS'(or critical
46

points) in the Brillouin zone.3 Silicon, as noted by other authors,

has a large number of critical points, and the identifications in .
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Table’IV should be considered as representative for the specific

energy region under consideration. Saravia and BruSt46 have.done

a very thorough analysis of band topologies of three model potentials

for silicon. " Our results are quite similar to their 'Model II"

and the interested reader is referred to their extensive contour maps.
A comparison between the experimental results of Ref. 47 and

our calculated derivative spectra is given in Fig.. 4. Overall the

agreement ie quite satisfactory for both the local end non-local

cases. In particular, the placement of the reflectivity peak

. positions for both cases is accurate to within ~O.15 eV. The non~

local energy dependent result is superior at the.higher energies,

with the El'rstructure in slightly better agreement than the local

calculation. On the other hand, the local calculation is slightly

superior in the E, region, at least as far as the placement of the

2
4.3 eV reflectivity structure is concerned, although both the
theoretical'cu;ves have a‘different line shape'than the experiment.

In the non-local curve the reflectivity structure at 4.15 eV is in
perhaps the greatest discord with the experimental reeults. The reason

for this can be traced back to the band shape near the X region.

4%
The band gap at X for the non-local case is on the order of ~0.2 eV
smaller than the.local case. We also note that the indireet gap

is smaller for the non-local case. If we were to slightly increase
the X4--X1 ;ransition by ~0.2 eV the resulting reflectivity curve
(and indirect gap) should be in better accord with experiment. In
the E1 region we are not able to resolve the fine structure present

in the experimental results.
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The first feflectivity peak at 3.45 eV has ﬁeen fhe subject of
some controver;y. Piezoelectric ekpériments (botﬁ ac49 and dcso),
chemical shifﬁs in Ge-Si alloyé,51 electroreflectance52 and some
wavelength modulation techniques53 have.suggested fhat the peak has
A symmetry; ‘ﬁowever, more recent work has suggested that the peak

has 1\—symmet1‘:y54’5'5

and this assignment is also éuggested by analogy
with other zincblende structﬁrés.53

In both the local énd non-local results this reflectivity peak _
arisés ffom:coﬁtributions from points near I, aléhg A énd off.the
.A-direction; However, the domiﬁant contribution . arises from the A
transition.j The complexit& of this peak in our theoretical
caICulationé;‘that ié, contributions from seveyalncfitical_points,
has also been suggested by seve;al éufhors, e.g. Welkowsky and
Braunstein through an examination of_experimental»reflectivity data;48
In this respect, we note that the T

2507 Tqs and1A3-A3, critical ﬁoints

‘must. lie Very close in energy or more widely spaced reflectivity

structures‘WOuld be present in our calculated reflectivities.
While the topological differences between the local and non-
iocal'calcﬁlations>in ;his region'are small, it is'infereéting,
and perhaps'sigﬁificaht, that our non-local calculatidn is
"flatter" along the A-symmetry direction. This treﬁd has been
observed previously, in non-local calculations involving a

d-wel1.%:6:37

We find in the non—lotalvcalculation that from the
L point midway to I', the energy difference between bands 4 and 5
is less than 0.01 eV, while over the same range in thé local

calculation the gap varies by ~0.15 eV. This means that the non-local
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band structure has a nearly two dimensional MO “point at L in agree-
ment with recent electroreflectance data by Grover and Handler;55
however, the transverse mass for this critical point in the non-
local case is quite similar to the one calCulatedvin the local case,
and not in agreemen£ with Grover and Handler's Qalue. We find the
transverse mass ut ~0.1m, whereas the experimental.vqlue fougd by
Grover and Haﬁdler is closer to 0.02m.

Another controversial transition has been thévpreviously mentioned
T

T2.. In most diamond and zincblende semiconductors FZ' lies

25"
below FlS' Only in silicon have theoretical calculations found the

reverse to be true. This ordering, however, has been confirmed by

the low field electroreflectance data of Aspnes and Studna.58

and E0+A0

0

They have been able to resolve, for the first time, the E
transitions, and find the spin-orbit critical.points to‘occur
at 4.185 £ 0.010 eV and 4.229 * 0.010 eV at 4.2°K. This is in
good accord with the theoretical'vélue for both the 1oca1 and non-
local cases as can be noted in Table II.

We observe that the experimental results of Aspnes and Studna

contradicts the assignment of Kunz59 which placed T below Fl

2! 5°

This assignment was based upon an analysis of soft. X-ray data.
However, we feel the assignment of Aspneé and Studnavto be more
conclusive. Soft X-ray data can be difficult to interpret as the
1eading_edéé.may exhibit excitonic effects.60 In facf, one finds
that the agreement betweenithe soft X-ray spectra and tﬁe theoretical

results with TlS placed lower than Fz, are in satisfactory agreement

away from the suspect leading edge.61 Furthermore, Ge-Si alloying
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expériments tend to confirm the Aspnes—Studna assignment.

c. Electronic Density of States. " In Table V we compare our results

for the local and non-local cases with.the e#pefimental results of
photoemission_measurements. 'The‘agrgeﬁent is quite good for both
caées, but the non-local éalculation'appears to be Superior'for the
Li ahd L2, levels. Unforfunately the ordering of the F12' and Fl
conduééioﬁ bands is not made clear by the éxperimenfél results,
since bdthvfheoretical results are in fairly good agfeement with
the experimentélly determined transitions. The non-local results,
. however, are again in slightly better accord. In Fig. 5 we compare .
our calculétedjelectronic density of states to the'results of XPS.
We have not included the tranéition matrix elements, hence the
theoféticél peak heights do not match the experimentél ones, but
the peak placement forvthé non-local results are in excellent
agreemént.
'd;- Band-Massés. We have also calculated the cylotron resonance
64

‘masses using the mass parameters of Dresselhaus, et. al. as

modified by_Ka'ne.65
2

: n
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+
25"

which should be negligible.64 Pseudowavefunctions were used to

where we have neglected an interaction term between T and F;S

evaluate the required matrix elements. Contrary to comments made

by other authors,66’67

these matrix elements are qhite accurate
when compared to OPW calculations.68 We have also calculated the
conduction band minimum mass by directly calculating the band shape
over a fine grid of points in the neighborhood of the minimum.

In Table VI the experimentally determinéd cyclotron mass para-—
meters. The position, the magnitude, and transverse and longitudinal
masses of the conduction band minimum as determined by experiment
are also compared to the theoretical results. It is interesting that
a simple three parameter purely local pseudopotential is able to
so accurately reproduce the mass results gnd that.the non-local
calculation‘gives such excellent results. This should be contrasted
with Kane's calculation in which he was unable to fit both the masses
and gaps'.65 The difficulty was attributed to the failure of the
local Slater exchange term, but it was observed that changes outside
the linear regime' of his empirical adjustments might remedy the

situation.

e. Pseudocharge Density. Finally we compare our local and non-local

valence pseudocharge densities to the recent calculafions of Yang
and Coppens.73 Using the results of very accurate X-ray experiments
now available,_74 they were able to obtain an extremely accurate
valence chafge density for silicon. In Fig. 6 we present their
valence charg¢ density results which has been prepared by the removal

of the core states by the use of Clementi wavefunctions.75 They
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estimete a éeandard deviation of 0.3 e/Qc in the charge density near
the bonding region. However, at the nuclear sites the error is
larger due to anomalous scattering, but we would not expect the
pseudecherge density to be accurate in this region eithef. In

Fig. 7 we.give the theoretieal pseudocharge density results for

both the locai ahd non-local calculations. The feurier coefficients
of the charge density are given in Table VIIvfor beth results; these
ceefficients are similar to the resulﬁs of an OPW calculation.by

Brinkman aﬁd Goodman.7sa

Since our local calculation resembles that of Walter and Cohen's,21
Yang and Coppeﬁ's observations73vmade regafding tﬁe Walter-Cohen
calculation‘afe valid hefe. A comparieon of the_iocal result to the
experimental cﬁafge density shows as Yang and Coppens point out,
that in both cases the maximum of the valence charge denisty'dccurs
"~ at thevmidpoinﬁ of tﬁe bond; and that the bond height maxima of 28
e/Qc and 26 e/Qé, for both experiment and theory fespectively, are
in very goed‘agreement. We find similar results are also true

for the nen—loeal calculation. This is indeed quite encouraging,
‘especially in view of recent SCOPW calculations.?6 In these
calculetione, while the celculated crystalline form fectors are
found to be an improvement over the free atom form factors, there

still existed eignificant discrepancies.76 Unfortunately since

P )vhave not been

difference densities (i.e. Pval = Protal ~ Peore’

prepared for the SCOPW case, a direct comparison cannot be made =~

between their results and our calculations.
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That the pseudopotential should do so well aWay from fhe nuclear
region is perhéps not as surprising as it may seem. It is in the
bonding regipn where we would expect our Qa?efunctions to be most
accurate. On the other hand, the fact that the agreement is so good
is unexpected, as energies are élways more accurate than the corre-
sponding wavefunctions. Calculations for ﬁhe temperéture dependence
of the '"forbidden" (222) refléctioﬁ in silicon, involving pseudocharge
densities, have also been able to accurately reproduce the experimentai
results. These resulté will be discussed later in this section.

In tﬁe local case we do find some discrepancy with experiment:
namely, the orientation of the Bond. The local pseudopotential

bond axis is aligned perpendicular to the bonding direction, while

experiment finds a bond élongated parallel to the bonding direction. ‘
This resultvis outside of the exberimental error quoted by Yang and |
Coppens.62 But in the case of the nonflocal pseﬁdopotential we find
a pseudoéhargé density in which the bond is elongated parallel
to the bonding direction; |

The rotation of the bond from the local perpendicular orienta-.
tion to the non—locai parallel oriegtation result can be traced
directiz ‘to ﬁhe energy dependent non-local s-well's effect on the
bottom valence band. A band by band comparison of the local and
non-local pseudocharge densities is given in‘Figs; 8 and 9. The
bottom valence bands in the energy-dependent non-local case see a
must weaker (i,e.lless repuisive) s-well than do the upper valence
and cénduction bands. This permits the s-like baﬁds in the non-

local case to remain the same for the upper bands, but differ for
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the lower bénds. Hence, in the non-local case we have, for the

i

bottom bands, charge "leaking" into the core regions, while in the

local case it remains exclﬁded. This accounts for the "bond-like"

'

feature appeariﬁg in the local case for the bottom bond, while in
the non-local case the charge appears uniformly spaced between

the atoms.. The second valence band also mimics to some extent

| the changes occurring in the first band. But it is the major change

in the first band which causes the change in bond orientation.

f. Temperature Behavior of the Pseudocharge Density. Not only

have recent X—féy experiments prbvided an accurate charge density,
but the temperature dependenqeléf thé valence chafge hgs also.been ‘
investigatéd. By combining neutron and X-ray diffraétioﬁ studies,
RoBerto,'Batterman and Keating77 have been able to estéblish the
temperatureiaependence of the "forbidden" (222) reflection in

both silicon énd germanium, and specifically, they have been able

" to determine the relative contributions to the forbidden reflection

arising frbﬁ the bonding electrons and from the anharmonic motion
of the ion cores.

Early éttempts78 to account for the temperature:dependence were
bésed'on inaccurate experimental resuits,77 and are ﬁot in accord

with the more recent data. More recent simplifiéd_models have

.also failed‘at‘the higher tem.peratures.77 As suggested by Phillips79

and Roberto, Batterman and Keating,77 we find that the change in
bonding charge with temperature is significant. Further, we find

'under the assumption of an Einstein solid, that the Debye-Waller
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factor characteristic of the bond motion is one half that of the
ion cores.

In establishing the temperature dependence of the bonding
charge the anharmonic contriﬁution from the ion motion must be
subtracted ouf from the "forbidden" (222) feflection.77 ‘This may
be accomplished through the use of mneutron diffraction techniques
as neutrons interact primarily with the nuclei. In such a fashion,
. using thevsimple model of Dawson and'Willisao to account for the
témperature dependeﬁce.of the ion core contributions, Roberto et al.
have separated out the anharmonic motion of the cores. Once this
has béen aqcompiished the resulting contributions to the forbidden
reflection cén arise only from non—centrosymmetricbparts of the
charge density, i.e. bonding charge.

Since the "forbidden" (222) reflection, correéted for the
anharmonic motion of the ions, depends upon the structure factor,
F222, for fhe bond, the témperature dependence of‘this reflection
can ﬁe analyzed in terms of this 'bond" structure factor. The
procedure which we shall follow in obtaining the temperature
dependence Qf»tﬁe structure factor for the bond will be analogous
to the atomic structure factor case., 1In the atomic case the structure
factor is the préduct of two factors: the fourier transform of the
charge distribution, or scattering factor, and a DeBye—Waller factor.
Ihe.first factor accounts for the charge.distribution, the second
for thermal motion. To calculate the structure factor for the bond

we first calculate the charge distribution with the ion cores in
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their eqﬁiiiﬁrium positions and determine the scaftering factor
for the boﬁd; Next we take'tﬁe bond motion into account By an
Vappropriate‘Debfe—WAIIer féctor, and obtain the sfruéture factor for
“the bond.by the pfoduct of the scattering and Debye—Waller factors.
Howevér, unlike the atomic‘case we take into consideration the
‘effect tha£.the bonding charge'may,be'significantly-altered by
temperature_és.suggested by Philiips.79 in ordef'to accoﬁﬁt for
this changeliﬁ.bonding charge,‘éﬁd the fesultiné chanée in the
fscattering.factor, we calculate the effect of temperéture on thg
crystalline poténtial. This may be ddﬁe in a straight forward
‘manner involving the use of ;he Debye—WaIler ion COré‘faCtorsfas
indicated in Ref. 81. |

| In oﬁtaiﬁing the effect'of temperature on the éhérge density it
is necesséry to.have a knowledge of the cryétallinévpbtential,

the thermél eipansion function of the solid, and the phonon spectra
dr Debye-Walier faqtors for the ion cores.81’.This data, howeVer,
‘is well estgbiished for both silicon and germaniuﬁ. Recent calcula-
fions'on both si1icon16 and germa‘nium8 using non-local pseudo-
potentials have beeﬁ ayle to accurately obtain the optical gaps,
photoemissionvfesults, and cyclotron masses, and.thgsé are the
potentials which we.shall use in the present caléula;ion. Further,
_ the'thérmalvexpansion function has been tabuléted over an extensive
témperature rangé82 and Batterman andChibman83 havé incorporated
k—ray dafa on the iqn,cOre ﬁotion into Debye-Waller factors for

both crystals.



-38-

After the scattering factor has been calculated in the manner
éutlined above, it is necessary to obtain a Debye-Waller factor for
the bonding charge. Welsh has suggested that the Debye—Waller factor
appropriate for the bonding charge should be smalléf than the
corresponding Debyé—Waller factor for the ion cores.77' Howéver,
under the physically‘reasonable assumption that the motion of the
bond should be characterized by the motion of the midpoint of
néar-neighbor étoms, and the additional assumption of an Einstein
solid (appropriate for the temperatures involved83),vit is easy
to demonstrate’that the Debye-Waller factor for the bond is exactly
one half that of the ion cores.

The temperature behavior for silicon is given in Fig. 10. The
results for germanium are displayed in the next section. in
Fig. 10 we indicate the results from the simple model of Roberto

77 which assumed that the valence charge density was not

et al.,
altered by temperature. They also assumed that the bond motion
would be that of the ion cores and, hence, the same Debye-Waller

- factor could be used. Unlike their results, our calculations are

in excellent agreement over the entire temperature range for both
.silicon and germanium. However, it should be pointed out that
Roberto et al. recognized quite clearly the drawbacks of their model
and, in fact, suggested that the. temperature dependence of the
scattering factor, or charge density, combined with a reduced

Debye-Waller factor for the bond motion migtt yieid the correct

temperature dependence for the "bond" structure factor,
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We also mention in this context that Phillips79 has suggested
that a deCreasé in the bondihg charge, ZB’ alone éould account |
for the obser#ed femperature dependence of the structure factor. He
has developed.a’theory for.thé_ﬁagnitudé of the bonding'chafge
which"states:that it should very gs-the inverse of'the optical
éonstant squared, i.e. Zb « n—z. If we»evaluate AZE/Zb in terms
of finite diffe:ences over the femperature range of:intérest we
find Azb/zs = 0.066 * 0.006 for silicon and Azb/zg = 0.13 £ 0.05

4 Iif we‘

for gerhanium using>the éxperimental values of n(T).l
associate the (222) component of the charge density, Py9ps 38 2
measure of'the,bbnding charge, and evaluate A0222/b222,'wé find

= 0.062 for silicon and Ap

A0222/0222 222/9222 = 0.099 for_germanium

in good accord with the values pfedicted by Philiibs. The values,

howgver, for AF222/F222

for germaﬁium. Therefore, we note, at least in the case of silicon

are 0.10 * 0.0l for silicon and 0.18 * 0.02

vvﬁheré thé experimental values are determined with more precision
 than in ggrmanium, the decrease in Zb.aione.cannog adequately explain
the observed temperature dependence‘ofvthe forbidden (222) reflection.
"However, if a Debye-Waller factor appropriate for the bond is

_ included, then.Phillips' predicted values for‘AZb/Zchan adequately
account for the observed behavior.

Finally we ﬁention that the accuracy of our pseudocharge density
calculation in yielding an accufate temperature dependence of the
forbidden (222) reflection, and in producing an accurété valence
charge density is quite encouraging. We expect the pseudocharge

density to fail to reproduce the actual charge density in the core
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region; however, that it is so accurate away from the core region,

i.e. the bqnding region, suggests that other band célculations can

be refiﬁed to give similar results, e.g. self—consiétent orthogonalized
plane wavev(SCOPw) results76 have, thus far, not yielded accurate
structure factors.

2. Germaniuﬁ

a. Band Structure. For Ge a gaussian-well correction term of the

form,

VNL(E) = VL(E) + Azexp(—rz/Rz)P2

was employed. The parameters used in the calculation are given in
Table VIII.  Ihe well radius, R, was chosen to be 1.22A. The form
factors we ﬁsed are quite close to the ones used by Cohen-Bergstresser.
Unlike Si where the spin-orbit splitting is small, oﬁ the»orde¥ of
0.05 eV, Ge has a splitting of 0.3 eV at the valence band maximum.
Consequently, ﬁe have included spin-orbit interactions in this
calculation.. The eigenvalues at the high symmetry points, I', X and L,
are given in Table IX. In Fig. 11 the band structure along symmetry-

lines is displayed.

b. Optical Spectrum. ‘The reflectivity and the modulated reflectivity
spectrum is displayed in Fig. 12 and Fig. 13. The reflectivity
spectrum has been of interest because of the controversial nature

of the Eé peak.

Recently Aspnes84 has proposed that the E, reflectivity peak,

2

the most prominent peak, in Ge appears to arise from a localized

region in the Brillouin zone (BZ) in apparent contradiction to
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85-89 By using our non-local _

previous theoreticel calculations.
peeudopotential scheme, we are able to determine that fhe interband
transitions’of.interest arise from a specific BZ region; these
:COnelusions are eot at variance with the experimental results.

Analysis of the calculated reflectivity reveals that the ﬁ peak

2
arises from a well defined, 1imited region inside the BZ which
is not aloﬁg lines of high eymmetry. This region lies near the
special'pqint (3/4, 1/4, 1/4) determined by Chadi ane Cohen.19

These resuifs are consisteht with previdus theorefieal calculations

and with Aspnee' suggestion that the observed structure can arise

from a set of equivalent critical points. We also obtain an inter-
band mass fof the E2 region in reasqnably good aceord with the
'experimeﬁtelly determined value.

In Table X identification of the importent teflectivity structure
is.compile&. One of the most interesting effects of the non-local
poeential is.i;s effect‘oh the critical point topologies. 1In
'perticular,‘itﬁhas been'noted8’ 9 that.a nen—local'well "flattens"
the energies bands (particularly along the A direceiqe). Other
-eritical points, which exist with a local poteﬁtial, may ‘be eliminated-
altogether."

'In analyzing the E, peak we find that it originates from e épecifie'
region of the I'-X-U-L plane. Fig. 14 indicates the energy contours
of interest in this region. This vefy flat plateee region has large
dipole matrix eleﬁents and because it is not a point of high symmetry

there are24 equivalent regiohs'in the full Brillouin zone making

up a lerge volume. Further, we find no critical point along Z, and
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as noted e_lsewhere,88 the XS—X5 crifical point is of little consequence

due to its small volume. Such a plateau feature has been noted
before in'zincblende compounds89 and Ge,86 where it usually, but not
always, is accompanied by a X critical point.

The plateau itself, consists of a nearly, if not completely,

degenerate M

1—M2 pair of critical points, and while it is not a

"localized" region in the sense of a critical point at a symmetry
point, it is .still a well-defined and limited region. The dipole
matrix elements and eneréy difference of bands 4‘and S are nearly
constant over the entire plateau. And as ﬁill.be'mentioned in more
detail beiow, the interband mass in this region is also nearly

constant. Finally it has been noted that the E, peak in the ez(w)

2
appears to arise from just such a combination,91 and Aspnes has
determined that ét least one interband maés component should be
negative in this region.84 Both of these results are compafible
with our calculations.

Other prominent structure arises from critical‘points at L and
T. 'At 2.19 eV and 2.39 eV we have structure in the calculated

reflectivity coming from M, type critical points at L. This

1

structure corresponds to the experimental structure at 2.22 eV and
2.42 eV observed at 5°K. The structure at 3.20 eV has been the
subject of some controversy.3 Aspnes has observed structure at 3.02

eV, 3.20 eV and 3.50 eV which he attributes to transitions involving

the spin-orbit split T -T transitions. This is in excellent

25" 15

agreement with our transitions:
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8 6
rév' - r8° 3.22
r7v - r8° 3.51

This suggééts that the observed reflectivity structure at 3.2 eV may
arise from Tv¢onffibutions, in contrast to pfevious speculations
~that the\phase'spaée at. was too small to make significant coptribu-
tions'tq‘any'reflectivity structure. Excitonic‘éffects could, of
course,‘play‘a'role in enhancing ﬁhe transitions at f. Finaily we
note tﬁe’structure ét 5.7 and 5.9 eV ddgs not appeaf to ariée from

spin-orbit- split transitions involving L bﬁt rather the

3¢ = Lgs
lower transifidn has contributions'froméﬂongA and- the higher
transition involves contributions‘from the L region.

We cOnclﬁde ourldiscussion of the reflectivity by noting a
possible relationship between the plateau region an&'the special

19 who have developed a

point (3/4, 1/4, 1/4) of Chadi and Cohen,
scheme for evaluating sums over wave vecfor in the Brillouin zone
of a periodic function. They have found that by choosing special
‘points in k—sPace, rapid convergence of the sum can be acﬁieved

(e.g. for chafge density calculations).

In particular, if we have a sum

they have shown that the best two point approximation which can be

made is
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=1 3

where kl = (1/4, 1/4, 1/4) and k2 = (3/4, 1/4, 1/4). 1t is interesting

that such a two point EZGD) would pick up a contribution to the E1

and E. peaks from k, and a contribution to the E peak from k of

1 1 2 2°
course, it is just these peaks which dominate the structure. This
would seem to indicate such a scheme might be applicable in evaluating

the sum over wave vector needed for dielectric function calculations.

c. Electronic Density of States. The valence band edges and other

transitions of interest compared to éxperiment are given in Table
XI. Spin-orbit interacfions were not included in the caléulated
values; the expefimehtal uncertainty for photoemission measurements
(i.e. XPS or UPS) is larger than the spin-orbit splittings involved.

The theoretically determined electronic density of states compared
to the UPS experimental results of Ref. 6 in Fig. 15. Again, we do
not‘include transition matrix elemepts, and thus, ‘do not expect the
theoretical peak heights to match with the experimeptal spectrum.
The shoulder near the top part of the valence band may be due, in
part, to the presence of surface states. This aspect will be
discussed later in the surface section.

d. Interband Masses. In order to compare the-band masses as

: 8
experimentally determined by Aspnes 4, we have calculated some
interband masses from the following expression:
2 P, P,

h
e e e (39)
i3 [ Ml R )
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where m,, is a measure of the interband mass size for the ith and jth

i3
bands; and’PiQ is the gradient matrix element. Our results for the
interband maéses are compared with the e;periméﬁtal‘feSuits of Aspnes
in'Table XII,.These results fgfther substantiate the assignment of
the E2 strﬁctﬁfe to the "plateau" region;

e. Pseudochérge‘Density. The total valence charge density is given
21

in Fig. 16. 'Thé results'are quite similar to Walter énd Cohgn's.
This isktb Be_eipécted as the non-local d-well poﬁential alters
only the condﬁétion'bands Which, unlike the valence bands, contain
significant dféharacter in their wavefunctions. = |

‘The tempefatﬁre behavior_pf the bonding charge as determined
from experimént is presénted in Fig. 17. The melting temperature of .
Ge is lower than Si, thus, the departure of Fzg'(Ge) from its room
temperatﬁrefvalue is larger for an equivalént temperétufe. The
Debye~Waller factor for the ion-cores as a function of temperature is
| alsobindicated in Fig. 17. The relétively faster fall;off of Fzgz
suggests tha; the valence wavefunctions must alter their characterv
“with temperatﬁfe. Otherwise, a simple bonding chafge, Zb’ would
have to oscillate faster than the ion cores»to'acéoﬁnt for the
difference ﬁetween F b

222

seem physically reasonable.

and the Debye-Waller factor. This does not

3. Gallium Arsenide

We shall discuss GaAs in some detail as it will serve as a
prototype for the zircblende semiconductors. GaAs is ,a good choice

for such a "model" III-V compound as extensive theoretical and
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and experimental work has been carried out on this compound. In
particular, recently Aspnes and Stadna,94 have made electroréflectance
experiments which have resulted in an ordér of magnitude improvement
.in resolution and accuracy (for higher energy gaps) over previous
spectroscopic work. In addition studies 5y Pandey and Phillips9

and the author95 have resulted in extremely accurate theoretical

band structurés for GaAs.

a. Band Strucutre. The band structure for GaAs, including spin-

oribit interactions,vis given in Fig. 18. The potential included
a non-local gaussian d-well as for the case of Ge. The parameters
used in the calculation are given in Table XIII. The well radii
are not crucial in obtaining an accurate band structure. We have
therefore constrained the a—well radii to be the séme for the Ga and
As contributions. The radius, R, Qas chosen to be 1.22A. The
local symmetric form factors were constrained to remain . close to Ge:
the largest-change being 0.01 Ry.

The eigenvalues calculated for the higher symmetry points I,

X and L are given in Table XIV.

b. Optical Properties. 1In Fig. 19a we present our calculated imaginary
part of the dielectric function compared to the experimehtal résults

of Ref. 45. With the exception of the doublet peak at 3 eV, the

overall agreement is quite satisfactory; The 3 eV peak in experiment

is nearly twice as large in magnitude as the theoretically determined peak.

3 ‘
It has been suggested™ that at least part of the discrepancy comes from

the fact we‘haVe ignored excitonic interactions. Such interactions are

known to -enhance quite strongly the reflectivity peaks.
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Another.diecrepancy is the peak placement neat S_eV, the
experimentallﬁeek occurs at 4.5 eV, while the theofetical peak is near
5.1 eV. .This discrebancy can be partially accounted for by the fact
that the exferimental measurements were taken at.room temperatures,
while the theofetical parameters where fit to opticel=gaps meaeured at
5°K. _This weuld_aecount for soﬁe, but not all of - the discrepaney. |

The origin of the various structure observed iﬁ the.ézrfigure
will be discussed wﬁen the reflectivity spectrum is analyzed. In
Fig. 19b we ﬁteeent the real part of the dieiectric function. The
real part Vas eaiculeted from a Kramers-Kronig:tranefprmation{ Ve
note similar discrepancies exist as for the imeginery.part of the
dielectrie.fuﬁction between the theoretical and experimental curves.
The theoreticaI’static.dielectric function is smaller by nearly 20%
compared to ekperiment. This discrepancy is also.present in the'

_ ‘reflectivity sﬁectrum in Fig. 19¢. It is interesting_to nete that
while the Aieleetric functions appear to be somewhat in discord with ‘
theory,»thevteflectivity eurve‘is in quite good agteeﬁent with theory
(except for theemagnitude). Part of this can be explained by the fact
that the struetere iﬁthe reflectivity comes from criticai points in
the band structure. And, while many body effects mey enhance the
critical peints they do not appear to significantly shift the critieal

point positiohs. |

The refleetivity structure is identified in Table XV; in Table
XVI we compare our calculated critical point energies to the experi-
mental results of Schottky barrier electroflectenee94 and wavelength

.9
modulation o. The results of two recent band structures using a local
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pseudopoﬁential and aA orthogonalized plane wave (OPW) calculation
are also presented for compérison. We note the optical gaps for the
local pseudopotential or OPW calculations can typically be in dis-
agreement by 0.5 eV. This should be contrasted with a typical error
of 0.05 eV from our non-local calculation.

The modulated reflectivity spectrum is presented in fig. 20.
In this figure we afe able to resolve fine structure in the reflectivity
curve. In fact by examiﬂing the energy gradients'and diéole matrix
‘elements throughout the Brillouin zone, it is possible to determine
the origin of structure in the imaginary part of the dielectric
function. 1In such a manner we have analyzed the contributions to E;
reflectivity stfﬁcture. This structure has been the subject of some

94,96 Rehn and Kyser using transverse electroreflectance

discussion.
observed only a A symmetry for this structure.96 They attributed the
structgre to be derived from the'pseudocroséing_of the A5 conduction
bands. However, Aspnes and Studna have pointed out that this inter-
pretation conflicts with band structure calculations where some T
symmetry structure is predicted.94 Further, they proposed that the

A symmetry structure arises from a pair of Ml critigal points approx-
imately 1/10th of the way from I' to X. Our calculations agree with
the Aspnes—Studnévinterptefatiqn. We indeed, find two Ml critical
points along A at between 5 to 10% of the way from I' to X as indicated
in Fig. 21. It is these points along with contributions from I', which
causes the structure at 4.5 eV(B) and 4.7 eV(C) in our derivative

spectrum (Fig. 20). We have also found that by calculating the band

structure with and without spin-orbit interactions, that these interactions
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are crucialiin altering the band shape nearIF and producing the

critical points. ‘
Aspnes aﬁd Studna also noted the possibility of the pseudocrossing

producing somé.very weak structure at 4.4 eV in the electroreflectance

dara.94 Thié also agrees with our results. The aashed line Fig. 21.

indicatés,aﬁ M; critical point position near the pseudocrossing.

This M.0 cfitical point producéé the weak strucfufe ﬁear 4.4 eV(A)

in Fig. 20. iit sh9uld be noted, however, that theré.existsva

.companion Mo‘gritical pointvdue to the sﬁin-orbit éplitting of the

’As valence Band. Since this companion occurs at ébout 0.1 eV higher

energy, it is hearly degenerate with the Eo' sirﬁcture ffom I' and A

,at'4f5 eV. 1In our calculated»derivative spectrue it is masked by

the stronger'M1 critical points, and this may also be the case in the

electroreflectance measurements.

c. Electronic Density of States. 1In Table XVII the calculated
valence band edges are given with the experimental results from XPS
and UPS. 1In addition, we present results for some indirect tranéitibns

100 Spin-orbit interactions

taken from é:recent review article on GaAs.
were not inciﬁded in thé calculated results. The expéfimental values
from Ref. 100 wére taken at room temperature; the theoretical values
were fit to tHe‘5°K data. This accounts for the facf_that the theore-
tical transiﬁiﬁns are larger when compared to experiment by typically.
0.1 - 0.2 eV. |

In Fig. 22 the calculated density of states isvcompared to the

results of XPS. The overall agreement is quite satisfactory. The

largest discrepancy exists for the bottom valence band. Theoretically,
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it is quite difficult to position this band and not affect the optical
transitions. Experimentally, the resolution in this region is fairly
low ( 0.5 eV) and removing the '"background" is difficult. The UPS

and XPS results disagree>by approximately 0.9 eV for the position of
the bottom band (With UPS results in better accord with our calcula-
tion).

The-leading edge of the valence band is also difficult to place
experimentally., The Lg - Fl; transition in particular is the source
of some inconsistency betweeP UPS and XPS. The XPS value is in better
accord with our non-local EPM value. Surface states could play a
role in the varying values between XPS and UPS. There are, in fact,
rather strong surface states in this region103, and UPS could be
affected by their ﬁresence.

d. Pseudocharge Density. 1In Fig. 23 the calculated valencé band

charge density is presented band by band. ;n Fig.’24 the total
charge density is presented. The ionic nature of GaAs is quite
evident compared to Si or Ge. The bottom valence band has charge.
localized strongly on the As, and corresponds to the As 4s atomic
level. The next three valence band show mainly As p-character. We
note that this can be understood in terms of the density of states
curve. The bottom peak corresponds to As s-states, the next peak

(at - 7 eV) corresponds to Ga s-states with some As-p admixture. The
dominant peak (~4.5 to 0.0 eV) corresponds to As p-states,

4. Zinc Selenide

Zinc selenide completes the iso-electric series Ga-GaAs-ZnSe.
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This series has the same crystal structure and lattice constant.
It, therefore, illustrates quite nicely the.trends which may occur
Withrincréasing'ionicity.

- Of thé three crystals, Zeée is the least succesSful as far as
reproducing the resulté from reflectivity and photoémiésion'experiments.
Part of the ﬁroblem, not doubt, arises Becéuse of the existence of the

Zn 3d "core' state which lies approximately 10 eV:belOW'the valence

.band maximﬁm.v Our pseudopotential does not expliéitly include these

states,. and, therefore may not accurately account for any effects
due to their presence.

'Nevertheless,'we are able to significantly improve the electronic

'density of.stétes for the top three valence bands, and obtain a

reflectivity with satisfactory agreement between theory and experi-

ment using'our'non-local approach.,

a. Band Structure. The band structure was calculated using the
same type of pseudopotential as for GaAs. The parameters used in
the calculatién are given in Table XVIII. The well radii were

104 The more repulsive d-well

chosen to be 1.22& for both Zn and Se.
for Se is conslStent with the trend observed in GaAs: a more repulsive
As well than Ga well. The eigenvalues for the symmetry points I', X
énd L are given in Table XIX.

The calculated band structure is presented in Fig. 25.

b. Optical Spectrum. The calculated reflectivity spectrum is
presented in Fig. 26 compared to experiment. Wavelength modulation

experiments would provide a better source of comparison, but such
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spectra are not available. The structure present in the refléctivity
spectra is identified in Table XX.

Because of its ionic character the structure is shifted to higher
energy. Synchotroq radiation has recently permitted the.reflectiviﬁy
spectrum to be_measuréd over a 15 eV range.105 The optical gap not .
listed in Table XX is 2.7 eV in good agreement with the synchotron
data.

There are two prominent discrepancies between theory and
experiment in Fig. 25: one is the doublet néture of the reflectivity
peak at 6.7-eV which is not present in the theoretical caluclation;
the other is the magnitude of the reflectivity coefficient as
calculated via the non-local pseudopotenfial. The doublet nature of
the 6.7 eV is probably missing because it is obscured in our
calculation by the strong peak accurring over a plateau region (as
in Ge). 1If oné calculates a "band by band" dielectric function there
is prominent struéture at 6.5 eV for transitions between the top
valence band and>the second conduction band. However; in the total
dielectric function, this structure is not discernable; it is over-
whelmed by the strong "plateau" transitions from the top valence band

to the first conduction band.

c. Electronic Density of States. In Fig. 27 we compare our cal-

culated valence band density of states with the epxerimental results

of ultraviolet photoemission spectroscopy (UPS)101 and X-ray

02 Previous local EPM calculations12

photoemissioﬁ spectroscopy (XPS).1
were in disagreement for the top three valence band edges by an eV

or more. The non-local pseudopotential calculation has removed this
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discrepancy; Howevef, tﬁé bottbm valence band, wﬁich corresponds to
the Se 4s states, is not in good agreement with the-XPS data. In

UPS the bottom baﬁd is not observed. It is not clear why our position
for the bottom band is in erro;;' OPW calculations tend to give better
values than tﬁé local EPM calculations for the 1owéét'band, and such
caICulations:agree with our results; Further, Fréeouf hés recently
studied the experimental reflectivity of II-VI compounds over an
éxtended eﬁergy range by the use of synchotron radiation.105 He
observes strpqﬁure in the 15-16 eV range, and notes that such
structure might be associated with transitions frdﬁ the group VI
s-level. Our calculations agrees with this suggestidn as the thres-
hold for suéh a transition is 15 eV.

In Table XXI we list the experimental results froﬁ photoemiséion
and the calculated results for the valence band edges. Except for
the disagréément fof the bottom band placement, the agreement is
quife satisfactofy, and is a considerable‘improvementféver local
pséuddpotenﬁial calculations. Spin-orbit interéctions are included
in the expérimentally measured values; the notation in Table XXI
refers‘to experimental features. Therefore, the theoretical values
listed contain the spin-orbit correction just as eXperimentél. This
-.ﬁraétice wiil be important only for materials 'such as'CdTé or InSb

where the spin-orbit interactions are large.

d. Pseudocharge Density. The charge density for ZnSe is presented

in Fig. 28. This result is quite different from Walter and Cohen's

calculation.z_1 In the Walter-Cohen result the'charge‘denSity_indiéates
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a very ionic crystal. The charge transfer from Zn to Se appears to be
complete.‘ Thié is not the case for the present calculation. While
the valence charge is pfédominately localized on Se, ﬁhe charge
transfer is not complete.

Physically, our result is more reasonable than the local
pseudopotentiél result.21 ZnSe should not be very ionic. The reason
the non-local result yields a less ionic crystal can be traced to the
effect of the d-well on the optical gaps. The repulsive d-well
increases the optical gap size without increasing the charge tranéfer.
The optical gaps are, iq fact, too small in general compared with
experiment,‘therefore the d-well resolves this discrepancy. However,
a local pbtential can only increase the optical gaps by increasing
the antisymmetric form factors. This procedure ha§ two drawbacks:

a) the valence band widthes decrease, a trend not supported by XPS
or UPS data, and b) the charge transfer increasgs; the crystal
becomes more ionic.

5. Gray Tin

Grey tin is one of the most interesting diamond structure compoundé,
because it is believed to be "ideal semimetal" (i.e. a semiconductor
with zero band gap). This is consistent with the trend present in
Group IV elements: the band gap decreases from diamond to tin (with
lead being metallic.

White tin occurs at room temperature, but does not occur in a

diamond structure.
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In aan,'inSb and CdTe it was found that a éimple d-well was
insufficienf'to fix the piacemeﬁt-bf the bottom valence baﬁd. |
Typically, if:the optical gaps are fit, the lowest valencé bandrdiffers
from experiméﬂt by se&erai volts (if only a d—weli corréétidn‘is employed).
_Howevéf,van éﬁamiﬁation of theIHeine-A.nimalu14 resultsvindicates an
s-well correction may become more important for thé heavier elements.
And if a éofreétibn term, the‘size of which is.compatible with the
Heine-Animalu calculation, ié included, the placemént of‘the bottom
valence béﬁd is compatible with expérimeﬁt. |

In ofdef'tq reduce'thé number of adjustable paf;ﬁeters, a
sduare-well'ﬁas taken from the Heine-Animalu results;_ The size éf
the d—We11HWas-given by two touching spheres of.éqﬁai_fadii. |

a. -Band Structure. The band structure was calculated using the

parameter;in Table XXII; an s-well and d-well squafé;ﬁell correction
were used. The s-well was "energy dependent" as giVen by (23).

The well radii were R = 1.06A and R

5 = 1.4lﬁ.v The eigenvalues at

the symmetry points I',X and L ére given in fableFXIiI.

The bandvstructure is given in Fig. 29.7 Since T;fc corresponds
both to thé top'valeﬁce band and bottom conduction baﬁd, a~Sn is an
ideal semimetai. This degeneracy cannot be removed by pressufe or

106

‘temperature” -.

b. Optical Properties. The reflectivity spectrum is given in Fig. 30.
' 108, 109

, 1 : .. - R
Electroreflectence 07 and reflectivity experiments exist
for a-Sn, but unfbrtunately, a wavelength modulation spectrum has

not been determined. The comparison in Fig. 30 of oﬁr non-local

result and the experimental result of Ref. 108 is satisfactory with
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respect to péak positioning, but not magnitude. This is in part due
to a poor sample,109 but some of the error méy_result in the
traditionally large reflectivity present at higher éhergies in the
theory.3 |
The structure present in the reflectivity specter is identified

in Table XXiV;, The experimental data is from both.electroreflectance
and refleétivity measurements. There is some weak structure near
4.7 eV which we do not observe in the theory. Other than this
discrepancy we are able to identify the rest of the reflectivity
structure. Our identifications, for the most part are comatible
with Ref. 109 (an OPW calculation).

The theoretical reflectivity below 0.5 eV is not accurate because

of numerical problems associated with the vanishing band gap.

c. Electronic Density of States. Unfortunately UPS or XPS spectra
are not avéilable for a-Sn. We have, therefore, adjustea our potential
to give approximate agreement with an OPW calculation. Our calculatéd
values for the valence band edges are compared in Table XV to the
OPW theoretical calculation and some experimental data near the
valence band maximum. For comparison to experiment wé have extrapolated
a-Sn valence edges using the InSb results and by examination of the
Ge—-GaAs résults. The extrapolation is probably good to * 0.5 eV.

The calculated electronic density of states is displayed in Fig.
31. The ban& gap is observed to vanish. The overalllshape énd

peak placement is in good accord with the calculation in Ref. 109.
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d. Pseudocharge Density. In Fig..32 the valence eharge density

is presented for a-Sn. The treﬁd present from Si to Ge is present
in grey tiﬁ: eamely, the charge density extends ihto the core region
to a greater exteﬁt. Tin is more metallic; therefore, the bonding
charge shows a decrease iﬁ magnitude'coﬁﬁared to silicon. |

6. Indium Antimonide

a. Band Structure. As in the case of grey tin, an s-well and a

d-well were employed in the band calculation for InSb. The
parametersiused in the calculation are listed in Table XXXVI. The
radii for the s-well depths were Ro(Iﬁ) = 1.27A and Ro(Sb) =.1.06A.
For the d—wells tﬁe rediﬁs-was determined by touchihg spheres:
| RZ = 1.4&. | -

The eigenvalues at thevsfmmetry points F,'X and L are given in
Table XXVII; The calculated band structure along}symmetry lines

is given in Fig. 33.

b. Opticai Spectrum. The calculated reflectivity is compared to
experimental results from Ref. 110 and Ref. 111 in Fig.v34. In
Fig. 35 the ealculated modulated reflectivity speetrum is compared
to the experimeetal resﬁlts.of Ref. 90. The ﬁodelated‘reflectivity
is, of course, a more accurate measure.
The strﬁcture ebserved in the calculated reflectivity is identified
and compa?ed te.the experimental results in Table XXVIII.
With tﬁe’e#ception of some etructure near 5.2eV;whieh does
not appear in the theoretical calculatioﬁ, the agfeement,is quite

\

satisfactory.
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Not shown in the experimental reflectivity is the fundamental

112

optical gap which occurs at 0.24 eV Our theoretical value is

in excellent accord with this value being 0.25 eV.

Electroreflectance measurements have been made for n-type InSb

and have yielded values for theI%C—F7c, TBC transitions.113’ 114

These measurements give

r.cor.c©

6 7 3.16 eV

C C
Pe ‘Fs

3.54 eV

compared fé our calculated values of 2.91 and 3.34 eV. Our calculated
values are slightly low, but the splitting is in good agreement with
_experiment.

Our theoretical identifications for the reflecﬁivity may be
compared to the results of Ref. 113. Most of the assignments are
in satisfactory accord, but the non-local well has resulted in the
destrugtion of the M, critical points which are known to occur for
a local potential at L.

c. Electronic Density of States. The calculated valence band edges

are compared to experiment in Table XXIX. XPS and UPS data are good
agreement for InSb. This allows us to accurately determine the
valence band density of states displayed in Fig. 36. 'The agree-
megf between the theoretical density of states and experiment

is excellent.

d. Pseudocharge Density. The calculated valence charge density is

displayed in Fig. 37. The results are in general agreement with
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that of Ref. 113. The trends observed with inéreasing ionicity from
S , . i » .
Ge to GaAs are similar to that of the trend observed from Sn to InSb.

Attempts have been made to associate the Philli?s ionicity par_ameter,115

116

C, with the asymmetric gap. These studies would seem to suggest

116 but the cﬁar_ge'distributions113

that GaAs is more "ionic" than InSb,
observed . in pseudopotential calculations would seem to suggest the

opposite;

7. Cadmiumeelluride

CdTercoméletes theniSOelectric éeries‘pf a-Sn,_InSb and CdTe.
The trends afe'similar to the Ge, GaAs and ZnSevéetiesé the .
ﬁantisymmefyié" gap grows in the valence baﬁd density of states,’
the optigal gaps becémé largef and thevchargevkecomes lacalized on
the.aﬁion. o

’Unliké‘ZnSe we are able to achieve good agreéﬁenf'ﬁith both the
" optical and photoemission experimental data; fhis fact might be
attributed to ihe‘iﬁclusion of the s-well non-~local term in the
pseudopotentiéi.

a. Band Structure. A square-well non-local correction term for both

s and d angular momentum components were included in-our potential.
The parameters used in the calculation are given in Table XXX.
The non—adjuétéble well radii were fixed to be RO(Cd)>= 1.374,

RO(Te) = 1.063 and R, = 1.4A. We found it unneceséary‘to include a

2

Cd d-well correction. This is similar to case of ZnSe.where the

Zn d-well term was of lesser importance than the Se d-well term.
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' The eignenvalues for the symmetry points T',X and L are'given
in Table XXXI. The spin-orbit splittings are qﬁite large. Our

calculatgd'splitting at the vaience'b;nd maximum ié7Ao =_0.89 eV
compared to the experimentél value of 0.91 eV.117’ ;18

The calculated band structure along symmetry lines is pfesented

in Fig. 38.

b. Optical Spectrum. The calculated reflectiviﬁy‘is displayed in
‘Fig. 39. compared to the experimental fesults of'Réf. 118. A
modulatedvreflectivity spectrum does not exist at pfesent for CdTe.
The theoretical reflectivity structure is identified and éompared
to experimental results in Table XXXII.

The idenﬁifica;idns are baéically in agréemenf with Ref, 118,
and similar to ZnSe. Although‘we have not liétgd the transitions
in Table XXXII,'thoSe occurring between the spin-orbit split

.

r,.v-r..°© could play a role in creating the structure at 5.7 and

15 15
5.9 eV.

The structure occurring experimentally at 5.2 eV is not observed
in the theoretical reflectivity spectrum. This was the case in ZnSe
also. vHoweVer, the modulated reﬁlectivity spectrum sﬁows some weak
sfructuré'in this region. The structure arises from a well-defined
Mo critical point occurring along the A-direction. As in the case
of ZnSe, it is quite probable that this transition does not appear
in the theoretical reflectivity because of the finite resolution

of the theorétical'caulcuation: it is obscured by the dominant

peak occurring at 5.53 eV.
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c-. Electfonig—Density of Stéteslu The theoretiéally’determined values
for ihe valeﬁéé band eéées'afe giveh.in Table XXXIII{‘.They aré
compared to the photoemiésion results of UPS101 xpst02,

'Unliké ZnSe the placement{of our lowest valence band seems to be
in agreeﬁent with expériment..‘Although the 4d Cd core states
obscur the‘lowest-valence band in experiment, an'appfoximaté position
o 101 |

The theoretical eleétfonic density of states is given in Fig, 40.
The results of UPS meaéuréments are'also giﬁeﬁ indiéating the
épproximaté poéitidn of the lowest valencé>5and;'f'

‘The agreement of the non-local péeudopbtential with experiment

is quite good and a considerable improvement over local pseudopotential

s ' . ' Lo . 101
calculations. In-particular, a recent local calculatxon'0 has

yielded a valence band width for the top three bands 2 éV.too

small.

d. Pseudocharge Density. In Fig. 41 our calculated Valence charge

density is presented. While our results are similar to a recent

charge density calculationlls, our results_would suggest a Less
ionic CdTe. This is in accord with the ZnSe results with our non-

local potential.

8. Gallium Phosphide
GaP is the first of four "inter-row' compounds we shall examine.
Such compounds:allow us to study trends obtained in descending a

column of the periodic table, e.g. GéP, GaAs and GaSb.
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The non-local correétioﬁs in GaP are taken into consideration
.by non-local s- and d-wells. Phosphorus requires a weakly energy-
dependent s—weil;’this is avtrend consistent with the observétion
‘that the heavier élements require a strongly energy-dependent well.la’17

Since spin-orbit interactions are small for GaP(Ad = 0,1 eV),

we do not consider spin-orbit corrections.in this calculation.

a. ‘Band Structure. The pérameters'uéedin this¢alcu1ation are listed
in Table XXXIV.. The non—loéal-weil_radii wefe ﬁot adjusted, but
fixed by model radii17 for the d-wells, therefore;'Rd(Ga) = 1.27A
and R, = 1.18A. | |
The eigenvalues at the symmetry points T; X'and L are given

in Table XXXV. The band structure is illustrated in Fig. 42.

b. Optical_Speqtrum. The calculated reflectivity‘spectrum,is presented
in Fig. 43 compared with the expeiimental resuits of Ref. 45. 1In
Fig. 44 our modulated reflectivity curve is compared with the
experimental results of Ref, 119. |

The theoretical reflectivity structure is identified in Table
XXXVI. The‘identificationS'are quite similar to those in a previous

calculation.11

c. Electronic Density of States. The calculated density of states
curve is presented in Fig. 45 compared to the experimental results
of Ref. 102.

The theoretical valence .band edges are Fompared with the
experimental results of' UPSl.o1 in Table XXXVII. Also listed are
other transitions including those from.a recent review article on

100

GaP. The agreement with the experimental results is quite

" satisfactory. The calculated indirect gap is slightly smaller than
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experiment; however, the valence band edges are in excellent agree-
-ment with both XPS and UPS. Again, the bottom valence band edge
as detetmined by XPS and UPS is not in accord, but this is probably

due to differing methods of data reduction. 102

‘d. Pseudochatge Density; In Fig. 46‘we present our éalculated valence
charge deﬁsity'fo£ GaP. The charge density indiéétes a rather ionic
crystal: .the:bond and charge are displaced considefably.tOWard

énion; Such an observation is compatible with currént_ideas

' 115

concerning the "ionicity" of a crystal.

'9{ Gallium Antimonide

a. Band Structure. The parameters used in the band calculation for

GaSb ére iébulated in Table XXXVIII. The s-well radii for Ga and;
 Sb are the same as the Ga in GaAs and the Sb in InSﬁL The d-well
rédii were,détérmined by touching sphéres.

© In ?able XXXIX the eigenvalues at the symmef?y points T, L and
X are given.' The band structure is presented in'Fig. 47.

_b. Optical Spectrum. The calculated reflectivity is. given in Fig. 48

compared to the experimental results of Ref. 111 and 120. The
‘dalculated derivative spectrum is given in Fig. 49 compared to the ~
experimentél results of Ref. 90.
' The theoretical structure iS'identified in Table XL. The
ideptificatidns are>sililar to Ref. 89,_but contain some differences

due to the non-local potential, e.g. an M1 at L instead of an MO
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and the A5 -A5

The contour plots for the energy difference. between the top

transitions occur at a higher emergy.

valence and bottom conduction bands have been.calculated in Ref. 89.
_The most interestihg feature here is a large, but well defined,
region of’néarly constant energy occurring near (0.7,0.3,0.3). This
élateau featufe, mentioned before in the case of Ge,_is responsible
for the promiﬁént reflectivity peak at 4.35 eV.

While our.calculated reflectivity is in excellent agreeﬁent with
tbe experimental structure, we do not observe weak structure at 5.5
eV measured by wavelength modulation.90

The fundamental gap, T vor ©

8 6
89,121 , . . s
measurements as in the spin-orbit splitting Ao. Both of the

is 0.8 eV from experimental

values are in accord with the theoretically calculated values of

r V-T.¢ = 0.86 and b, = 0.76.

8 '8

c. Electronic Density of States. The calculated electronic density

of states is presented iﬁ‘Fig. 50 compared to the XPS spectrum for
GaSb. UPS mgasurements have not, to date, been perf§rmed for
GaShb.

In Table XLI the observed features in the XPS spectrum are
listed and compared to the theoretical results. The agreemenf
between theory and experiment is excellent. Ohter experimentally
determined transitions from Ref. 63 are also listed in the table.

d. Pseudocharge Density. The valence charge density for GaSb

is displayed in Fig. 51. This charge density had not been previously
calculated. Tt is interesting to note that GaSb is less ionic than

GaP (at least from a comparison of charge densities). This
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| . ' . 116
observationris not compatible with the suggestion by Chadi et al.

That the "ionicity" of a z1ncb1ende material should be proportional

“'to the antisymmetrlc gap. Both theoretically and experlmentally

the antlsmyyetrlc gaps of GaP ‘and GaSb are nearly identical.
However, Philllps "ionicity" parameter and our calculatlon would

suggest GaP.is‘definitely more ionic (i.e. greater,charge transfer)

than GaSb.

10. Indium Phosphide

"a. Band Structure. The band structure of InP was calculated using

non-local S—end d-wells on the phosphorus es‘in GaPr The use of
5 phoéphorus,&fwell for InP es weil as fcr GaP iSfjustified by model
pseudopotential calculations.l4’ 17 ‘The paremetere.qsed in this
calculatidﬁ are giveh'in Table XLII. The d-well radii were determined,
as usual,ib& touching spheres; the s-well for in weevthe same as |

in InSb, the s-well for P was the same as in GaP.

The band Structure along symmetry lines is given in Fig. 52.

. The eigenvalues calculated for InP are given in Table XLIII for the

symmetry pdints ', X and L.

b. Optical Spectrum. The calculated reflectivity spectrum for InP

is given in Flg 53 compared to the experimental results of Ref. 119

~and Ref. 122. The modulated reflect1v1ty spectrum is given in

Fig. 54, and compared to the experimental results of Ref. 119.
The prominent structure in the theoretical reflectivity spectrum -

is identified in Table XLIV and compared to experiment.
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The agreement of the calculated and experimentally determined
structuré is quite good. Thé structure at 5.25 erobserved
experimehtally‘is low by ébout 0.2 eV from the théoretically
calculated value of 5.44 eV. However, in Ref. 119 this structure is
also experimentally observea, albeit weak, and occurs at a higher
energy. |

The origin of the structure occurring near 5.4 eV in the
theoretical calculation is unclear. A tfansition.ﬁear 5.2 eV occurs
at T, and coqld contribute to this structure. (Especially if excitonic
interactions énhance this transition.)

c. Electronic Density of States. The calculated electronic density

of states is given in Fig. 55 compared to the XPS spectrum of Ref.
102. The thebretical features of the density of states spectrum
are compared to the éxperimental values in Table XLV. The agreement
between our theoretical values and the experimental values is
excellent.

d. Pseudocharge Density. In Fig. 56 we present the total valence

charge density for InP. This charge density resembles GaP, as
expected. Most of the charge denéity is localized on the phosphorus,
and the Ga to In pertubation 'is not a great_one. Interestingly, the
charge densify.of InP is considerably more ionic than InSb and this
would not be the case by a examination of local potential calculations.

11. Indium Arsenide

a. Band Structure. The band structure for InAs was calculated

using the parameters listed in Table XLVI. The In s-well radius is

the same as used for InSb and InP. The As s-well radius was the model
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radiué: Rd(AS) = 1,06A, Tﬁe d—wellvfadiﬁs was -chosen by>touching ,
spheres, Ré = 1.31A.

In Table XLVII we list our calculated eigenvaiugs for InAs at
'y X and L;'_Iﬁ'Fig. 57 the band structure for IﬁASIis.displayed along

symmetry lines.

b. Optical Spectrum. The calculated reflectivity spectrum is given
in Fig. 58 cbmpared to ;he experimental results of Ref. 123. The
calculated derivative reflectivity spéctrum is given in Fig. 59

and is comﬁéfed to the experimental results ofbﬁ;f.IQO.

| The tﬁeéretical refleéfi&ity structure is analysed with fhe
results pfééented in Table XLVIII.

All of ﬁhé theoretical structure can be idenﬁified with the
experiméntalvresults, although the éverall agreémehtvis slightly
less satiéfactory than some of our other results. ;

The fundamental gap in InAs is 0.42 eV. as is the spin-orbit

124, 125

sblitting at T. Our values are F8VQT6C = 0.37 and

A, = 0.43 eV in good accord with experiment.

o

c. Electronic Density of States. The calculated electronic density‘

of states cufve is displayed in Fig. 60 compared to the experimental

results of XPS. The theoretical and experimental valence band
features are compared in Table XLIX.
With the possible exception of the lbwest_valence band, the

theoretical and experimental curves are in good agreement. Both

‘experimentally and theoretically the lowest valence band is difficult

to position. Experimentally, subtracting off the background must be
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&

done in a precise fashion. Theoretically, one has to worry about
energy dependence with a valence band minimum almost a rydberg
away form the valence band maximum.

d. Pseudocharge Density. The charge density for InAs is given in

Fig. 61. Compared to InSb and InP it appears to be more like InSb
than InP. While this seems reasonable, recent theor’ies_l16 of

"ionicity'" suggest that InAs should resemble InP rather than InSb.
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III. SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATIONS FOR MOLECULES
AND SOLID SURFACES

A. New Method of Calculating the Electronic Strucutre of Non-Periodic

' Systems

A methéd‘is develobed which eXtends.the pseudbpotential scheme
to localized configurations. The calculationsAare performed self-
,_consistently and the approach is applicable to pfoblems such as
atomic and molecﬁlar states, solid surfaces, localized impﬁrity and
vacancy sgates, finite chains orrléYers;:absorbates, and interfaces
.between solids. The scheme has.many of the advantages of the
pseudopptential method in that it used a simple plane wave expansion
and the stéfting potential can bé obtained from expérimental data.
It goes beyond the usual pseudopotential approach through the
requirement Qf self-consistency.

Pseudopotential methods have evolved considerably since tﬁeir
intfoductionlvin the late 1950's. The use of model potenf.iais2
and the eﬁpirical pseudopotential method3 have yeilded a great
deal of infpfmation about solid state properties such as band
structufe, optical>response functions and electronic charge
densities.21 in all of these cases the systems édnsidered were
~assumed infinite and periodic; and possible extensions of the method
. to ioéal configurations in solids é.g. localiéea impurities or solids
without loﬁg range periodicity were not obvious. An attempt126
-was made to use the pseudopotehtial scheme to study amorphous

materials. Complex calls were repeated infinitely and the effects
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of the complexity of the unit cells on the calculated properties
yielded infbfmation about how the prominent features of the
strucutre (e{g. even and odd numbered rings of bbnds) influenced the
properties (e.g. electronic density of states). A true amorphous
system was notvgenerated, but information gained from studies of
increasingiy‘complex célls was extremely useful. -

The method discussed here is somewhat related to the above scheme,
and it is directly applicable to the spgcific problem of interest.
The method is straightforward and initially involveé putting the
local configuration of interest into the structure factor. 1In the
pseudopotential formulation, the crystalline pseudopotential form
factors, V(g),iare written in terms of atomic potential form factors,

Va(G) through the structure factor S(G),
V(G) =) S(6)V_(6)

T

a

s(G) = ¢4

where g is a reciprocal lattice vector and Ia are the basis vectors

tb the various atoms in a primitive cell. The basic scheme is to
include in S(g) the essential features of the loéal configuration.

In the casé of a molecule, ﬁhe structure factor can be constructed

to create a cellvwith a moiecule and sufficient empty sbace aréund the
molecule to provide isolation frém the next molecuie when the cell is
repreated. For a surface, usual periodicity can be retained in two
dimensions and a slab of space can be inserted to provide a surface

in the third dimension. The impurity or vacancy problem requires a
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of host atoﬁé_suffounding the site of interest. Ulﬁimateiy the cell
chosen is repreated indefinitely to allow the use éf the pseudopotential
method. A similar approach specifically designed for surfaces has
beeﬁ,used by Alldredge and Kleinman127 for Al and.Li:surfaces;
Self-éonsiétency128 is essehtiai in obtaining_reaiistic solutions'
since the.éalculations will staft with potentialé defived from bulk

calculations.A It is necessary to allow the electrons of react to

‘the boundary conditions imposed by the local configuration and the

resulting readjustment and screening is a fundaméntal part of the

problem. Also, the self-consistent screening_potentiél~h33'to be

'completelydgeneral and is not necessarily a superposition of atomic

I

potentials.
In the scheme described above, the configuration of atoms and

spaces can be as complex as desired. The ultimate limitation of the

number of atoms is the amount of computer time necessary to generate

the eigenvalues and eigenfunctions through solution of the secular

vequatioh. ' The basis set is formed by Bloch waves expanded interms

of free electron eigenfunctions.

The starfihg potentiallcan be an ionic model poténtial fit to
atomic term vélues and screened’apﬁropriately or.a potential
obtained from measurements of bulk solid state properties. In
both casesvtﬁe results are the same once self-consistency is reached.
The problems with the method come mainly via the artificial long-
range symmétry_imposed, but most of the.c;;sequences éan be dealt

‘with. Somé‘examples are: the interaction between configurations;



-72-

establishing a zero of energy; the fact that the potential which
should depend Contihuously on wavevector, q, is approximated by
form factors at q's equal to the G's of the chosen lattice structure;
and the symmetry of the configuration to some extent.dictates the
choice of lattices. Most of the above potential pfoblems are
eliminated or‘reduced by taking large enough cells and cells of the
appropriate structure or symmetry.

To illustrate the méthod, the diatomic.silicoh molecule will
first be investigated. We shali then apply the method directl& to

metal and semiconductor surfaces.

B. The Diatomi; Silicon Molecule

We treat here the case of a silicon diatomic molecule both to
illustraté'the method and to demonstrate the interesting results
which are possible for molecular calculations. Thié is the first
_mdlecularvcaicﬁlation using self-consistent pseudoﬁotentials to our
knowledge.

For calculations of molecular states, the main advantage of our
method over more standard methods is that the properties of the core
electrons need not be computed. Consequently calculations for the
heavier molecules are no more difficult than for light ones except
for minor coﬁplications asSoéiated with spin effects. For light
molecules, standard methods are very successful, but because the
compuﬁation time increases exponentially with the number of electronms,
there is a paucity of calculations for molecules comﬁosed of atoms

beyond the first transition series. The simplicity of the proposed-
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-pseudopotential scheme also allows célculatidns'fdr large comﬁlex
molecules. At first sigh; the plane‘wave basis seﬁ used appears to
be fetrogressive, but there are in fact advantages to this approach.
Because of the_plané wave basis and the use of statistical exchange -
(discussed 1éter), there is no a pridri bias'as.to fﬁé form of the
wavefunction‘—; its form is determined self—consisfehtly via the
potential.'_Also because we are using pseudopotential approach,
lonly the valence electron charge density is compdﬁed, and the basis
set neéd qnly-be large enough té reproduce Variéfions in this fairly
smooth chafge»distribution. Specifically, the charge variation éway
from the coréé is not large and hence tﬁe.plane wave basis set and
bresulting maffix are easily handled by modern computefs.

1. Ground State Electronic Configuration

In the diatomic molecule case which has Doy, symmetry, the most

convenient lattice structure is hexagonal with D symmetry. Thus

6h

the rotational symmetry of the wavefunction is simulated by sets

of six—foid "stars" of plane waveé. Test calculations on the Si2

molecule in a trigonal lattice with D symmetry show that the

”self—consisteﬁt results are weakly dependent on the chosen "crystal
structure" provided convergence is reached i.e.'énough plane waves
are taken”into aécount. ‘

The Si2 molecule calculation was done in the following way.
The molecule“waé placed in a hexagonal lattice with a c/a ratio
chosen sugh that the distance between any two atoﬁs not belonging

to the same molecule was larger than three bond lengths. The molecule

bond lehgth was taken from experiment to be 2.25A in the ground
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state129 which differs considerably from the 2.34A for the Si

crystal. Thé wavefunction was expanded in about 180 plane waves
including‘ZSO more planes waves by a second ordet perturbation scheme.
The first step in the self-consistent calculation was performéd

using the sﬁperposition of two atomic potentials taken from empirical

. . 3
crystal calculations. A continuous curve” of the form

2
al(q -az)

V(q) = (40)

exp(aB(qz—aa))+1
was fit to the féw crystalline form factor values to providerpotential
values at thé new '"molecule G-vectors". The dispersion of the eigen-
values in k—space whicﬁ is a measure of the interaction of the
different molecules with each other was of the otder of 0.8 eV

at this stage; it decreased to about 0.2 eV in the course of self-
consistency. From this starting calculation the total charge p(f)

was evalﬁated'in terms ofiits Fourier components p(g) and a Hartree-

like screening potential

defined by

VZVH(r) = —4nezo(r)

as well as an exchange potential given by
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v, =05 ) e

/3

with a = 0.79 Qere computed. The use df a statistical exchange of the

. above form for atoms, molecules and solids has beén proven to yield
sétisfactory:fesults. The calculation of VX(E) requires knowledge

of the functibn p(£)1/3. For this purpose D(E) Was_evaluatea on a

grid of points ( 10,000 per unit cgll), the cubebroot was taken at

each grid poipt and. the result was transformed béck'into a Fourier
series resulting in Vx(g). The sum of these potentials was added to

a bare ion_péeqdopotential obtained from empiriéélvétomic calculations.2

The local "Qn'the Fermi sphere" approximation to this originally

_non—local"potential was used and a continuous curve of the form

' " a 4
= 1 aq : .
Vion(q) = = (cos(azq)+a3)e 4 (41)

£

was fit go’the results.  The use of this atomic ionic po;ential in
the molecular case is also justified by the folidwihg. If this
potential is used in a self-consistent band structure calculation for
. the crystal, excellent results are obtained.

The computational procedure was then continued until self-consistency
was reacﬁed., The process of reaching self-consistency can be speeded -
- up by intetpolating appropriately between outpufvénd input potentials
for consecutive steps. We thus needed five steps to reéch self-
consistency”of the eigenvalues to within 0;05 eVv. .The resulting

potentials Vion(fl VH(E) and VX(E) are plotFed in Fig. 62 along
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the line, connedting the two Si atoms. The total‘self—consist?nt
potential is also shown and compared to the empirical input
poteﬁtial théh'gives the best description of Si-atoms in the
crystalline phase. The interesting results are thé;:' a) the
Hartree screening potential is essentially featureless, b) fhe
exchange poten;ial is comparable in strength to.ghe-total self-
consistent potential, c) the total self-consistent potential is
considerably deeper than the empirical starting potential because
of the increased exchange potential. Also indicated in Fig. 62 are
the occupied molecular one-electron-enefgy levels OS.at -1.0 ryd,
GS* at —0.64.rya, ob at -0.39 ryd and_Trp at —0.38 ryd.

2. Molecular Orbitals

In Fig. 63 we display charge density contours for the four

occupied molecular levels. The charge density values are given

in 2e/§?,c where Q = 40043 is the unit cell volume. vit should be
emphasized at.tﬁis point that these textbook-like molecular densities
were calculated using a plane wave Basis. The‘lowest level OS
contains mostly s-like charge in a bonding-like configuration with
"its maximum between the tﬁo atoms. The next higher level OS* has
ahtibonding s~like character. Some admixture of p-states quantized
along the molecular axis is present. The wavefunctions of the third
occupied level are predominantly p-like at the two étoms and overlap
forming a O-type bonding state. The fourth (occupied) and fifth
(emptyj level are "quasi-degenerate.'" The wavefunctions are mostly

%*

p-like in character and form 7-type bonding states. The o p and
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ﬁp*rantiboﬁding'levels lie at higher energies and are unoccupied.
Exper_imentall&129 the ground state is found to be é z triplet, which
is repfpduééd'in our model assuming triplet coupling of the T
electrons (as:expected from Hund's rules). The inclusion of spin-
.dependent édrrelation potentials would be necessary to a-priori
‘distinguish bétween singlet and triplet states. The total charge
density corresponding to the four occupied levels ié'presented in
'Fig. 64; the qﬁits of the indicated values are the same as in Fig.
.63{u CompariSon_of the above orbital energies'(aftéf‘adjustments

" for the zero of energy) with results‘using a Hertree-Fock Baéis
yields good agreement.130 -The Hartree-Fock calculatipn gives the
ﬁé gtatg slighfly lower ﬁhan dp and hence a singiet-gfound‘state.
This'probabiy results from the cohfiguration choice.

To obtaiﬁ a measure for the amount of charge in the bond we
- proceed as in Ref. 21 and'infeéfaté fhe-charge piie—up over a
region definéd by the outermost closed‘contour. The yields a
. value of ZB'; 0.138 (in units of e) which is within computational
accuracy ideﬁtical to éhe crystalline value of ZB = 0.125.

In summary we.note that this method should be_particularly
advantageous for complex and heavy molecules. Diatomic silicon was
"chosen as a test case because of the detailed knowledge available

for the Si pseudopotential. :The results‘we have presented are

'"preliminaryﬁ; however, they illustraté the potential of the method
_and the possible extensioﬁs. Hopefully the scheme can be extended
to give accurate values of -the fotal energy to allow calculations

of equilibrium configurations, force constants and information about

the geometry of molecular'syétems.



C. The Electronic Structure of a Metal Surface: Al (111) Surface

The first surface to be_considered is that of a metal: the Al
(111) surface. While self-consistent calculations exist for simple
models, e.g. jellium,131 and have recently been éerformed for sodiuml
and lithiuin,127 as yet, no self-consistent calculations Have been
performed on polyvalent metals such as aluminum. This is unfortqnate
because in the previous cases surface stateshare-not found below EF
and, therefore, cannot contribute to the self-coﬁsistency process.
Surface states 'are not, of course, observed in jellium because they
are specifically excluded by the free electron nature of the band
structure, while in monovalent metals, which posseés no band gaps

below the fermi level,133 the observed states lie above EF' There is

o . s s s 1
also the open question of conflicting calculations between Boudreaux,

and Caruthers, Kleinman and Alldredgel

35 (CKA). Boudreaux used a
step function potential for the transition bepweeﬁ fhe bulk potential
and the vacuum, while in the CKA calculation.an aluminum bulk
potential was merged smoothly into a jellium_potential131 at some
arbitrary'point near the surface. Neither calculation was' performed
in a self-consistent fashion. . Boudreaux found surface states for

the (111) surface to exist only at T'; however, CKA found surface
states at ', K and M. 1In order to account for these varying

results CKA examined the effect of the two different potentials

on the surface properties. They concluded that the differing

potentials could not reconcile their calculation with that of

Boudreaux and suggested an error had been made in his calculation.
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' However, CKA noted in the course of their study that the behavior

in the transition region between vacuum and bulk was crucial in

determining an accurate pictﬁre of the surface states, thus casting

_some doubt -on the épprdpriateness of the matching scheme of jellium

"to bulk potentials. A self-consistent calculation, not suffering

from Such‘a]defett is consequently of prime importance for an’
underétanding of the surface of Al.

The method which we have employed in this caICulatidﬁ was presented in our

 molecu1ar calcdlation and, therefore, will_only briefly be outlined
_ belowf The.éfucial point is that we periodically répreat a slab
‘df aluminuﬁ‘withha (111) surface exposed to vacuum on both sides.
 In this sense, we retain a periodic éystem and;‘ﬁence the usual

_techniques'bf_the pseudopotential method may be applied. Specifically,

we have taken a twelve layer Al slab with a vacuum region of three

interlayer'distances for each surface over which the wavefunctions of

the slab are allowed to decay. Thus, the method is somewhat similar

to the technique of Alldredge and Kleinman127 with the principle

difference being that they have the additional requirement that

‘each plane wave component of the wavefunction must vanish at the

midpoint ofvthe vacuum region. between neighboring slabs. Thus our

method allows the potential in the surface region to determine the

 decay of the wavefunctions into vacuum without this additional,

and physicélly‘unnecessary, constraint.

Although we do not have a semi-infinite crystal, the experience

of Alldredge and K_leinman127 suggests very accurate results may be
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obtained from thin films with reference to the semi-infinite casg.'
The main prébleﬁs which may arise from the use of thin films are a)

an interaction of surface states on opposite sidgs of the film may
1ift a d‘egeheracy which would occur if the film were iﬁfinitely
thick,_and B) the surface state wavefunctions deéay so slowly into

the slab that the film's thickness does not permit such states to be
distinguishable from bulk states. However, for a dozen or more layers
these are hot_insurmountable problems.

1. Self-Consistent Potential

As in»ghe molecular case, we use a Heine-Animalp17 core potential
which is then screened in a self-consistent manner using the
pseudocharge‘density. The form of the core potential is given by (41);
the parameters were

a; =-0.5176 a, =-0.13389

= ==0
a, 1.0468 a, £.02944

The units are such_that if q is given in atomig units, V(q) from
(41) will be in Ry. This core potential is normaiized to an atomic
volume for tﬁe case of a slab twelvé layers thick separated by three
layers on.either side from neighboring slabs. If this poﬁential is
screened, for bulk aluminum, it yields a band structure in good
agreement with experiment.

The starting potential for the éelf—consistency process is
given by (40). The parameters, normalized as the core potential,

are given by



. This potential agrees with the V(o) suggested by CKA,

 iteration procedure to obtain self-consistency is not practical.
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a, = 0.41 o ay = 0.65

- a,= 1.88 a, =-0.3

135 and yields

an accurate bulk Al band structure.
From this starting potential, a Hartee potential is desiréd

from the calculated charge dehsity136 via Poisson's equation, and
3+

: exchange potential of the Slater type added. Because the bare Al

ion potential divefges as l/q2 for small waveﬁecfor‘q; the hsual
127
However,‘thé.screening pbteﬁtial may be altered in'a systematic
fashion until the "input" screening potential énéithe ﬁoufput"
scréening pofential are in essential agreement.

| In this manner we were able to achiéve agreement to within
one percenf for the input and output pétentials. For this accuracy
fhé eigenv&lﬁes are stable to better.thén 0.62 Ry;' 

To detérmine the required screening potential an accurate fermi

level must be calculated. This was accomplished by éalculating the
eigenvalues‘and eigenvectors dver_a grid of 294 pOints in the two
dimensional Brillouin zéne. The calculated value for EF was 0.85

Ry above the conduction band minimum in good accord with the bulk

~ value of 0.86:Ry;

We emphasize again the importance of self-coﬁsistency. If
the total pseuodpotential is taken as a superposition of lineérly

screened atomic pseudopotentials a negative work function will ,
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result.13$ This can be remedied by a superposition of atomic
pseudopotentials which are constructed by extrapolating a smooth
curve thrqugh points detetmined empirically from the bulk so that a
proper work'function results. However, this practice is deficient
in two resﬁects. First, the rise of the‘resulting potential from
bulk to vacuum is uﬂthsically abrupt and secgnd, this procedure
does not incorporate any response to the Friedél oscillations which
are knéwn to occur in the screening potential.131 In Fig. 65 we
indicate our resulting self—consistegt~potentia1 avéraged parallel
to the surface and plotted as a fungtion of distanég into the slab.
We note that‘ove¥ the last few layers this potential actually drops
below the bulk potential by approximately 0.1 Ry. This is a result
of the self-consistency process and does not occur for a superposition
of atomic pseudopoténtials. It has also been observed ih the case

127

of Li, and it casts doubt on the CKA proceddre,of,matching jellium

to bulk potentials.

2. Work Function for the (111) Surface
Once the fermi level has been.determined the work function (within

the one-electron approximation). ¢, can be evaluated from

b= V() - B

as indicated in Fig. 65.
' The value of V(®) is assumed in our calculation to be negligibly
different from the value of the potential at the midpoint of the

vacuum region:between adjoining slabs. The calculated value is 0.38 Ry,
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which unfortunately cannot be compared directly to the experimental
137

v>value of 0.31 Ry available for polycrystalline Al. - In any event

such a compérison'is not of great value in judging-the accuracy of

a surface calculation as a uniform shift in the potential at large

- distances would alter ¢, but not the resulting surface states.

Considering the uncertainty involved with the polytrystallihe value,138

~we consider-the agreement as adequate.

3. Total and Surface State Pseudocharge Densities

In Fig. 65 we display our total charge density in the (110)
plane, alonguwith the averaged charge density plotfed as a function
6f distance.into the bulk. The éalcuiated chargé density is
éignifiéantly perturbed from the bulkicﬁarge only Outéide fhe secqnd
surface layer of the aluminum ions;v The charge deeper into the
bulk_is‘invgood accord with the bulk density;139 Although we' use
this pseudocharge density to screen the ions, thé éctual charge
density should yield siﬁilar'resuits except within the core regions
and, thus,'should‘providevan accurate séreening p;tentiai. The
averaged charge deﬁsity, as in the jellium case,131 ekhibits the
usual Friedgl oscillations in the total charge neaf the surface.

The maximum oscillation indicates a fluctuation of about 5% above
131

and in accordiwith the trend observed in Li.127

To determine the existence of surface states we have examined
the charge density for all eigenvalues below EF at high symmetry

;-

points in the two dimensional zone. 1In this context we make use of

. the projected bulk band structure provided by the_CKA calculation.
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It is, of course, within the "projected gaps" that bona fide surface

133, 135

states may exist. In particular, we are interested in those

states below EF which could be experimentally detected.

Our results indicate the existence of surface states below EF.
at I' and at K,l4o as mentioned, in agreement with the results of
the CKA calculation, but not with that of Boudreaux. At I' the surface
state occurs at 0.33 Ry below EF and at K we have two surface states
at 0.15 Ry and 0.07 Ry below EF'

The most localized surface state is the upper state at K at 0.07
Ry. In Fig. 66 we display the averaged charge (as»in.Fig. 65) and
a contour plot:for the charge in.the (110) plane. This state occurs
in a rather large energy gap in the projected baﬁd strﬁcture and its
decay is more rapid than the other state at K at 0.15 Ry or the
surfece state at I'. From the contour plot we see that the charge
density of this state is localized in a '"cavity" near the surface
formed by the first ana second atomic layers. Since this state

occurs quite near E_ and is localized very strongly near the surface,

F
it is expected to be chemically active.135 The 0.15 Ry surface
state at K is not as localized, and is quite sensitive to the
surface potential. As with the 0.07 Ry state at K it has charge
localized in the cavity region, but peaks further ffom the surface.
Finally, the surface state at I, which occurs in the bulk band

gap at L in the three dimensional zone, decays quite slowly falling

only by 10% from the peak value at the surface to the mid-point of

the slab.
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D. The Electronic Structure of Semiconductor Surface

In this section the Si (111) surface, and thé GaAs and ZnSe
(110) suffeces will be investigated. Emphasis will Qé placed on
the Si (111) surface. This surface has been exteﬁsively explored
both expefimeetally.and theoretically and, therefore; willrprovide

an excellent basis upon which to evaluate our calculational techniques.

1. si (111) Surface

The electtonic structure of Si (111) surfaces has been investigated

141-149 Most of the experi-

in a large number ofvexperiméntal‘studies.
ments have been done on surfaces having either (2 x 1) or (7 x 7)
superlattice.structures which are the metastable'and stable surface
arrangements of Si (111) reséectively. Very useful resuits, howeﬁer,
havevbeen obtained ftom theoteticaI studies on unreconstructed .

(1 x.l) surface models.lso’ 151

In spite of the usefulness of
these calculations only results obtained from realistic, reconstructed

surface models are consistent with all the experimental data.

Two unreconstructed (1 x 1) surface models (unrelaxed and relaxed)
‘are investigated here before studying (for the first time by a

self-consistent method) a realistic (2 x 1) reconStructed.surface

model. We note that self-consistency in the present context means

“the self-consistent electronic response to a given structural model.

Even through calculations of this kind cen and have been carried

out for several structural models (unrelaxed,vrelaxed'and'(ZFX 1)
reconstructed in our case) it is extremely difficult if not impossible.

to compare total energies to determine the most favorable surface
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structuré arrangement. Thé reasons for this are two-fold, first it is
known expérimentally that the surface geometry is strongly temperature
dependent, therefore free energies involving entropies must be
comﬁared."Secondly, the total surface energies are large quantities
which differ only slightly for the different geomefries. with
the present techniques they cannot be calculated with sufficient
precision to yield'reliabie results for the energy differencesf The
present calculations as weil as all previously existing self-
consistent calculations are therefore restricted to the self-
consistent detérmination of the electronic structure in response to a
given structural model. |

The only other self-consistent approach to the (111) surface is
8i has beeh presented by Appelbaum and Hamann150 (AH) which like
our approach is based on the pseudopotential‘scheme. For metal
surfaces, pseudopotential calculations by (AH)Ver Nal32 and by
Alldredge and Kleinman (AK) for Al135 and L1127 have been carried
out very successfully. In addition to the specific problems
connected Qith a self-consistent treatment, the main difficﬁlty
arises from the absence of periodicity in treating the surface
case.

AH solve this problem by expanding the electron wavefunction in
a mixed representation i.e. two-dimensional plane waves to account
for the periodicity parallel to the surface multiplied by functions
depending on the remaining spatial coordinate, z, perpendicular to the
surface. 1In this mixed representatioﬁ the Schradinger equation

‘becomes a set of coupled differential equations in the spatiél
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coordinate, z; which can be integrated stepwise numérically obeying »
appropriate'bqundaryvconditioﬁs between the vacuum and a matching plane
somewhéré in the crystal. Numerical problems and instabilities
however, turn this physicallj appealing concept into a rather.involved
procedufe; |

.AK also start with a mixéd représentatiOn,iho&évér use a series
of analytic_trigohométric functions describing the z~variation of
the wavefunction perpendicular to thé surface. - Regéining a fiﬁite
number of thése periodic funcfions is equivalent to periodically

repeating the surface (or better the thin film). If these films are

spaced suffiéiently far enough apart from each otherZand if they are

sufficiently‘thick, their surfaces can Be regardéd as non-interacting’

and representative of the true crystai surface. More precisely,

AK expand the z~variation of the wavefunction in a truncated set:

of trigonOmétric sine and coéine functions whiCh_indiVidually all
vanish half way beﬁﬁeen the films. We believe that these specific
boundary conditions, which are not strictly imposed by the physics
of the system may result in slow convergence behéVior since they
édd an artificial symmétry to the problem.

Our method in contrast to AK's approach uses a set of periodic,

‘trigonometric functions with arbitrary rather than fiked phases.

© Using this basis set our procedure is then completely equivalent

to placing the film in a periodic array and expanding the wavefunction
in plane waves in the usual form as for bulk calculations. The

,'most appealing feature of the approach is that the pséudopotential»
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method in its simple standard form can now be applied. ' In particular,
non-local pofentials can easily be incorporated (which is not

evident in AH's method) and experience e.g. about convergence of
wavefﬁnctions gaiﬁed in’qalculations of bulk layer'érystals152 can

be used. The method adopted for the ﬁresent study ofvthe electronic
structure of Si (111) surfaces however goes béyond the standard

EPM through the requirement of self-consistency..

The disadvantages and also the ultimate limitations of the
method in dealing with complicated systems is connected to the large
number of plane waves required to describe the systems' wavefunctions.
The use of éyﬁmetry adapted combinations of plane waves is a helpful
tool in dealing with this problem.

Although thé method of our calculation.has beén outlined briefly
before (for;the‘case of Al sﬁrfaces), we shall discuss it in detail
below'with specific application to Si surfaces.

The essence of our method of calculation is to retain (artificial)
periodicity pefpendicular to the surface. In other words, a large
elongated unit cell is defined which in two dimensiqns is spanned
by the shortest lattice vectors parallel to the sﬁrface i.e. for the’
unreconstructed surface, hexagonal lattice vectors with the
length of v2/2 a.s where a, = 5.43A is the lattice constant of
bulk Si (thé ZIle reconstructed case will be discﬁssed later)
and by a long c;axis extending over M atomic layers and N layers of
empty space, The numbers M and N have to be chosen éuch that (a)

the film of material is thick enough to effectively decouple the two
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surfaces on each side of the fiim and (b) the film surface potential
can decay into the "vacuﬁmﬁ without perturbation.arising from other

‘ periodically displaced films. Various test calcﬁlations showed

that films of M = 12 atomic layers separated by N ~4 layers of

empty space fesulting in a 1a;ticé cohstént c = %-/§'ac fulfill these
requirements well for Si. The problem thus consisfs of self-
consistently solviﬁg the electfonic structure of é:"ﬁeriodic" system
" whose hexagbnal unit cell with the above mentioned dimensions
contains 12 Si atoms (for the unreconstructed surface). Proceeding
in the staﬁdéfd manner we ekpand the electronvwavéfﬁnCtion in

plane waves with reciprocal lattice vectors, G:

~

| .wlj“(g) - (7; al;.‘(g)

In order to account well for the "structure" in the large unit cell
(i.e. the individual atoms or bonds) this expansion has to be
carried to-sﬁfficiently high G-vectors. A kinetic energy cut-off

E IGmaxI2 ® 2.7 ryd, which is independent of the size of the unit

1=
cell was chosen in accordance with earlier bulk calculations152

on layer crystéls. fhis cutoff which corresponds té a cutoff close
to (220) in cubic bulk Si, yields about 160-180 plane waves up to
(0,0,12) which allow sufficient variation of the wavéfunctions
inside the unit cell and at the surface. The variations of the
calculated total charge inside the film can be compared to bulkv
charge densities of Si calculated with much larger cut-off energies.

- Typical differences are of the order of 20% in the peak values of

the charge distribution. To improve the energy convergence another
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340 plane waves are included via Lowdin's perturbation scheme

which corresponds to a second cut-off at E, = 6.0 ryd.

2
,‘It_should pe:noted that the decay of the wavefunction into ;hé“,
vacuum regioﬁ does not represent a particular problem in this,context.

In factvthé yavefunctions at the surfacg decay into the vacuum over
about the saﬁe length as do wavefunctions in the buik of very

covalent crystals (e.g. bulk Si or layer compounds) decay along

certain (ngbond) directions. 'This can e.g. be inferred from the
results of AH which, because they are obtained by real space integratioﬁ
at the surface,.should be fully converged.

No group.thepretical simplifications were incorporated into the
present calculations, since it was desirable to solve Schradingerfs
equation forvgeneral E—points in the tﬁo—dimensional (hexagonal)
Brillouin zone. The only remaining symmetry 6peration which wouldv
leave these §4points invariant would be a reflection'parallel to the

surface plane which however is not present in the D group of Si

3d
(111) films.

The expansion of the wavefunction leads to a matrix eigenvalue
equation of the usual kind

L Cog T B0 (€0 7 O “2)

~

which is solved by standardmethods.3 The Hamiltonian matrix elements

are of the form

H |=|1~(+G|2

’ L
G,G ¢l g6t * Vpg (6,67
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where VPS(g;gfj represents a general pseudopotenfial matrix elements.

The présenf calculation is restricted to a local pseudopotential.
From our earlier results we.know such an approach yields satisfactory.
results for buik silicon. The'self—consistehcy loop was initiatea
.by an empiricéi potential as given by (40). The four parameters,
a,, required ére given in Table L. These parameters were fixed by
fitting (40) to the local form factors givéﬁ in our discussién of
bulk silicon. |

Some'continuous extrapolation of the kind as (40) is necéssary
to obtain form factors for thé "new'" G-vectors of:the sﬁrface.problem;
While the shoftest g—vector in bulk Si (111) has thé leﬁgth of .
1.06 a.u., in the surface problem'G—vectorS’és Short.aé 0.14‘a.u.
are needed. . The empirical potential is very uncertain at these
sﬁall g—vectofs,and 1arge changes are expected ip the.coufse of
corresponding to these small g—vectors are absent in a bulk Si
crystal. "In the surface case theyvafe important_éé fﬁey form the
.surfact pétential’bafrier and strbngly determine work functions and
ionization ppfeﬁtials. The solutions of the secular{équation given
by (42) are the'eqergies En(g)'and'determine the ;oefficients AE(E)
required for the wavefunction. These quantities‘were evaluatedNat
‘k-points in the irreducible part (1/12) of the’twé—dimensional
hexagonal Brillouin zone. This relatively large number of sampling
points were chosen rather than one or several "sﬁecial" E¥points to
precisely determine the fermi level and the total valence charge.

The unreconstructéd Si (111) surface is metallic since the fermi

level falls within the "dangling bond" surface band. In this surface
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band, occupied and unoccupied states differ in their electronic

charge distributions which justifies the "fine" sampling of the Brillouin
" zome. In the case of “true" gsemiconducting surfaces as unreconstructed
(110) zincblende surfaces dr (2 x1) reconstructed"(lll) Si surfaces,

we beliéve calculations based on a few special k-points will yeild

good seif—consistent results. To determine tﬁe férmi level, the '
density of states, D(E) ﬁas evaluated using the method of Gilat

and Dolling153 with the necessary energy gradients Aérived by B'E

techniques. Once the fermi level E_ was known the total valence

F
(pseudo) chafgé density p(E)‘could'be evaluated.

If valence charge density is expressed in terms of its Fourier compo-
nents p(G), the Hartree-Fock type screening potenti;ls VH and VX

can easily be evaluated. VH is the repulsive Coulomb potential seen

‘by an electron 'and generated by all the valence electrons. It is

defined by Poisson's equation
2
V‘H(r) = -4Te"p(r)

and it can be written as a Fourier series -

with
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The divergence of VH(G) for IGI -+ 0 is physically irrelevant since
it is exactly cancelled by the ionic potential generated by the
positive Si 4 ion cores (overall charge neutrality). We can therefore

arbitrarily set VH(G =0) =V (G =10) =0. Numerically, however,

ion '~

the divefgent charéc;er of VH(Q) (and Vion(g)) f,(.‘)'r\.small g-values
poses stabiiity éroblems as we'éhall discuss later. vThe non-loéél
Hartree—Fock exchange pétential, Ve(r,r'), which if added to the
Hartree pdtential A (E) cancels the electron self‘energy contained
in V (E)’ hés Qeen approximated usiné the statistical exchange model

of Slater.154 It thus has the local form

3.1/3

v () = —a3el @ 3rom 1t

In the present calculations the value o = 0.79 is used in accordance

with AH which brings Slater's exchange in agreement with Wigner's155

interpolation formula at the average valence charge density of Si.

\11/3

The function [p(x)] has been obtained by evaluafiﬁg p(r) =

) p(G)elg.S at’ a three-dimensional grid of N ~ 10,000 r-points
.G 7 -
sampling the real space unit cell. The cube root has then been

/3

taken at each individual r-point and the resulting function [p(r)]l

has been transformed back into Fourier space according to

1/3,., _ 1
PTG =

~

1/3 -iG-r,
e ~ ~i

[p(x,)] .

[ 1% e §71

i
The precision of this procedure can easily be tested by omitting the.

step at which the cube root of p(ri) is taken. The final p(G) should

then be identical to -the initial values. The exchange potential then
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has the form

1/3 Z bl/3(c)elg-£.
.G -

~

= (30 2372
Vx(f) = -a(zﬂ) e (31)

The exchange potential is an absolute potential which approaches zero

in the vacuum as the chargé goes to zero. p1/3

(G=0) has a finite
value and is essential in determining the absolute value of the

potential. The sum of the two potentials V_(r) and'Vx(r) yields the

electronic screening potential

= . iG-r
Vscreen(D) = g (VH(Q)fVX(g))e <2

and is, at each step in the self-consistent loop, evaluated from the

total valence charge.
After initiating the calculations with an empirical potential
the self-consistent loop is continued by adding the screening potential
- . A4

v to an ionic potential V, generated by the Si ionic cores.
screen ion

This ion pseudopotential contains in addition to the exchange «,

the only parameters of the self-consistent calculation. First, there
are the atomic positions in the surface which enter Vion via a-
structure factor. In addition to the structural model, the individual
atomic ionic potential is also based on a parametrized model. Assuming
that the first order the ion cores do not change in the free ion, in
the bulk crystal or in the surface, an atomic model potential which
was fit to atomic term values (as done by Heine and Abarenkov )
has been used in our calculation. One important (but not sufficient)

check on the quality of this potential is to use it to perform a

self-consistent Si bulk calculation. This test is not sufficient,
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since bulk calculations do not probe the long range Coulomb tail of
ionic potentials. In the case'of surfaces, however, this tail is of
importance. On the other hand, the Couiomb tail is model.independent
and resultsAin'a 1/q2 behavior of the Fourier tranSfbrﬁed potential
for small wavévectors.

The repuléive cores of the ionic model poten;ialé fitted by
Heine and Abarenkov to atomic term valﬁes are noh-iocal or f-dependent.
In the preséﬁt calculation a local, "on Fermi sphere" approximation
was uéed in defiving the Fourier tranéform. This Fourier transform
was fitted to a four parameter curve of the form given by (41).
The valués qf‘the parameters, ai, for the iohic model potential are
given in Téble'L. The ionic potential behaves és I/q? for small
q_representiﬁg the Coloumb tail énd'decreases expénentially for 1arge
q allowing-a definifion of a reasonable cutoff qcig 3a.u. for SiA+..
As mentioned ébove, self-consistent Si bulk célculatibns based on
this ionic pseudopotential yield a band structure .in excellent
agreement wi;h»the most recent empirical calculations. The most
important electronic transition energies are reproduced to within
¥0.1 eV. The total bulk Valence charge derived from this self-
consistent bulk calculation compares very favorably with the empiricél
charge‘densities of Walter and Cohen.21 The values'of'pharge
densities in tﬁe bonds change frém 25.5 to 25.8 eléctrons per unit
pell and at the aﬁomic sites from 7 to 5.5 which results from a
more repulsive self-consistent potential at the atoms.

The input potentials for steps n = 1 and 2 of the self-consistent
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loop then become

o=y o

emp ~
v (r) = Vion(g). +V (r) (43)

screen -~
Note that, while V (r) and V., (r) are linear superépositibns of
v emp ~ ion '~ ,

. s s n ntl

atomic potentials, all other potentials V( ) and VS ) (n=1)
) , screen in

are of a more general form and can no longer be factorized into
strucutre factor times form factor. This fact accounts for the
non-linear nature of the dielectric screening and_results in the
existence of "forbidden" reflections in the self-consistent potential.

Since the potential Vémp(r) was determined empirically for Si

Vd

bulk crystals, it is not expected to yield a very good screening

charge for a surface described by the ionic cores Vion(r)' In

(2)

fact Vin (E) results in a very different eigenvalue spectrum and

charge than doés Vii)(f) and any further steps in the self-consistent
1oo§ based on a.straightforward extension of (43) would be unreasonable
and ﬁot converge. . This very unstable behavior of the self-consistent
potentials in particular for thefsmall_g—vectors has already‘been
described by Lang and Kohn131 and by AK.127 In agreement with

these authors we also find that relaxed, modified versions of (43)
which compute the input potential of stage (n+l) from a linear

mixture of input and output potentials of stage (n) does not result

in a convenient method to attain rapid convergence for the surface

problem. In the present calculations these instabilities were dealt

(n)

with by computing adjusted input potentials Vin (G) for n > 2 from
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ﬁreceding inpqt and outﬁut potentials individgaliy fer each small
g-vector. 'This‘can'best be done by inspecting Véut versus Vin
graphs eeparately for each>sma11 g. Even-though'ﬁhe various Fourier
components are not independent;‘this;procedure helps to reach
convergence fairly rapidly. Mathematically the instabilities are
reflected iﬁ rether é;eeﬁ curves (with negative slopes) of Veut
versusvviﬁ, i.e. very small changes in Vih result inllarge outshoots

in v

out* For higher G-vectors, |G| > la.u., no instabilities occur

and conﬁergence is,easily reached. Because ef tﬁe above mentioned.
instabiiities and difficulties in determining loeg range potential
fluctuations,.work functions and ionization petehtiels are difficult
to dbtain.eoffectly by our method. | o

a. Unreconstructed Surface. Clean unreconstructed Si (111) surfaces
' 141

are known to be thermodynamically unstable below-900°C;

Stability can be reached at lower temperatures by adsorption of adatoms.147

Nevertheless the clean unreconstructed surface presents an excellent

model for the theoretical study of surface effects and results obtained

' inwards by an amount of A = 0.33A as proposed by AH.

for it can be compared to subsequent more elaborate. (reconstructed) -
surface calcuiations. Qur study of the Si (111) surface therefore
starts with eleah, unrelaxed, unreconstrgcted surface, in which all
surface atoms remain at their exact "bulk' positions. -In a second
("relaxed") model the outermost atomic layer Qas’figidly relexed

150 In Fig. 67

‘the crystal structure of Si is viewed in perspective along the

[110] direction. The [111] direction is vertical. A horizontal
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(111) surface is obtained by cutting all vertical bonds in a plane.
An excelleht overall impression of the behavior of the electfbnic 
states at the Si (111) surface can be obtained by considering the
total, self-consistent valence charge distribution, as presented
in Fig. 68 for‘the unrelaxed surface model. The figure shows charge
~density contéurs in a (110) plane cutting the (lil) surface at
right angles (see.Fig. 67). The plotting area starts midway between
two films and extends about 4 1/2 atomic layers into the bulk. The
atomic (unrelaxed) positions are indicatea byvdots. Moving deeper
into the crystal, the charge distribution closely resembles the
Si bulk charée densities; near the surface, it decays rapidly into
the '"vacuum'". This rapid decay assures the required "vacuum"-and
hence the decoupling of the films. No surface states can be.
recognizedvon this plot, since only a small number of them exists
in a continuum of decéying bulk-liké states. It is instructive to
compare the charge distribution deeper inside the crystal to the
standard, highly convergent Si bulk charge densities of Walter and
Cohen.21 These bulk charge densities which were defived frbm
wavefunctions including about 90 planes waves up to '9 = (331) 21T/ac
have values.of 25.5, 7 and 11 electrons per bulk unit cell volume
Q= ac3/4 for the bonding site, fhe atomic site and the antibonding
site respectively. Due to the lower degree of convérgence in the
- present surface calculations the charge density réaches values of 20,
9 and 12 at”ﬁhé respéctive sites. This lack of charge "modulation"
which amounts to about 25% at the bonding sites results in an error

1/3

in the exchange potential (~p ) of at most 8% at the bonding sites.
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We believe that this fange of uﬁcertainty in the potential or
charge is acééptable and'does not influence éhé.results more than
other concépfuél uncertainties like the choice of thé factor o
scaling S1atér's exchange potential. The total charge density can
also be compared with results obtained by AH for a rélaxed si (111)

150 (The outermost atomic layer has been relaxed inwards

surface.
by 0.33A.).'Scaling their charge contouf plot By the_volﬁme ¢ the
»vaiués‘20, 3 and 10 (#2) are obtained_fbr the respective sites.
Their particularly low value at the atomic site ﬁight'resﬁlt from
a stronger repulsive core potential. |

In Fig. 69 contour plots are presented of the self-consistent
psé;dopotential giving rise to the valéncé chargé discussed above 5
_and'of the empirical starting potential. The poﬁéntials‘are
'.displayed in the same plane as the charge in Fig. 68, with values
given in rydbergs. .Self—consistency was reached (within 0.01 Ry)
éfter 5-7 steps; Normalized to approach zero in ﬁhe vacuum the
potential values for the self-consistent and empiricél'potentials
are -1.8 (—l.é) at the bonding'site, +0.8 (4+0.1) at‘the atomic site
“and —1.6_(—110) at the antibondiﬁg site reépectivély. The self-
.consiStent potential at the bonding sites differé slightly for the
different bonds; thus causing some asymmetries in the bond charge
distributioné. Note the more repuléive core of the‘self-consistent
- potential resulting from the model ion potential used. Aslmentioned
éarlier, bpthvpotentials lead to very similar bulk energy spectra
and charge densities. The self-consistent pqtéﬁtial_of AH for a

relaxed surface model reaches values of around -2.2, >0.2 and
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-1.6 at the_bondinglsite,'atomic site and antibonding site
respectively. This is in good agreementvith‘our self-consistent
potential'éxcept possibly at the atomic sité where the AH value is
not explicitly given in Ref. 150.- |

To illustrate the various contributions to the total self-
consistent potential in Fig. 70b, the potentials Vioﬁ(zx VH(z) and
VX(Z) avéraged parallel to the surface are plotted as a function of
the coordinate z perpendicular to the surface. Due to their strong
long—rangé'Coulomb character Vion and VH show onl& small short
range fluctuations compared to their absolute values. Vion rises
about 30 rydbergs over the last six atomic layers and forms a
strong surface barrier. It is very delicately balanced by the
screening potential VH leaving a wgak attractive net potential with
fluctuations on the scale of interatomic distances of the order of
0.5 rydbergs; Strictly specking only the sum of VH and Vio is

n

physically meaningful; the individual potentials diverge as |G|;§n.

The sum is.added to the exchange potential VX which is of
comparable étrength and modulation. The resulting total self-
consistent potential is indicated in Fig. 705. In this figure the
original empirical starting potential is superimposed to demonstrate
the change in the potential occurring because of:thé self-consistency
procedure. 'While inside .the crystal the two potentials Vemp(z)
and VSC(z) are almost identical (the potential differences visible
in Fig. 69 cancel almost exactly after averaging parallel to the

surface), the self-consistent potential VSC(z) is somewhat deeper

at -the outermost atomic layer and exhibits a higher surface barrier
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-of about 0.2 Ry. These changes localize the chefge more in the surface,
stabilize tﬁe surface states and increase the ionization potential.
In fact, using the empirical starting pofential, charge originating
from states at the top of thegvalence bands was leaking out into

the "vacuu@". This charge was confined back to the'sﬁrface‘by the
stronger potential obtained in course of self-coﬁsisfepcy. Though
the differeneee between the empirical and self—cdnsistent surface
potentials seem to be relatively small, they ere essential to stabilize
the surface. An ionization potential of aBout 4.0 eV:has been
~calculated. Asvmehtioned earlier this quantity is difficult to
determine ﬁreciselywdthour method and fhe calculated velue is only
-approximate'(il eV).

Figure 71'displays.the.two-dimensional band structure of a

- twelve layer. Si (111) film based on the self-consistent potential

for the relaxed surface model. The band structure is preéented for
surface k-vector, k> between (0,0, M(1/2,0), K(1/3,1/3) and
.T(0,0) in the hexagonallBrillouin'zone. The 24 valence'bands can

be roughlyfdivided into 3 bulk groups, representiﬁg.the 6 low-

1ying s—like bends, 6 bands of mixed s- and p—eheraeter; 11 p-like
bande and one separate p-like dangling-bond band in the fundamental
gap. The three'groups of bands, would with increasing film

thickness appfeach continua separated by several‘gaps in which most
of‘the surface states appear. Let us firet discuss . the dangling

bond bands in the fundamental gap. Suppose a Si bulk crystal is cut
"every 12 iayers_parallel to the (111) plane and the pieces are

gradually separated from each other. With increasing distance one
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state each would spiit away from both the valence-bands and the

» conduction bands to meet about at half-gap to form the two fold
degenerate dapgling bond surface band cofresponding‘to the broken
bonds on either side of the Si films. In Fig. 71'the two bands are
not exactly degenerate corresponding to some weak interaction

(~0.2 eV) still present betweén opposite surfaces of the 12 layer
films. If the surfaces are unrelaxed and unreconstructed the two
dangling'bond:ﬁands show almost no dispersion parallel to the
surface, i.e. they would appear extremely flat in the band structure
plot. If the outermost atomic layer is relaxed inﬁard, the dangling
bond band sﬁows an increased dispersion parallel to the surface
together with a slight overall shift of the bands (see Fig. 71).
This effect shall be diséussed later in moré detail in relation to
charge densities and densities éf states. In contrast to the dangling
bond surface band which exists throughout the two-diﬁensional
Brillouin zpne.independent of relaxation, other surface states show
up only in parts of the two-dimensional Briilouin zone and some
depend on relaxation. They are indicated at the high symmetry pointé
', K and M.by dots in Fig. 71. A region of particular interest is
around the poiﬂt K. Strongly localized surface states exist in the

- gap between -7 eV and -9 eV independent of surface relaxation.

These states merge into the continuum at M and become strong

surface resonances. A similar behavior is found around K between

-2 eV and -4 eV. Even though the existence of these surface states

does not depend upon relaxation, their exact energy position is a
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function of relaxation. Other surface states appear only after
relaxatien like the splitting away of the lowest valence band pair
between -9.5 eV and -12.5 eV throughout the zome. All these
findings‘have qualitatively al§o been obtained in a recent
analytical model calculation by Yndurain and falicov.156
Compafieon.with'a tight?binding surface band etructure'calculated

151 (PP) shows qualitative agreement, though

by Pandeybaﬁd Phillips
quantitative.differences existvin energy and number-of‘surface states.
In particﬁia?-five surface states are found in our_eelculations at
K &hich agrees with the calculations of Yndurain and Falicov
whereas PP only report four surfaee etates. The existence of more
than four sufface states at a given vector EI Iiedicates that bonds
deeper in thevcfystal, not connected to the outermost layef are
etrongly affected by the surface. The character of ehe various
surface sta;es_will'be discussed later in terms of charge density
distributiens. | |

Density'of:states curves for the self—consistent,results.for.
btﬁe unrela#ed.and relaxed sﬁrface models are presented ih,Fig. 72.
Since these curves represent the total density of:states for a 12
layer slab, tﬁeir overall featyres strongly resemble those of the Si 8
bulk density of.etates. vThe results for the (2 x.l) reconstructed
surface (iﬁeert) are obtained for a 6 layer slab. .Thef ehall be
discussed in the ﬁext section together with 12 layer (2 x 1)
reconstructedesurface caieulafions. To locate structures associated

B with surface states (no distinction is made in the present case
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between bona fide surface states and strong surface resonances),

we investigated the charge density distributions for émall energy
“intervals scannihgbthe entire width of the valeﬁcé bands. Oﬁé
prbblem which arisgs when simulating surfaces by finite slabs of
atoms periodicélly fepeated, is spurious structure iﬁ the denisty
of stétes due to the "unreal" periodicity of isoiated slabs
perpendicular to thg surfaces. Spurious two—diménsidnal singularities
occur. Their number increéses wi;h the number ofvatomiq layers

per slab. For the "true" surface case these singularities become
"dense" and disappear. TFor finite slab calculétions all structures
in the density of stétes have to be investigated in this spirit.
Similar problems are encountered wﬁen’simuiating an amorphous
material by 1arge unit cells périodically repe'ated.126 The
iocations of surface states andvstrong surface resonancgs (fbr the
relaxed éase) are.indicéted by arrows in Fig. 72, ‘Their lébelling
corresponds to fhe regioﬁs around high symmetry k?points in the fwo—
dimensional}Brillouiﬁ zone, from which they originate (see dots and
labelling in Fig. 71). The surface sfate energies aré given in
Table LI and éompared to experimental data obtained from UPS
measurements on (2 x 1) and (7 x 7) reconstructed surfaces. Also
iﬁdicated'in Table LI are the results of the self-consistent pseudo-
poténtial calculation of AH and of the empirical fight—binding
calculation of PP on unreconstructed relaxed .Si (111) éurfaces.

Let us now examine the various surface bands in more detail.

When relaxing the outermost atomic layer rigidly inwards by an amount
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of A= 0.33A,:a surfacevband (2-f§1d quasi-degenerate in our model
ériginating‘ffom the two sﬁrfabes of the slab) throughout the entire
2one splits 6ff between -11 eV and -13 eV. It essentially corresponds
to s-likevstatés with some-PZ admixture (centered on the two outermost
atomic layeré) which decay info the crystal. A typical charge

density pibtAof these surface states near T (Flb).at‘ab0ut‘—12.7‘

eV is shown in Fig. 73 (top). As one follows this surface band from
T to M to K the charge center moves somewhat back into the‘crystal,

e.g. the chafgé distribution of the state K ,, at about -9.8 eV

b
is mostly s-like on the second atomic layer with charge extending
'coﬁsiderablf‘inﬁo the "longitudinal" bond between second and third
atomic layer. ‘A similar situation is found at M fo;ttﬁe state
Mﬁb' at abouc f10;7 eV. At these two points (K and;M) the predominant
s-like charge.on the outermost layer is transferred to the surface

states K at somewhat higher energies around -8.5 eV.

b b

“and M
These states (in particular Kgb)'are strongly localized on the

outermost layer see Fig. 74 (bottom) and decay into the crystal

being localized at every other . layer (1,3,5 etc.). Roughly it can

b at -9.8 eV has s-like

therefore be said that at K the state K
charge on the second, fourth, etc. atomic layer, decaying into the

‘bulk, whereas the state Kg at -8.5 eV has decaying s-like charge

b
at the first, third, etc. atomic layer.
The next surface states or strong surface resonances appear only

at considerably higher energy and they correspond to mostly p-like

' states with some s-admixture. Starting at T at -1.5 eV (Ftb) a



-106-

2¥fold degenerate (Z—fpld in our case of two Surfaées) surface band
appears corfesponding to the transverse back bonds between first and
second atomic layer; its charge distribution,is shown in Fig. 73
1(bottom); This band merges into the continuuﬁ as one -goes from I

to M where it appears as a strong resonance. Again avregion'of
special iﬁterest is at K. A very similar arrangement to the low
lying s-states is found for the energies of the p-states. The bulk-
like states merge into twé'narrow groups of bands éeparated by a.

~2 eV gap (see Fig. 71). One éurfaée state (bi,)ris found inside
this gap at about -2 eV.:  In contrast to the s-like surface state
bi-at -8.5 eV this state does not appear midgap; a small potential
perturbationvmight have moved this more sensitive p-like state
slightly up towards the upper group of bulk-like bands. Another
surface state (Ktb) splits off below the lower group of bulk-like
bands at —4.2'eV. The resemblance between the s-like and p-like -
band structure at K and an inspection'of the corresbonding charge
densitiés suggest very strohg decoupling of s- and p—-states at K.
This kind of dehybridization decreases band dispérsion,,localizes
states and favors the formation of surface states. In’fact it is
the special form of the structure factor at K which allows
separation info s—states centered on even or odd numbered layers,
longitudinal p-states and transverse p—states..156 To support

this statement further we nqte that the charge distribution for the
state Ktb at -4.2 eV is almost identical to the charge Qf the states
Ftb at -1.5 eV (see Fig. 73 bottom) and therefore has strong trans-—

verse character appearing between the first and second, third and
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fourth etc. layer. The state K b at -2.0 eV (see Fig. 74 top) is
of longitudinal characfef, the charge appears in the longitudinal
bonds between.the second and third, fourth and fifth etc. layer,
decaying.into_the crystal. deqaying.into the crystal. We would like
to note thaf‘the behavior of surface states beinghloéalized at
alternating.atbmic.layers is not an artifact connéctea with the
finite slabfapproximation; it has analyticaliy béén-confirmed for
semi-infinite surface models.156'

In confrasévto ' where two transverse back bond states exist,
at K only onegéuch surface state appears, the other haviﬁg merged
into the continuum. Again the situation at M isséimilar to that
at K, with smaller gaps, however, and surface states_mergihg into
the confiﬁuum.  The preceding analysis showed cleérly that surface
states éan "penetrate' deeply into the 1ongitudinai_bond between
second and_tﬁird layér which puts severe restrictiéné on the size
of model éiusférs rep?esenting the surface and wﬁich has to be
considered in_ﬁositioning a matching plane as usedvby AH éeparating
" the surface region from the bulk. It can be inferred from Fig. 72
‘that inward relaxafion strengthens the transversenback bonds and
It

therefore lowers the energies of the states Tt ‘and Kt

b b’

~weakens the 1oﬁgitudinal back bonds and raises the energy of states

like bi,.

density. They shall be discussed again in connection with (2 x 1)

These effects are also reflected in the total charge

reconstructed surface.
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The moét prominent surface states are the dangling bond states
in the fundamental é;pf In both tﬁe uﬂrelaxed and relaxed cases,
the surface bands are half occupied leaving the surface metallic
with a Fermi=léve1 positioned as indicated in Figs. 71 and 72. A
charge density plot for the occupied part of this band is ﬁresented
in Fig. 75. The charge originates from states.aroﬁnd M and K and
exhibits the very pronounced dangling bond character. The unoccupied
states originate from a region around‘ and show some stronger
mixing with back bond states. Though the comparatiVe study of the
unrelaxed and relaxed surfaces yields very useful information
about the éxistence energy positions and energy shifts of surface

'states, these two surface models cannot satisfactorily explain a
number of experiments. These experiments include various photo-
~emission measurement3149 surface mobility studies,141 photo-
conductivitylalvand infrared absorption measurementélaa on freshly
cleaved Si (ill) surféces, exhibiting a (2 x 1) reconstruction.
The most imbortant experimental facts which cannot be explained
involve the surface states in and close to the fundamental gap.
To gain some understanding of the behavior of these states after
(2 x1) récohsfruction and to find explanations for the various
experimental results, we have déne fully self-consistent calculations
on a (2 x 1) reconstructed surface model. A detailed discussion of
this surface model and the results obtained is given in the follow-
ing sect;ion .'

b. Reconstructed Surface. Carefully cleaved clean Si (111) surfaces
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e#hibit a (2-# 1) supersﬁructure as seen from low energy electron
diffraction (LEED) patterns. At phe present time unfortuﬁately
there'doeé not>exist a satisfactory analysis of the LEED intensities
whicbvwould uniquely determine the (2 x1) surface geometry. Any
calcﬁlagion of thekeléctronic structure 6f thé (2 xbl) surfacé is
‘therefore necessarily basedvon empirical structural models. The
situafion is complicated by the fact that the (2 xxl) reconstructed
surface isvmetastabie. It transforms into a more.éomplex (Z x 7
structufe'upon annealing; which is the thermodynamically stable Si
- (111) surféce.geometry, or it transforms into the simple'(l x 1)
structure after adsorption of adatoms. Once annealed. or éontaminated,
(2 x_l) strucﬁﬁre cannot be fecovered. Due.to this fact, models for
the metastablé.(Z x 1) sdrface cannot easily be established on
ﬁhermodynamicél grounds. Various different reéonstfﬁctibn models have
thus been'suggested.148 Most recent discussions seem to-favor the
formation of the (2 x 1) superstructure by periodically raising

and lowering rows of surface atoms leaving a buckled Surface.
' This model for reconstructed surfaces was first éuggested in 1961
by.Hanemanls_7 and later developed by Taloni and Héneman.158 In
addition to the periodic raising and lowering of rows of surface
atoms, in Haneman's nodel, the second layer-atoms afe_slightly
shifted lageraily to approximately conserve the individual bond
lengths of.the‘transverse back bonds between first and second layer.
The situatiéﬁ‘is scﬁematically indicated in Fig.:76. Without the
laperal shift of seqond layer atoms, transverse back bonds of

"different lengths would exist. This mbdified_Haneman model has
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recently been proposed by AH.159 In their model calculations done

on two differently relaxed (inward and outward) (1 x i) surfaces,

the mainvemphasis has been put on the existence of stretched and
compreésed back bonds. The subsequent discussion of our results
obtained for a (2 x 1) Haﬁeﬁan model, however, will show that all
essentigl experimental findings can be understood even if the lengths
of the tfansverse back bonds are approximately_conserved.

The structural parameters entering our (2 x 1) reconstructed
surface model are the following: alternating rows of atoms have
beeﬁ raised.By.O.IBA and lowered by 0.112 , and second layer atoms
have been shifted laterally as indicated by the arrows in Fig. 76
such as to appro#imately preserve the length of the back bonds.
This choice of parameters may not represent an obtimum choice. In
barticular, since these parameteré represent an overall outwara
relaxationvof the outermost atomic layer, some surface states which
depend on inward relaxation like the states ng at.ﬁhe bottom of the
valence bands will become delocalized. Our main interest in this
study however is the behavior of thé electronic Stétes”in the
vicinity of the‘gap and their dependence on the character of the
reconstruction (buckling with preserving the length of back bonds).
The planar unit cell now contains 4 atoms; First preliminary
calculationé.have been done on six-layer slabs separated by 3 bond
lengths Qf empty space. The corresponding density of states in
the vicinity of the -valence band edge, obtained from 72 E—points in

the two-dimensional Brillouin zone is shown as an insert in Fig. 76.
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As expected, ﬁualitative changes compared to the unreconstructed

(1 x 1) case occur. Doubling the real space unit cell in»one
dimension cprresponds to folding back the Brillouin zdﬂe in certaiﬁ
directions. Thus two surface-bands appear separated By a gap
resulting from the'potential perturbation of the reconstruction.
This behavibr is refleéted by the density of stateé in Fig. 72
showing two;peéké whiéh now correspond to two different bands. In
Fig. 72 the density of states does not vanish bgtweeﬁ the two
peaks, thus leaving the,surface semi-metallic. In fact the gap
between the two surface bands is comparable or smaller than their
dispersion. We believe that this Behavior is an.artifact'of oﬁiy
including 6 layers per slab. The sufrace states bn 6pposite surface
of the slab Shéw too much intera;tioﬂ, consequently éausing the
semimetallic behavior. To obtain more quantitative results (2 x 1)
_ calculations with 12 layers per slab have been performed. Because
of the.large-matrix size (about 320 plane waves were included to
obtain the same convergenée és for’the unreconstructed cases), the
self-consistent calculatiéns were based on a two-point schemé
((0,0)T and (1/2,1/2)K'). For the final self-consistent potential
several Ell-points along high symmetry directiops'have also been
included. A band structure showing the bands in the vicinity of
thé fundamental gap is presented in Fig. 77. The two dangling bond
surface bands are split by a gap of 2 0.27 eV throughout the zone.
They show some dispersion of only about 0.2 eV. The Fermi-level
fails'between‘the two bands, thus creating a semi-conducting

surface. To obtain a density of states curve for these bands a
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four term Fourier expansion for the band energy E(EIY) has been
fitted to the calculated bagd structure at the'four,gll—poiéts

r, M', ﬁ and'Kf, and sﬁbsequently evaiuated over a fine grid of B'I
-points of the two—dimenéiénal Brillouin zone. The results are shown
in Fig. 78 (bottom). Two structures are'found_separated by about

0.4 eV corresponding to the two surface bands. Tﬁe lower surface
band which overlaps with states arising from bulk and other surface
bénds is centefed at about E = E_ = 0. Experimental photoemission

\
3142’ 143 show structure at somewhat lower energy (E ~ -0.5 eV).

dat
Further lowering of the calculate surface band and better agreement
with experiment can probably be obtained By using a different choice
of atomic displacement parameters. Our results, however, show the
definite trend of splitting the dangling bond surface bands combined
with an overall lowering because of the buckling structure. Also
indicated in Fig. 78 (top) is a joint density of states (JIps). for
optical transitions betwéen the lower and the upper surface bands.
Matrix-element effects have not been ;onsideréd in this plot. The
JDS curve cén be quélitatively compared to infrared absorption
measurements144 (broken line). A quantitative comparison is not
reasonable because of the ad hoc choice of étomic displacement
parameters and because of probable strong excitonic effects.

It is also instructive to calculate the charge denisty distributions
for states inside the two peaks in the density of states of

Fig. 78 (bottom). The corresponding éharge (orvhypothetical charge

for the unoccupied upper band) is displayed in Fig. 79 in a (210)
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'pléne intersecting the surface at righf éngle. This plane corresponds
.to the'(llO) plaﬁe of the unrecbnstructed surface. The buckling.
raises thevsuffaCe atom on the left hand side and 1owers the surface
atom on the‘right hand side. Due to lateral shifts the second layer
atoms are slightly moved out of the'(ZiO) plane. 'The states show

very intereétiﬁg real space behavior. Electronsﬂiﬁ_states originéting

form thé'lower.peak lébelled dou are located predominantly on those

t
atoms which have been raised and avoid those atoms wﬁich have been
lowered. anversely fhe_waﬁefunctions for unoccupiedjstates of the
peak labelled din are concenfrated around tﬁose gtoms thch have

been lowerea; 'The surface thﬁs exhibits a (2 xvl) pattern of nearly
two—fdld 6ccupiéd dangling bond states centered at'évery second fow
of étoms. Réughly speaking the unpaired dangling eléétron of every
second‘surface atom (in) is transferred to its neighbéring'aﬁém (out)
where it paris up ﬁith another electroﬁ, thus creating an ionic
semi—cbhduéting surface. In view of this picture infrared tfansitions
are expected t6 have a very weak oscillator stféﬁéth'beéause_of

the small wavefunction overlap. 1In fact, the calculated dipoleb
matrix elémenﬁs are of the order of 0.05 21T/aC and about one order

of magnitude sﬁéller than average bulk matrix elements. However;

the net chargg transfer obtained in our calculation is presumably

too large and would be decreased by correlation effects. These
effects can_be considerable for bands of 0.3 eV width§ since

they are‘not:includéd in our calculations, the results.are of a more

qualitative nature. It can be seen from Fig. 79 that the charge

distribution of the lower peak (dout) extends somewhat into the back
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bonds. This mixing of states happens around the P~pqint where the
lower dangling Bdnd band aétually overlaps with lower lying back bond
states. In fact some of the transverse back bond states (th)
found at -1.5 eV for thé unrecoﬁstructed surface rise in enefgy upon
reconstruction and'féll between 0 and‘—0.8 eV. At E‘I-points
further away from the TI'-point (K',M',i) the dangling bond sufface
bands have very pure dangling bond éharacter and do nof show any
noticable'ﬁixing with the Eack bonds which decreasevin energy to
about -3.5 eV. The existence of transverse back bonding surface
states (orvstrong surface resonances)-close to the Véience band‘
- maximum may'éxplain angular photoemission result_s149 involﬁing
states between-O and ~1.4 eV, These feéults show a-threéfold
rotational pattern as do the transverse back bondingvstates but
the pure longitudinal dangling bond states do not. The results
we obtained for the (2 x 1) recomstructed surface can be under-
stood on tﬁe basis of simplevchemical arguments, vSince our
| calculations were based on Haneman's model which excludes bond léngth_
variafions (such as AH propose in their model) the vafious changes
in the electronic structure must in first order are caused by
bqnd angle variations.‘ This concept i; not new, in fact Haneman's
original model was desigﬁed on this basis.

Thé following discussion includes three different bonds and
their respecfivé energies i.e. the energies of a Stéte whose charge
are primarily concentrated in one of these'bonds:' the (longitudinal)
dangling Bonds d with ené;gy €42 the transverse back bonds bt (€t)

between first and second atomic layer and the longitudinal back

bonds bg(gg) between second and third atomic layer.



-115-

 Let us consider the case of the raised outermost atom, In
this caseithe bond angles between the 1ohgitudinal orbitals ére the
transverse ofbitals are increased whereés the bopd angles amqng_the
transverse.orbitals are decreased. Thexideal sp3 hybridization is
éonseqﬁently changed iﬁ such avway as to increase thé amouht of
s-1like chéractéf in the longitudinal ogbitals-and of p-like character
in the transverse orbitals. As a consequenée the energy €4 of the
dangiing bonds d is lowered due to an increased s—admixture. The
transverse ﬁack bonds bt now contain more chhar;ctef.which raises
their energy € and weakens the bbnds. The longitudinal back bonds
like the dangling bonds contain more s-character which lowers their
energY_€£ and_stréngthens them. The inclusion 6fvﬂohd—1ength
- variations (AH ﬁodel) would result in an additional Stretching of
the transverse back bondé bt and a further weakening. In the case
of the lowered outermost étom the bond angles chanéé the ppposite
way causing.a decrease of s-character in the  longitudinal 6rbitals.

The energy €, of the dangling bonds d is raised, the'energy €, of

d
the transverse back bonds bt is lowered combined with a strengthening
of the bonds (an additional bond length contraction would increase |
this effect) and the energy € of the longitudinai back bonds b is
increased coﬁbined with a weakening of the bonds. Raising and
‘loweriﬁg of'alternating rows of atoms lgaas in fi;st'order to a
combinatio§ of the above effects. The net effect'on.the

1ongitudina1'back bonds cannot be anticipa%ed in this simple picture.

The simple picture apparently underlies our self-consistent
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pseudopotential results. It accounts for*tﬁe following facts:

(a) thé strengthening of the transverse back bonds and the
weakening of the longitudinal back bonds in.the relaxed 1 x1)
geometry. (Here'the transverse back bonds have aléo been contracted.)

(b) the faising of the dangling bond energy tb at T in the
relaxed (i x 1) geometry.

(c) the ﬁore s-like character of the lower déhgling bond band
in the (2 x 1) geometry as compared to the upper more pz—liké
dangling bond band. This can be recognized from the dangling
bond charge having a different.asfmméffy around the outermost atoms
in Fig. 79 (top and bottom):

(d) the localization of the lower occupied dangling bond

orbitals on the raised atoms and of the higher unoccupied dangling

bond orbitals on the raised atoms and of the higher unoccupied dangling

- bond orbitals on the lowered atoms in the (2 x 1) geometry.

(e) the raising of the transvérse back bond energies €t.up to
about -0.5 eV at T and -3.5 at K' for back.bonds cénneqted to raised
outermost atbms-in the (2 x 1) geometry.

To summariée our silicon surface calculaﬁions, we have investigatéd
three different surface models: and ideal, or unrelaxed surface,

a relaxed surface and a reconstructed surface. The unrelaxed ahd
relaxed surfaces have also been investigated by Appelbaum and
Hamann150 in the only previously existing - self-consistent

calculation. Their results are basically consistent with our cal-
L.

3

culations. In addition new types of surface states cofresponding

y
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to the longitgdinal back bonds between the second and third atoﬁic
layer and_fophd and complete density of statesrcufces are presented.
A buckled (2 xil) surface model such'as proposed By Haneman (with
perserved béck'bond lehgths):hés been used to sfu@y the (2 x 1) .
reconstructed surféce. The salient experimental resqlts on (2 x1)
Si (111) surfaces can be understood on the basis of this model.

Upon reconstrugtion the déngling bond band is Spiit.and lowered
considerably in enefgy. The surface is found>to'Be semiconducting
producing a infrared absorption peak at low energies. TransVerée
Back bondinglsurface states are found to be réised,in_energy énavs
appear beﬁwéen 0 and -0.5 eV bélow the valence ban&-edge at and
abovgk—3.5 §V at K'. These stétes may bé the origin of the angular
depeﬁdent photoemission fesults . The various effects arebdiscussed
on chemical,groﬁnds in fermé of bond angle ﬁariafions océurring ﬁith

reconstruction. Changes in back bond lengths such as claimed by

AH in a recent paper159 tb be essential are thus n6t ﬁecessary for a
satisfactq?y‘ekﬁlanation of spectroscopic data.  The ekisteﬁce of
bond length changes, however, cannot be ruled out. on the basis of
the existing results since both bond angle; and bond length variations

seem to alter the electronic structure at the surface in a similar

manner.

2. GaAs (110) Surface

In this section we continue our discussion of semiconductor
surfaces by considering the electronic structure of the (110) GaAs
surface. To our knowlédge, this is the first self-consistent

surface calculation for a zincblende material. Although our
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structural model is for an unrelaxed surface, a comparison with
receﬁt experimental'data exhibits excellent agreement for the
energy sﬁéctrum of the dangling bond surface states. In addition
to displaying fhé valence changé densityAfor these states, and'
the total charge density, we present a local density of states
calculation. This latter function, which displays the density of
staﬁes layer by layer, illustrates the relative decay into the
bulk of the’surface states.

The (110) surface is of natural interest in GaAs as this is
the surface formed upon cleaving. The "surface"‘unit cell for GaAs
(110) surfééevis displayed in Fig. 80. Low energy electron
diffraction studiesl60 have indicated that tﬁis surface does not
" reconstruct, but retains its primitive configuration. This,
unfortunately, does not rule out a non-ideal éufface such as a
relaxed or "buckled" (1 x 1) surface which would yield a similar

diffraction patterns. Experimentally, photoemission,léz’ 161

partial yield phbtoemission,162 energy loss spectroscopy,l63*165
166 . 167 e

band bending, and ellipsometry measurements have verified

the existence of two surface states of an apparently dangling

bond nature: one occupied surface state lying approximately 0.5

eV below the valence band maximum, the other, an empty surface

state, 0.8 to 1.0 eV above the valence band maximum. Although

the photoemission measurement142 responsible for the positioning

N 161, 164
of the occupied surface state has been the subject of controversy

the existence of an occupied state in this general region seems

to be well accepted. The empty surface state, on the other hand,
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has been measnred by several different methodsl62’ 163, 166 with

agreement between the various techniques.. In fact, not only is

the energy placement well established for this state; but its
localizatlon and angular momentum charcter have alsc been investigated.163
Becuase energy loss experiments involving exc1tations from the d-core
levels of As show no evidence of a loss peak correspondlng to the

empty surface state, it is felt that these states are localized

primarily on the Ga atoms163,(the occupied surface’States thenvbeing
asscciated'primafily witths); Further, such exneriments have

yielded appatent selection rule eftects indicating a_primarily.
s—-character for the Ga dangling-bond states.l63. The separatlon

in energy of the Ga and As dangllng bond states by an energy of

the order of‘the bulk band gap has also been ascertalned by
167

-

ellipsometry measurements.
The thectetical picture has lagged, regretably, behind these
experimental advances. While self-consistent calcnlaticns on

81150, 168 exist in good accord with the prominent ekperimental

169, 170

features, thus far only tight binding and "ahrupt—potential"

matching SCheme171 calculations have been performed on this surface.
While the tlght binding.appraoch has provided quite nseful,lSI’ 169’.170
it is deficient in several respects. The method.is,;of'cOurse,

not self—ccnsistent and thus the parameters which characterize the
surface arE“nsually obtalnedlfrom bulk calculations yia simplified
assumptions which may not accurately‘reflect the actual situation

: , ,
at the surface. Also since the tight binding method parameterizes

the surface problem by interaction parameters, wave functions are
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not obtained. With regard to the abrupt potential model, while such
a potentia;'is'quite unphysical, useful qualitafive»trends can be
obtained with this appraoch. |

| in—any event, while such calcuiatione have yielded dangling
bond sgrface states in approximate agreement with experiment, they
do not agfee among themselves with respect to tﬂe'dispersion at
the surface bands, or a precise placement for these bends.

The calculation was performed in a manner similar to the silicomn
surface. Our elab thickness was chosen to be eleven_iayers; the
separation between neighboring slabs was taken to be eight layers.

The empirical and ionic potentials for GaAs are given in Table
LII. Our final potential was self-consistent to within 0.01 Ry.

In order to assume accurately converged wavefunctions to determine
the screening potential, the basis éet consisted of epproximately
450 planes waves. Symmetrized waves were used to decompose the
secular equation into two matrices approximately 225 é 225. An
additional 500 waves were.treated in an approximate fashion by a
second order perturbation technique.3 Becuase ef the semiconducting
nature of this surface we need only consider a few representative
~points to obtain a sufficiently accurate charge density. Twenty

. points in the two dimensional Brillouin zone were used for this
purpose. |

In Fig. 81 the total valence charge density for the (110)
surface is displayed for the Fwo types of surface atoms. We

note in both figures, as was true for the case of s1,1°0> 168
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the presence of a channel with essentially zero charge extending
from vacuum‘to bulk. It has been snggested150 that impuritiee
or interstitials could nigrate along such>a channei.”‘Wirh respect
to the bonding charge we‘note'the surface pertnrbation is essentially
healed to its bulk configuration by ‘the third layer._ An interesting,
but not surprlsing, result is the localization of ‘the dangling
bond charge on the As rather than Ga atom. - The stronger As
potential is ‘dominant in determining the bond shape and positlon,
therefore, the removal of the Ga atom by the creation of a surface
has relatively little effect on the bonding charge.he

Although the charge is localized relatively more on the As as
a whole, the surface appears not o be more ionic than the bulk
By examining_phe bonding charge'as a function of distance from
_delocalization.or weakening of the bond;'however,'the‘relative
ratio of charée localized on the As with respect ;c“ca remains
roughly the same. |

In Fig. 82 the charge densities are displayedvfor the dangling
bond surface states. The occupied surface state is 1ocalized on
the As with the empty state localizedbon the Ga in agreement With:_A
experiment.163 The As state is located in energy beiOW the valence
band maximum for'thenmst part, but at the zone cenrer it becomes
quasi—degenerate with the valence band maximum. fhié type of energy
dispersion iebin agreement.wibh-the tight binding calculation of
Ref. 170, bnt'not that of Ref; 169 where‘the surface band minimum
was found to:occur at the zone center. That this band does not

extend into the optical gap is of some interest, because while
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the precise position of this state has been questioned, it appears

161 that it does not contribute significantly

to be well established
to the density of states in -the bulk band gap region.

The charge density of the qccupied state is Qf predomineqtly
p—character as can be observed from the two lobe configqratibn
displayed in Fig. 82. This is to be contrasted Qithvthe Ga
dangling bond states. Here the character is more s-like but retains
some p-character as indicated by the sméll lobe-1like feature
opﬁosite to the charge maximum. In fact, it has-been suggested, as
mentioned previously, thgt'such a trend shoulﬂ be_ébserved.163

In Fig. 83 Qe present the results of a local density of states
(LDOS) calculationi Previously one of the ad&antages of the tight
binding methods felative to the pseudépo;ential methods was the
ease in which LDOS calculations can be pefformed. In the tight
binding casel-70 we may define the local density by | |

NE = T e el > SIE-E (k)
TR T SR
J
where EII is the wavevector parallel to the surféce, n is the band

index, wk n is the wavefunction of the total Hamiltqﬁian and
2
i
¢1§||,J'
Physically this can be interpreted as the probability an electron

is the jth Bloch function orbital centered on an atom i.

will be at the ith site with energy, E. Such a definition can easily

be modified using pseudo wavefunctions to
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v - 1 Jlv o)l ) | (44)
El!,n Q ~°"" " n L
The infegral'extends over the:volumé of interest, Q; Tﬁus NQ(E)
can be interpreted as the probability an electron with energy,
E, is in the region {.
In order:to‘ascertain'the*LDOS,defined by (44) as a function
of distance from vacuum to bulk, we have chosen = to be bound by
planes pafailel to the surface and.péssing through the mid-point
between 1éyers. Thus "Layer 1" of Fig. 83 corresponds to integratiﬁg

all charge within one-half an interlayeér distance on both sides of

‘the surface atoms. Five points in the irreducible zone went into -

the make-up of the histograms. Accbrdingly‘ZZO eigenvalues went

~into the valence band portion of the figure.
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The positions of four prominent surface states.are indicated
by the shaded areas in Fig. 83. These surface feétures have been
Qbserved preViously in tight binding LDOS calculationsl70 with the
energy positions in approximate agreement with our results.
Howevér, there are some weak surface features near -2 eV which are
_observed in our calculation via a charge density analysis, but are
not observed in the tight binding calculation.

The approximate energy positions of the surface features with
respect to the top of the valence band are listed in Table LIII.
These features may be classified by the character.cf their‘charge
density. The deepest lying surface state is localized on the As
and has s-like character. The next surface feature, on the high
energy side of the antisymmetric gap, is localized on‘the Ga and
also has s-character. Near the top of the valence band are three
distinct types of surface states which are p-like and localized mosfly
on the As. These surface features are "back” bopds with charge localized
between the first and second surface layers, "parallel" bonds with
cﬁarge localized along the bonding direction bet&een neighboring
surface atoms, and‘"dangling" bonds localized on the cut bond :
formed ﬁy the creation of the surface (as in Fig. 82). The
"parallel" and "dangling" bond surface states are'nearly degenerate
in energy, although the dangling band feature is must stronger
in the LDOS figure. In the next section on ZnSe illustfations of
the parallel and back bond surface states will be présented. The

states in the gap, as mentioned, are predominantly localized along
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the daﬁgling Bond, and centered on the Ga.

Finaily, with regards to Fig. 82 we note the finite width of the
histogram means both bﬁlk and surface éontributions.can be included
in the same energy inﬁerval. 'Neﬁértheless, the méjor features
are quite clear,.and the decay of the surface featufes can be easily
discéfnedQ 'invno case has the‘surface perturbation not decayed
to less than-alquarter of its value from the first to third layer
in the LDOS ﬁlét. We note by the fifth 1ayer‘thé géneral features

v - , 12

of the LDOS qﬁrve are in good agreement with the known bulk spectrum.

This confifms‘our use of only‘eléven layers in the repeated slab.

‘3. ZnSe (ilOi Surface
Although the ZnSe (110) surface has not been studied experimentally
to the-exten£ CaAs has been, it allows us to describe trends=with‘
- ionicity and to examine the surface states presént in.II-VI compounds.
The detaiiébof the ZnSé sﬁrface calculation are identical to the
GaAs surface calculation with the exception, of course, of the ionic
potentials. The empirical and ion core potentials uééd fér ZnSe
afe listed in Table LIV,
A total charge deﬁisfy for the ZpSe surface is p:esénted in
Fig.‘84. The plaﬁes displayed are as in the GaAs calculation.
The obvious difference from GaAs is the greater charge transfer
pfesent in ZnSé. This is to be expected by a cémparison with the
bulk éharge densities. There are some noticeable differences due
to surface‘propéfties in ZnSe. The surface pérturbation appears

to heal more rapidly in ZnSe than GaAs. The only difference
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between the.Se ions on the surface and deep in the bulk is a slight
decrease qf chargevon the Se surface ions. A siﬁilaf effect is found
for the Zn ions. A éomparison of the charge density for local pseudo-
potential21 qalculations for ZnSe with the cﬁarge away from the
surface is quife satisfactory. Although our convergence critéria is
slightly lessﬁﬁhgn ZnSe bulk calculations, the difference between the
"bulk" charges is typically less than 20%. Such a discrepancy existed -
in the Si'sﬁrféce calculation.

In Fig. 85 a LDOS curve is presented for the ZnSe surface. Away
from the surfgcevlayersythe dehsity of states épﬁeérs quite similarv
to bulk ZnSe calculations. While the lbcal pseudopotential apporach
yields valence band widths too narrow compared to experiment
(see the ZnSe bulk section), we should be able to determine accurate
trends for the ZnSe surface. Figure 85 also shows the much more
rapid decay of éurfaée states in the "antisymmetric" énd fundamental
gaps of ZnSebcompared to the GaAs surface. Similar surface features‘
occur for the ZnSe surfacé as compared with GaAs. - In Tabie LV we
list the surface states for ZnSe and‘their approximate positions
with respect to the bulk valence band maximum: |

The lowest lying surfacé state is localized on Se and is
displayed in Fig. 86. The chérge density is localized completely.
on the Se and is obviously s-like. The state, unlike the correspond-
ing GaAs state, has split awéy form thé bottom valence band (creating
nearly 2 eV gap begween the surface state and valence band)..

Unfortunately, the Zn 3d core states lie in this energy region and,
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therefore,.experimental election of the Se s-like surface state
would be difficult.

' In Fig. 8? the a Zn-Se "mixed" surface state is displayed. It is
lees well defined'theﬁ the Se state and is localized somewhat on
the Zn:ioe. Uﬁlike GeAs, it lies almest 1.5 eV above the second
valence band edge (ﬁell into the bulk valence density‘of state).
Such a trend can be understood by considering the'weakening of the
Zn ﬁotential compared to Ga.‘qut.only has the weakened Zn potential
.led to a higher energy placement for this state,»bue also the Zn
dangliﬁg bend_state.

In Figs. 88,»89 and 90 we display the charge densities for the
"back", "pereliel" and "dangling" bonds localiied:dn Se. In
COnstrast ﬁo GaAs, these statee are Qery strong in the LDOS curve.
Specifically, the Se back bonds are well defined. The parallel
and dangling bonds show more dispersion thenvthe_cerresponding
etates in.GeAé and are more extended into the fundamental gap than
in GaAs. As the potential strengthens it is_to be ekpected that
differences between the parallel and dangling bohd states should
be larger and consequently the splitting between become larger.

Finally in‘Fig. 91 we have displayed the charge density for the
dangling boed surface states localized on the in, The splitting
of Zn and Se dangling bond states has increased coheidefably
compared to GaAe. This is to be expected; with increasing ionicity
the surface states become more disiﬁilar’and the energy gap between

them increases.
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Table I. Parameters used in the calculations.

Si Form Factors (Ryd) =~ AO

VO3 V&8 VOID  (ryd)

Local -0.2241  0.0551 0.0724 -
Energy o :
Dependent ~-0.257  -0.040  0.033  0.55

Non-local

_iBAO/BE a
(%)
— 5.43
0.32 5.43
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Table II. Eigenvalues (in eV) at T, X, L symmetry points for local
and energy dependent non-local pseudopotential calculations
for silicon.

Point Level Local Energy

~ Dependent
Non-local
r r, o -12.53 -12.36
Ty 0.00 0.00
T, 3.43 3,42
Ty 4.17 4.10
ry 8.60 $7.69
rlz.f 7.82 | 8.19
X X -8.27 -7.69
X, -2.99 -2.86
X, 0 1.22 1.17
L L, '-10.17 59;55
L, -7.24 B -6.96
Ly, -1.22 -1.23
L, 2.15 . 2.23
L 4.00 4.34
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Table III. Sum rules from Eq. (37) for gb G and €. o in units
: 1 . s

of_(eV)2 in the limit ¢q-»0 along the f-direction.

a | a, W 2 p(G-GHI o
Gr¢ | &GpE! ffﬂm 6,6 % | 2% ,[—am]ﬂsff?)'e(s*'&?',)
(000) | (000) 415.6 433.5

(111) | (111) 431.6 ' | 433.5

(200) | (200) 430.1 ' 433.5

(220) | (220) 403.2 433.5

(311) | (311) 311.8 433.5

(222) {(222) 278.4 433.5

(000) }(ir) | = -50.9 : ,;' -54.7

00y | (200) 0.0 0.0

000) | (220) 1.5 - 10.3

(000) |{(311). 21.6 | 20.2

(000) | (131) 7.2 6.7
(000) |(222) 15.5 , 15.0




Table IV.

points for Si.

Theoretical and experimental reflectivity structure and their identifications including
location in the Brillouin zone, energy (in eV) and symmetry of the calculated critical

_Refleétivity’Structure Assbcigted Critical_Poiﬁts _ Symmetry ~Critical Point
- Theory Experiment Location in the Brillouin Zone of CP. Energy
Local Non- 5° a). 80°Kb) Local . Non-local Local Non- Local ~ Non-
: local o local local
3.48 3.49 3.40 3.36 L3,—L1 L3,-L | Mo _Mo 3.37 3.46
3.45 - 3.41 PZS;-FIS 'P25'_r15 MO Mo 3.43 3.42
Near _ Near MO MO 3.46 3.42
, , (0.1,0.02,0.02) (0.1,0.05,0.05) -
3.75 3.70 3.66  (3.88)%) Vol. along A Vol. along A — — —
4.26 4.15 4.30 4.38 Vol. near Vol. near - - - -
(.9,.1,.1) (.9,.1,.1)
4.53. 5.47 4.57 4,57 Large region near Large region near M, M, 4.53 4.47
: (.Si.ZS,LZS) and §.62.3,.3) and
Lymly iy M, M, 4,49 4.60
_ | LyLy, | Ly~La, My N 5.22 5.56
"5.32 5.58 5.48 - : ’ ' ' S '
AB-A3,(.4,.4,.4) A3-A3(.45,.45,.45)M1 ~M3 5.25 5.57
a) From Ref. 47.

b)

From Ref. 48.

c) Inferred from Eé(m) data of Ref. 48.

-1¢T-

a0

ﬁ*‘



Table V. Comparison of critical point energies (in eV) for Ge as

calculated by local and energy dependent non-local pseudo-
and as measured by photoemission experiments.

potentials

»

Energy

Level

-10.17

Theory
Localv, Non-local
8.60+ 8.19
7.824 7.69
4.17 4.10

~12.53 ~12.36
-2.99 -2.86
-4.48 447
4.00 4.34
-1.22 -1.23
-7.24 -6.96
-9.55

-6.4 %

8.3 % 0.1

Experiment

a

7.6

4.15+ 0.052

0.6,° <12.5 * 0.6°

Cc

-2.5 * 0.3

0.3P2¢

0.1%
0.2%

W
Yol
i+

1+

0.4, - -6.8 + 0.2

-9.3 + 0.4

a. From Ref..63.
b. From Ref. 6.

c. From Ref. 4.
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Table VI. Cyclotron mass parameters (see text) and conduction band
‘minimum masses compared to the theoretical values from
a local and energy dependent non-local pseudopotential.
The magnitude and position of the indirect gap along
the A direction is also given. '

Ge . Experiment ‘ Theory
~Local = Non-local
P -5.042 -5.11 -5.07
H' -4.532 -4.49 -4.23
G' - - -0.87% 20.88 ~0.89
mO/mcl . 5.25 ‘ 5.15 | 5.31
m./m BT , 1.09° 1.21 1.18
0 ci|
ak , /2w : 0.86€ ~0.85 ~0.85
min v ‘
E o 1.159 1.13 1.05
ind s

a). From J.C. Heﬁsel as listed in Ref. 69.
b) See Ref. 70.
¢c) See Ref. 71.

d) See Ref. 72.
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Table VII. Fourier coefficients of the valence pseudocharge density
(units of. e/Q ) as calculated by local and energy
dependent nonSlocal pseudopotentials for Si.

G(a/2m) ‘ Local ‘ Nén—local

000 o 8.00 .. 8.00
111 B -1.748 -1.924.

220 0.270 0.035
311 | 0.412 0.345
222 0.481 0.467
400 0.206 0.273
331 0.018 0.015
422 ~0.006 -0.033
333 -0.001 -0.032
511 -0.004 -0.022

440 : 0.007 0.002
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Table.VIII.  Parameters used for Ge. A gaussian non-local d-well
was employed.

Form Factors (Ry) A2 | E a
V(/3) . V(¥8) V(v11) (Ry) | @)
221 .019 .056 0.275 . 5.65

Spin-orbit parameter: u = 0.00097
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Table IX. Ge eigenvaiues in eV at F X and L symmetry p01nts
' The symmetry labels are from Ref. 23. y

reY  -12.66 X' -8.65 va' ~10.39
r7v  _0.29 X' 3.0 LGV -7.61
rg’ 0.00 X 116 L' -1.63
r°  0.90 | EEACAEWE
'r6°‘ 3.01 - - Le* 0.76
rg” | 3.22 |  L6f 4.16

L% % 4.25
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‘Table X. Theoretical and experimental reflectivity structure at 5°K for Ge
(from Ref. 90), and their identifications, including the
location in the Brillouin zone, energy and symmetry of the
calculated critical points.

Reflectivity - Associated | Critical
Structure Critical Points . Symmetry Point
(eV) Location in Energy
Theory Experiment Zone (eV)
2.20 2.22 L -Lg" (0.5,0.5,0.5) M 2.19
v v M 2.39
2.40 2.42 L, 5Lg 1
: o vV -ncC
3.3 3.2 Tos' T15 complex M_ 3.25
o (0.0,0.0,0.0)
4.51 4.5 Region near - -
' (0.75,0.25,0.25)
. v . ¢
5.40 v5.§5 A6 —A6 »(0.5,0.,0.)' Ml 5.40
v, ¢
A7 -A6 5.35

' g v ¢ :

5.88 5.88 L4,5 4,5 (0.5,0.5,0. 5) ﬁl . 5.88
v, c
Lg ~Lg My 5.60




-138-

Table XI. Comparison of theoretical and experimental transitions
for Ge. '
Transition Experiment Theory
(eV) (eV)
S 12.6 + 0.3",_ 12.8 + 0.4 12.56
. .
Lz'— r25' 10.6 + 0.4, 10.5 £ 0.4 10.30
b
Ly - Theo 7.7 ¢ 0.2%, 7.4t 0.2 7.52
min : a
21 “Ther 4.5 £ 0.2%, 4.5 + 0.3 4.55
Ly = Tyen 1.4 + 0.2° 1.44
d ,
1 - -
st Fz, 0.98 0.99
e
P25' - F15 3.24 3.25
f .
F25, - Ll 0.87 0.85
951 Xl 1.2 1.25
c
25' - L3 4'3 4.30
a. See Ref. 6.
b. See Ref. 5 and Ref. 12.
c. See Ref. 63.
d. See Ref. 92.
e. See Ref. 84.
f. See Ref. 93.

g. See

Ref. 88.
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Table XII. Comparison of the theoretically determined interband mass,
’ - mys, from (39) and the experimental results of Ref. 84.
Absolute values of the masses are tabulated; the notation
" is from Ref. 84.

Ge Interband Masses

Transition " Mass Component Expt. Value® Theor. Valueb
- (field [110]) (in me) - (mij)
E o g, é1do] 0.0366 * 0.013__ ~0.022
E +A T 0.0269
o o _ - SO
E, , g 0.045 + 0.004 0.050
. ' + . '
E #) Mo | 0.042 £ 0.005
E’ ©u, é[ooL] 0.034 *+ 0.005 . 0.047¢
ES+ A" w,e[1lo] 0.048 £ 0.009
E "+A '+A . u,el[001] 0.062 + 0.006
(o] [o] o
E, o | 0.139  0.015 0.11

a. See Ref. 84.
b. Spin-orbit interactions have not been included. -

.'.' ) : . '_'
c. The Eo interband‘mgss is from P25 F15'
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Table XIII. Parameters used for.GaAs. A gaussian non-local d-well
was employed. '

Local Form Factors (Ry)

v(/3) V(/B) V(/8)  V(AD

v —l214 - . 0.014  0.067
VA 0.055 0.038 - 0.001

Lattice Constant: 5.65A

0.0078

Spin-orbit_parameters: 1]

a.= 1.377

Non-local Well Depths: A, (Ga)

n

2 0.125 Ry

(As)
A2

0.625 Ry
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Table XIV. GaAs eigenvalues in eV at I', X, and L symmetry points.

g’ =12.55 xé" -9.83 Ly’ -10.60
'1'7"' -0.35 X' -6.88 L' -6.83
r8" 0.00 x6" -2.99 , L6V -1.42
S 1.5 X, -2.89 L, 5 -1.20
e 4.5 xS 2.03 LS Laz
r.¢ 4 x5 238 I 5.52
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Table XV. Theoretical and experimental reflectivity structure for
GaAs at 5°K (from Ref. 90), and their identifications,

including the location in the Brillouin zone, energy and
symmetry of the calculated critical points.

Reflectivity ' Associated == , Critical

Structure " Critical points, Symmetry Point
(eV) ' - Location in v Energy

, The Zone : v (eV)

Theory Experiment : ‘

| ' v c. . .
.3.03 3.02 . L4,5-L6 (0.5,0.5,0.5) . Ml 3.03
3.25 3.25 L6 -L6 Ml, 3.2?
4.55 bbb 8"-AS (0.1,0.0,0.0) M 4.54
v, C

4.70 4.64 A5 —AS | . 4.70
5.13 . 5.11 Plateau near - 5.07

(0.75,0.25,0.25)

5.59 5.64 | x7 -X,~ (1.0,0.0,0.0) M - 5.28
x6v—x7°

5.84 : 5.91 ASV;ASC (0.55,0.0,0.0) M 5.76

6.7 6.62 Lgis-Lgis | B % 6.67
Lgis-inS 6.74

a. From Ref. 45.
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Table XVI.  Comparison of theoretical and experimental critical point
energies for GaAs. Energies in eV. -

,Experiment . Theory
Transition Reflectivity Criticald\ Non-local Local®  opw®
Structure  Point EPM. EPM
E r.V-r° 1.522 1.52 - 1.51 1.52 1.34
o 8 6 . 2
E+r . T.9-r.¢ 1.86° . 1.86 1.86 1.87  1.66
o o 7 6 . » .
v c c L v
E, L, 5L 3.02 3.04 3.03 2.82  2.62
v Cc Cs .
EjHA, L -Lg 3.25 3.25 3.25 3.05  2.82
' V_pc __ ; o
E'(T) r8' r - 4.49 4.54 4.80  4.12
E A ' T V-r Y - 4.66 4.71 4.93 °  4.30
o o 8 '8 ‘ _
E'+A+A ' T V-1 ¢ - . 5.01 5.05 5.28  4.62
o o o 7 8 . :
T ) V_ : [ ‘ ‘ [} . . C p : —
E (8 A7-0° 4.44 4.53 4.54 4.38
' v vV, cC c ' _ .
CE A ') 45 A 464 4,71 14.79 455
Y o 5.11€ 5.14 5.07 4.88 -
RAS A - 4.94 4.92 4,40 4.33
x6"-x6c . -  5.01 5.01 4.49  4.52
x7"-x7c 5.64° 5.34 5.28 4.67  4.58
Xg -X,° o 5.42 ©5.38 4.76  4.67
a. From Ref. 97. d. From Ref. 94.
b. From Ref. 98. _e. From Ref. 99.

c. From Ref. 47.
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Table XVII. Transitions in GaAs: experimental and theoretical results.,
(Energies in eV).

Transition Photoemission . o Theory

d
a b Non-local local® OPW
ups” KBS EPM EPM
L3V—F15V 0.8+0.2  1.4%0.3 1.31  0.85 1.06
Z min_ v . N ' _
1 FlS 4.110.2 4.410.2 4.23‘ 3.35 .
v v
X, -T 6.9%0.2 7.1%x0.2 6.88 6.23 - 6.43
1 15 .
x3v-r15V 10.0+0.2 10.7+0.3 ~ 9.87 10.00  10.24
FlV_Flsv 12.9+0.5 13.8x0.4 - 12.10 12.10 12.44
_ , o Non-local
Transition Experiment EPM
C [od
Fl X1 0.38 0.52
v c ' .
A A 1.7 2.16
C (o} ’ .
Ll —Xl 0.09+0.02 0.20
v,C o
PlS --X3 _ 2.3 2.51

a. See Ref. 161.
.b. ‘See Ref. 102.
c. See Ref. 47.
d. Seé Ref. 99.

e. See Ref. 100.
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Table XVIII. Parameters used for ZnSe. A Gaussian non-local d-well
: was employed. :

Local Form Factars (Ry) |

“V(/3) V(%) V(¥8) v(/ilj |

vs -.218 — 0.0287 0.0642
v 0.139 .0621 S 0.0157

t

Lattic Constaﬂ;t 5.65A

0.0061

Spin-orbit Parametérs: V!

o =1.90

Non-local Well_Depths: A2(Zn).=—0.125 Ry

A,(se) = *0.925 Ry
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Table XIX. ZnSe eigenvalues in eV at I', X and L symmetry points.

HF6V'V—1£.25 o X, -10.72°  'L6V ~11.08
rY o-ous x40 LY -5.08
Ty’ 0.00 B A BV Lt -l.04
TS 2.76 x," -1.96 L, -0.76
r 7.3 fx69_"‘4.54 oL 3.9
TS 7.42 X, 5.17 L,°  7.68

| Lys 7.72
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Table XX. Theoretical and experimental reflectivity structure at’
300°K and their identifications, including the location
in the Brillouin zone, energy and symmetry of the calculated
.critical points for ZnSe. The experimental results are
from Ref. 26. :

Reflectivity Associated ‘ , Critical

Structure Transitions ‘~ . Symmetry Point
(eV) . Located in SR Energy
the Zone v (eV)
' v c — . :
4.79 C A5 L, LT (0.5,0.5,0.5) M 4,72
5.06 | 5.05 Lg ~Lg | A 5.00
- 600 - . o —
6.6)2  6.50 Av-A% (0.5,0.0,0.00) M. 6.55
, 5 85 0
6.71 " 6.63 Plateau near | o ‘ — o 6.69
‘ (0.8,0.2,0.2)
7.22 7.15 Asv'Asc (0.6,0.0,0.0) = M 7.08
7.47 7.60 rg -Tg (0.0,0.0,0.0) M, 7.42
. v 4
7.76 .80 1;7Tg o M, 7.87
‘ . . v . Cc (o} .
8.39 g-.as L, 5Ly 5L (0.5,0.5,0.5) Mg 8.46
C
Ay, 570y 5006 -
(0.35,0.35,0.35) Mo 8.48
o v c
8.86 ~ 8.97 Lg L, 5oL (0.5,0.5,0.5) M, 8.74

v [od
Ag -0y, 500

. (0.35,0.35,0.35) M - 8.76

a. See text.
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Table XXI. Comparison of theoretical and experimental features in the

electronic density of states. The energies are measured
in eV and are with respect to the valence band maximum.

Featufe Experiment ' ‘Theory
ZnSe xps? ups®
L3Y 1.3 + 0.3 0.7 + 0.2 1.0
X" 2.1 + 0.3 - 2.2
7, 3.4 1+ 0.2 3.4 1 0.3 3.4
sz. | 5.6 + 0.3 5.3 + 0.3 5.1
xl" | 12.5 + 0.4 -— 10.7
: rl" 15.2 & 0.6 _— 12.3

a. See Ref. 102.

b. See Ref. 101.
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Table XXiI.'_Parameters used for 0-Sn.
'~ were used.

Square-well non-local potentials

Local Form Factors (Ry)

V(/3) V(/8)

~0.190 ~0.008

Lattice Constant: 6.49A
Spin—orbit'paraheter:' u .= 0.00225
Non-local Welll Depthes: BAO/SE = +0.40

A, = 0.70 Ry

V(/11)

+.040
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Table XXIII. 0-Sn eigenvalues at I', X, and L_symmetry points. .
Energies in eV. :

r6°' -11.34 x5v -7.88 - L' -9.44
r,v . -0.80 xSV -2.75 L6V -6.60
v c ) Vo '
r.¥  -0.42 X 0.90 L, -1.68

v—-C . ' v
F81v 0.00 L, 5 -1.20
r6° ©2.08 L6c 0.14
rg®  2.66 | LS 3.48
C
L, 5 3.77
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Table XXIV}' Theoretical and experimental reflectivity structure for
0-Sn and their identifications, including the location

in the Brillouin zone, energy and symmetry of the

: calculated critical points.

Reflectivity Associated Critical
Sthcture Critical Points - Symmetry Point
(eV) Location in : Energy
’ Zone (eV)
Theory : Experiment
(a) (b)
1.3%  1.365 1.365 L '-L (0.5,0.5,0.5) M 1.34
: " v, c
1.83 _ 1.832 1.845 L6 -26' M1 1.83
2.31 - 2.28 Tg'-T¢" (0.0,0.0,0.0) M, 2.08
2.67 2.62  2.63 Tg'-Tg | M, 2.66
'2.95  2.85 @ - [ (0.2,0.0,0.0) M 2.91 -
’ o Voc »
3.40 3.3 . 3.3 r¥-rg M, 3.46
3.78 3.75  3.718  Plateau near - -
(0.75,0.25,0.25)
4.2 4.0 4.12 A6-"-A7° (0.6,0.0,0.0) M, 4.13
- v, c
4.31 4.43 4.43 A7 -A7 M1 4,25
v c
4.91 4.89» | 4.89 L4,5—L6 . Ml 4.68
a. Reflectivity measurement from Ref. 107
109.

‘b. Electroreflectence measurement from Ref. 108 and
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Table XXV. Transitions in 0-Sn: Experimental and theoretical results.
(Energies in eV) '

Transition " Non-local OPW. Experiment
EPM

r ey 0.42 0.14 0.4°
Lg-Fg’v 0.14 0.32 | 0.1¢
Ly 5T 1.20 143 | (.59
i YA 3.32 - (3.5)¢
LY ()-S5 6.60 6.17 (6.5¢
L Ly )-Tg"" 9.44 8.92 (9.0)d
rvre 11.34 10.49 11.5)4

a. See Ref. 109.
b. See Ref. 107.
c. See Ref. 106.

d. See Text
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Table XXVI. Parameters used for InSb. Square-well non-local
potentials were employed in the calculation.

Local Form Factors (Ry)

V(/3) V() V() V(v/11)
v -0.200 - --o,olo' | 0.044
v T 0.044 0.030 —  0.015

’Lattice'ConStant: 6.47A

 Spin-orbit parameters: U 0.00175A

o= 1,206

Non-locél well Depths
AZ(Ry) | aAo/ZE

In 0.55 . 0.45

sb 0.70 0.48
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Table XXVII. InSb eigenvalues in eV at T, X and L symmetry points.

PZ”"-11.71 | Xy -9.20 oLy 9.9
r; -0.82 XZ ~6.43 Ly  -5.92
.rg 0.00 Xg -2.45 Ly -l.44
rg  0.25 ngV ~2.24 LZ;S -0.96
r§ . 3.16 xg 1.71 .LZ 1.03
rg  3.59 X3 183 Lg 4.30

LZ’S 4.53
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XXVIII. ‘Theoretical and experimental reflectivity structure for
: InSb and their identifications, including the location

in the Brillouin zone, energy and symmetry of the

calculated critical points.

Refléctivity

Associated _ Critical
StrdCture Critical Points Symmetry Points
(eV) Location in Energy
- : Zone (eV)
Theory Experiment?®
v c : :
1.99 1.98 -L4’5-L6 (0.5,0.5,0.5) Ml 1.99
. vV .c ;
2.47 2.48 LgLg M, 2.47
3.53 3.39 rg-r; (0.0,0.0,0.0) M, 3.16
' vV nC
3.80 3.78 PB-FB M0 3.59
Vv C
AJ-85  (0.3,0.0,0.0) M, 3.3
v _ M 3.7
. - o
4.18 4,23 Plateu near (0.7,0.2,0.2) —_ 4.05
4.54 4.56 A;-Ag (0.5,0.0,0.0) M, 4.44
4. 74 4.75 Ml 4.69
5.44. 5.33 LZ-Lg' (0.5,0.5,0.5) M 5.26
; v _.c
6.1§ :5.96 L6—L4,5 (0.5,0.5,0.5) | M1 5.97

See Ref. 90.
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Table XXIX. Comparison of theoretical and experimental features in
the electronic density of states. The energies are in
eV and are with respect to the valence band maximum.

Feafufe Experiment | Theory
InSbb - xps? ups?

'Lg 1.4 + 0.3 1.05 + 0.3 .‘ 1.0
X, 2.4 + 0.4 — 2.3
e 3.4 + 0.2 3.65 £ 0.3 3.4
xg 6.4 + 0.2 6.5 + 0.3 6.4
XZ 9.5+ 0.2 9.0 = 0.5 9.2
ry 11.7 £ 0.3 11.2 + 0.5 = 11.7

a. See Ref. 102.

b. See Ref. 101
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Table XXX. Parameters used for CdTe. A square—well correction term
' involving non-local s and d angular momentum components
was employed.

Local Form Factors (Ry)

V(¥3) V(V4) v(v8). V(/11)
v © -0.220 —  0.000 0.062
v 0060 © 0.050 — 0.025

Lattice Constaﬁt: 6.487

Spin-orbit pafémeters: H = 0.00137

a 1.6418

Non-local Well Depths

Az(Ry) aAO/aE
cd 0.00 0.40 .

Te : 2.00 0.40
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Table XXXI. CdTe eigenvalues in eV at I', X and L é&mmetry points.

rz © -11.07 XZ -9.12 'LZ -9.64
ry  -0.89 X,  -5.05 Ly ~4.73
rg' 0.00 xz -1.98 Lz -1.18

C v v
re 1t59 X;  -1.60 Ly 5 ~0.65
r;‘ 5.36 xg 3.48 Lg 2.82

c c T .e
rg 5.61 X5 3.95 Lg  6.18
L 6.35

~0
-
[V, }
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Table XXXII. Theoretical and experimental reflectivity structure for
CdTe and their identifications, including the location
-in the Brillouin zone, energy and symmetry of the
~ calculated critical points. The experiment is from
‘Ref. 118,
Reflectivity Associated Critical
Structure Critical Points Point
- (eV) Location in Energy
L zone (eV)
Theory ‘Experiment
. vV nC e
1.65 1.59 F8— P7 (0.0,0.0,0.0) MO 1.59
' v c . ‘ :
3.49 - 3.46 L4,5-L6 (0.5,0.5,0.5) B Ml 3.47
; . v .C ‘
4.04 - 4.03 L6-L6 Ml 4.00
5.16 5.18 Ag-Ag (0.5,0.0,0.0) M, 5.14
5.50 5.53 Plateau near - 5.45
: (0.75,0.25,0.25)
5.68 5.68 A§-A§ (0.75,0.0,0.0) M, 5.58
VvV ,C A
5.00 5.95 AS-AS 'Ml 5.96
v c .
6.91 ..6.82 L4,5 —L6 (0.5,0.5,0.5) Ml 6.83
- - 7.44
v . .C .
7.79 7.6 L6—L4,5 (0.5,0.5,0.5)» Ml 7.53
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Table XXXIII. Comparison. of theoretical and experimental features in

The electronic density of states. The energies are
measured in eV and are with respect to the valence
band maximum. '

Feature Experiment Theory
CdTe xps? ups®
Lg 0.9 *+ 0.3 0.7 + 0.2 0.9
xg 1.8 £ 0.2 — 1.7
zmln 2.7 £ 0.3 2.8 * 0.2 2.7
L _
xg 5.1 £ 0.2 4.7 0.2 5.2
xI — 8.8 + 0.3 9.1
WV
7 — _— 11.1

b.

See Ref. 102.

See Ref. 101.
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Table XXXIV. . Parameters used for GaP. Non—local.square well correction
terms were employed.

Local Form Factors (Ry)

V(/3) Va) V(8 (/1)

v -0.230 - 0.020 0.057
v 0.100 0.070 -— 0.025

Lattice Constant: 5.45A

Non-local Well Depths

A, (Ry) Ay (Ry) - dAy/eE
Ga - 0.40 T ~0.30.
P 0.45 0.32 - 0.05
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Table XXXV. Eigenvalues in eV for GaP at the symmetry points

r,
X and L.
r; -12.99 X -9.46 L] -10.60
f‘l’s 0.00 X, -7.07 L,  -6.84
ri 2.88 x‘s’ -2.73 _ng ~1.10
ris_ 5.24 X;  2.16 L] 2.79
xg 2.71 L‘; 5.74
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Table XXXVI. Identification of transitions responsible for the
- prominent theoretical and experimental reflectivity
structure in GaP, including location in the Brillouin
- zone, energy and symmetry for calculated critical points.
‘The experimental results are from Ref. 119 for 5°K.

Reflectivity _ Location in - ; v Critical
Structure (eV) Brillouin zone Symmetry Energy (eV)
Theory Experimental
' T | V nC : '
2.95 - 2.89 rlS-Fl (0.0,0.0,0.0) Mo 2.88
- 2.97
: v .c : '
3.89 -._‘3.79 : L3-L1 (0.5,0.5,0.5) : Ml' 3.89
. 7:‘”1’ vV ,C o : '
4.95 » 4.80 , .AS-Al (0.7,0.0,0) _ Ml ‘ 4.91
. v e o .
5.24 ._5.19 | rlS rlS (0.0,970,0,0) . 5.24
5.45 : 5.42 | Plateau near ' ' - 5.41
(0.6,0.2,0.2)
6.8 67" 1V-1(0.5,0.5,0.5) = M 6.84

373 _ 1

a. Spin-drbit splitting (not included in the calculation).

b. From Ref. 100.
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Table XXXVII. Transitions in GaP. Energies are in ev.

Transition ~ Experiment Theory
ves®  xes
I‘v ‘V . . . 1
3- 15 0.8 0.2 1.2 0.3 1.1
5_1‘1’5 - 2.7 0.2 2.7
Z“‘m_r‘l’s 4.1 0.2 4.0 0.3 4.2
3- 15 6.9 0.2 6.9 0.3 7.1
X5 v 9.7 0.3 9.6 0.3 9.5
I‘l 1"‘1’5 11.8 0.5 13.2 0.4 13.0
NS 2.34¢ 2.16
xi—xg 0.3% 0.5
. ris'_rf{z . 10¢ .~ 10.5
F‘l’s-l‘i 2.8% © 2.8
r‘l’s_ris 5.09 5.2

a. See Ref. 101.
b. See Ref. 102.
c. See Ref. 100.

d. See Ref. 63.
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Table XXXVIII. Parameters used for GaSb. Non-local square well

correction terms were used.

Local Form Factors (Ry)

V(/3) V(V4) V(/8)
v - -0.220 — - 0.005
VA |  0.040 0.030 )

Lattice Constant: 6.10A

Spin-orbit Parameters: u = 0.00113

2.217

o

Non-local Well Depths
Az(Ry) BAO/BE
Ga - 0.20 0.20

sb 0.60 0.30

V(/11)
0.045

0.000
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Table XXXIX. Eigenvalues for.GaSb in eV at the symmetry points r,

X and L

ry -12.00 X; -9.33 Ly -10.17
r; -0.76 xZ -6.76 “'LZ\ -6.25
rg- 0.00 xz -2.61 ‘LZ -1.45

C v .V
rg  0.86 Xy -2.37 Ly 5 -1.00

C C . C
IS 3.44 X 1.72 Le 1.22
Pg 3.77 x; 1.79 Lg 4.43
1S 4.59

e
-
w
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Table XL. Identification of transitions responsible for the
prominent theoretical and experimental reflectivity
structure in Ga Sb, including local in the Brillouin
zone, energy and symmetry of calculated critical points.
The experimental results are from Ref. 90.

Reflectivity Lacation in the v. Critical
Structure ' Brillouin zone : Symmetry vPoints
(eV). ' Energy (eV)
Theory Experiment
. ‘ v c , : ' '
2,22 2.15 L4,5 L6 (0.5,0.5,0.5) M1 2.22
: u v_.c R
2.86 _ .2.60 | L6 L6 | | i Ml | 2.67
v V. nC ' |
| 3.3 | 3:35 F8—P7 (0.0,Q.0,0.0) 3 Mo _ 3.44
Ca V nC R
3.76 - 3.69 F8-F8 (0.0,0.0,0.0) L Mo | 3.77
4.37 - 4.35 Plateau near o -
: (0.7,0.2,0.2)
4.84 475 AJ-AY (0.6,0.0,0.0) oM 484
g v_,C ' g : :
. - _ - .12
5.13 ._5‘07 AS AS o M1 5
. ‘ v c '
5.65 5f65 LA,S-,L6 (0.5,9,5,0.5) o Ml 5.43 .
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Table XLI. Theoretical and experimental valence and conduction band
" features. Energies are in eV and measured from the
valence band maximum.

Feature Experiment ' Theory

GaSb
L‘3’ 1.3 + 0.2% 1.2
: x‘s’ 2.7 + 0.2 2.5
Zi’m 3.8 + 0.2% 3.6
x‘;- 6.9+ 0 3‘a 6.8
x‘l’ 9.4 * 0.2° 9.3
r‘l’ ' 11.6 + 0.32 12.0
s 3. a6
xi ' ~1.jb 1.7

a. See Ref. 102.

b. See Ref. 63._
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Table XLII. Parameters used for InP. Non-local square well correction

- terms were employed.

Local Form Factors (Ry)

V(3 V(V4) _ V(V8)

v . -0.235 — 0.000
VA . 0.080 0.060 -

Lattice Constant: 5.86A

Spin~orbit parameter: u = 0.002
o = 0.160
Non-local Well Depths
9A
. )
Ao Ry) T
In | - 1 0.25

P 0.30 0.05

V(V11)
0.053

0.030

A, (Ry)

0.55

0.35
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Table XLIII. Calculated eigenvalues for InP for the symmetry point
I's X and L. Energies in eV.

o)W« ))

-11.42

_PZ Xy -8.91 L0 -9.67
r; -0.21 Xg 6.0l Ly -5.84
ry 0.0 X! -2.09 LY -1.09
re ' 1.50 Xy -2.06 | ;2,5_0;94
rg 4-64 Xe 2,44 Ly 2.19
g 4.92 X7 2.97 Lg 558

LZ,S 5.70




DOvDEa306i s
| R -171- |
; Table XLIV. Identification of transitions responsible for the
§ prominent theoretical and experimental reflectiveity -
| structure in InP, including location in the Brillouin
: - " zone, energy and symmetry of calculated critical points.
‘The experimental results are from Ref. 119 (except as
noted).
Reflectivity Location in the . Symmetry Critical
Structure (eV) Brillouin zone Point
' Energy (eV)
Theory Experiment
1.50 1.42 8 6 - (0.0,0.0,0.0) MO 1.50
i LY
3.13. 3.24 4,5_L6 (0 -5,0.5,0. 5) Ml. 3.13
' v e v
3.28 3.38 L6 6 3.28
; 4.76 4.78 - T3-S (0.0,0.0,0.0.) My 4.64
|
f v .
; AS-A5 (0.2,0.0,0.0) M1 4.80
L . 5.05 5.10 Plateau near - -5.00
i '(0.75,0.25,0.25) : '
| | |
| 5.44 5.25% T3-Tg (0.0,0.0,0.0) M 5.13
| | |
| : T e v ,C , . -
g 5.73 ..5.77 AS-AS (0.7,0.0,0.0) MI 5.62
' . .oa N
6.55 §.57 4 5= 6 (0.5,0.5, 0 5) _M1 6.52

| ’ a.

From Ref. 111.
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Table XLV. Theoretical and experimental valence band features.
Energies are in eV and measured from the valence band

maximum.
Feature Experiment Theory
" InP xps?
Ly 1.0 + 0.3 1.0
x;’ 2.0 + 0.2 ' 2.1
}min 3.2 + 0.2 3.3
1
x‘3’ 5.9 1+ 0.2 : 6.0
X 8.9 + 0.3 8.9
v
ry 11.0 + 0.4 C11.4

a. See Ref. 102.
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Table XLVI. Parameters used for InAs. Non-local square well corretion
terms were employed. '

Local From Factors (Ry)

V(¥3) V(/4) v(v/8) V(V11)
v -2 - 0.000 0.045
v . 0.055 0.045 - : 0.010

© Lattice Cthtant: 6.058

0.00117

- Spin-orbit patametersﬁ u

o= 0.795

Non-local Well Depths
AZ(Ry) aAO/aE
In 0.50 0.35

As 1.00 0.25
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Table XLVII. Calculated eigenvalues for InAs for the symmetry points
I's X and L. Energies in eV.

r‘6’_"' ~12.69 XZ -10.20 Ly -10.92
ry  -0.43 Xg  -6.64 Ly -6.23
rg 0.00 Xg  2.47 M -1.26
fg 0.37 X;  -2.37 | LZ’S -1.00
r‘; . 4.39 xg 2.28 bLg 1.53
rg ~ 4.63 X 2.66 Lg  5.42
L 5.55

o
“
un
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prominent theoretical and experimental reflectivity
structure in InAs, including location in the Brillouin
zone, energy and symmetry of calculated critical points.
The experimental results are from Ref. 90 (except as

noted).
Refléétivity Location in the Symmetry Critical
Structure Brillouin Zone Point
(er Energy (eV)
Theory vExperiment
v » v _.c .
2.54 N 2.61 L4,5 L6 (0.5,0.5,0.5)w. Ml 2.53
' v ._c
2,81 2.88 L6---L6 Ml 2.79
D v e : '
. ‘ - 0.0,0.0,0.0) .
4.3 C4.39 F8 F7 | ( ) » M0 4.39
' S vV .C
.4.52 ‘4.58 F8-P8 M0 4.63
. 4,85 4,74 Plateau near -
(0.75,0.25,0,25)
5.36 5.31 Ag-Bg (0.7,0.0,0.0) M 5.24
5.45 >‘5.5 AS AS M1 5.34
_ v _.c '
6.49 6.5 L4,5 L6 (0.5,0.5,0.5) Ml 6.42
a vV .C
6.92 6.8 L6_L4,5 (0.5,0.5,0.5) M1 6.81

a, See Ref. 123.
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Table XLIX. Theoretical and experimental valence band features.
: Energies are in eV and measured from the valence band

maximum. : _ o

Feature Experiment - Theory
InAs ' xps®

L‘3’ 0.9 + 0.3 1.1
X, 2.4 0.3 2.4
Z'i‘i“_ 3.3 0.2 | 3.4
Xy 6.3 * 0.2 | 6.2
x‘l’ 9.8 + 0.3 10.2
1"‘1’ 12.3 * 0.4 127

a. See Ref. 102.
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Table L. The ionic and empirical parameters, a;, for the Si potential.
The potentials are normalized to an atomic volume of 169
(a.u.)” and the units are Ry if q is entered in a.u. The
forms of the potential are given by (40) for the empirical

‘and (41) for the ionic.

Vem Vion
a; 0.279 20.992
a, 2.214 0.791
as '0.863 -0.352
a, 1.535 -0.018
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Table LI, Calculated energies of surface states and strong surface
resonances of the relaxed Si (111) surface at T (center),
K (corner) and M (edge midpoint) of the two-dimensional
Brillouin zone. Also indicated are experimental (UPS)
results are (2 x 1) and (7 x 7) reconstructed surfaces.

The energy zero is taken at the bulk valence band edge

E v

.v'
v e f .
SCLC AH PP : experiment
(1 x 1) relaxed surface ‘ (2 x 1) (7 x7)
T 1.2 Ty 0.88  1.04
-1.5(20) 1, L9520  -L71@n . ~-1.o®  -1.5°
-12.7 r, -l2.87 -12.9 . -11.72 -12.32
‘ -0.5%
b a
K 0.5 Ky _ 0.11 - =0.43 0.1
:  -0.6
-2.0 Ky :
-4.2 Ky, -5.65
-8.5 . K, -8.35 o -7.52
~9.8 Kb . -9.6
M 0.5 - My 0.04 0.17
_2-6 MQ;b'
-3.1 M -3.55 -3.78 ‘ -3.62
-8.1
-8.7 RE
-10.7 ML
a. See Ref. 146. d. See Ref. 149.
b. See Ref.'142. e. See Ref. 150.

c. See Ref. 143 f. See Ref. 151.




Table “LII.

" are as in Table L.
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fThe ionic and empirical parameters for the Ga and As
potentials.

The potgntials are normalized to an atomic
volume of 152 (a.u.)”. The form and units of the potentials
The Ga ion potenital is valid only for
q<3 (a.u.).

Ga As
Vo Vien  Vemp Vion
1.22 -.34 0.35 -0.71
2.45 1.33 2.62 1,07
0,54 0.45 0.93 | 0.17
0.0071 1.57 -0.015

-2.71
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Table LIII. Surface features for the GaAs (110) surface and their
approximate position with respect to the top of the valence

band.
| Feature . Energy (eV)
As s-like -9.0-
Ga s-like -5.8
As back bond . -2.0
 As parallel bond —0.5.
As dangling bond ' -0.25

Ga dangling bond +1.0
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Table LIV. The ionic and empirical parameters for the Zn and Se
. potentials. Units and normalization as in Table LII.

Zn | ' Se
ep . Vion Vew  Vien
alf - ‘6.70 - .31 0.23 a3
a, 1.50 134 3.39 - 0.53
a3_. 0.67 0.082 0.73 - .57
" a

-4.71 - .0086  2.20 . 0.32
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Table LV. Surface features for the ZnSe (110) surface and their
approximate position with respect to the top of the bulk
valence band.

Feature , ‘ Energy (eV)
Se s~1like -10.0 |
Zn-Se mixed - 2.5
Se back bond - 0.5
Se  parallel bond +0.25
Se dangling bond + 0.5

Zn dangling bond + 5.25
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FIGURE CAPTIONS
Behavior of the Heine-Abarenkov well depth, AQ(E)’ as deter-
minedvﬁy Animalu (Technical Report No. 4, Solid State Theory
Gredp,'Cavendish Laboratory, Cambridge, Englehd).
Band structure for Si as determined from a local pseudo—
potent1a1 calculation (dotted 11ne) and an energy dependent
non—local pseudopotential calculation (solid line).
Calculeted ez(m) for Si, with (dashed curve) and without
(dorte& curve) local-field effects, compared:With experiment
(Seiid curve) from Ref. 45.
Calcelated el(w) for Si compared to the experimenral re9u1ts of
Ref. 45.
Calculated reflectivityifor Si compared to the experimental
results of Ref. 45, |
Experimental and theoretical reflect1v1ty derivatlve spectrum
for Sl;- The experlmental results (a) are from Ref. 47. The
Dotted theeretical curve (b) was calculated from a local
pseudqpotential and the solid curve fromsan ehergy dependent
noeelecal potential.
Experimentally (a) and theoretically (b).determined electronic

density of states for Si. The experimental results are

from Ref. 4. The dotted theoretical curve is from a local

pseudopotential calculation; the solid curve is from an

energy dependent non-local pseudopotential calculation.



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12.

13.

14.

~184-

The valence charge density as determined‘berang and Coppens
(Ref. 72) using the X-ray results of Ref. 74, The contours
are in units of e/QC. |

The valence pseudocharge‘density for Si as caiculated by a
loéal pseudopotential (a) and by an energy dependent non-
1oc§1 pseudopotential (b). The contours are in units of e/Qc.
The;pséudocharge density band by band for Si aé calculated by
a local pseudopotential. The contours are in units of e/Qc.
The pesudocharge density band by band for Si’calculéted by

an energy dependent non-local pseudopotential. The contours
are in units of e/QC.

The temperature dependence of the Fb structure factor for

222
silicon. The experimental data points are from Roberto,
Batterman and Kéafing.77 The solid line shpws the temperature
dependence as calculated by a non-local ﬁseudopotential and
the dotted line indicates the temperature dependence of the
DebyefWailer factor for the ion core.

Bana structure for Ge.

Calculated reflectivity spectrum for Ge compared to the
experimental results of Ref. 45.

Modulated reflectivity spectrum for Ge. The experimental
curve is from Ref. 90.

Enefgy contours for the 4-5 transitions for';he region of

the Brillouin zone which contributes to the E2 peak. The

part of the I'-X-U-L plane displayed is indicated by the shadedv
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region. The contours are drawﬁ iﬁ 0.0l_éV steps. (Contours
below 4.30 eV and above 4.43 ev are not'included.)
Experimentally are théorétically determined electronic density
of étates for Ge. The experimental resulté are from Ref. 6.
Célgulated valence chérge density for Ge. The cbntours

are in units of e/Qc.

The temperature dependence of the structure factor

222
germanium. The experimental data points Are from Roberto,
Battérman énd Keating.77. The solid linevshows thé temﬁerature
behéGior as calculated by a non-local pgéuaopotential, and

ghé dotted line indicates the.temperathe depéndehce of ﬁhe
DeBye—Waller factor for the ion.core} |

Band structure for GaAs.

Caiculated imaginary (a) and real (b) parts of the dielectric
function and the reflectivity (c) for GaAsICOmpared to the
experimental results of Ref, 45. |

Compérison of theoretical (solid line) andvexperimental
(dashed line) modulated refléctivity for GaAs. The
e#pefimental results are from Ref. 90. Fof'A, B, C, see
text;.
>Cal§ﬁiated band stfucture for GaAs near-f showing the

critical point location for the Eo' structure. Also indicatgd
(d#shed iine) is an M0 critical point resulting from the

pseudocrossing of the A5 conduction bands.
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Experimentally and theorétically determined density of states
for GaAs. The experimental results are from Ref. 102.
Calcﬁlated valence charge density for GaAs band by band.

The contours are in units of.e/Rc,

Caiculated valence charge Hensity for-GaAé summed over the
valence bands. The contours are in units Of-e/Qc.
Calcﬁlated band structure for ZnSe. |

Measured reflectivity spectra from Ref. 26 (dashed line)

and Ref. 105 (dotted line) compared to the calculéted
reflectivity spectrum for ZnSe. |

X~-ray photoemission spectra for ZnSe from Ref. 102 (dotted line)
and ultraviolet photoemiésion spectra from gef. 101

(dashed line) in arbitrary units compared to the calculated

- density of states (solid line). There appears to be a uniform

shift between XPS and UPS data of approximately 0.5 eV.

The. UPS results appear to »be iﬁ better agreement with the
calgulated results. The Zﬁ 3d core states, which occur\

at approximately 9 éV below the top of the valence band,

have been subtracted out of the experimental spectra.

fhe valénce charge density for ZnSe. The contours are in
units of e/Qc.

Band structure of grey tin.

Calculated reflectivity for 0-Sn compared to the experimental

results.of Ref, 108.
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Caléglated electronicvdensity of states f§r d—Sn.

Charge density for grey tin. " Contours aré,in units of e/Qc.
Band structure of InSb. |

Caléulated reflectivity for InSb compared fo the experimental
results of Ref. 45 (dashed line) and Ref. 111 (dotted line).
Calpuiated modulated reflectivity for IﬁSb_cbmpared to the
expérimenfal results of Ref. 90. | |

Calcﬁlated electronic density of states_for InSb compared to the
exbérimental results of Ref. 102.

Chéfge'densiti of InSb. Contours are invuni;s of e/Qc.

Baﬁd étructure of CdTe.

Calculated reflectivity spectrum for CdTe compared to the

experimental results of Ref. 118.

Calculéted electronic density of states for CdTe compared to the
experimental results of Ref. 101. The contribution from

the Cd 46 core states has been removed ffom::he experimental
daté.

Chérég dénsity for CdTe. The contours aﬁe in units of e/Qc.
Band structure of Gaf.

Caléulated reflectivity spectrum for GaP compared to the

experiment results of Ref. 45.

Calculated modulated reflectivity spectrum for GaP compared
to théxexperimental results of Ref. 119.
Calculated electronic density of states for GaP compared to

the experimental results of Ref. 102,
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Calculated valence charge density for GeP. The contours are
in units of e/Qc.

Band structure of GaSb.

Calculated reflectivity spectrum for_GaSb.compared to the
experimental results of Ref. 111 (dashed line) and of Ref.
120”(detted line). |

Caleuiated modulated reflectivity spectfum'for GaSb compared
to the experimental results of Ref. 90.

Calculated electronic density of states for GaSb compared

to the experimental results of Ref. 102.

Celeulated valence charge density for GaSb. The contours are
in units of e/Qc. |

Band.structure of InP.

Caleulated reflectivity spectrum for InP compared to the’
experimental results of Ref. 119 (dotted line) and Ref.

122 (dashed line).

Celcqlated modulated reflectivity spectrum for InP compared
to the experimental results of Ref. 119.

Calculated electronic density of states for InP compared

to the experimental results of Ref. 102.

Calculeted valence charge density for Inf. The contours are
in units of e/Qc.

Bandvstructure of InAs.

Celculated reflectivity spectrum for InAs compared to the

experimental results of Ref. 123.

Calculated modulated reflectivity for InAs compared to the

experimental results of Ref. 90.
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Fig. 60. Célculated electronic density of states for InAs compared
| to the experimental results of Ref. 102, . |

Fig. 61, Calculated.valencé charge density for InAs. The contours
are in units of e/QC}

Fig. 62. M§le¢ular potentials plotted along a 1ine'c6nnecting the

| two Si atoms. Also indicated are thg molécﬁlar.orbital
enefgies.

Fig. 63. .Chafge dénéity contours for the four occupied molecular
orbitais. The valueé are given in 2e/QC_§here QC = 400A3

is uﬁit cell volume.

9 molecule in the ground state.

Fig. 64. Totél charge density of the Si

Fig. 65. The top figure indicétes the self-consistent potential
aVetagéd parallel'to the surface and plétfed‘as a function
‘of. distance into the bulk. The middle figufé shows a
similarly averaged total charge density (normalized to one.
electron per unit cell, § cell = 300A3).‘ Thé bottom |
figufe shows the total charge density in the (110) plane,
with the same normalization; the contour spacing is in
unifs 0.15. Only the minima of the charge density are
labelled. The ionic positions are indicated by the black
dots.‘

Fig. 66. The fof figure shows the averaged charge as ip Fig., 65
'fqr the surface state at K. The bottom figure shows the

charge densiﬁy for this state in the (110) plane. The

contqﬁrs are spaced by units of 0.75.



Fig. 67.

Fig. 68.

Fig. 69.

Fig. 70.

Fig. 71.
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Perspective view of the Si crystal structure projeéted on

a (110) plane. The flll] direction is vertical. lThe (111)
sufface is obtained by cutting the vertical boﬁds in

a Horizontal plane.

Total valence charge distribution for an unrelaxed si (111)
surface. The charge is plotted as contoﬁrs in a (110)
plane intersécting the (111) surface a right_angles. The
bldtting area starts in the vacuum and extends about 4 1/2
atomic layers into the crystal. The atomic positions and
bond directions are indicated by dots and ﬁeavy lines
respectively. The contours are normaiized to electrons

per Si bulk unit cell volume 2y = 3—2—3— :

Contour plots of the empirical starting potential Von

(top) and the final seif—consistent potential VSC (bottom).
The plotting areas aré identical to Fig. 68. The potential
values are given in rydbergs normalized to zero in the vacuum.
a. Empirical (Vemp) and self-consistent (VSC) potentials
averaged parallel to the (111) surface plottéd as a
function of the coordinate z perpendicular to the surface.
b. individual potential contributions adding up to.the

self-consistent potential V c of Fig. 70a.

S
Two-dimensional band structure of a twelve layer Si (111)
film (relaxed surface model). The energy is plotted as

a function of Ell in the two-dimensional hexagonal

Brillouin zone. The various surface states or strong surface

resonances at high symmetry points are indicated by dots
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andilébelled according to the description in the text.

Fig. 72. Dénsify of states curves for the self-consistent results
on twelve layer films for the felaxed (broken line) and
unrelaxed (solid 1ing) surface geometrf. Surface states
afé'ihdicated by arrows andvlabelled accb:ding to Fig. 71.
Iﬁééréed is the density of states in tﬁe viciﬁity of the
fﬁnéémental gap for a six layer k2 x 1) reéonstructed

‘ sﬁtféce model. -

Fig. 73. Chéfge density contour plots for two surface states.at
Tﬁe gtaﬂes (Flb) at ;12.7 eY form the Béttom of the valence
bands (top figure), the transverse back bonds Ftb
(bottom figure) are located -1.5 eV below the valéﬁcé
band maximum. The indicated charge values are only for
cbﬁparison."

Fig. 74. Charge density contour plots for two surface states at K.

The longitudinal p-like back bond orbitals Kﬂb' (top

figure) are located at -2 eV while the s-like charge Ko

iocalized on the outermost, third, etc. atomic layers
(ﬁottom figure) has an energy of -8.5 eV.. |

Fig. 75. Charge density contour plot of the dangling bond state v
Ka at 0.5 eV around the pointg'M-énd'K in the Brillouin
zone.

fig. 76. Schematic representation of the ideal aﬁd (2 x1)

| . reconstructed Si (111) surface. The reconstruction is

done according to Haneman's model157 and leaves the surface

buékied as indicated by arrows. The slight lateral shifts



Fig. 77.

Fig. 78,

Fig. 79.

Fig. 80.

Fig. 81.

Fig. 82.
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of second layer atoms are also indicated by arrows.
Two-dimensional band structure around the fﬁndamental gap
for a (2 x 1) reconstructed Si (11i) twelve layer film.
The folded back Brillouin éone is indicated in the insert.
Calculated joint density of states curve for low

eﬁergy transitions between dangling bond bands of (2 x 1)

Si (111) (top). Also indicated is the experimental

_ absbrption ez(w) as obtained in Réf. 144. The bottom

figure shows the regular density of states for the two
dang;ing bond bands (din and dout) of (2'x 1) si (111).
Charge density contour plots for the dangling bond states
dout(top) and din (bottom) of (2 x 1) Si (111). The
éharge is plotted in a (210) ﬁlane of (2 k 1) Si which
corresponds to the (110) plane of (1 x 1) Si. The raised
and lowered atoms are marked by arrows.

The unit "surféce" cell for Zincblende (110) surfaces.
The surface is defined by the plane ABCD; Dangling

bond from ions A, E and D are shown schematically.

Total valence charge density plotted in tﬁev(IIO) plane
terminafed on the (a) Ga atom and (b) As atom. The
charge density has been normalized to oﬁe electron per
unit cell volume, chll = 81283, The contour spacing

is in units of 0.35,

Charge density of the (a) Ga dangling bond and (b) As

* dangling bond surface states in the same place and

normalization as in Fig. 81. The'contourvspacing is in
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unité:of 2.0.

Local density of states in arbifrary units as defined by
Eq. (44). The total density of states was obtained by
sqmming over all layers.

Totéi valence charge denéitj plotted in thé (110) plane
termiﬁated on the a) Zn atom and b) se atom;. The chafge
denSity has ﬁeen normalized to one electron per unit cell,
chil = 812A3. The contour spacing is in units of 0.5.
Loéal'density of states for ZnSe (110) surface (as‘in
Fig;_83). o
Chargegdensity for the deepest lying surfacé state'for

the (110) ZnSe surface. The normalizatién’is;as in Fig.
84u§ith the contour spacing in units of_S.O; The (110)
pl;ne is diéplayed terminating in the Se. :

Charge density for next lowest lying ZnSe (110) surface
stateé (see Fig. 85). The normalization is as in Fig. 84
with_tﬁe contour spacing in units of 2.0. ‘Thé (110) plane
is’diéplayed terminating on the Zn. |
Baék‘bonding surfacé states for the ZnSe (1i0) plane is
diéplayed terminating on the Se. Normalizétion and contour
spacing as iﬁ Fig. 87;

Parallél bonding surface states for the ZnSe (110) surface.
The plane displayed contains atoms A and E in Fig. 80 and
isﬁperpendicular to the (110) surface. The contour

spacing is in units of 3.0.



Fig. 90.

Fig. 91.

Dangling bond

(110) surface.

spacing is as

Dangling bond

(110) surface.

is- as in Fig.
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surface states localized on Se for the ZnSe
The plane, normalization and céntour

in Fig, 88.

surface state localized on Zn for the ZnSe

The plane, normalization and contour spacing

87.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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