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ARTICLE

Cell of origin and mutation pattern define three
clinically distinct classes of sebaceous carcinoma
Jeffrey P. North 1,2, Justin Golovato3, Charles J. Vaske 3, J. Zachary Sanborn3, Andrew Nguyen3, Wei Wu4,

Benjamin Goode2, Meredith Stevers2, Kevin McMullen1, Bethany E. Perez White 4, Eric A. Collisson5,

Michele Bloomer2,6, David A. Solomon 2, Stephen C. Benz3 & Raymond J. Cho 1

Sebaceous carcinomas (SeC) are cutaneous malignancies that, in rare cases, metastasize and

prove fatal. Here we report whole-exome sequencing on 32 SeC, revealing distinct mutational

classes that explain both cancer ontogeny and clinical course. A UV-damage signature

predominates in 10/32 samples, while nine show microsatellite instability (MSI) profiles. UV-

damage SeC exhibited poorly differentiated, infiltrative histopathology compared to MSI

signature SeC (p= 0.003), features previously associated with dissemination. Moreover,

UV-damage SeC transcriptomes and anatomic distribution closely resemble those of cuta-

neous squamous cell carcinomas (SCC), implicating sun-exposed keratinocytes as a cell of

origin. Like SCC, this UV-damage subclass harbors a high somatic mutation burden with >50

mutations per Mb, predicting immunotherapeutic response. In contrast, ocular SeC acquires

far fewer mutations without a dominant signature, but show frequent truncations in the

ZNF750 epidermal differentiation regulator. Our data exemplify how different mutational

processes convergently drive histopathologically related but clinically distinct cancers.
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Sebaceous carcinoma (SeC) accounts for 0.7% of skin cancers
and carries a cancer-specific mortality rate of 3–6.7%1, 2.
SeC are believed to arise from sebaceous glands, ostensibly

explaining their occurrence in sebocyte-dense sites such as the
eyelids and head and neck regions3. Poorly differentiated ocular
SeC has been reported to metastasize more frequently, often with
fatal outcomes4. In all locations, SeC is considered a potential
cutaneous marker for Muir–Torre disease, a cancer syndrome
associated with germline mutations in mismatch-repair pathway
components MLH1, MSH2, MSH6, and PMS25–7. Muir–Torre is
a variant of hereditary non-polyposis colon cancer, also known as
Lynch syndrome, and causes patients to develop endometrial,
ovarian, gastric, biliary, and genitourinary tract cancers, as well as
benign and malignant sebaceous neoplasms and keratoacantho-
mas. Tumors defective in this pathway show errors in replicating
microsatellite repeat sequences, generating a mutagenesis pattern
known as microsatellite instability (MSI).

Recently, Tetzlaff et al.8 applied targeted sequencing in ocular
SeC, reporting that 52% (14 of 27) harbored somatic mutations in
PI3K signaling components. TP53 and RB1 mutations were
detected in ocular SeC, while four extra-ocular SeC showed
additional mutations affecting DNA repair and chromatin
remodeling pathways. Three extra-ocular SeC demonstrated a
high level of MSI with somatic mutations in the mismatch-repair
genes MLH1 and MSH2, suggesting that mutations outside the
germline may drive mutation and tumorigenesis in these tumors.
However, because of the targeted nature of the sequencing in this
study, the broader patterns of mutation in SeC remain unknown.

In this study, we report that SeC fall into three distinct subtypes
based on mutational genetics, and are heavily influenced by ana-
tomic site of origin. Two mutually exclusive classes are dominated
by either mismatch-repair-derived insertions and deletions or
ultraviolet (UV) signature single-nucleotide mutations. In contrast,
ocular SeC harbor fewer mutations but acquire recurrent truncating
mutations in the ZNF750 transcription factor.

Results
Whole-exome sequencing of 32 SeC. In order to study the genetic
alterations that characterize SeC, we performed whole-exome
sequencing and selected transcriptome analysis on a cohort of 32
SeC. To identify possible associations between mutation profile and
anatomic site, 23 SeC were sequenced from the head and neck (nine
of which were ocular) and 9 were analyzed from the trunk. Sup-
plementary Data 1 details all samples used for this study. Sequencing
was performed after targeted library capture of 62.52 Mb of coding
nucleotides. The average reads for tumor and normal samples were
2,230,611,589 and 117,499,836, respectively, generating an average
coverage of ×84 and ×46 across 99% of captured sequence. The
number of somatic single-nucleotide variants (SSNVs) identified in
SeC exomes ranged unexpectedly widely, from 73 to 36,659 (Fig. 1a),
reflecting mutation prevalences from 1.2 to 536 mutations per Mb
(Supplementary Data 2). We found that SeC showed low incidence
of CNVs; only 12/32 harbored more than five events. The most
common aberration, single-copy loss of chromosome 17p, where
TP53 is located, occurred in nine tumors. No biallelic deletions or
focal high-level amplifications were identified. Supplementary
Data 3 lists all copy-number aberrations >2.5 megabases in size.

Mutational classification of sebaceous carcinoma. Thirteen SeC,
including all nine ocular SeC, demonstrated a low mutation
prevalence between 1.2 and 5.2 per Mb, distinguishing them
sharply from the high mutation burden in other tumors (samples
1–13, Fig. 1a). Of the remaining 19 tumors, 9 (28% overall)
exhibited a somatic mutation pattern composed of at least 30%
indels, while the other 10 highly mutated cancers were

predominated by SSNVs (samples 14–22 vs. 23–32, Supplemen-
tary Data 2). None of the patients in our study carried known
germline mismatch-repair defects, but it was possible that their
SeC marked an initial manifestation of Muir–Torre syndrome.
We thus analyzed uninvolved normal skin in these patients to
assess for possible germline mutations in MLH1, MSH2, MSH6,
and PMS2, DNA repair genes whose inactivation is causative of
Muir–Torre syndrome. A germline nonsense mutation was found
in only one case, SeC sample 17 (MSH6 p.R911*), which harbored
high numbers of indels. Truncating mutations or likely damaging
mutations in POLE or APOBEC, other potential sources of high
mutation burden, were not detected.

These observations led us to suspect that three distinct
mutational mechanisms had given rise to the tumors of our cohort.
We therefore examined our mutations using established algorithms
capable of distinguishing known mutagenic processes9. This
analysis structure assesses a somatically altered base and surround-
ing sequence context to deduce a likely cause of each mutation.
These deduced mutational origins are themselves classified into a
series of discrete categories or “signatures.” This analysis revealed
that the tumors in our study fall into three distinct classes (Fig. 1b).
The 9/32 tumors harboring high proportions of indels all showed
substantial MSI signatures, with >30% of mutations matching
mutational signatures 6 or 15 as defined by the Signatures of
Mutational Processes in Human Cancer database (http://cancer.
sanger.ac.uk/cosmic/signatures). These mutation patterns are inti-
mately associated with primary defects in DNA mismatch-repair
genes. To support these findings, we additionally analyzed an
average of 1492 microsatellite sequences (homopolymeric repeats)
in the tumor and an average of 1352 in the normal, and found that
six of these tumors showed instability in >15% of examined loci10.
Notably, we found seven of nine of these tumors had acquired
truncating somatic mutations inMLH1,MSH2, orMSH6, excluding
the tumor with germline MSH6 mutation (Fig. 1b). Isolated
mutation of the mismatch-repair genes MSH3 or PMS1 were not
observed in our series, consistent with past reports that defects in
these genes do not cause Muir–Torre syndrome11.

Ten different tumors were defined by mutations harboring a UV-
damage signature (signatures 7 and 11) with high numbers of
CC > TT dinucleotide mutations induced by exposure to ultraviolet
radiation. These SeC developed on sun-exposed areas and showed
scarce evidence of mismatch-repair errors (Fig. 1b), averaging a
mean of <3% of signatures 6 and 15 combined. In contrast to recent
work that attributed high mutation prevalence mainly to mismatch-
repair-defective tumors8, the UV-damage class tumors in our series
showed the most SSNVs, ranging from 15.4 to 586 mutations per
Mb. There was limited overlap between the mutation signatures of
tumors derived from MSI and UV radiation, suggesting that most
SeC arise from a single primary mutational mechanism. Only
sample 22, located on the forehead, harbored both MSI and UV
signatures, with 46% of mutations classified as consistent with
signature 6 or 15, and 3% consistent with signature 7.

Interestingly, the remaining 13 of our SeC, including all nine
ocular cancers, were pauci-mutational (the group described above
with mutation prevalences between 1.2 and 5.5 per Mb), a
phenomenon occurring much less frequently in other cancers of
sun-exposed skin12. This range is on average 30-fold fewer than
in the MSI and UV classes. Tumor purity, estimated based on
mutant allele frequency, exceeded 70% in these cancers,
confirming an authentically low mutation prevalence. While
almost all tumors (88%) showed some amount of signature 1
mutation, eight of the pauci-mutational tumors were found to
have SSNVs primarily consistent with this signature, which is
typified by spontaneous deamination of 5-methylcytosine and
thought to be related to natural aging. Staining of six UV class
and six pauci-mutational SeC revealed MLH1 and MSH2 in all 12
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tumors, confirming these subgroups maintain expression of
mismatch-repair proteins (Fig. 2).

UV-damage SeC show more aggressive histopathologic fea-
tures. We examined the clinical and histopathologic character-
istics of tumors in each of these three classes. The mean age of
patients developing UV SeC was 83.1 (7.82), compared to 69.6
(15.2) for MSI and 72.7 (7.26) for pauci-mutational SeC. These
differences are significant using a one-way analysis of variance at
a p value of 0.017. Uniformly, MSI tumors showed greater dif-
ferentiation (six well-differentiated, three moderately differ-
entiated, Fig. 3a, b) and all nine had well-circumscribed (non-
infiltrative) borders. We also found that seven of nine MSI
tumors arose on the trunk, a site almost completely spared in the
other two classes (Fig. 4). In contrast, UV class tumors were more
poorly differentiated (eight moderate, two poor, Supplementary

Data 1) and 70% exhibited an infiltrative growth pattern (χ2 test p
value= 0.003, Fig. 3c, d).

All UV signature tumors showed histopathologic evidence of
moderate to severe sun damage. Prominent squamous differ-
entiation was present in only two tumors, both of the UV
signature class. Of the pauci-mutational class, nine were ocular
and four were cutaneous on facial skin (Fig. 4). Two (both extra-
ocular) were well-differentiated, similar to SeC in the MSI class.
Two of the extra-ocular pauci-mutational tumors had histo-
pathologic evidence of moderate to severe sun damage and
infiltrative growth patterns. The nine pauci-mutational ocular
SeC were all moderately differentiated and showed scant evidence
of chronic sun damage, consistent with development on sun-
protected epithelium of the inner eyelid.

SeC driver genes are specified by mutational class. In order to
identify the recurrently mutated genes in our SeC, the MuSIC
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analysis framework was applied13. We restricted this analysis to
somatic changes occurring at a minimum allele frequency of 20%
to reduce the impact of the high background mutation rate and
enhance for positively selected variants. Only 11 genes with a
convolution test false discovery rate of <1 × 10×−5 showed both
multiple point mutations and indels in our series, including TP53,
NOTCH1, NOTCH2, ZNF750, RREB1, KMT2D, and FAT3 (Fig. 5,
Supplementary Data 4). KM2TD and NOTCH1 are known epi-
thelial tumor suppressors affecting epigenetic programming and
differentiation, and mutation of TP53 and NOTCH1/2 is classi-
cally associated with SCC. Although the sebaceous gland epi-
thelium believed to give rise to SeC resembles the germinative
differentiation of basal cell carcinomas (BCC), the mutation
spectrum of SeC more closely resembles that of cutaneous SCC.
No nonsense mutations were observed in PTCH1, SMO, SUFU, or
other Hedgehog signaling pathway genes typically mutated in
BCC.

We then re-examined individual gene mutations in the
context of mutational classes we discovered in SeC (Fig. 5).
Truncating NOTCH1 mutations were notably excluded from
ocular SeC (1/9 harbored non-synonymous mutations) while 8/
23 of the remaining tumors acquired a nonsense or frameshift
mutation (Fig. 5). In contrast, 9/13 pauci-mutational SeC
acquired mutations in ZNF750, including 6 nonsense and
frameshift mutations, compared to just 2/19 truncations in the
remaining SeC. Only 2/19 of the UV signature and ocular SeC
harbored activating hotspot KRAS or HRAS mutations, as
opposed to 10/13 of the MSI and pauci-mutational cutaneous

classes (χ2 test, p value= 0.0002). Similarly, 4/9 MSI tumors
harbored truncating mutations in RREB114, compared to only
2/23 of the non-MSI cancers.

UV SeC transcriptomes resemble those of SCC and BCC. All
classes of SeC acquire recurrent mutations identified in cutaneous
SCC, including TP53, KMT2D15, 16, and NOTCH1/NOTCH217.
However the squamous differentiation and infrequency of KRAS/
HRAS activation in the UV subclass led us to hypothesize that
these tumors may display epigenetic similarity with SCC, which
share transcriptional patterns across their many subtypes18. RNA
sequencing was performed on five UV class, four MSI, and four
pauci-mutational SeC, along with six each of spontaneously
arising cutaneous SCCs and BCCs (Fig. 6). Strikingly, heavily
UV-damaged samples SeC 24, 25, and Y shared transcriptomic
patterns resembling those found in SCC and BCC, and none of
the five clustered with MSI or pauci-mutational SeC. SeC 24 RNA
expression was more strongly correlated with all six SCCs than
any SeC (t test p value 1e− 6). Similarly, SeC 25 RNA expression
correlated with all six BCCs more closely than with any SeC (t test
p value= 1e− 6). SeC Y had higher average correlation with SCC
samples than SeC; its transcripts also differentiated it significantly
from BCC (t test p value= 0.009). Pauci-mutational SeC 3 and 9
also showed some similarity to SCC, but clustered most strongly
with MSI SeC. None of the eight pauci-mutational and MSI SeC
profiled showed sufficient transcriptional similarities to classify
them with keratinocytic malignancies.
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UV and MSI SeC harbor high neoantigen burdens. The dif-
ferent mutation rates between SeC subclasses seemed likely to
proportionately impact predicted neoantigen load, potentially
affecting immunotherapy response. As expected, UV-damage
tumors harbored the largest numbers of predicted neoantigens,
followed by MSI tumors, then the pauci-mutational SeC (Fig. 5,
Supplementary Data 5). The total tumor mutation burden per
sample exceeded 100 for all 32 tumors, which has been reported
as a threshold for response to CTLA-4 blockade in melanoma19.
The total predicted neoantigen burden exceeded 100 for 24 of
32 samples, the threshold for clinical benefit reported in non-
small cell lung cancer20, 21. Clonality of predicted neoantigens
ranged widely in our SeC series, from 0 to 100% and did not show

differences by mutational class. Eleven out of 32 samples har-
bored predicted neoantigens that were at least 50% clonal.

Discussion
Here, we report three distinct mechanisms by which SeC accu-
mulate somatic mutations. Indel-rich MSI SeC appear to be
initiated by inactivating mutations in mismatch-repair genes
(which can be either germline or somatic), while SeC with UV-
damage-associated mutational signatures develop on heavily sun-
damaged skin. Although sebaceous neoplasms have been reported
anecdotally to harbor somatic mutations in mismatch-repair
genes8, 22, our results show that virtually all MSI class SeC arise
from either a germline or somatic mutation in this pathway. A
third, previously undescribed pauci-mutational class is primarily
represented by facial SeC. In fact, all nine of the ocular SeC in our
series displayed this pattern.

Remarkable mutual exclusivity characterizes the mutation sig-
natures in SeC. Even in MSI SeC that arise on sun-exposed skin,
mutations characteristically associated with UV damage are vir-
tually absent. It is conceivable that all SeC originate from sebocytes,
with the UV class undergoing dedifferentiation and acquiring ker-
atinocytic features. However, the considerable UV-damage burden
in this subset (Fig. 1) militates against this hypothesis. UV class SeC
are not found more superficially in the dermis than MSI tumors,
where they could acquire UV mutations during a later growth
phase. In fact, MSI SeC, which show the most distinctive features of
sebaceous differentiation, acquire much lower levels of UV-
associated mutagenesis, as one would expect of sebocytes located
in the mid-dermis. A hypothesis of divergent evolution of SeC
subtypes also fails to explain why, like MSI SeC, UV subclass
tumors acquire truncating NOTCH1 mutations, aberrations that
should restrict keratinocytic differentiation23.

We therefore favor an alternative model in which poorly dif-
ferentiated UV-damage SeC, like cutaneous SCC, arise from a
subpopulation of more superficial keratinocytes vulnerable to UV
mutagenesis, either from the epidermis or superficial portion of
the folliculosebaceous unit. In this model, UV class SeC may
acquire sebocytic differentiation because of specific somatic
alterations or the epigenetic state of the cell of origin. This
hypothesis is consistent with the scarcity of UV-damage SeC on
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Fig. 3 UV-damage class sebaceous carcinomas show poorer differentiation
and more infiltration. MSI sebaceous carcinomas have well-circumscribed
edges (a) with moderate to well-developed sebaceous differentiation in the
form of sebaceous gland formation (b) and mature, lipid-rich sebocytes (b,
inset). UV sebaceous carcinomas have more poorly differentiated features
(c), often requiring adipophilin immunostaining to confirm sebocytic origin
(d, inset). They frequently have infiltrative features and tumor necrosis (d).
Scale bar (a) and (c) 1 mm, (b) and (d) 0.1 mm
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the trunk (Fig. 4) and helps explain why tumors with prominent
squamous differentiation are found exclusively in the UV class. A
keratinocytic origin of UV SeC also accounts for relatedness of
transcriptomes of UV SeC and SCC and BCC, which diverge
substantially from MSI and pauci-mutational SeC.

In contrast, MSI SeC invariably arise through inactivation of
mismatch-repair genes. The predilection of these cancers for
sebocyte-rich skin (Fig. 4) raises the question: do all cells of
epithelial lineage acquire stochastic mutations in mismatch-repair
genes, with sebocytes particularly susceptible to subsequent
hypermutation and tumor evolution? Or do sebocytes permit
higher mutation rates that stochastically inactivate repair genes?
The answer is germane to the anatomic distribution of other skin
cancers. For example, in multiple hereditary infundibulocystic
BCC syndrome, a germline mutation inactivates one copy of the
SUFU repressor of the Hedgehog signaling pathway24. Basal cell
cancers arise in affected individuals when the wild-type trans
copy is inactivated by small deletions. However, these cancers
arise predominantly in the central face and genital area. Either
cells at these sites are somehow more prone to deletion events, or
they are more vulnerable to tumorigenesis once such events
occur. We also report the RREB1 gene is frequently mutated in
MSI SeC. A transcription factor that functions in adipocytic
differentiation14, RREB1 has not been previously implicated as a
tumor suppressor gene in human cancer. We detected robust
RREB1 protein expression in adult sebaceous glands; its role in
differentiation and the consequences of its deactivation in SeC
remain to be investigated.

Pauci-mutational SeC occur exclusively on the face (13/13),
and show no dominant mutational signature. They may represent
relatively sun-shielded epithelial cells that by chance acquire
driver mutations because of the modest mutagenesis of normal
aging. Interestingly, the ZNF750 transcription factor acquired
truncating mutations in 6/13 of these tumors. ZNF750 is required
for normal epithelial homeostasis25 and has recently been
explored as a lineage-specific tumor suppressor in SCC26. Its
striking rate of inactivation (frameshift or nonsense mutations) in
ocular SeC (5/9 samples) has not been reported. The recent
Tetzlaff et al.8 targeted sequencing study in ocular SeC did not
appear to assess for ZNF750 mutations in their panel of genes.
Our data suggest that ZNF750 inactivation is critical for tumor-
igenesis in ocular, and perhaps facial SeC more generally. Only
two of the 19 UV and MSI SeC were mutated for ZNF750.
Conversely, 0/9 ocular SeC acquired truncating NOTCH1 muta-
tions, compared to 5/9 of the MSI class. The class specificity of
NOTCH1, RREB1, and ZNF750 mutation supports the theory that
epigenetic differences in epithelial sites underlie distinct
mechanisms of SeC tumorigenesis. We did not detect activating
PIK3C or inactivating PTEN mutations in either ocular or extra-
ocular SeC, but such mutations may contribute a selective
advantage in a minority of cases8.

Our data illustrates how cancers grouped by histopathologic
similarity actually arise from different mutational mechanisms,
likely acting on distinct cells of origin. These differences reframe
clinical approach. Investigations for germline mismatch-repair
defects will rarely prove successful in the context of UV class SeC.

P
re

di
ct

ed
ne

oa
nt

ig
en

s

1

10

100

1,000

10,000

0

200

400

600
M

ut
at

io
ns

 p
er

 M
B

Translational effect

Synonymous

Non-synonymous

Mutation type

Frameshift

Nonsense

Splice Site

Missense

In-frame del.

In-frame ins.

Silent

Intron

Pauci-mutational
cutaneous

Pauci-mutational
ocular

MSI cutaneous UV damage cutaneous

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

FAT3

KRAS

HRAS

KMT2D

RREB1

ZNF750

NOTCH2

NOTCH1

TP53

0204060
% Mutant

Fig. 5 Ocular sebaceous carcinomas acquire truncating ZNF750 mutations, while UV-damage class tumors show lower prevalence of HRAS/KRAS and
RREB1 mutations and acquire higher neoantigen burden. SeC are arranged by mutational subclass on x axis and arranged from 1 to 32 from left to right.
Selected recurrently mutated genes are shown on a per sample basis, with mutation type coded in color. The single most deleterious mutation type in a
sample is displayed, depicted from top (frameshift) to bottom (intron) in the key. The predicted neoantigen burden is displayed by column graph at top of
the figure, showing that UV-damage class tumors generally substantially exceed the reported threshold for response in lung cancer20

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04008-y

6 NATURE COMMUNICATIONS |  (2018) 9:1894 | DOI: 10.1038/s41467-018-04008-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


MSI SeC may also behave indolently, much like their visceral
counterparts27, mitigating the urgency of follow-up and surveil-
lance. This classification also impacts therapeutic approaches to
those cancers that metastasize. Given the reported correlation
between poor differentiation and metastasis4, it is likely that
disseminated disease either falls into a highly mutated (UV-
damage) class amenable to immunotherapeutics, or a pauci-
mutational class, including most ocular SeC, predicted to respond
less robustly. In our series, poorly differentiated UV SeC showed
predicted neoantigen burdens at times exceeding 500 per sample,
>50% of them clonal in some cases, well above published
thresholds for reliable treatment response.

Methods
Sample inclusion and histopathologic classification. With UCSF IRB approval
and a waiver of informed consent, we screened the UCSF dermatopathology
tissue archives by diagnostic code for SeC from 2007 to 2015 that had available
tumor and normal skin remaining in the paraffin block(s). The diagnosis of
SeC was confirmed by a board-certified dermatopathologist (JPN). For any tumors
in which sebocytic differentiation was questionable, adipophilin immunoperox-
idase staining was used to confirm sebaceous differentiation. Any tumors in which
the diagnosis was uncertain after adipophilin stainings were excluded. Each tumor
was classified by the degree of differentiation (e.g., poorly, moderately, well dif-
ferentiated) as manifested by sebaceous gland organization and the number of
mature sebocytes present. High-grade cytologic atypia and squamous differentia-
tion were noted if present. Solar elastosis was graded as minimal or moderate to
severe, and tumors were assessed for infiltrative growth pattern at the edges of the
neoplasm.

Immunostaining. Formalin-fixed paraffin-embedded (FFPE) sections of 4-µm
thickness were stained with the following immunoperoxidase stains: adipophilin
(393A-18, Cell Marque, Rocklin, CA, predilute on Leica Bond); MLH1 (PA0610,
Leica); MSH2 (IR08, Dako).

DNA extraction and exome sequencing. Ten 5-µm tissue sections were cut using
standard microtomy techniques. The top section was subjected to hematoxylin and
eosin staining and reviewed by a board-certified pathologist who identified and
marked regions of malignancy. Using the marked-up image as a guide, tissue sections
were macrodissected to collect the desired regions. Each collected cell population was
then extracted using the Qiagen QIAamp DNA FFPE Tissue Kit for DNA and RNeasy
FFPE Kit for RNA. Extracted material was then quantified using a Qubit fluorometer.

DNA-seq libraries were captured to exome regions using xGen Exome Research
Panel v1.0 (IDT), and libraries were prepared using the KAPA Hyper prep kit.
DNA libraries were sequenced to a target depth of ×200 for tumor sample, ×100 for
normal samples on the Illumina HiSeq platform.

RNA-seq libraries were prepared using the KAPA Stranded RNA-Seq Kit with
RiboErase (Kapa Biosystems, Wilmington, MA) and sequenced to a target depth of
200-M reads on the Illumina HiSeq platform (Illumina, San Diego, CA). RNA
samples were aligned to RefSeq build 73 transcriptome using Bowtie2 v2.2.6 and
quantified using RSEM v1.2.2528.

Exome variant calling. Raw sequencing data in Illumina’s fastq data format was
converted into fastq files with base quality scores encoded in the Sanger basecall format.
Next, the reads were aligned using the Burrows–Wheeler Aligner (BWA)29. This aligner
is based on the Burrows–Wheeler transformation, aligns paired-end reads and handles
indels robustly. The output of BWA are the aligned reads in sequence alignment/map
(SAM) format. Reads stored in SAM format were then converted to the binary SAM
(BAM) format using the samtools software30. Once reads were in the sorted and
indexed BAM file format, position based retrieval of reads was expedited and data
storage requirements were minimized. Next, to remove erroneous mutation calls due to
PCR duplication, all duplicate reads were removed using samblaster31. After removal of
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the duplicate reads, the base quality scores were recalibrated using the CountCovariates
and TableRecalibration tools included in the Genome Analysis Toolkit software, also
developed by the Broad Institute (https://www.broadinstitute.org/gatk/).

The tumor and matched-normal BAM files were analyzed for SNVs with the
following method. Sequenced bases with ≥8 unique (nonduplicate reads) with
mapping quality ≥20 in both tumor and matched-normal were used to compute the
likelihoods of all possible genotypes (AA, AT, AC, and so on) using a mapping
quality-based error model29, available in the samtools source code. If fewer than two
reads support any non-reference allele at the current position, then the position was
deemed homozygous reference and no further analysis was performed. The genotype
likelihoods were used in a Bayesian model used by the SomaticSniper method32–34,
incorporating a prior probability on the reference, the fraction of heterozygous
positions in the human genome, the probability to convert the normal genotype to the
tumor genotype. Each tumor/normal genotype pair was scored using this model. The
genotype pair with the highest likelihood, given the data, was chosen as the most likely
tumor and normal genotype. Any position that was determined to be homozygous for
the reference allele in both tumor and normal was not further analyzed.

If tumor and normal genotypes were identical, then the variant was classified as
germline. Instances where the normal genotype was heterozygous and the tumor
genotype was homozygous suggest not new point mutations but regions of loss-of-
heterozygosity (LOH), and such variants were so classified. For variants classified as
either germline or LOH, the log-likelihood of the paired genotype was used to
compute a Phred-scaled quality/confidence of the germline variant. All other variants
were classified as a somatic mutation and their somatic score (SS) was calculated32.
For any position where the tumor and/or normal genotype was not homozygous for
the reference allele, a number of metrics were computed, including number of total
reads, number of allelic reads, average base and mapping quality, number of reads
with mapping quality= 0, number and quality sum of mismatches in reads with
variant or reference allele, the distance of the variant to the 3′ end of the read, and
number of reads aligned to the forward/reverse strand. All putative variants and their
associated metrics were converted to the variant call format (VCF) and the following
filters applied32: conf: genotype quality or SS ≥15 dp: total depth (DP of normal+
primary) ≥4; mq0: number of mapping quality= 0 reads <5; sb: mutant allele strand
bias p value >0.005 (binomial test); mmqs: quality sum of mismatches (per read) ≤20;
amm: average number of mismatches (per read) ≤1.5; detp: fractional distance to 3′
<0.2 or >0.8; ad: mutant allele depth in tumor ≥4; gad: mutant allele depth in normal
≤3; ma: read support is ≥2 for two or more alternate alleles at this position32. A single
VCF file was produced for each tumor sample.

Calling copy-number variants. For copy-number variants (CNVs), referred to
here as CNVs, average tumor vs. matched-normal relative coverage and standard
deviation were calculated for each captured exon by dividing read depth measured
in the tumor by the read depth in the matched-normal for each position within the
exon. Exons that were insufficiently covered, average read depth <5 reads, in both
tumor and matched-normal were removed from the remaining analysis.

Average majority allele fraction in both tumor and matched-normal was
computed for each segment with at least one heterozygous SNP in the normal tissue:

AFtm ¼ DPtmajor

DPttotal
; AFnm ¼ DPnmajor

DPntotal
;

where DPtmajor and DPnmajor are the read depths of the germline allele with the greatest
read support and DPttotal and DPn

total are the total read depths at the position in the
tumor and matched-normal, respectively. Relative coverage is determined simply by
dividing the coverage observed in tumor by the matched-normal’s coverage, i.e.,
RC ¼ DPttotal=DP

n
total . The standard deviation of AFm estimates was computed for

segments featuring at least three heterozygous SNPs. Only dbSNP sites with sufficient
read support in the tumor and matched-normal ðDPti � 10;DPni � 20Þ deemed
heterozygous (0:25 � AFni � 0:75) are considered when computing majority allele
fraction estimates.

To determine CNVs, the exon-level statistics computed above were iteratively
aggregated into larger segments in an agglomerative process similar in spirit to
hierarchical clustering. In the first round, every pair of neighboring exons was
analyzed. Neighboring exons that did not have significantly different relative
coverage and AFtm (only for exons with heterogeneous SNPs) estimates (p value
>0.95, two-sample Student’s t test) were merged into a single segment. The average
relative coverage for the new segment was calculated as the base-pair count
adjusted averages and standard deviations of the two individual exons
measurements, while AFnm and its standard deviation were recomputed for the new
segment using the same procedure described above. This procedure was continued
with neighboring segments using the above method for three rounds.

The relative coverage estimates of all segments were centered to the median of the
entire genome, which was assigned the value of 1.0, signifying the normal copy-
number state. The skew in AFtm estimates caused when the majority allele’s read
support is due to sampling bias instead of an underlying imbalance in allele copy
number was corrected by subtracting out the AFnm estimated in the matched-normal
sample. However, since this bias is only present in regions where both alleles have
equal copy number, the correction is made using the following equation:

AFtm;corr ¼ AFtm � AFnm � 0:5
� �

e�0:5
AFtm�AFnm

0:05

� �2

:

The above copy-number segments are then used to estimate the amount of normal
contamination, α, and tumor ploidy that can be used to transform the relative
coverage estimates into allele-specific, integral copy-number states where possible.

Best-fit parameters for α and tumor ploidy are found by gradient descent. Each
round of gradient descent is initialized with random values for α and ploidy and
attempts to maximize the joint log-likelihood of the relative coverage, rc, and
majority allele fraction, af, estimates weighted according to segment size across the
22 autosomes. Gradient descent is performed in this manner for a minimum of 10
times, and the best-fit parameters across all rounds are reported.

In the joint log-likelihood calculation, a set of common allelic states are used to
determine the expected relative coverage and majority allele fraction values for each
state, given α and tumor ploidy. These states include commonly altered states such
as single-copy gain (2, 1), LOH (1,0), and copy-neutral LOH or CN-LOH (2, 0),
where the numbers in parentheses are the majority and minority allelic copy
numbers, (A, B), that describe an allelic state. Additionally, less common states
such as balanced amplification (2, 2) and subclonal states representing a 50/50
mixture of subclones with and without an altered allelic state are also used.

Tumor ploidy is recalculated using the best-fit parameters to transform the
original relative coverage estimates into tumor copy number. Ploidy is then
calculated as the average of tumor copy number across the whole genome,
weighted by the normalized genomic length of each segment. Any copy-number
segment that was normal (1, 1) or that deviated significantly (two-sample t test p
value <0.05) from an integral state was not included in the downstream analysis,
and any segment larger than 2.5 megabases is detailed in the supplemental tables.

Microsatellite instability sequence analysis. Instability of microsatellite repeats
is estimated using the method described here10. A set of 2848 microsatellites
consisting of homopolymer repeats were analyzed for an increase in the number of
length polymorphisms in both tumor and matched-normal (if available)
sequenced. The background mean (μ) and standard deviation (σ) of the number of
length polymorphisms for each microsatellite locus were computed across ~5000
blood and solid normal exomes sequenced by TCGA comprising 18 different
cancer types. Loci covered by fewer than 30 reads are excluded from the analysis.
For each microsatellite locus, the number of differently sized repeats are counted
for each sample. Repeats with read support exceeding 5% of the read support of the
maximally supported repeat are tallied for a total count of differently sized repeats,
n. The total number of unstable microsatellites is counted in each sample, where a
given microsatellite i is deemed unstable if ni > μi+ 3σi. The percentage of unstable
loci is calculated for the tumor. If the matched-normal sample is available, its
estimated percentage of unstable loci is subtracted from the tumor’s estimate in
order to remove sample-specific variation in microsatellite stability. If the tumor
sample’s (relative) percentage of unstable loci is 15% or higher, then it is judged as
having a high degree of MSI.

Disruptive alterations to DNA repair genes (MLH1, MSH2, MSH6, PMS2) are
presented in this analysis. Alterations are restricted to: somatic and germline
nonsense SNVs, somatic, and germline frameshifting insertions or deletions, and
somatic gene losses.

Mutation signature analysis. The bases directly adjacent to the mutated site are
used to determine the genomic context of the site, which can help to determine if a
particular mutagen (e.g., tobacco smoke, exposure to ultraviolet light) or muta-
tional process is active in the sample. Classification of point mutations in our study
among the 30 signatures defined by the Signatures of Mutational Processes in
Human Cancer database (http://cancer.sanger.ac.uk/cosmic/signatures) was cal-
culated using non-negative matrix factorization on the counts of mutated triplets
identified in the tumor sample9. “Active” signatures are those that contributing at
least 100 mutations or >25% of the total mutations in the sample.

Statistical analysis of SeC subclass and histopathology. Histopathologic
parameters were assessed as dichotomous variables with χ2 analysis. In the case of
histopathologic differentiation, low and moderate categories were combined and
compared against well-differentiated tumors. A p value <0.05 was considered
statistically significant.

Neoepitope prediction analysis. Potential neoepitopes were generated by iden-
tifying all mutations that caused a protein change within exonic regions. A sliding
window of nine amino acids around the mutation site was used to identify all
possible sequences arising from a mutation. RNA-seq was used where available to
identify only expressed neoepitopes. NetMHC 3.4 was used to identify expressed
neoepitopes that were capable of being bound by the matched patient human
leukocyte antigen (HLA typing). HLA typing was done by aligning sequences from
HLA regions against sequences in the IMGT/HLA database35.

RNA extraction and expression analysis. RNA-Seq libraries were prepared for
the tumor sample using KAPA Stranded RNA-Seq with RiboErase kit and
sequenced on the Illumina sequencing platform using two library preparations,
with each library targeted for 100-M sequencing reads. RNA sequencing reads were
aligned by bowtie2 using default parameters to the RefSeq transcriptome and
analyzed by RSEM. Gene-level transcripts per million (TPM) estimates were
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transformed via log2 (1+ TPM) before further correlation analysis. The Pearson
correlations reported here were calculated on the 500 genes with highest variance.
The correlation trends were verified on two further gene sets: all genes with var-
iance >1.0, and the full transcriptome. Hierarchical clustering was performed on
the correlation matrix in R, using the default parameters of the heatmap.2 package
from gplots version 3.0.1.

Data availability. Sequence data has been deposited at the European Genome-
phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession
number EGAS00001002869.

Further information about EGA can be found on https://ega-archive.org and
“The European Genome-phenome Archive of human data consented for
biomedical research”36. All other data are available from the authors upon
reasonable request.
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